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Figure 1: MyMove supports collecting in-situ activity labels using speech on a smartwatch. People can initiate the reporting
from the watchface either voluntarily (a) or upon a prompt message (b); describe an activity, time span, and effort level (c);
and review & submit the recording (d). MyMove displays a visual confirmation after the submission (e). The example verbal
report is from P7. Please refer to our supplementary video which demonstrates the interactions.

ABSTRACT

Current activity tracking technologies are largely trained on
younger adults’ data, which can lead to solutions that are not well-
suited for older adults. To build activity trackers for older adults, it
is crucial to collect training data with them. To this end, we examine
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the feasibility and challenges with older adults in collecting activ-
ity labels by leveraging speech. Specifically, we built MyMove, a
speech-based smartwatch app to facilitate the in-situ labeling with
a low capture burden. We conducted a 7-day deployment study,
where 13 older adults collected their activity labels and smartwatch
sensor data, while wearing a thigh-worn activity monitor. Partici-
pants were highly engaged, capturing 1,224 verbal reports in total.
We extracted 1,885 activities with corresponding effort level and
timespan, and examined the usefulness of these reports as activ-
ity labels. We discuss the implications of our approach and the
collected dataset in supporting older adults through personalized
activity tracking technologies.
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1 INTRODUCTION

Scarcity of older adults’ activity datasets may lead to biased and
inaccurate activity recognition systems. For example, a recent study
showed that Fitbit Ultra, a consumer health tracking device, signifi-
cantly under-reports steps at slow speed of 0.9 m/s, a representative
walking speed of older adults [132]. When people walk slowly, with
a cane, or a walker, such activity recognition systems have a ten-
dency to not register steps accurately. A recent study looking at
older adults’ technology usage for activity tracking shows that more
than a half do not trust the accuracy of these devices [102], which
are typically trained on younger adults data. To develop activity
tracking systems that are inclusive of and beneficial to older adults,
it is imperative to collect older adults’ movements and activity data.

Activity tracking technologies can provide meaningful feedback
that supports people’s motivations, playing an important role in
enhancing physical activity [32, 80, 122]. Like individuals in many
age groups, physical activity is important for older adults, favor-
ably influencing their healthy daily routine [27] and active life ex-
pectancy [20], chronic health conditions including coronary heart
disease, hypertension, and type 2 diabetes [127], psychological
health and wellbeing [20], enjoyment [92, 93], and social wellbe-
ing [6]. However, the adoption rate of activity tracking technologies
for older adults is relatively low (e.g., 10% for age 55+ whereas 28%
for ages 18-34 and 22% for ages 35-54 [78]). Meanwhile, studies
continuously report that younger, more affluent, healthier, and
more educated groups are more likely to use activity tracking tech-
nologies [18, 75, 78, 126].

We suspect that the current activity tracking technologies are
designed with little understanding of older adults’ lifestyles and
perspectives (e.g., types of activities they engage in and care about)
and do not account for heterogeneous physiological characteristics
(e.g., gait and locomotion [12]). Our ultimate goal is to support
older adults’ agency by designing and developing personalized
activity tracking technologies that better match their preferences
and patterns. As a first step, we set out to develop an activity
labeling tool that older adults can use to collect in-situ activity
labels along with their sensor data. These labels could be used to
train and fine-tune classifiers based on inertial sensors.

To this end, we conducted a 7-day deployment study with 13
older adult participants (age range: 61-90; average: 71.08), where
they collected activity descriptions while wearing a smartwatch
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and a thigh-worn activity monitor; the thigh-worn activity moni-
tor served as a means for collecting ground-truth sensor data for
our analysis and later model development. To facilitate collecting
in-situ descriptions with a low data capture burden, we designed
and developed an Android Wear reporting app, called MyMove,
leveraging speech input, an accessible modality for many older
adults [98]. With MyMove on a smartwatch, participants can de-
scribe activity type, associated timespan, and perceived effort level.
Many smartwatches are equipped with a microphone, which al-
lows people to flexibly describe their activities using speech. As
an on-body device, a smartwatch can collect continuous activity
sensing data and deliver notifications, which is necessary to collect
in-situ data through an experience sampling method (ESM) [64].
Furthermore, prior work co-designing wearable activity trackers
with older adults showed that the “watch-like” form factor was
mostly preferred due to its ability to tell time, on-body position,
and public acceptance [121]. Through our deployment study, with a
focus on feasibility, we explore the following questions: (1) How do
older adults capture their activities using speech on a smartwatch?
and (2) How useful are their verbal reports as an information source
for activity labeling?

Our results show that participants were highly engaged in the
data collection process, submitting a total of 1,224 verbal reports
(avg. 13.45 reports per day per participant) and wearing the smart-
watch and monitor throughout the seven-day study period. From
these reports, we extracted 1,885 activities with 29 different activity
types that comprehensively capture participants’ daily lifestyles.
Participants provided time-related information for about a half of
the activities but they were more likely to provide complete time
information when reporting a single activity or when reporting
voluntarily as opposed to being prompted. Participants’ effort level
categories were aligned with sensor-based intensity metrics in the
corresponding time segments. However, activities that participants
evaluated as moderate to high intensity did not meet the standard in-
tensity level according to the sensor-based intensity measurements.
All of the 1,224 verbal reports were valid and could be transcribed
and understood by a researcher. Furthermore, the word error rates
of these reports by two state-of-the-art speech recognition systems
were relatively low: 4.93% with Microsoft Cognitive Speech and
8.50% with Google Cloud Speech. Through our study, we demon-
strated that by leveraging speech, MyMove can facilitate collecting
useful activity labels. We also identified how we can further improve
speech-based activity labeling tools for older adults; for example,
by leveraging multi-device environments to collect more accurate
and fine-grained data and by providing self-monitoring feedback
to enhance engagement. The key contributions of this work are:

(1) Design and development of MyMove, an Android Wear report-
ing app for supporting older adults in collecting their activ-
ity descriptions with a low data capture burden by leveraging
speech input on a smartwatch.

(2) Empirical results from a deployment study conducted with 13
older adults using MyMove, demonstrating the feasibility of
collecting rich in-situ activity descriptions from older adults
via speech.

(3) Examining the characteristics and usefulness of the data col-
lected with MyMove, in terms of activity type, time, and effort
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level as well as the quality of the voice recording (automatic
speech recognition error).

2 RELATED WORK

In this section, we cover the related work in the areas of (1) under-
standing older adults’ activities, (2) collecting in-situ behavioral
data, and (3) in-situ data labeling for human activity recognition.

2.1 Understanding Older Adults’ Activities

Researchers, healthcare providers, and government officials have
been interested in understanding daily activities of older adults
because it helps establish and improve health-related guidelines,
policies, and interventions [13, 34, 112]. Researchers have defined
“activity” differently depending on their research focus. For exam-
ple, there is a focus on assessing the independence/dependence
with functional tasks, as reflected in the concept of ADL (Activities
of Daily Living—basic self-maintenance activities, such as eating,
dressing, bathing, or toileting) [56] and IADL (Instrumental ADL—
higher-level activities that require complex skills and mental load,
such as making a phone call, shopping, housekeeping, or financ-
ing) [65]. Another subset of research categorizes activities based
on the level of energy expenditure (c.f, classification of energy
costs of daily activities [1]), as reflected in many physical activity
questionnaires they developed to assess older adults’ intensity-
specific duration for behavior (e.g., MOST [33], CHAMPS [114],
LASA [125]).

Domestic and leisure activities are prevalent in older adults’ daily
activities [49, 55, 79, 83]. According to the national time use surveys
from 14 countries, older adults (aged 60-75) spent around 6 hours
on leisure and >2.5 hours on domestic work daily [55]. From the
interviews with U.S. older adults, Moss and Lawton found that
participants spend about 5 hours a day on obligatory personal care
& household activities and more than 6 hours a day on discretionary
leisure activities [83]. Another study with Australian older adults
reported that participants spend the longest time on solitary leisure
(avg. 4.5 hours a day) excluding sleep, followed by IADL (avg. 3.1
hours a day), social leisure (avg. 2.7 hours a day), and ADL (avg. 2.6
hours a day) [79].

Researchers have further examined what kinds of activities older
adults engage in during their leisure time [55] grouping them as
active (e.g., relaxing, socializing, volunteering, organization work,
religion, going out, sports and exercising) and passive (e.g., reading,
listening to the radio, watching television, and browsing the internet
on a computer) with the latter often involving screen time. Screen
time is one of the most prevalent leisure time activities [88]; studies
consistently report that older adults spend longer than 2 hours a
day watching TV (e.g., avg. 2.5 hours [49], avg. 3.5 hours [83], and
over 3 hours for 54.6% of an older population [43]). Screen time is
known to be a strong indicator of discretionary sedentary behav-
iors (i.e., low energy expenditure activities in a seated or reclined
posture while awake [110]). Decreased physical activity during
leisure time and increased sedentary time is another common char-
acteristic of older adults that may be disproportionately affected
by many other factors such as the socioeconomic status of their
neighborhood [3]. The U.S. national surveys in 2015-2016 revealed
that 64% of older adults aged 65+ reported being inactive (i.e., no
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moderate or vigorous-intensity activity for 10 minutes per day),
and 53% reported that they sit longer than 6 hours a day [131]. In
a similar vein, a study using an accelerometer sensor (ActiGraph)
found that older adults aged 70+ in the urban UK spend less than
30 minutes on moderate-to-vigorous physical activities and the
duration significantly drops with age [23].

This body of knowledge—that is typically based on retrospec-
tive recall, surveys, and automated sensing—provides a general
understanding of older adults’ activities and time use. In our work,
however, the purpose of collecting older adults’ activities is quite
different: going beyond understanding how older adults spend their
time, we aim to examine the feasibility of creating a training dataset
that contains older adults’ activity patterns. To this end, we employ
a low-burden, in-situ data collection method that older adults can
partake in to collect fine-grained data of their activities.

2.2 Collecting In-Situ Behavioral Data

Methods that rely on retrospective recall, such as interviews or
surveys, are subject to recall bias [42], which may be affected by
the nature of an event and people’s experiences. For example, in re-
sponding to a survey, people were likely to accurately estimate the
past duration of intensive physical activities [9, 52, 109], whereas
they were likely to underestimate or omit light and sedentary activi-
ties [9, 52, 66, 107, 109]. To collect more ecologically valid self-report
data, researchers devised Diary Study [8] and Experience Sampling
Method (ESM, often interchangeable with ecological momentary
assessment or EMA) [64]. Both methods have been employed be-
fore the widespread use of smartphones, but smartphones and their
notification capability have made it much easier to facilitate these
methods. In Diary Studies, people are expected to capture self-
report data once (or more) a day using pen and paper or diary apps.
Although Diary Studies help researchers collect in-situ self-report
data, there can be a delay between when an event happens and
when that event is captured. To further reduce recall bias, ESM em-
ploys notifications (defined by a certain prompting rule) to signal
when to capture data, and people are expected to capture data at the
moment of (or shortly after) receiving the notification. Researchers
typically employ ESM to collect brief self-report data frequently.
Therefore, in an ESM study, it is important to strike the balance
between researchers’ data collection needs and participants’ data
capture burdens.

To reduce data capture burdens, researchers have explored smart-
watches as a new means to facilitate ESM [45, 134]; wearing smart-
watches allows for high awareness of and alertness to incoming
notifications with glanceable feedback [16, 96]. In terms of the no-
tification delivery, prior work has demonstrated that smartwatch-
based ESM can yield shorter response delays [45], higher response
rates, and EMA experiences perceived as less distracting [51, 97]
when compared to smartphones. On the other hand, an inherent
drawback of smartwatches for ESM is their small form factor, which
can make it laborious to enter data. Thus, approaches typically
employed on smartphones (e.g., entering data via a text box) are
inefficient. To ease the data entry, researchers have explored more
effective input methods such as the ROAMM [59] and PROMPT [77]
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frameworks, which support radial scales and bezel rotation to spec-
ify pain level and activity type. Others have combined touch and
motion gestures for answering Likert scale questions [134].

These prior studies predominantly incorporated graphical wid-
gets with touch/hand gestures for structured questions with simple
choices (e.g., “yes” or “no”). One input modality on a smartwatch
that has not been actively considered for ESM on a smartwatch is
speech, which is widely embedded in consumer devices and digi-
tal systems [22]. When people speak, they tend to be faster [105]
and more expressive [17, 103] than when they type. Speech in-
put requires little to no screen space and researchers found that
speech commands can be easier to perform than using graphical
widgets on mobile devices (e.g., [60, 113]). Recent work has shown
promise for speech input for in-situ data collection on digital de-
vices (e.g., exercise logging on a smart speaker [72], food journaling
on a smartphone [71]). For example, Luo and colleagues deployed
a speech-based mobile food journal and found that participants
provided detailed and elaborate information on their food decisions
and meal contexts, with a low perceived capture burden [71]. Using
speech input on a smartwatch poses great potential for lowering the
data capture burden while enhancing response rate in EMA studies.
It allows us to mitigate touch interactions that involve on-screen
finger movement, such as scrolling, which may be burdensome
for older adults [5]. Given that voice-based interfaces tend to be
accessible for many older adults [98] (including those with low
technology experience), in this paper, we explore how older adults
leverage speech input on a smartwatch to collect in-situ activity
data in an open-ended format. This is a novel approach to prior
ESM studies that collected responses to structured questions (e.g.,
multiple choice, Likert scale).

2.3 In-Situ Data Labeling for Human Activity
Recognition

Another relevant topic to our work is Human Activity Recogni-
tion (HAR), an automated process of relating sensor stream time
segments with various human activities (e.g., walking, running,
sleeping, eating) [63]. HAR has been extensively applied to a wide
range of technologies, from broader consumer fitness trackers to
specialized tracking systems for older adults in capturing physical
activities and ADLs or detecting falling or frailty [34, 121, 122]. The
quality of an HAR model depends on how sensor data (i.e., input)
were collected [63]; models trained with the sensor data captured
in the lab tend to yield less accuracy when tested outside [31]. How-
ever, gathering both ground-truth activity labels (i.e., the type of
activity, the start and end time of an activity) and sensor data in the
natural context of daily life is generally challenging because it may
not be ethical or feasible for researchers to observe participants’
activity outside the lab [48].

To enable in-situ collection of both the sensor data and the ac-
tivity labels, the UbiComp and HCI communities have proposed
mobile and wearable systems that allow participants to label their
own activities, while collecting sensor data in the background (e.g.,
[82, 108, 119]). For example, VoiSense [108] is a conversational
agent on Apple Watch that allows people to capture the physio-
logical or motion sensor data for a designated duration and then
specify a label for the session, though, it has not been evaluated yet
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with users. ExtraSensory App [119] is an in-situ activity labeling
system that consists of a mobile and smartwatch app. On the mobile
app, people can review their activity history and labels for past
or near-future time segments. The smartwatch app complements
the mobile app by forwarding notifications or receiving binary
confirmations about the current status (e.g., “In the past 2 minutes
were you still sitting?”). When labeling on the mobile app, people
can select multiple labels from a predefined list (e.g., Sitting + At
work) that best describes the time segment. Data collected with the
ExtraSensory App typically include younger adults (ages 18-42).

Our work extends this line of research on collecting in-situ ac-
tivity labels in two ways. First, unlike prior systems that primarily
target younger adults, we aim to work with older adults with inter-
faces that are specifically designed for this population (see Design
Rationale DR1 in Section 3.1). Second, unlike VoiSense and ExtraSen-
sory App, which collect structured label data through multiple steps
of speech or touch inputs, we collect activity information as an
unstructured verbal description on the activity type, associated
timespan, and perceived level of effort. In doing so, we explore how
useful such utterances are as a source of information for activity
labeling and discuss the implications of our findings for how to
design low-burden in-situ activity labeling systems suitable for
older adults.

3 MYMOVE

As a low-burden activity reporting tool intended for older adults,
we designed and developed MyMove (Figure 1), a speech-based
Android Wear app. MyMove allows people to submit a verbal de-
scription of their activities (which we call a verbal report through-
out the paper) in two different methods: (i) report voluntarily at
any time or (ii) report when they are prompted by ESM notifica-
tions. MyMove asks people to include activity, time/duration,
and perceived effort level in their verbal report. The activity and
associated timespan are the two essential components of labeling
sensor data for Human Activity Recognition [63]: activity labels can
be extracted from activity descriptions and the timespan connects
the activity and the sensor values. Capturing the perceived level of
effort is important because it varies from person to person even
when they perform the same activity (e.g., the number of repetitions,
speed, weight lifted) [10]. In the background, MyMove captures
sensor data streams and transmits them to a backend server. In this
section, we describe our design rationales and the MyMove system
along with the implementation details.

3.1 Design Rationales

DR1: Prioritize Older Adults. Both the form factor and interac-
tion modalities of MyMove are informed by prior work with older
adults in support of smartwatches in the context of activity tracking
(e.g., [29, 121]), voice as an accessible input modality for many older
adults [98], and large target buttons associated with tapping or
pressing [15, 84].

We carefully selected hardware (i.e., Fossil Gen 5) that has a
relatively big display among other smartwatch options with similar
sensing. Interacting with Android Wear’s native notifications re-
quires bezel swiping and scrolling, and we have little control over
the text size and layout of a notification. Thus, we designed and
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implemented a custom watchface to display our prompt messages
(e.g., Figure 1b). We also allowed people to choose either physical or
virtual (touchscreen) buttons for most functionalities, considering
diverging preferences of older adults on the physical and virtual
buttons [77, 128]. We assigned up to two main functions on each
screen and placed virtual buttons with a white background (e.g., Fig-
ure la—1d) near the top-right and the bottom-right physical buttons
on the side, with each virtual button matching the corresponding
physical button. For consistency, we assigned positive actions (e.g.,
confirm, launch the reporting) to the top-right button and negative
actions (e.g., cancel, dismiss a prompt) to the bottom-right button.

DR2: Simplify Data Capture Flow. Considering that data entry
is repeated frequently, we streamlined the user interface flow for
activity reporting. For example, people can submit an entry by
pressing the top-right button twice, first to initiate the recording
(Figure 1a or 1b — Figure 1c), and second to end the recording
(Figure 1c — Figure 1d). Upon completion of the recording, the
review screen (Figure 1d) automatically submits the report so that
people do not have to explicitly press the “OK” button. We followed
the design of traditional voice recording interfaces, initially allow-
ing pausing and resuming the recording. However, throughout the
pilot study we found that pausing/resuming was rarely used but
rather made the flow more confusing and therefore removed that
functionality.

DR3: Leverage the Flexibility of Natural Language Speech In-
put. It can be challenging to specify activity types or time/duration
information using only graphical user interface widgets on a smart-
watch. The screen is so small that entering data via a text box can
be inefficient. Selecting an activity type from a long list of activities
is tedious and prone to error (e.g., ExtraSensory’s sphone app [119]
supports about 50 activity tags on a hierarchical list, but its com-
panion smartwatch app does not support this tagging activity).
Furthermore, specifying time/duration using touch is laborious and
inflexible; a smartwatch’s small screen does not afford two time
pickers (for start and end) in one screen and existing time pickers
are not flexible enough to handle the various ways to specify time
(i.e., people should specify absolute start and end time) [60]. We
also wanted to allow participants to freely describe the effort level
to examine what expressions they use to gauge their effort in what
situation instead of using the validated scales such as Borg’s CR10
scale [11, 21].

To mitigate these limitations, we leveraged speech input that
affords a high level of freedom without requiring much screen
space [60]. People can specify multiple information components in
a single verbal report (e.g., “I took a 30-minute walk” to specify an
activity with duration; “I did gardening, fixing flower beds from 9:00
to 10:30, in moderate intensity” to specify an activity with duration
and effort level).

3.2 Data Collection

Verbal Activity Reports. MyMove collects verbal reports in two
different ways: people can submit a report voluntarily at any time or
they can submit a report responding to ESM prompts!. Each prompt
is scheduled to be delivered at random within hourly time blocks

IRefer to our supplementary video that demonstrates the two reporting methods.
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while people are wearing the smartwatch. To send the prompts only
when people are wearing the watch, we leveraged the smartwatch’s
built-in off-body detect sensor. Once a prompt is delivered, the next
one is reserved within the next hour window while leaving at
least a 30-minute buffer after the previous one. If the user submits
a voluntary report, the next prompt is rescheduled based on the
submission time following the same rule.

We incorporated custom watchfaces to provide coherent visual
interfaces (Figure 1). On the default screen, the watchface displays
a clock, the number of reports (logs) that were submitted during the
day, and a record button to initiate voluntary reporting (Figure 1a).
When a prompt is delivered, the smartwatch notifies the user with
two vibrations and displays a message “Describe in detail what
you are doing now.” with the record and dismiss buttons on the
watchface (Figure 1b). The prompt on the watchface stays for 15
minutes. However, for safety reasons, prompts are skipped if the
system recognizes that the user is driving based on the Google
Activity Recognition API [36].

When the user starts the recording by tapping on the “Record”
or & button on the watchface (or corresponding physical button),
the watch vibrates three times while displaying the message, “Start
after buzz, to indicate initiation. Then MyMove shows the Record
screen (Figure 1c), where people can describe an activity in free-
form. The screen displays a message, “Activity, duration, and effort
level?” to remind people of the information components to be in-
cluded. Recordings can be as long as 2 minutes; after which the
session is automatically canceled and the audio is discarded. The
user completes the recording by pressing the “End” button, after
which they are sent to the Review screen (Figure 1d) where they
can play back the recorded audio (the Fossil watch had a speaker).
The recording is submitted upon pressing the “OK” button or after
8 seconds without any interaction. While recording or reviewing,
the user can discard the report using the @ button.

Background Sensor Data. MyMove also collects three behavioral
and physiological measurements from the onboard sensors and APIs
in the background. First, every minute, MyMove records a 20-second
window of inertial sensor measurements—accelerometer, rotation
vector, magnetometer, and gravity—in 25 Hz (500 samples each).
Second, the system records the step counts in one-minute bins and
heart rate samples (BPM) at every minute using the smartwatch’s
built-in sensors. Lastly, MyMove collects the classification samples
from Google Activity Recognition API, a built-in API that classifies
the present locomotion status (e.g., walking, running, still in position,
in vehicle, on bicycle) based on the onboard sensors.

3.3 Implementation

We implemented the MyMove app in Kotlin [53] on Android Wear
OS 2 platform. As a standalone app, it does not require a companion
app on the smartphone side.? The verbal reports and sensor data
are cached in local storage and uploaded to the server when the
smartwatch has a stable internet connection. To optimize network
traffic and disk space, the MyMove app serializes sensor data using
Protocol Buffers [37] and writes them in local files. The server stores
the received data in a MySQL database.

2The Wear OS 2+ watches can be paired with both iPhone and Android.
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4 DEPLOYMENT STUDY

In May-July 2021, we conducted a deployment study using My-
Move to examine the feasibility of speech-based activity labeling
on a smartwatch with older adults and the usefulness of the ver-
bal reports in activity labeling. As part of this study, participants
reported their activities using a smartwatch while also wearing an
activPAL activity monitor [89] on their thigh; this monitor served
to collect ground-truth activity data to complement those captured
by the wrist worn smartwatch. Due to the COVID-19 pandemic, all
study sessions (introductory, tutorial, and debriefing sessions) were
held remotely using Zoom video calls and the study equipment was
delivered and picked up by a researcher, complying with COVID-19
prevention guidelines. This study was approved by the Institutional
Review Board of the University of Maryland, College Park.

4.1 Pilot Study

We iterated on the MyMove design (e.g., data capture flow) and the
study procedure (e.g., tutorials) via piloting with two older adults.
In an attempt to balance the power structure between older adult
participants and our research team, our first pilot participant was
a retired HCI researcher. We asked them to follow the study pro-
cedure, interact with MyMove and the thigh-worn sensor for 3
days, and provide feedback on the overall study, not as a repre-
sentative participant but as someone who is both a member of the
intended user group and an expert in human-computer interaction.
Their feedback informed our design refinement by significantly
simplifying the interaction flows, incorporating icons and labels,
as well as adding visual feedback making the consequence of users’
interactions more noticeable. Upon refining the app design and cor-
responding tutorial materials, we conducted a second pilot session
with another older adult (without any HCI background) to ensure
that the watch app and tutorial materials are understandable.

4.2 Participants

We recruited 13 older adults (P1-P13; 10 females and three males)
through various local senior community mailing lists in the North-
east region of the United States. Since our study required in-person
delivery of the study equipment, we recruited participants in the
local area. Our inclusion criteria were adults who (1) are aged 60 or
older; (2) feel comfortable describing their activity in English; (3)
are curious about their activity levels and interested in collecting
activity data; (4) have no severe speech, hearing, motor, movement,
or cognitive impairments; (5) have stable home Wi-Fi and are able
to join Zoom video calls; and (6) are right-handed. We exclusively
recruited right-handed people because Fossil Gen 5 is designed to
be worn on the left wrist. The physical buttons are on the right
side of the display with the fixed orientation, making it difficult
to maneuver the buttons with the left hand. This also helped to
minimize the effect of handedness on sensor data.

Table 1 shows the demographic information of our study partic-
ipants and the average daily activities during the data collection
period, measured by activPAL monitors. All participants were na-
tive English speakers and their ages ranged from 61 to 90 (avg =
71.08). Eight participants were retirees, three were self-employed,
and two were full-time employees. Participants had diverse occupa-
tional backgrounds and all participants had Bachelor’s or graduate

Kim, Y.-H., Chou, D., Lee, B., Danilovich, M., Lazar, A., Conroy, D.E., Kacorri, H., and Choe, E.K.

degrees; five had Master’s degrees and one had a Ph.D. All partici-
pants were smartphone users; seven used an iPhone and six used
an Android phone.

The 7-day activePAL sensor data we collected during the study
show our participants’ activity level in more detail: Based on ex-
isting conventions for interpreting older adults’ physical activ-
ity volume (i.e., step counts), many of the participants were “low
active” (46%; 5000-7499 steps/day) or “sedentary” (15%; < 5000
steps/day) [117]. The majority of the participants (77%) did not
meet the 150 min/week of moderate-to-vigorous physical activity
(MVPA) recommended in the 2018 Physical Activity Guidelines for
Americans [94]. The average daily physical activity volume (M =
7246.69, SD = 2302.42 steps/day) was consistent with reduced all-
cause mortality risk from previous studies with older women [67].
The mean duration of sedentary behavior was 10 hours and 44
minutes per day (SD = 2 hours and 33 minutes). This high level of
sedentary behavior is comparable to device-measured normative
values from older adults (10.1 hours/day) [104] and exceeds self-
reported normative values from older adults (6.1 hours/day) [135].

In appreciation for their participation, we offered participants
up to $150, but we did not tie the activity reporting to the com-
pensation to ensure natural data entry behavior. We provided $25
for completing the adaptation period with the introductory and
tutorial sessions, and another $25 for a debriefing interview. During
the data collection period, we added $10 for each day of device-
wearing compliance (i.e., wear the smartwatch for longer than 4
hours/day), and provided an extra $30 as a bonus for all seven days
of compliance. We did not specify a minimum amount of time for
wearing the activPAL monitor. Compensation was provided after
the debriefing session in the form of an Amazon or Target gift card.

4.3 Study Instrument

We deployed a Fossil Gen 5 Android smartwatch, an activPAL4
device, and a Samsung A21 smartphone to each participant. We
chose the Fossil Gen 5 Android smartwatch for its large screen size
and extended battery life. The smartwatch has a 1.28-inch AMOLED
display with a 416 X 416 resolution (328 PPI). To minimize the effort
for the initial set up [91], we deployed smartwatches and Samsung
A21 smartphones configured in advance. The phone served as an
internet hub for the watch and participants did not have to carry it.
While the Bluetooth connection between the watch and the phone
was active, the watch periodically uploaded the sensor and verbal
reports to our server via the phone’s network connection using the
participant’s home Wi-Fi.

To collect the ground-truth activity postures, we also deployed
activPAL4 [89], which is a research-grade activity monitor that
uses data from three accelerometers to classify fine-grained body
posture and locomotion (e.g., stepping, sitting, lying, standing, in
vehicle, and biking). The sensor is attached to the midline of the
thigh between the knee and hip using hypoallergenic adhesive tape,
and the device does not provide feedback to participants. We chose
activPAL for three main reasons: First, activPAL can distinguish
different stationary postures such as sitting, lying, and standing,
more accurately than the wrist-worn or handheld sensors (e.g.,
Google Activity Recognition API supports only a Still class for a
stationary state) [109]. Second, activPAL is pervasive because it has
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Table 1: Summary of age and gender of our study participants, their employment status and the latest (or current) occupation,
education level, technical proficiency, and the average daily activities measured with an activPAL monitor during the data
collection period, including step count, the time spent for moderate-to-vigorous physical activity (MVPA, the total duration
at least 100 steps/min), and the time spent sedentary (the time spent sitting and lying while waking).

activPAL daily average
Participant Employment & Latest occupation Education Tech proficiency Steps MVPA Sedentary
P1 61 (M) Retired Senior manager Bachelor’s | Very confident 10,941 <lm 11h 23m
P2 67 (F) Self-employed Visual artist Bachelor’s | Enjoy the challenge = 6,192 2lm  6h21m
P3 77 (F) Retired Qualitative researcher Ph.D./M.D.  Very confident 9,655 2m  10h 53m
P4 70 (M) Self-employed Landlord Bachelor’s  Enjoy the challenge = 7,793 32m  %h 7m
P5 81(F) Retired Disability consultant Master’s A little apprehensive =~ 8,773 23m  7h 48m
P6 79 (F) Retired Policy analyst Master’s Very confident 7,320 16m 9h 12m
P7 69 (F) Full-time Business manager Master’s Enjoy the challenge = 6,499 2lm  12h 5m
P8 90 (F) Self-employed Piano tutor Master-level  Enjoy the challenge = 6,281 <lm 12h 24m
P9 62 (F) Full-time Communications director  Master-level =Very confident 5,313 5m 13h 50m
P10 62 (F) Retired Human resource specialist = Bachelor’s  Very confident 3,430 <lm 13h37m
P11 67 (F) Retired Technical training manager Master-level Enjoy the challenge = 7,296 2m  7h 19m
P12 75(F) Retired Rehabilitation counselor Master’s Very apprehensive 4,148 9m 13h 58m
P13 64 (M) Retired Regulatory specialist Master’s Enjoy the challenge @ 10,566 46m  11h 30m

a long battery life (longer than 3 weeks). Third, activPAL yields
equivalent reliability to Actigraph devices for physical activity [62,
73] and is more accurate than them for capturing slower gait speeds,
which are common in older adults [44, 106].

4.4 Study Procedure

The study protocol consisted of four parts: (1) introductory session
and four-day adaptation period, (2) tutorial session, (3) seven-day
data collection, and (4) debriefing. We iterated on the study pro-
cedure and tutorial materials through the pilot sessions with two
older adults. The introductory, tutorial, and debriefing sessions
were held remotely on Zoom. All sessions were recorded using
Zoom’s recording feature.

Introductory Session & Adaptation Period. After receiving the
study equipment, the participant joined a 45-minute introductory
session via Zoom. The researcher shared a presentation slide (refer
to our supplementary material) via screen sharing. After explaining
the goal of the study, the researcher guided the participant to set up
the smartphone by connecting it to the home Wi-Fi, wear the smart-
watch on the left hand, and attach the activPAL (waterproofed with
a nitrile finger cot and medical bandage) to a thigh. To ensure that
the participant felt comfortable handling the smartwatch buttons
and the touchscreen elements, we used a custom app in MyMove
which can be monitored by the researcher on a web dashboard; the
participant went through several trials of pressing a correct button
following the message on the screen (e.g., “Tap the button [A] on
the screen” or “Push the button [C] on the side”).

We incorporated the adaptation period to familiarize participants
with charging and wearing the devices regularly. During this pe-
riod, which lasted for four days including the day of introductory
session, participants were asked to wear the smartwatch during

waking hours and the activPAL for as long as possible. The activity
reporting feature was disabled and invisible to the participants. At
9:00 PM, an automated text reminder was sent to participants’ own
phones to remind them to charge the watch before going to bed.

Tutorial. On the final day of the adaptation period, we held a 1-
hour tutorial session on Zoom to prepare participants for the data
collection period starting the next day. The tutorial mainly cov-
ered the activity reporting, including a guide on what to describe
in a verbal report and how to perform prompted and voluntary
reporting with MyMove on a smartwatch. We instructed that the
verbal reports are “free-response descriptions about your current
or recently-finished activity” and they can be freely and naturally
phrased using one or more sentences. We went through 10 example
reports with images of performing the activity in five categories—
moving and aerobic exercises, strength exercises, stretching and
balance exercises, housekeeping, and stationary activities. All ex-
ample reports contained the three main information components
we are interested in: activity detail, time & duration, and effort level.
For each category, we encouraged participants to come up with
imaginary reports including those three components.

We covered the activity reporting features by demonstrating
example flows using animated presentation slides and asking par-
ticipants to practice on their own watch. Since the session was
remote, we observed the participant’s smartwatch screen via screen
sharing feature of MyMove. We gave participants enough time to
practice until they felt comfortable interacting with the smartwatch
interface. For the rest of the day, participants were also allowed to
submit verbal reports as practice; these reports were not included
in the analysis.

We also explained the compensation rule (see the Participants
section above) in detail using a few example cases. We emphasized
that the compensation would not be tied to the number of reports,
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but it would depend on the weartime of the smartwatch (i.e., they
need to wear the smartwatch at least 4 hours a day.)

Data Collection. The day following the tutorial, participants
started capturing their activities with MyMove, which lasted for
one week. During this data collection period, participants received
prompt notifications and the device-wearing compliance guideline
was in effect. We also sent charging reminders at night just as
during the adaptation period.

Debriefing. After the seventh day of the data collection, we con-
ducted a semi-structured debriefing interview with each participant
on Zoom for about 40 to 70 minutes. We asked participants to share
their general reactions to the interface and smartwatch as well
as their experiences with specifying information components, dis-
cussing when they would use prompted or voluntary methods, and
if they had a preference towards virtual or physical buttons and
why. To help participants better recall their experience, we tran-
scribed their verbal reports in advance and shared a summarized
table (similar format as Table 3) via screen sharing.

Three researchers participated in the debriefing interview ses-
sions, two of whom led the interviews: following the detailed inter-
view script, each researcher covered about a half of the questions.
The third researcher observed nine (out of 13) sessions and filled in
one session when the second researcher was not available.

4.5 Data Analysis

The study produced a rich dataset including the verbal reports that
participants submitted, the sensor data captured from the smart-
watch and activPAL, and participants’ feedback from the debriefing
interviews. We performed both quantitative and qualitative analysis
to examine how older adult participants used MyMove to collect in-
situ activity labels and to inspect the characteristics and condition
of the collected data. We first examined reporting patterns such as
the number of reports collected via two reporting methods as well
as audio length and word count of the reports. We analyzed the
device usage logs from MyMove and the event logs from activPAL
to examine the sensor wearing patterns.

We then analyzed the transcripts from the verbal reports to
understand the semantics of activities participants captured. Two
authors first independently coded a subset of reports after the data
collection of the first four participants was completed (80 out of
354; 23%). We resolved discrepancies and developed the first version
of the codebook. As we obtained additional verbal reports from
new participants, we iterated multiple sessions of discussions to
improve the codebook. After the codebook was finalized, the first
author reviewed the entire dataset. Through a separate analysis, we
extracted the effort levels from the reports. Two authors separately
coded a subset of reports (180; 14.7%) and resolved discrepancies
through a series of discussions. After we determined nine categories
and how to code data consistently under these categories, the first
author coded the remaining data.

We further analyzed the transcribed reports to check how dili-
gently participants reported the time component and how well
the self-reported information is aligned with the sensor data. We
classified the reports into three categories: (1) No time cues: the
report does not include any time-related information; (2) Incom-
plete time cues: the report includes time cues that are not enough
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to identify the activity timespan; and (3) Complete time cues: the
report includes time cues that are sufficient to identify the activity
timespan. For example, one of P8’s prompted reports, “I'm just
finished fixing a little dinner” has time-related information (i.e.,
end time) but we cannot determine the timespan for this activity
without the start time or duration. Therefore, this report is classified
into the Incomplete time cues category.

We transcribed the audio recordings of the debriefing interviews.
The three researchers who conducted the interviews led the anal-
ysis of the debriefing interview data, using NVivo (a qualitative
data analysis tool). We grouped the data specific to participants’
usability-related experiences with MyMove according to the follow-
ing aspects: (1) reactions to MyMove and smartwatch, (2) reactions
to specifying information components, (3) reactions to using vol-
untary and prompted methods, and (4) notions on choosing virtual
versus physical buttons. When appropriate, we also referenced
this information while interpreting the results from the analyses
mentioned above.

5 RESULTS

We report the results of our study in six parts, aiming to answer
the two research questions—first, to demonstrate the feasibility
of collecting the activity reports using speech on a smartwatch;
and second, to examine the usefulness of the verbal reports as an
information source for activity labeling. In Section 5.1, we provide
an overview of the collected dataset, including participants’ engage-
ment in capturing the data. In Section 5.2, we report the types of
activities that participants captured. We specifically discuss how
participants’ lifestyles and other study contexts affect the reporting
patterns and behaviors. In Section 5.3, we report how participants
describe the time information in their verbal reports and discuss
how the nature of an activity and reporting methods affect the
completeness of the time cues. We also explore how the verbally-
reported activities are aligned with those detected by sensors on
a timeline. In Section 5.4, we explore how participants described
their effort level, and assess the validity of the effort level descrip-
tion in relation to the device-based intensity measures. In Section
5.5,we examine the accuracy of automatic speech recognition tech-
nologies in recognizing older adult participants’ verbal reports. We
further investigate the erroneous instances in detail. Lastly, in Sec-
tion 5.6,we report on participants’ experience with MyMove, based
on the qualitative analysis of debriefing interviews.

5.1 Dataset Overview

While the minimum requirement was to wear the smartwatch and
activPAL for at least five days (longer than four hours a day for the
smartwatch), all 13 participants wore both devices for the entire
seven days. On average, participants wore the smartwatch for 11.6
hours per day (SD = 1.3, min = 9.7 [P11], max = 13.6 [P13]), and
activPAL for 23.3 hours per day (10 participants continuously wore
activPAL for the entire study period).

We collected 1,224 verbal reports in total, consisting of 617
prompted and 607 voluntary reports: Table 2 shows the verbal
reports by participants. Although the reporting was not tied to the
compensation, all participants submitted verbal reports every day.
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Table 2: The number of prompted and voluntary reports submitted by each participant. The cell color intensity indicates the

ratio between the two reporting methods for each participant.

100%

75%

25%

Method Total P1 P2 P3 P4 P5 Pé6 P8 P9 P10 P11 P12 P13
Prompted 617 | 32 |66 64 LSO 57 46 33 21 |40 13 | 55 | 50 s
Voluntary 607 |37 20 67 9 55 JB0AN 28 (62 30 12 | 25 14 44
Total 1224 69 86 131 68 112 250 95 51 8 38 69 94

0%

Participants submitted 94.15 reports on average, with a high vari-
ance among them (SD = 52.85, min = 51 [P9], max = 250 [P6]). The
average audio length of and word count in each report were 18.65
seconds (SD = 13.65) and 32.05 words (SD = 26.15), respectively.
The average audio length per report of each participant ranged
from 10.08 [P13] to 32.03 [P12] seconds.

As participants often specified multiple activities in a single
report, we extracted activities from each report, a unit of continuous
task that can be coded with one or (sometimes) two semantics. For
example, the report “Spent the last 12 minutes, eating breakfast,
seated in front of the TV. Minimal level of effort.” [P6], specifies
two simultaneous activities. We identified 1,885 activities from 1,224
verbal reports, and grouped them into the following four categories:

(1) Singleton: 760 (62.10%) reports contained a single activity,

(2) Sequential: 303 (24.75%) reports contained a series of activities
(avg. 2.50 activities per report),

(3) Multitasking: 127 (10.38%) had multiple activities performed
simultaneously (avg. 2.09 activities per report),

(4) Compound: 34 (2.78%) were a mix of singleton, sequential, or
multitasking (avg. 3.06 activities per report).

5.2 Captured Activities

From the 1,885 activities, we identified 29 activity types and grouped
them into nine high-level semantics: housekeeping, self~-maintenance,
non-exercise stepping, screen time, exercise, paperwork/desk work,
hobby/leisure, resting, and social (Table 3). The activity types were
generally consistent with prior work in daily activities of older
adults [49, 83]. Each participant captured 19.08 unique activity
types on average (SD = 4.35, min = 12 [P11], max = 26 [P3]).
Participants frequently captured housekeeping activities such as
cleaning, arranging or carrying items. These activities included
straightening rooms, vacuuming, washing the dishes, or carrying
goods purchased from shopping. Twelve out of 13 participants were
living in a house with a yard and 11 of them captured gardening ac-
tivities. However, specific tasks varied, ranging from light activities
(e.g., watering flowers) to heavy activities (e.g., fixing flower beds,
planting trees). Participants also frequently captured non-exercise
stepping, which involves a lightweight physical activity, mostly
brief in nature. For example, these activities included going up &
down the stairs, walking around the kitchen at home, and walking
to/from a car, as well as pushing a shopping cart in a store. Eleven
participants regularly engaged in cardio exercise, which includes
walking, biking, and swimming. The most common exercise was
taking a walk (including walking the dog) whereas more strenuous
exercise such as running was rarely captured. Eight participants en-
gaged in strength and stretching exercises, for example, online

yoga classes. Participants also captured brief strength and stretch-
ing exercises (e.g., leg lifts) they performed during other stationary
activities such as TV watching or artwork. Other types of exercises
included online meditation sessions, breathing exercises, and golf.

During debriefing, participants mentioned factors that affected
their engagement in specific activities. Gardening was often affected
by the season and weather. For example, P1, who participated in
the study in mid May, noted that he engaged in gardening more
than usual: “This was a high active seven days for me [sic]. Both
because of weather and the time of year, we’re trying to transition the
garden.” In contrast, P9, who participated in the study in late June,
seldom captured gardening and noted, “It was really hot, stinky hot
and, you know, not a fun thing to do [gardening] (...) in the earlier
in the spring when I planted all my flowers and stuff, that feels more
like gardening.” In addition, the COVID-19 lockdown reduced the
overall engagement in outdoor physical activities and in-person
activities. P4 noted, “I would bike downtown two or three times a week
anyhow. Normally if before COVID, I've been down maybe four or
five times for the last year.” Similarly, P11 remarked, “In pre-COVID,
I'would have done that [swimming] probably twice, two or three times
during the week.” Many participants were involved in one or more
community activities and their meetings transitioned to Zoom due
to the lockdown, possibly increasing their screen time in place of
the face-to-face interactions.

We learned that some activities were inherently easier to capture
than others due to the contexts in which they are performed: this
may have led to oversampling of those activities. For example, P3
commented on her high number of reports of watching TV: “That
[watching TV] had so many times because I was sitting down and it
was easy to use the watch. You know, I was taking a break, and the
break allowed me to do that.” In addition, common activities were
likely to be overlooked, thereby affecting the data capture behavior.
For example, P11, who lives with her grandchildren, noted that she
did not capture face-to-face interactions with them because such
events happened throughout the day, which makes it overwhelming
to capture all of them thoroughly: “If I recorded what I do with my
grandkids, I would be recording all day [laughs]. A lot of times that I
interact with my grandkids is kind of in short verse.”

5.3 Reporting Patterns for Time

Table 4 summarizes the time cue categories of activities from Sin-
gleton, Sequential, and Multitasking reports. We excluded 34 Com-
pound reports (104 activities) because it was infeasible to reliably
extract time cues for each activity. Overall, 984 out of 1781 activities
(55.25%) were mapped with time cues, and 770 of them (78.25%)
were mapped with Complete time cues. The remaining 796 activities
(44.69%) were not mapped with any time cues.
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Table 3: Nine activity semantics and 29 activity types, number of reports and participants (Ps), and example snippets from
reports. Because the activity semantics and types were multi-coded, the percentages of reports add up to more than 100%.

about 40 minutes.” - P3

Semantics/types Reports | Ps [Example snippet
House- Cleaning/arranging/| 263 21% | 13 |“I've been doing some house cleaning which includes vacuuming. And now I'm polishing and dusting.” - P3
keeping carrying
Preparing food 123 10%| 13 |“I'm in the kitchen and I am just preparing breakfast, so I'm standing at the stove and the toaster.” — P5
Driving/in a vehicle| 108 9% | 12 |“Just completed a 30-minute drive, as sitting.” — P1
Gardening 99 8% | 11 |“I'm picking lettuce in my garden, stooping over. It’s not exerting, but it is then a bending and stooping.” - P5
Caring for pets 68 6% | 7 |“Fed dog, bending over to get food and vegetables and reaching to get pills.” — P6

Offline shopping 36 3% | 11 |“At Lowe’s, hardware in the garden section. Walking, pushing a stroller and picking up items and plant, for|

Other 12 1% | 6 |“I have just been doing some light housekeeping chores.” — P7
Self- Eating food 186 15% | 13 |“Ate breakfast from 6:30 until 7:03.” - P13
maintenance Dressing 36 3% | 9 |“Process of getting dressed for the day. Pulling my clothes together and getting ready for what I'm going to do
today.” - P10
Personal hygiene 24 2% | 8 |“Just completed a shower” — P6
Treatment 10 1% | 6 |“From 11:45 to 12:45 I had a massage. So I was laying down and there was no intensity level whatsoever.” — P9
Non-exercise stepping 171 14%| 12 “I'm just walking up the stairs to just do some minor things.” — P5
Screen time Computer 164 13%| 11 |“I'm on the computer. I'm looking at all the sales offers.” — P12
TV 151 12%| 12 |“I'm watching TV, just I've been watching it for maybe 10 minutes so far” — P2
Mobile device 27 2% | 4 |“I'msitting, looking at a webinar on the phone.” — P4

Device unspecified | 17 1% | 5 |“I am sitting in watching videos on YouTube.” - P10

Exercise Cardio 118 10%| 1

—

P7

“I just returned from a 30 minute walk, fairly easy paced, moderate effort because of the heat and humidity.” |

Strength/stretching | 51 4% | 8 |“I am doing stretching exercises in preparation for my strength training class, which I will be taking and I've
been doing stretching for about 10 minutes.” — P10

4 0% 1
Other 10 1% | 4 [T've just finished an hour and a half long workshop on meditation.” — P3
“In the 4th hole in the golf course, do playing golf.” — P1
Paperwork/desk work 68 6% | 10 |“balancing my checkbook and writing checks for bills.” - P12
Hobby/ Reading on paper | 59 5% | 10 |“I'm lying on my bed, reading a book. I've been doing that for half an hour.” — P2
leisure Playing puzzle/ 17 1% | 6 |“I'msitting at the counter in the kitchen doing a Sudoku.” - P5
table game
Crafting/artwork 15 1% | 4 |“I've been working, doing some woodworking in the basement. — P13”
Seeing at a theater | 11 1% | 3 |“I've been seated at a concert for the past two hours. — P5
Playing a musical 8 1% | 2 |“I am sitting at my piano, playing the piano. — P10
instrument
Resting Nothing/waiting 54 4% | 12 |“For the last two hours, I've been sitting, getting my car serviced. — P9
Napping 19 2% | 7 |“Since the last ping I took about half an hour nap.” — P7
Social Face-to-face 39 3% | 9 |“Ijust sat down on my front porch swing and I'm talking to a friend.” - P3
interaction
Voice call 36 3% | 8 |“Ijust completed a telephone call, regarding a personal business.” — P6

Reports containing a single activity were more likely to include
Complete time cues than reports containing multiple activities:
64.87% (493/760) of Singleton activities were mapped with Complete
time cues, compared with 20.11% (152/756) for Sequential and 47.17%
(125/265) for Multitasking. Of the 319 activities from Sequential
activities with time cues, about a half (167) were mapped with
Incomplete time cues because participants often specified the start
and end time of the entire sequence (i.e., the start time of the first
activity and the end time of the last activity). However, this pattern
was not consistent across all participants, mainly due to the high
individual variance in the number of total reports (See Table 2) and

in the portions of Singleton, Multitasking, and Compound activities.

Voluntary reports were more likely to include Complete time
cues than prompted reports: 45.60% (409/897) of activities from
voluntary reports were mapped with Complete time cues, whereas
40.84% (361/884) from prompted reports. Participants were more
likely to omit time cues in prompted reports, especially when re-
porting simultaneous activities: 61.36% (108/176) of Multitasking
activities from prompted reports contained Incomplete or No time
cues, in comparison with 35.94% (32/89) of those from voluntary re-
ports. Again, these patterns were not consistent across participants
with high individual variance.

Regarding the reports with Complete time cues, we investigated
how time segments from verbal reports are aligned with those de-
tected by activPAL. Figure 2 shows the excerpts of timelines with
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Table 4: Number of activities in Singleton, Sequential, and Multitasking reports by reporting method and the time cue category.

Singleton reports (=activities)

Sequential activities

Multitasking activities

With time cue

With time cue

With time cue

Method | Complete Incomplete No cues | Complete Incomplete No cues | Complete Incomplete No cues
Prompted 226 14 131 67 59 211 68 4 104
Voluntary 267 27 95 85 108 226 57 3 29

Total 493 41 226 152 167 437 125 7 133

self-report time segments of selected activities, along with the in-
ferred activities and step counts from activPAL. Time segments
from verbal reports for locomotion-based cardio exercises such as
biking and taking a walk generally corresponded with the bands
with an equivalent activPAL class and clusters of peaks in step
counts. For example, the red segments in Figure 2a and orange seg-
ments in Figure 2b illustrate how they are aligned with activPAL’s
Biking and Stepping bands. Other kinds of walking activities from
verbal reports, such as walking a dog and moving in a store also
corresponded with the activPAL activity patterns, but participants’
movement was more fragmented with the Standing and Stepping
classes compared to a pure walking exercise (see the orange seg-
ments in Figure 2¢ and Figure 2d which also overlap with activPAL’s
Standing band).

Activities performed while sitting often did not correspond with
the momentary changes in the activPAL activities. For example,
blue segments in Figure 2e and Figure 2f indicate screen time and
desk work activities that participants reported performing while
sitting. In all cases, the bands of activPAL’s Sitting class cover a
wider region than the self-report time segments.

5.4 Reporting Patterns for Effort Level

About a half of reports (644 out of 1,224 reports, 52.61%) contained
cues on the effort level (see Table 5), with high variance among
participants (SD = 31.19%; min = 5.26% [P8], max = 98.04% [P9]).
We grouped the effort level cues into seven orderly categories on
a spectrum of No effort—Low-Moderate—Strenuous, and two addi-
tional categories—Relaxed and Uncategorizable (see Table 6). The
most common effort level reported were Low activities (276 reports
by 12 participants), followed by Moderate activities (132 reports
by 11 participants). The majority of Low activities were stationary
activities such as screen time, eating, driving, or desk work, and
the Moderate activities included exercises, gardening, or thorough
cleaning activities. Strenuous activities were rarely captured (20
reports by 5 participants). The Relaxed category includes responses
such as “I'm sitting totally relaxed, reading my phone and watch-
ing TV, and the Uncategorizable category covers responses that
conveyed ambiguous level of effort (e.g., “Stretches for my back, knee
bends. Nothing too strenuous but just to break up the sitting.”).
To examine how self-report effort level categories are related
with device-based intensity measures, we compared intensity mea-
surements across the effort level categories using mixed-effects
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Figure 2: The excerpts of self-report time segments (®) of selected activities, along the timeline with automatically-inferred
activities ((®) and step counts ((©) from activPAL. The colors denote the types of activPAL’s activity classes. The self-report
time segments are color-coded as the equivalent activPAL classes.
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Table 5: Number of reports with and without effort level cues by each participant.

100%

Effort level cue

Total P1 P2 P3 P4 P5 Pé

P7 P8 P9 P10 Pi1 P12 P13 5%

Not included 580 44 11

38- 75

Included 644 25 20 30 30 175

42 5 27 25

50%
25%

Total 1224 69 86 131 68 112 250

0%

models because these models can handle unbalanced data with re-
peated measured from the same participant [95]. For this analysis,
we included 480 activities that contained both Complete time cues
and Effort level cues; we counted two or more activities included
in Multitasking reports as one activity because multiple activities
(e.g., “watching TV while eating dinner”) were mapped to one effort
level (e.g., “it was very low effort”). In this analysis, we excluded the
Uncateogrizable category. We employed two common indicators
of intensity in physical activity research—the percentage of HRpmax
(the average heart rate during the period expressed as a percent-
age of age-adjusted maximum heart rate®) and walking cadence
(steps/min) [2, 118]. We generated a model for each of the three
measurements—the percentage of HR ;4 from smartwatch, walk-
ing cadence from activPAL, and walking cadence from smartwatch.
We used intercept (participant) as a random effect and effort level
category as a fixed effect. From Maximum-likelihood tests with
other variables, we found that age, elapsed days, and activity types
did not have significant effects on the measurements. Therefore,
we excluded them from fixed effects in the models.

3We used Nes and colleagues’ formula (211 — 0.64 * age) [87] as an estimate of
age-adjusted maximum heart rate to reflect the age-related changes.

We found significant differences among the effort level categories
in their intensity measurements across all three metrics: F(7, 407.69)
=7.32, p < .001 for the percentage of HR;,4x; F(7, 446.69) = 12.00, p
< .001 for walking cadence from activPAL; and F(7, 369.96) = 6.19,
p < .001 for walking cadence from the smartwatch. We conducted
post-hoc pairwise comparisons of the least-squared means of in-
tensity measurements among 8 effort level categories using Tukey
adjustment in emmeans [69] package in R. Figure 3 visualizes the
significance over the 95% confidence intervals of measurements in
each category. Across all three metrics, the intensity measurements
of the activities specified as Moderate were significantly higher
than those of No effort (p < .001) and Low (p < .001). The percentage
of HRy4x and activPAL-measured walking cadence for Low-to-
Moderate activities were also significantly higher than those of No
effort activities (p = .005 for the percentage of HR,4x and p = .004
for walking cadence). For Moderate-to-Strenuous activities, only the
percentage of HR;,qx Was significantly higher than that of No effort
(p = .003) and Low (p = .036) activities. The activities specified as
No effort and Low did not differ across all metrics.

Participants’ subjective evaluation of the effort level did not
match the standard intensity level of physical activity, especially
for the activities that are Moderate or above (26.67%; 128/480). Of
the 119 Moderate, Moderate-to-Strenuous, and Strenuous activities

Table 6: Categories of verbalized effort level cues with the number of reports and participants (Ps), and example phrasings

from utterances. The effort level cues are highlighted in bold.

Effort level category Reports Ps Example phrasings
Relaxed 43 9 “Lying in bed, watching a retirement seminar life. Super relaxed.” — P4
“I'm sitting down and the salesperson is helping me try on shoes. Pretty leisurely.” - P3
No effort 87 8 “Trying to research something on my computer. No effort.” — P2
No-to-Low 5 3 “Standing in the kitchen, preparing lunch. Little to no effort.” — P1
Low 276 12 “I’ve been eating for probably about 20 minutes. And effort level is low.” - P10
“Had a 15 minute walk with the dog. It was light exertion.” — P9
“I've been in the kitchen, cooking. Minimal effort.” — P7
Low-to-Moderate 37 5  “Cutting material for large raised bed garden. Light to moderate activity.” — P6
Moderate 132 11 “In the garden again and bending down, digging holes in the ground. Moderate exertion.” — P2
“Thoroughly wiped down stainless refrigerator and cleaned inner seal of doors, 25 minutes.
Medium exertion.” — P6
“Preparing lunch, heating a bowl of soup up. My activity level is average.” - P10
Moderate-to-Strenuous 10 2 “Walking through the airport for about a half hour, medium to heavy intensity.” — P9
Strenuous 20 5 “I moved boxes and canned goods and so on into the storage area. Expended a great
deal of energy doing that. Was tired afterwards.” — P12
Uncategorizable 44 8 “Dressing and cleaning up for about 15 minutes total. Not much effort.” - P5
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Figure 3: Distributions of device-based intensity measurements during the same time segments for each effort-level category.
The colored rectangles denote 95% confidence intervals estimated by the mixed-effects model with a center bar as the least
squared mean after controlling the individual differences. The asterisks with arms indicate significance between the connected

categories. (We did not mark the pairs that are not significant.)

with the percentage of HR;;,4,x measurements, only one activity
exceeded the lower bound of standard moderate intensity (64%-76%
for moderate-intensity physical activity [2]). Similarly, five (out of
128) and three (out of 113) activities in the same categories exceeded
the threshold of moderate intensity walking cadence (100 steps/min
or higher for moderate activity [118]) with the measurements from
activPAL and the smartwatch, respectively.

To examine how predictive the device-based intensity mea-
surements are for the effort level, we conducted a multiple lin-
ear regression analysis using MASS [123] package in R. This
method initially adds all predictors—the three device-based inten-
sity measurements—to a model and iteratively excludes the predic-
tors that do not make a significant contribution to the prediction,
reassessing the contributions of the remaining predictors at each
step. We first transformed the seven ordinal categories (No effort—
Strenuous) into a continuous effort level scale (1-7, with Low as
3 and Moderate as 5) and used it as a dependent variable. For this
analysis, we included 349 activities which contain the values of all
three measurements. A significant regression equation (see Table 7)
was found (F(3, 345) = 15.25, p < .0001), with an adjusted R? of .11.
Although all three measurements collectively contributed to the

Table 7: Regression model for the effort level score, fitted
from the device-based intensity measurements, F(3, 345) =
15.25, p <.0001, adjusted R? = .11. The positive coefficient de-
notes that the given parameter is positively correlated to the
effort level score.

Parameter Coef. SE t-statistic p-value
Constant 200 075 2.67 <.01**
Walking cadence (activPAL) 0.02 0.01 355 <.001***
Walking cadence (Smartwatch) -0.01  0.01 -1.43 .15

% of age-related maximum HR | 0.03  0.02 1.71 .09

P <001 p < .01, *p < .05

prediction and were thus included to the final model, only walking
cadence from activPAL was statistically significant (p = .0004). The
R? value denotes that the model explains only 11% of the variance
of the effort level scores. This implies that it may not be feasible
to accurately predict the exact effort level score using only the
device-based measurements.

5.5 Quality of Voice Recording

To investigate the potentials of activity labeling with speech in-
put, we assessed how accurately the existing automatic speech
recognition (ASR) technologies can recognize participants’ speech
inputs, especially since there is prior evidence on disproportionate
ASR word error rates for older adults’ voices [19, 124]. Considering
the transcribed text of verbal reports by our research team as the
ground-truth, we compared it with the output from two commercial
ASR services, Microsoft Cognitive Speech [81] and Google Cloud
Speech [38]. Using their REST APIs, we retrieved the recognized
text from the audio files for each verbal report. We then calculated
Word Error Rate (WER) of the recognized text using the human-
transcribed text. When calculating WER, we removed punctuation
and fixed contractions using NLTK (Natural Language Toolkit) [7]
and Contractions Python Library [61]. On average, the Microsoft
API recognized reports with an word error rate of 4.93% per report
per participant (N = 13, SD = 2.12%). This is slightly lower than
5.10% that Microsoft had reported in 2018 [133]. The Google API
yielded an error rate of 8.50% per report per participant (N = 13, SD
= 2.97%). This is 3.60% higher than 4.90% that Google had officially
announced in 2017 [100].

We performed an error analysis to gain insights into the potential
effect these errors may have in automating the retrieval of activity
labels from free form verbal reports. Specifically, we manually in-
spected a total of 651 verbal reports where there was a disagreement
between our ground truth and the best performing ASR service.
Many of the errors (70.97%; 462/651) did not affect the words cap-
turing activity type, time, or effort level, i.e., with the local context
of the verbal report someone could correctly infer this information
if it was reported. Typically, errors in these reports involved filler
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words, conjunctions, or other details that participants provided
along their activity. For example, misrecognized conjunction in
the ASR output of P1’s report, “Eating lunch, Ann [should be and]
about to get on a zoom call, seated, viewing on a laptop for an hour,
does not affect the coding of activity type (eating food and screen
time). Interestingly, some (9.74%; 45/462) disagreements in these
reports were due to background or irrelevant speech being perhaps
correctly captured by ASR but being omitted in the ground truth by
our team as they were not intended to be part of the verbal report.
For example, this would occur when participants were capturing
sedentary activities like watching TV and the voice from the TV
was also captured.

Even some of the errors involving words that captured activity
type could be recoverable. These cases include errors in the verb
tenses (e.g., “Just came downstairs and fix [should be fixed] me some
coffee..” [P8]) or compound words (e.g., “Walked up stairs [should
be upstairs] to second floor..” [P6]). This was also the case for time
and effort level. For example, the ASR service often made formatting
errors in recognizing time (e.g., “Read a book from 6:15 until 647
[pronounced ‘six forty-seven’; should be 6:47].” [P13]), which can be
fixed referring to the local context. A disagreement in P6’s report,
“... Standing, minimal [should be minimum] level of exertion,” does
not affect the coding of effort level category.

If we had relied solely on the ASR output for their corresponding
reports, 82 (out of 651; 12.60%) would have affected our coding of
activity type, time, or effort level. For example, it is challenging to
extract time from the ASR output of P11’s report, “Since about 132
frozen 245 [should be 1:30 to present, 2:45]...” without listening to
the audio record. In addition, verbs were sometimes recognized as a
totally different one, changing the original meanings in text (e.g., “I
am just resting [should be dressing] after taking a shower ..” [P5]).
We anticipate that automated solutions may be more susceptible to
some of these errors.

5.6 Participants’ Experience with MyMove

Following the week-long data collection period, we conducted de-
briefing interviews and guided participants to reflect on their ex-
periences. Their responses helped us understand both strengths
and challenges in using MyMove to create verbal activity reports.
Participants provided feedback on their experience using MyMove
interface and the smartwatch device, specifying information com-
ponents for reporting, when they used prompted or voluntary meth-
ods, and preferences in using virtual vs. physical buttons. At the end
of the debriefing interview, all participants agreed to be contacted
for a future follow up session in the project, acknowledging their
interest in contributing to this project.

5.6.1 Reactions to the MyMove interface and smartwatch. Partici-
pants seemed to have a generally positive experience with MyMove
on the smartwatch. Ten participants noted that both the interface
and the smartwatch contained features that made reporting easy.
For instance, P1 commented the flexibility in having multiple re-
porting methods (“I think it was easy enough to report, because I
was allowed to, you know, report it in various ways”), and explained
physical features of the smartwatch that were favorable (“the size
of the screen is good for my age group, and as well as the buttons
were relatively, easily to access”). P5 mentioned how the multiple
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modalities helped with the reporting process (“It was very efficient
watch. It was nice that you could just either touch [the screen] or
the [physical] buttons.”). Participants also appreciated the text on
the screen, indicating the type of information components to in-
clude when recording their activity reports (“I'd remember what
information I had to give you so that was very helpful for me.” [P10]).

On the other hand, participants faced challenges when interact-
ing with the system. At the debriefing interview, six participants
mentioned that the watch occasionally did not respond to their
touch and that they had to click on the Record button a couple of
times to start the recording. For example, P3 mentioned, “There
were times when I thought I'd recorded something... it seemed like the
watch was telling me I hadn’t recorded it. So I recorded it again.” We
reflect on this challenge and an alternative design in Section 6.6.
Some participants expressed concerns with wearing the smartwatch
long-term (“I don’t know if I would want to wear this watch all the
time to do it” [P6]), and with the smartwatch’s battery life (“I didn’t
have any challenges with the watch, except for the fact that it ran out
of battery.” [P9]).

5.6.2  Reactions to specifying information components. When re-
flecting on their experience with specifying the activity, timespan,
and effort, many participants reacted positively. Several found that
describing their activities was relatively easy: (“It was easier than I
thought it would be” [P10]), (“I didn’t really have any problems with
it. It was pretty straightforward” [P7]), (“If you just wanted what I
was doing at the moment, I didn’t find that difficult” [P2]).
Participants also expressed challenges in specifying the level
of effort required and the time taken. Seven participants reported
having difficulty describing their effort level since it was hard to
determine, especially for activities involving multiple tasks (“In the
midst of that activity, I did something else that may have changed
the amount of energy required, ...the effort was the hard one for me
to actually document that piece of it” [P1]). To help determine ef-
fort, some participants would use physiological indicators such
as breathing, muscle strain, tiredness, or even their exercise per-
formance (“I can just look at my Strava recording and give you a
time and a speed, which sort of gives you an intensity” [P4]). Six
participants found specifying time components to be challenging,
including recalling the amount of time taken or just remembering
to add time components to the activity description. Eight partic-
ipants utilized different strategies to assist with tracking activity
timespan. Methods included using their memory, a device, or even
writing the time down in order to remember the time (“Whenever I
started an activity, I would just look at the watch before I started, and
then try to record it right afterwards, so I had it right there” [P13]).

5.6.3 Situations for using voluntary and prompted methods. In ad-
dition, participants described situations in which they would use
voluntary and prompted reporting. We found that each method
had unique advantages, including having the freedom to report
voluntarily at any time and being aware about reporting activities
due to prompted notifications. Some participants appreciated the
pings because they served as a reminder to record the activity right
away or after finishing the activity. P8 commented how “it was good
to have it, because it reminded you that maybe you hadn’t recorded
what you were doing,” and P1 stated, “Had it not been for the watch’s
alert, 'm not quite sure that I would have captured that information
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as well.” When asked what participants disliked about receiving
ping notifications, six participants said that pings were delivered
during inopportune moments (“There were a couple of times when I
Jjust couldn’t answer the ping. That was in a meeting or something”
[P7]). Participants also reported that pings seemed unnecessary for
redundant activities (“I was... reporting the same thing all the time”
[P7]), or too frequent for longer activities which they had already
reported earlier (“I'm just doing the same thing I recorded that I was
doing before” [P8]).

5.6.4  Preferences between virtual vs. physical buttons. Eight partic-
ipants preferred using virtual buttons, whereas two participants
stated a preference in using the physical buttons. Those who pre-
ferred using the virtual explained how virtual buttons were more
familiar and convenient (“I’m very used to using touch screens all
the time. My instinct was just natural to go there” [P5]), and easier
to use and understand (“It was just easier for me to tap to screen”
[P1]). Some even expressed confusion in how the physical buttons
would work (“I wasn’t always sure what [the physical button] was
going to do, or... how it was going to respond” [P7]). As we mentioned
in Section 5.6.1, some participants had trouble getting the virtual
buttons to respond accordingly due to having difficulty with the
wake-up functionality associated with using the virtual buttons.

6 DISCUSSION

In this section, we first reflect on several aspects that are related to
the feasibility of MyMove in facilitating data collection with older
adults, such as engaging older adults in activity labeling, using the
verbal reports as an information source for activity labeling, and
capturing older adults’ activities in a comprehensive manner. We
also discuss how our findings and the data older adults collected
using MyMove can be used toward creating personalized activity
trackers that attune to idiosyncratic characteristics of individual
users and their unique needs. We then discuss limitations in our
study that may affect the generalizability of our findings as well as
future work.

6.1 Engaging Older Adults in Activity Labeling

We were pleasantly surprised by the high adherence and engage-
ment of our participants in the one-week data collection. On av-
erage, they wore the smartwatch for 11.6 hours and activPAL for
nearly 24 hours every day. Furthermore, our participants submitted
13.45 reports per day on average even though the compensation
was not tied to the number of reports. Given that the most chal-
lenging aspect of an EMA study is its high data capture burden
and frequent interruptions [120], we believe that this is a promis-
ing outcome. Participants’ positive feedback on MyMove indicates
that the system itself may have contributed to this high adherence;
it provided flexible ways to capture data using speech, including
voluntary and prompted reporting methods as well as simplified
data capture flow and UL Even though all but one experienced the
smartwatch for the first time through our study, all participants
could use MyMove without much trouble.

In debriefing, however, most participants stated that collecting
data in this manner would not be sustainable, and the one-week
duration would probably be the maximum they could continuously
engage at this level. As is common with other ESM studies, our study
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imposed a high burden on the participants, for example, having
them consciously think of activity type, start/end time, and effort
level when they receive hourly notifications. In our study, we did not
limit the scope of what activities are report-worthy because our goal
was to examine the feasibility of collecting in-situ activity labels
with older adults using speech on a smartwatch. Going forward,
such comprehensive data capture may not be necessary; we expect
that the burden of capturing activity labels would be reduced when
we have a fixed set of targeted activities (e.g., walk, gardening, golf,
yoga) that require labeling and better mechanisms for estimating
activity timespan (e.g., by automatically detecting abrupt changes
in sensor data) and effort level (e.g., by leveraging heart rate data).

6.2 Leveraging Verbal Reports as an
Information Source for Activity Labeling

It was encouraging to see that all of the 1,224 verbal reports are valid
and that researchers could transcribe and understand all of them.
Although some participants, in the debriefing interview, mentioned
that they accidentally triggered the recording, it seemed that they
were able to cancel it or the recording was timed out and thus
erased. This demonstrates that, despite the challenges older adult
participants faced with the unfamiliar technologies, they still could
successfully submit valid reports using our novel data collection
approach. Furthermore, the word error rates by two state-of-the-art
automatic speech recognition systems were relatively low: 4.93%
with Microsoft Cognitive Speech and 8.50% with Google Cloud
Speech. We were reassured that Microsoft Cognitive Speech’s error
rate on our older adult participants is lower than what Microsoft had
reported in 2018 (5.0%). Nonetheless, these numbers serve merely
as anecdotal evidence. Our small sample is not representative of
older adults; all participants were native English speakers in the
US and none of them identified as disabled. Of course, speech as an
input modality, can be advantageous for many disabled people such
as blind individuals [4, 47, 136] and those with upper limb motor
impairments [50, 76]. However, it is still limited for dysarthric [24,
76], deaf [35], and accented [99] speech as well as for low resource
languages and noisy environments, all being active areas of research.
With advances in speech recognition, we believe that we could
leverage for many older adults their verbal reports as a reliable data
source in an automated manner. This opens up an opportunity for
automatically extracting user-generated activity labels (type and
semantics).

That said, inferring quantitative or ordinal data from free-form
text is not a trivial problem, as in the case of the effort level coding.
As such, data such as effort level would be better off if they are
collected in a structured way (e.g., have people select from a scale
or predefined categories). This would require new UI & interaction
designs e.g., leveraging a simple touch interaction on a smartwatch
or predefined voice commands.

6.3 Comprehensive Capturing of Older Adults’
Activities

Even though understanding daily activities of older adults was not

the main goal of our study, the collected data seem to cover more
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classical types of activities older adults perform while reflecting re-
cent trends. We consider this as additional evidence to demonstrate
the feasibility of in-situ data collection with older adults.

The types of activities emerging from our participants’ reports
overlap with most of the activities reported in prior literature,
though their naming/grouping may not be fully aligned. For exam-
ple, an interview study with 516 German older adults conducted
in 1996 identified 44 types of activities and grouped them into
eight categories—Personal Maintenance, Instrumental ADLs, Read-
ing, Television, Other Leisure, Social Activities, Paid Work, and Rest-
ing [49]. While these activities appeared in our dataset, we catego-
rized them differently, for example, the Reading activity type under
Hobby/leisure and many of the Instrumental ADL activities under
Housekeeping. We note that there is not a clear consensus on how
to group activities, so it will be important to preserve both raw
labels and coded categories for future reference.

New activities have also emerged as digital technologies have
advanced over time. For example, our Screen time category includes
“Computer,” “Mobile device,” and “TV,” whereas prior studies con-
ducted in 1982 [83] and 1998 [49] had the “Watching TV” as the
top-level category (without the notion of screen time). Screen time
has absorbed other activities that would have been categorized
differently in the past. For example, many of our participants read
news on the internet, rather than a printed paper. Screen time also
commonly appeared with other activity types, such as social activity
(e.g., avideo call) and exercise (e.g., online yoga session), which may
have transitioned from in person to remote during the pandemic.
Labeling systems are bound to evolve as technology changes the
way people achieve different functions. Reflecting these changes in
designing activity labeling systems, there may be value in having
multiple dimensions, such as device type, posture, semantics, to
better characterize the captured activities.

6.4 Capturing Non-Exercise Stepping as a
Meaningful Activity for Older Adults

Researchers have advocated the importance of promoting non-
exercise physical activities (free living activities that involve light
and moderate physical activities, such as gardening, laundry, clean-
ing, or casual walking) for older adults [107, 111, 112]. Recent ev-
idence shows that non-exercise physical activities are positively
associated with longevity [26, 41] and cardiovascular health [26],
suggesting that any activity is better than no activity. However,
it is challenging to capture non-exercise physical activities using
recall-based methods or sensor-only methods [111]. For example,
the interview study by Horgas and colleagues identified a generic
“Walking” category [49]. Studies that leveraged accelerometer sen-
sors often use statistically determined thresholds for sensor move-
ments and bout duration to categorize activities by intensity level,
treating sporadic and light activities as non-exercise (e.g., [14, 66]).
However, applying uniform thresholds may ignore individualized
characteristics [101, 109] and there are no standardized thresholds
validated for older adults [39]. In addition, most of such studies do
not capture user-generated context, potentially important details
to understand what people did.
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In our study, 14% of verbal reports (171/1224) contained non-
exercise stepping with context. We assert that our in-situ data col-
lection method enabled participants to capture more subtle, light-
intensity lifestyle activities (e.g., walking around home) that would
have not been captured otherwise. Older adults’ non-exercise step-
ping activities, which tend to be in slow gaits, are difficult to detect
accurately with current waist and wrist-worn accelerometers. The
context information captured in verbal reports may be a valuable
supplement for device-based monitoring to support the training of
person-specific classifiers for non-exercise physical activities.

6.5 Personalizing Activity Trackers

Even though our participant sample was relatively homogeneous
and geographically constrained to the same area, we observed high
variation in the types of activities captured depending both on the
participant and on other factors, such as the time of the year. We
identified many implications from our findings for the design of
personalized activity tracking systems with older adults. When
automating the tracking of these activities from the sensor data,
researchers can potentially leverage some of the existing datasets
from younger adults (e.g., WISDM [129, 130], UCI-HHAR [115],
and ExtraSensory [119]) to pre-train models for higher level activi-
ties, such as sitting, standing, and walking that tend to be common
among people regardless of their age. However, preliminary re-
sults indicate that model adaptation is necessary as models trained
on younger adults’ sensor data tend to perform worse on older
adults [28]. In addition, the diversity in the activity types and se-
mantics among the older adults in our study calls for model per-
sonalization beyond adaptation, as one-to-one mapping between
older adults’ activities and those available in the datasets (from
younger adults) may not be possible. We could employ novel model
personalization methods like teachable machines [25, 46, 54, 68],
which leverage advances in transfer learning [90] and meta learn-
ing [30, 70]. Systems like MyMove could play a critical role in
facilitating this personalization process by supporting older adults
and other underrepresented populations in fine-tuning the models
in activity tracking applications with their own data, so that the
applications can reflect their idiosyncratic characteristics.

6.6 Usability Challenges with Smartwatch’s
Low-power Mode

While our participants had generally positive experiences with
MyMove and the smartwatch, six participants occasionally experi-
enced the watch being unresponsive (Section 5.6.1). We suspect that
this was caused during Wear OS’s low-power mode (also known as
ambient mode). When a user is not interacting with their watch for a
while, Wear OS automatically enters into the low-power mode, dim-
ming the watch display to save the battery. In this low-power mode,
MyMove’s button icons and labels were still visible in low con-
trast. To make the virtual buttons interactive, participants needed
to “wake up” the screen by tapping anywhere on the watch dis-
play. Alternatively, they could push the physical button to start the
recording without needing to wake up the screen.

We showed the buttons and icons in low contrast during the
lower-power mode because we wanted to use them as a visual
reminder to encourage data capture. However, the low-power mode
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was, in hindsight, an unfamiliar concept to participants, especially
those who are new to a smartwatch: some participants thought that
they could interact with the visible button in the low-power mode.
Instead of showing the button icons and labels in low contrast,
hiding them completely might have been a better design to avoid
confusion, which is an interesting design tradeoff we learned from
this study.

6.7 Limitations and Future Work

In this section, we discuss the limitations of our study that could
impact the generalizability of our findings. Although we aimed to
recruit participants with diverse backgrounds, our participants are
not representative samples of older adults. They were all highly
educated (e.g., having a college degree or above), had high-baseline
technical proficiency (e.g., being able to use a Zoom video call),
and did not have speech, hearing, motor, movement, or cognitive
impairments. While this work is just a first step toward designing
and developing inclusive activity tracking systems, we believe it
is important to conduct a follow-up study with older adults with
different educational backgrounds, health conditions, and technical
proficiencies. This would help us extend our understanding of the
strengths and limitations of in-situ data collection with speech on
a smartwatch. As discussed above, we anticipate that this modality
can be advantageous for people that were not captured by our small
sample such as those who are blind or have low vision, as speech
input can be more efficient for this user group [4, 136]. However,
it may not be inclusive of dysarthric, deaf, and accented speech,
especially if the goal is automatic extraction of the activity labels.
Recent speech recognition personalization efforts like Google’s
Project Euphonia [40, 74] are promising. Similarly, efforts that at-
tempt cross-lingual knowledge transfer in speech recognition from
high- to low-resource languages (e.g., [58, 116]) can make speech
input more inclusive. Even then, the challenge of automatically
extracting activity labels, timing, and effort levels from verbal re-
ports remains. Information extraction from unstructured reports
is an active area of research in natural language processing (e.g.,
processing medical verbal or written reports [57, 85]). Similar to the
healthcare context, we could leverage transfer- and meta-learning
techniques to deal with the lack of training data. More so, in con-
trast to healthcare, we also have an opportunity to shape (i.e., via
design and personalization) the user interactions with the activity
trackers. Thus, we can influence the structure and vocabulary in
the reports to meet the algorithmic capabilities halfway e.g., by
optimizing across flexibility, efficiency, and effectiveness for both
users and algorithms.

Our study preparation (e.g., dropping off & picking up study
equipment) and study design provided more face-to-face time with
the participants than a typical remote deployment study. This pro-
vided a chance for older adult participants to ask questions and
troubleshoot issues. Thus, these repeated interactions may have con-
tributed to forming rapport between participants and researchers,
which in turn, could have contributed to the high engagement. We
had two onboarding sessions with the 4-day adaptation period in
between. During the 4-day adaptation period, participants became
used to wearing and maintaining (e.g., charging) the devices, and
were ready to collect data on Day 5 of the study. Some participants
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explicitly mentioned that the tutorial and the adaptation period
were critical for their engagement. For example, P5 commented,
“Giving me a few days to get used to the equipment and how it worked...
Making sure I had plugged in and make sure that I was charging, how
to record, and I thought that was really good. And just how to give
the reports, I think the orientation was very helpful as well.” While
we believe that giving a good tutorial before the actual experiment
is important, we acknowledge that our particular approach may
not scale. In addition, the study compensation and participants’
interest in contributing to a research project may also have affected
participants’ engagement, although it is common to incentivise
participants in ESM studies.

We note that we did not collect information on medication use of
participants. Medications, such as -blockers, can influence heart
rate and may blunt the response to higher intensity exercise, result-
ing in lower heart rate measurements. As such, the intensities we
recorded during Strenuous activities may be not accurately reflect
the degree of vigor with which the participant was being active,
resulting in the percentage of HR ;45 that were closer to the low
intensity activities. Future work should consider the incorporation
of participants’ medication information to further validate heart
rate intensities, especially for high-intensity activities.

We chose a smartwatch as an only means to collect verbal activity
reports and to deliver notifications. In the future, we can leverage
other “smart” devices for more comprehensive and accurate data
collection. For example, when the TV is on and the person is nearby
(without much movement), we can infer that the person is watching
TV. In addition, we can leverage the speech input capability of other
devices. For example, a person can report their activities using a
smart speaker that is becoming more prevalent (the speaker can
even play the recording back to the person). Similarly, a person
can record their activities from their smartphone, tablet, laptop, or
desktop as all these devices are equipped with a microphone. Since
these devices have larger display than a smartwatch, people can
view or edit data they captured elsewhere (e.g., a smartwatch or
smart speaker) from these devices.

In our study, we did not provide feedback other than the number
of reports participants submitted on a given day. However, in the
debriefing interview, half of our participants reported that they
became more aware of the activities they performed and how they
spent the time. Also known as the “reactivity effect,” this is a well-
known phenomenon in behavioral psychology [86]. We believe that
our approach to collecting in-situ data can serve a dual purpose
of activity labeling and self-monitoring; the latter can be further
augmented through providing informative and engaging feedback—
for example, showing how much they have been sitting, working
out, gardening—and people may be more motivated to engage in
desirable activities while capturing data (labels).

7 CONCLUSION

In this work, we examined the feasibility of collecting in-situ activ-
ity reports with older adults, with the ultimate goal of developing
personalized activity tracking technologies that better match their
preferences and patterns. We built MyMove, an Android Wear re-
porting app. Considering older adults as the main user group, we
streamlined the data capture flow and leveraged the flexible speech
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input on a smartwatch. Through a 7-day deployment study with
13 older adults, we collected a rich dataset including older adult
participants’ verbal reports, the sensor data from a smartwatch and
a thigh-worn activity monitor, and participants’ feedback from the
debriefing interviews. Our results showed that participants were
highly engaged in the data collection. They submitted a total of
1,224 verbal reports. Additionally, the wear time of the smartwatch
(11.6 hours/day) and thigh-worn activity monitor (23.3 hours/day)
was very high. Examining the verbal reports further, we found
that all of them were valid, that is, a researcher could understand
and transcribe them. Moreover, verbal reports could be transcribed
with state-of-the-art automatic speech recognition systems with
acceptable error rates (e.g., 4.93% with Microsoft Cognitive Speech).
These results, taken together, indicate that our novel data collec-
tion approach, realized in MyMove, can facilitate older adults to
collect useful in-situ activity labels. Going forward, we are excited
to continue our endeavors towards building personalized activity
tracking technologies that further capture meaningful activities for
older adults.
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