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Abstract— Air pollutants, such as particulate matter, nega-
tively impact human health. Most existing pollution-monitoring
techniques use stationary sensors, which are typically sparsely
deployed. However, real-world pollution distributions vary
rapidly with position, and the visual effects of air pollution can
be used to estimate concentration, potentially at high spatial
resolution. Accurate pollution-monitoring requires either densely
deployed conventional point sensors, at-a-distance vision-based
pollution monitoring, or a combination of both. The main
contribution of this article is that, to the best of our knowledge,
it is the first publicly available, high temporal and spatial
resolution air quality dataset containing simultaneous point
sensor measurements and corresponding images. The dataset
enables, for the first time, high spatial resolution evaluation
of image-based air pollution estimation algorithms. It contains
PM2.5, PM10, temperature, and humidity data. We evaluate
several state-of-the-art vision-based PM concentration estimation
algorithms on our dataset and quantify the increase in accuracy
resulting from higher point sensor density and the use of images.
It is our intent and belief that this dataset can enable advances
by other research teams working on air quality estimation.
Our dataset is available at https://github.com/implicitDeclaration/
HVAQ-dataset/tree/master.

Index Terms— Air pollution, evaluation, high-resolution
dataset, image analysis, particulate matter (PM).

I. INTRODUCTION

A IR pollution is a serious threat to human health and is

closely related to disease and death rates [1]–[5]. Accord-

ing to the World Health Organization (WHO), air pollution

causes seven million premature deaths per year, largely as a

result of increased mortality from stroke, heart disease, and

lung cancer. The most common harmful air pollutants are

particulate matter (PM), sulfur dioxide, and nitrogen dioxide.

This work focuses on PM, which can increase the rate of

cardiovascular and respiratory diseases [6], [7].

Air-monitoring stations are mainly used to obtain air pol-

lution data [8]. However, air pollution concentration can
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Fig. 1. Distribution of air monitoring stations in Hangzhou. On average,
there is one monitoring site for every 35 km2.

vary within a relatively short distance: the low sensor den-

sity (see Fig. 1) can lead to inaccurate estimation of the

high-resolution pollution field. Low measurement spatial den-

sity makes it especially difficult to estimate human exposure

to air pollution.

The PM concentrations are correlated with source distrib-

utions. For example, PM has heterogeneous sources [9], for

example, automobiles, manufacturing, and building construc-

tion. In addition, numerous factors, including wind, humidity,

and geography [10], [11], are related to PM distributions.

Increasing sensor density or adding image sensors supporting

high spatial resolution captures can increase the field estima-

tion accuracy and resolution of pollutant concentrations.

In addition to air quality sensors, image sensors can

also be used to estimate PM concentrations, potentially at

higher spatial resolutions [12], [13]. Image data can be

derived from several sources such as social media and digital

cameras [14], [15]. Moreover, consumer-grade cameras are

inexpensive and can gather pollution data over a wide field

of view (see Fig. 2). PM can be estimated by analyzing the

visual haze effect caused by scattering and absorption [13].

On days with high pollution, visibility is low because light is

scattered away from the camera by PM.

The ground-truth pollution data are typically obtained from

the nearest of several sparsely deployed monitoring stations.

Lack of high-resolution ground-truth pollution measurements

makes it difficult to evaluate vision-based pollution estimation

techniques, as pollution can vary rapidly with position [15].
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Fig. 2. (a) High-altitude quadcopter view and (b) low-altitude camera view.

Moreover, vision-based pollution estimation techniques gen-

erally assume homogeneous distributions of particles and

gases within images, implying constant light attenuation [15].

In reality, pollution concentration changes rapidly in space.

Therefore, accurate evaluation of vision-based estimation algo-

rithms requires high-resolution datasets [16].

This article presents a dataset containing high spatial (one

sensor every 2.5 km2) and temporal (one second interval)

resolution particle counter-based pollution measurements with

corresponding images, in addition to auxiliary information

including GPS locations, humidity, and temperature. These

properties are significant: this is the first publicly available

dataset capable of being used to train and evaluate vision-based

pollution estimation and forecasting techniques at high spa-

tial resolutions. To the best of our knowledge, there have

been no publicly available datasets enabling evaluation in

this context. Certainly, there are datasets containing high-

resolution [16], [17] and wide coverage [18], [19] air pol-

lution data. However, none of them contain corresponding

synchronized images. Based on the dataset, which is the

primary contribution of this article, we also make several

observations, for example, the rate of spatial variation in

pollution concentration and the evaluation of several exist-

ing vision-based PM concentration predication algorithms.

To evaluate the improvement brought by increasing sensor

spatial resolution and using images, we use heterogeneous

information for concentration estimation, that is, images and

particle counter-based PM concentrations, which were not

considered in the previous vision-based algorithms.

The rest of this article is organized as follows. Section II

summarizes related work. Sections III and IV describe our

data collection and analysis process. Section V presents the

experimental results. Section VI concludes this article.

II. RELATED WORK

The related work can be generalized into three categories:

environment monitoring methods, spectrum RGB cameras, and

vision-based techniques.

A. Environment Monitoring Methods

Most existing air quality monitoring systems [20]

have low temporal and spatial resolutions. For example,

Janssens-Maenhout et al. [21] provide a harmonized gridded

air pollution emission dataset. This dataset includes multiple

pollutants on a global scale with 0.1◦ × 0.1◦ spatial resolution

(latitude and longitude). De Vito et al. [22] collect an air

quality dataset containing 9358 instances of hourly averaged

responses from metal oxide chemical sensors. Devices are

TABLE I

DATASETS COMPARISON

deployed in a highly polluted area in Italy at high spatial

resolution. Li et al. [23] provide a dataset of mobile air quality

measurements in Zurich. They use sensor boxes installed on

mobile trams. Static installations are also deployed close to

high-quality reference stations for calibration. Their sensors

move around the city, recording every 5 s. Apte et al. [16] use

two Google street view vehicles equipped with data acquisition

platforms to collect the air pollution data of a 30 km2 city

area. Their data contain nitrogen oxides and black carbon.

Unlike our dataset, it does not contain PM concentrations,

images, and weather conditions. Wei et al. [18] describe

the ChinaHighPM10 dataset, which integrates multiple data

sources and contains hourly PM10 data in China with 1 km

resolution. Generally, these datasets typically do not include

images for the evaluation of vision-based pollution estimation.

Yang et al. [24] describe ImgSensingNet, an air qual-

ity monitoring system consisting of unmanned aerial vehi-

cles (UAVs) and ground sensors. Their system uses UAVs

for vision-based air quality index (AQI) monitoring and acti-

vates the ground sensing network based on vision-based AQI

inference. Their dataset differs from ours as follows: 1) it is

not public nor can be expected to be public in the near

future; 2) their data have time gaps, that is, there is ground

sensor data only when the UAV is uncertain about the AQI

in some areas, making the intervals without ground sensor

data useless for validating vision-based algorithms. In contrast,

our data acquisition system operated continuously; 3) their

dataset contains an irreversible AQI index inferred from

PM data, while our dataset provides raw PM data, meteorology

information, and environmental information; and 4) their point

sensor data acquisition period is 1 h (at best, depending on

whether the point sensors are activated) while ours is 1 s.

Table I compares different datasets. Our HVAQ is unique

in providing high spatial and temporal resolution pollution

measurements with corresponding images. Moreover, it has

been publicly released.

B. Spectrum-Based RGB Cameras

Image data are typically gathered using spectral mea-

surements, imaging systems, and multispectral imaging [25].

Spectral measurements acquire accurate color data without

structural information from the scene. Imaging systems such

as scanners or digital RGB cameras capture detailed structural

information [26] with a limited number of color channels.

Mismatches between the camera’s spectral sensitivities and

desired color matching functions can reduce the camera’s color

quality.

In contrast, multispectral imaging can produce accu-

rate, detailed representations of the scene for both color
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and structure [27]. Nonetheless, multispectral imaging systems

are expensive, while spectral measurements provide very lim-

ited spatial resolution.

C. Image-Based Techniques

Vision-based pollution estimation is being studied due to its

spatial range and low cost. Li et al. [14] analyze photographs

acquired from social media and establish the correlation

between visual haze and PM2.5 concentration. Liu et al. [15]

estimate PM2.5 using support vector regression on six features

extracted from images. Zhang et al. [12] describe an air pollu-

tion estimation algorithm that uses outdoor photos. They use

a convolutional neural network to predict the pollution level.

Rijal et al. [28] integrate the prediction of multiple neural

networks to calculate the PM2.5 of images. The ensemble

of neural networks provides more accurate estimation than

a single network. Gu et al. [29] designed a vision-based

estimation of PM2.5 concentration. It requires low-pollution

reference images for each area of interest. Zhang and Dick [13]

estimate multiple pollution concentrations from images using

scattering and absorption models.

The main problem is that it is unclear as to how accurate

these methods are because, until now, ground-truth data are

of very low spatial resolution. Therefore, our dataset makes it

possible to evaluate them in a high-resolution scenario.

III. SENSOR DEPLOYMENT

This section describes the deployment of our sensors and

cameras in order to collect both high-resolution ground-truth

data and corresponding images.

A. Sensor Calibration

Our sensing platform is equipped with humidity and tem-

perature sensors. The precision is 3% relative humidity (RH)

and ±0.3 ◦C, respectively. The PM sensor can detect particles

with 0.3–10 µm diameters according to the scattered light

intensity in a specific direction [30].

We calibrated our particle counting sensors based on

the measurements from the air quality monitoring site of

Hangzhou Meteorological Bureau in Hemu Primary School

using co-location method [31]. Our device is co-located

with an air monitoring station, which is equipped with a

high-precision sensor. The device collects data for 58 h contin-

uously. The station data are considered ground truth. We use

the least-squares method to fit a quadratic function to the

ground truth data. According to the measured concentration,

we fit the data into a two-stage piecewise linear function. The

fitted function is as follows:

y =

{

1.61x + 16.01 for 0 � x � 30 and

0.13x + 29.48 for x > 30
(1)

where x is the original value and y is the calibrated one.

The calibration data are gathered during a 2-day period and

the result is shown in Fig. 3. Calibration reduces root mean

squared error from 32.74 to 3.88 µg/m3, while the variance

for all the data over all locations is 9.33 µg/m3.

Fig. 3. Pollution concentration calibration.

Fig. 4. Distribution of sensors and pollution sources. Sensor locations are
numbered in ascending order according to the distance from the camera.

B. Deployment Details

Our dataset1 contains both high-resolution ground-truth

data and wide-view images. The sensors are placed outdoors

and close to living areas. The city center is very crowded

and the air quality here affects people more significantly.

We deploy our sensors in the urban area of Hangzhou, a city

of more than eight million residents and frequently affected

by high PM2.5 concentrations [32]. Existing research [33]

shows that in the main urban area of Hangzhou, the sources

of PM2.5 are biomass burning/construction dust (41.6%),

vehicle exhaust/metallurgical (metals’ production and purifica-

tion) dust (29.3%), unknown source (11.2%), oil combustion

(9.8%), and soil (8.0%). As shown in Fig. 4, the main

pollution sources are marked on the map and the sensors are

1Available at https://github.com/implicitDeclaration/HVAQ-dataset/tree/
master.
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TABLE II

GPS LOCATIONS OF OUR SENSORS AND PICTURE

TABLE III

PAIRWISE SENSORS DISTANCE (m)

located on two straight lines from the observation point. The

GPS locations and distances between each pair of sensors

are listed in Tables II and III. The sensors are sampled

every second and an image is captured every 20 min. Since

the temporal variation of PM concentration is slower than the

acquisition rate of the sensors, and the image acquisition rate

is also limited by the flight time of quadcopter, images are

captured less frequently.

Table IV lists our equipment. To derive a wide-view image

covering all sensor locations, we mount a camera on a

quadcopter, as shown in Fig. 5. We use two approaches

to take photographs. First, we use a quadcopter equipped

with a 4864 × 3648 camera at 90 m altitude. Moreover,

since the quadcopter has limited carrying and battery capac-

ities, we also take pictures at a fixed location on the

mountain top with a resolution of 2592 × 1936 using

an iPad and at a resolution of 4000 × 3000 using a phone.

The parameters of our cameras are listed in Table V. The

quadcopter camera uses the Sony Exmor R CMOS sensor.

The other two cameras types are the Apple iSight and

Sony IMX586. Hundred and six images and over 300 000 PM

samples were gathered in three days.

Apparently, the cost of vision-based approach (about $30)

is much less than the total cost of the sensors (about $670).

Thus, predicting air pollution concentrations using images is

more convenient and less expensive than particle counters, but

requires sophisticated image-processing algorithms.

IV. DATASET ANALYSIS

Q1) What is the impact of environmental conditions on

measurement accuracy?

Our data collection period spans three days with varying

environmental conditions. The impact of the environmental

conditions determines the corresponding parameters of the

calibration functions. Thus, it is important to investigate the

relationship between the impact of environmental conditions

on measurement accuracy.

Fig. 5. Quadcopter (Dji Phantom 4 Pro) used in our deployment.

TABLE IV

USED EQUIPMENT

TABLE V

CAMERA PARAMETER

Q2) What are the spatial variation characteristics of

PM2.5 concentration?

Since the spatial distribution of PM2.5 determines the

required sensor density, this information helps us to determine

the benefits of increasing the spatial resolution of a pollution

sensor network.

Q3) How does the correlation of pollution concentrations

at two different locations depend on their separation?

The relationship between PM2.5 concentration and distance

provides information relevant to the required number of sen-

sors. For example, if the PM2.5 concentrations at two locations

are highly correlated, one sensor might be used to determine

the concentrations at both locations.

Q4) How much do additional point sensors and vision-based

methods improve estimation accuracy?

This question builds on Q2 and Q3. To evaluate the effec-

tiveness and novelty of our new air quality dataset, it is

important to understand how the sensor density and the use of

images relates to the PM2.5 estimation accuracy.

A. Temperature and Humidity Correlations With Pollution

Concentrations

Environmental factors such as weather conditions can affect

sensor readings. For the deployments on October 19 and

November 10, we calculate the R2 correlation coefficients

for PM2.5 and several environmental factors.

A1: Environmental Conditions Have Limited Impact: The

results in Table VI shows that the correlations between

PM2.5 and weather factors are insignificant. Wu et al. [34]
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Fig. 6. Confusion matrix for PM2.5 correlation. The number on the axis
represents the number of the corresponding location.

TABLE VI

PM2.5 CORRELATION WITH ENVIRONMENTAL

FACTORS ON OCTOBER 19 AND NOVEMBER 10

TABLE VII

STATISTICS FOR PM AND ENVIRONMENTAL DATA

report that temperature is not significantly correlated with

PM concentrations in Hangzhou and PM2.5 concentration

is only significantly elevated when RH is higher than 60%.

Moreover, the correlation between environmental factors and

PM concentration also depends on the region and season, for

example, Zhu et al. [35] report that PM concentration and

RH show seasonal correlation. However, since temperature and

humidity do not directly affect the measurement process of

particle counters, we do not include temperature and humidity

in our calibration functions.

B. Correlations of PM Readings

Our measurements demonstrate that it typically takes more

than 10 min for concentration to change by 10 µg/m3. Our data

sampling period is 1 s and is considered adequate given the

relatively slow concentration change. We quantify the spatial

variation of pollution by calculating the standard deviations

over all sensors.

A2: Spatial variation of PM2.5 is high. As shown

in Table VII, the two locations have different concentration

and variation trends. Moreover, the large differences indi-

cate that multiple pollution levels coexist in a single image.

Fig. 7. Pairwise correlation between sensors for October 19 and
November 10 as functions of their distances.

Fig. 6 shows the sensor correlations during the November 10

and October 19 deployments. We expect the correlations to

decrease with increasing inter-sensor distances. The deploy-

ment results confirm our hypothesis.

A3: Pollution concentrations are spatially correlated. We

quantify the correlations for further analysis. Fig. 7 shows

sensor correlations as a function of pairwise distance. The

correlation is measured by the Spearman correlation coefficient

ρ = 1 −
6

∑

d2
i

N
(

N2 − 1
) (2)

where di represents the position difference of the paired

variables after the two variables are sorted separately and N

is the total number of samples. The slope of the fitting line is

0.155 /km and the coefficient of determination (R2) is 0.421,

which implies that closer sensors enable more accurate

estimates.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the impacts of changing sen-

sor density and using vision-based techniques on estimation

accuracy. Specifically, we estimate PM2.5 concentration based

on vision-based analysis using transmission information and

standard deviation of gray-scale pixel values and compare the

performance of several state-of-the-art estimation algorithms.

A. Experimental Setup

We design a portable sensing platform to collect, process,

and transmit data, as shown in Fig. 8. The system battery

life is 3.5 h. The following algorithms are used to estimate

pollutant concentration from the measured data.

1) Random forest regression (RFR): This is a widely used

algorithm for regression and classification. It combines

multiple weak models to form a strong model with much

better performance. Random forests contain multiple,

unrelated decision trees. The final output depends on

the decisions of all trees.

2) Gradient boosting regression (GBR): This method com-

bines a group of weak learners with low complexity and

low training cost. It reduces the problem of overfitting

and modifies the weights at each training round to
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Fig. 8. Sensing platform consisting of battery, Raspberry Pi, and sensors.

produce a strong learner. Gradient boosting modifies its

models based on the gradient descent direction of the

loss functions of the previously established models.

3) Support vector regression (SVR): Support vector regres-

sion aims to find a regression plane with minimal

distance to the dataset. Generally, there is a kernel

function mapping data to high-dimensional space for

better performance on complex manifolds.

The algorithms are implemented using the Python package

sklearn. The RFR parameter n_estimators is set to 100 and

criterion is set to mean squared error. We set the GBR

parameter learning_rate to 0.1 and n_estimators to 100,

using least-squares regression. We set the SVR parameter c

to 1.0 and epsilon to 0.1, using a radial basis function

kernel. The parameters are chosen to maximize the training

performance. We use the following equation to combine sensor

readings and image properties:

S(x, t) = G
(

s1(t), s2(t), . . . , s10(t), tdcp(t), βsd(t)
)

(3)

where x is the location index, S(x, t) is the concentration esti-

mation at time t , s1, s2, . . . , s10 are the available ten sensors,

tdcp(t) is the transmission information at time t , βsd(t) is the

standard deviation of gray-scale image, and G is the estimation

algorithm, which refers to RFR, GBR, or SVR. We use tdcp(t)

for low-altitude data and βsd(t) for high-altitude data. We later

describe how tdcp(t) and βsd(t) are obtained for each image in

the dataset in Section V-B.

We use data from July 24, October 19, and November 10 for

all time stamps and use the mean absolute error (MAE) as the

evaluation criteria

MAE =
1

N

N
∑

i=1

|yi − ŷi | (4)

where yi is the actual PM2.5 concentration and ŷi is the

predicted PM2.5 concentration.

There are two classes of images in our dataset. Those in

the first class were captured from the ground, on top of a

mountain (78 m). The second class contains images from

Fig. 9. Transmission estimation result.

a quadcopter flying above the same mountain (78 m + 90 m).

We tried to take the images from the quadcopter and mountain

at the same angle and keep the images as similar to each other

as possible, but there is some (unavoidable) variation in camera

orientation (see Fig. 2).

We divide our data into “low-altitude” and “high-altitude”

subsets according to the image class and evaluate our algo-

rithms separately on the two classes. We analyze 19 images

from the high-altitude dataset and 26 images from the

low-altitude dataset. Furthermore, each dataset is divided as

follows: 75% of the data and images are randomly selected

as a training set and the rest are the testing set. We run the

prediction model 50 times per random split of the training and

testing datasets.

B. Image-Enhanced Concentration Estimation

Images can be used to estimate PM concentrations in large

areas because images can extract the haziness information.

We predict PM2.5 concentrations at locations without sensors.

Since PM2.5 attenuates light, we estimate PM2.5 concentra-

tion in part through the light attenuation coefficient β from

the haze model. We use the following image features to

estimate PM2.5: the dark channel tdcp(x) and the standard

deviation βsd. tdcp(x) is determined using (13) and βsd is

determined using (21). Fig. 9 is an example of applying the

dark channel prior to an image. The left image is the original

hazy image, and the right image is the transmission estimate

for each pixel using dark channel prior. Note that certain

kinds of weather conditions like rain and snow might be

misinterpreted as pollution. Our PM2.5 estimation algorithm

mainly works in sunny and cloudy conditions, which are

common in Hangzhou.

The atmospheric model describing an image influenced by

haze follows [36]:

I(x) = J(x)t(x) + A(1 − t(x)) (5)

where x is the pixel location, I is the observed image, J is the

scene radiance (image without any haze), A is the atmospheric

light, t is the transmission function.

Images with higher air pollution tend to look hazier due

to lower transmission and contrast. Hence, image features

that correlate to haze level enable pollutant concentration

estimation.

1) Dark Channel Prior: The dark channel prior, which has

been widely used for haze removal, can be used to estimate

the transmission of each image pixel. The dark channel prior

method is based on the observation that in most haze-free

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 20,2022 at 02:08:00 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: HVAQ: HIGH-RESOLUTION VISION-BASED AIR QUALITY DATASET 5019810

patches, at least one color channel has some pixels with very

low intensities. The dark channel is defined as the minimum

of all pixel colors in a local patch and can be calculated using

the following [37]:

Jdark(x) = min
c∈r,g,b

(

min
y∈�r (x)

J c(y)

)

(6)

where J c is an RGB channel of J , and �r (x) is a local patch

centered at x with the size of 15 × 15. Assume the atmospheric

light A is given and the transmission in a local patch �r (x)

is constant, taking the minimum operation in the local patch

on (5), we have

min
y∈�r (x)

(

I c(y)
)

= t̃(x) min
y∈�r (x)

(

J c(y)
)

+
(

1 − t̃(x)
)

Ac (7)

where t̃(x) is the patch’s transmission. The minimum opera-

tion is performed on three color channels independently, which

is equivalent to

min
y∈�r (x)

(

I c(y)

Ac

)

= t̃(x) min
y∈�r (x)

(

J c(y)

Ac

)

+
(

1 − t̃(x)
)

. (8)

By taking the minimum of three color channels, we have

min
c

(

min
y∈�r (x)

(

I c(y)

Ac

))

= t̃(x) min
c

(

min
y∈�r (x)

(

J c(y)

Ac

))

+
(

1 − t̃(x)
)

. (9)

According to the definition of dark channel prior, the dark

channel Jdark of the haze-free radiance J tends to be zero

Jdark(x) = min
c

(

min
y∈�r (x)

J c(y)

)

= 0. (10)

Because Ac is always positive, this lead to

min
c

(

min
y∈�r (x)

J c(y)

Ac

)

= 0. (11)

Substituting (11) into (9), we can estimate the transmission

as follows:

t̃(x) = 1 − min
c

(

min
y∈�r (x)

I c(y)

Ac

)

. (12)

In practice, the atmosphere always contains some haze,

which provides depth information. We can optionally keep a

small amount of haze by introducing a constant parameter

ω (0 < ω < 1) into (12)

t̃(x) = 1 − ω min
c

(

min
y∈�r (x)

I c(y)

Ac

)

. (13)

We fix the value of ω to 0.95 because this approximates

the sparse haze present even on relatively clear days. The

atmospheric light A is estimated through this procedure: we

pick the top 0.1% brightest pixels in the dark channel and the

input image I to calculate the atmospheric light. For each hazy

image in our dataset, we take the average of the pixel-level

transmissions estimated using (13). The resulting average is

used for low-altitude data.

2) Standard Deviation: In order to calculate the intensity

standard deviation for each image, we convert the RGB image

to a gray-scale image and then calculate the standard deviation

of all the pixel intensities. The standard deviation is closely

related to haze density [38]. The scattering coefficient is a

measure of haze density. The higher the scattering coefficient,

the higher the haze density. The transmission function is

t(x) = eβd(x) (14)

where β is the scattering coefficient and d is the depth.

Substituting (14) into (5), we have

Ig(x) = J(x)eβd(x) + A
(

1 − eβd(x)
)

. (15)

The variance of a gray-scale image is

σ 2
Ig

=
1

N

N
∑

i=1



Ig(i) −
1

N

N
∑

j=1

Ig( j)





2

= e2βd(x) 1

N

N
∑

i=1



J (i) −
1

N

N
∑

j=1

J ( j)





2

(16)

where Ig is the gray-scale image and N is the number of pixels

in the image. When β = 0, we have

σ 2
0 =

1

N

N
∑

i=1



J (i) −
1

N

N
∑

j=1

J ( j)





2

. (17)

Combining (17) and (16) yields

σIg
= e−2βσ 2

0 . (18)

After taking the logarithm of both sides, the scattering

coefficient can be expressed as

β = ln σ0 − ln σIg
. (19)

Since σ is changed at each image, (19) can be expressed

using the first-order Taylor series approximation

β = 1 + ln σ0 − σIg
. (20)

When β = 0, the variance of the scene radiance approxi-

mates 1. Thus, we have

β = 1 − ln σIg
. (21)

Therefore, we can estimate the concentration using the

standard deviation of the gray-scale image. The standard

deviation is used for high-altitude data.

C. Concentration Estimation Results

For each available sensor deployment location, we specu-

latively remove one or more sensor’s data and use estimation

techniques with access to the remaining sensors to infer con-

centration(s), thereby allowing comparison with ground-truth

measurements. We investigate the impact of the number of

sensors on the estimation accuracy by using all possible

combinations of speculatively removed sensors and averaging

the results. We also consider the impact of using image data

on estimation accuracy.
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Fig. 10. Relationship between mean average error and sensor density for
gradient boosting regression on high-altitude data.

Fig. 11. Relationship between mean average error and sensor density for
gradient boosting regression on low-altitude data.

Fig. 12. Relationship between mean average error and using images for
gradient boosting regression on high-altitude data.

We plotted the results from the best-performing algo-

rithm: GBR. The density improvements in Figs. 10 and 11 are

compared with the n = 0 (no images) case. If image features

are used, the improvements are compared with the n = 1

case. Note that the lower MAE is, the better the estimation

accuracy. Thus, a negative change indicates improvement.

The bars in Figs. 10–13 represent the MAE resulting from

using different numbers of sensors. The lower bars indicate

higher accuracies. The lines in Figs. 10–13 indicate percentage

change to MAE in different cases (e.g., using images or

more sensors). The lower the percentage change, the larger

Fig. 13. Relationship between mean average error and using images for
gradient boosting regression on low-altitude data.

the improvement, and positive percentage changes imply

(undesirable) increases in MAE.

As sensor density increases, the estimation MAE decreases.

This implies that accuracy improves with sensor density, even

at densities much higher than those of modern stationary

sensor deployments. Moreover, as shown in Fig. 7, sensor

correlations decrease with increasing distance. This is the

reason estimation accuracy improves with increasing sensor

density. Using the four nearest sensors instead of one sensor

improves estimation accuracy by 23.3% on average without

using images, and 20.75% when using images. The fact

that increasing sensor density improves accuracy less when

images are available does not imply that images are unhelpful.

In contrast, it implies that using images allows higher accuracy

when few sensors are available, leaving less potential for

improvement if sensor density is later increased.

A4 vision-based techniques significantly improve estimation

accuracy As shown in Figs. 12 and 13, PM2.5 concentration

prediction accuracy improves when the images are used. In the

case of n = 0, we average all the available concentrations. The

MAE is 20.821 µg/m3 for high-altitude data and 6.929 µg/m3

for low-altitude data. The high-altitude images enable higher

accuracy because some sensor locations are occluded in the

low-altitude images. When images are used, MAE drops to

1.45 and 5.35 µg/m3 respectively. For the case where n = 1,

when we use the PM2.5 concentrations of the nearest available

sensor for estimation image data improves prediction accuracy

by 16.9% on average. The benefits of using images are greatest

when the fewest particle counters are used.

To determine whether the improvement is systemic and

statistically significant, we use the Kolmogorov–Smirnov test.

We compare the data for the MAE without using images that

using images for each number of sensors (n = 1, . . . , 4) to

determine whether the two datasets have the same distribution.

The test is nonparametric and requires no knowledge about the

distribution of data.

We determine that there is a statistically significant dif-

ference between the distribution of the MAE when using

images and the distribution without using images, that is,

the difference between the two distributions is not due only

to chance or noise, but due to a genuine improvement

in accuracy when using the image data. If the p-value is

below 0.10, we can reject the null hypothesis and conclude
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TABLE VIII

P -VALUES OF GBR ON HIGH-ALTITUDE DATA

TABLE IX

P -VALUES OF GBR ON LOW-ALTITUDE DATA

that using images does improve our results. As shown

in Tables VIII and IX, on low-altitude data, the p-values of

GBR in all cases are less than 0.10, and on high-altitude

data, GBR’s p-values are less than 0.10. As a result, we are

confident that using images improves the estimates.

Certain fixed-location images show slightly negative results

for the GBR method. Since the fixed-location images are

taken from a low altitude, some of the sensor locations are

blocked by buildings. For the quadcopter images taken at a

higher altitude, all estimation techniques improve accuracy.

In general, images decrease MAE by 8.44% on average, when

n � 1, adding a camera to collect images helps more than

adding more sensors.

Increasing sensor density and using images change the rela-

tive accuracy of the estimation algorithms. When we use only

one sensor and no images, RFR has lower MAE than GBR

on low-altitude data. When the sensor density is increased

(n = 4) and images are used, GBR outperforms RFR. This

result demonstrates that it is important to evaluate estimation

algorithms using appropriate sensor densities and access to

image data. A sparsely deployed and less accurate sensor

network can lead to false conclusions about pollution concen-

trations, and about which pollution concentration estimation

algorithms are most accurate.

To summarize, both higher sensor densities and image data

improve estimation accuracy, and adding image data has a sim-

ilar effect to increasing particle counter density by 0.61 sensors

km−2. Of the three estimation techniques evaluated, GBR had

the highest accuracy with MAE = 1.45 µg/m3. In particular,

our developed method is unlikely to work as well on night-time

images and images with adverse weather conditions such as

rain and snow. The main limitation of our dataset is that it

does not contain night-time images.

VI. CONCLUSION

This article presents a PM dataset with high spatial

and temporal resolutions. In contrast with existing datasets,

HVAQ contains images covering the locations of stationary

point sensors, making it suitable for evaluating and validating

vision-based pollution estimation algorithms. Through our

analysis, we find that: 1) the estimation accuracy can be

improved significantly using vision-based techniques; 2) the

spatial pollutant distribution is spatially correlated; 3) spatial

variation of PM2.5 is high; and 4) temperature and humid-

ity had limited impact on PM concentration in our dataset.

We also evaluate our data using state-of-the-art prediction

methods. Accuracy correlates with density with a coefficient

of 0.2875 µg/m3 MAE per sensor and vision-based estimation

improves accuracy by 0.1813 µg/m3 MAE, on average.
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