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Abstract— Air pollutants, such as particulate matter, nega-
tively impact human health. Most existing pollution-monitoring
techniques use stationary sensors, which are typically sparsely
deployed. However, real-world pollution distributions vary
rapidly with position, and the visual effects of air pollution can
be used to estimate concentration, potentially at high spatial
resolution. Accurate pollution-monitoring requires either densely
deployed conventional point sensors, at-a-distance vision-based
pollution monitoring, or a combination of both. The main
contribution of this article is that, to the best of our knowledge,
it is the first publicly available, high temporal and spatial
resolution air quality dataset containing simultaneous point
sensor measurements and corresponding images. The dataset
enables, for the first time, high spatial resolution evaluation
of image-based air pollution estimation algorithms. It contains
PM2.5, PM10, temperature, and humidity data. We evaluate
several state-of-the-art vision-based PM concentration estimation
algorithms on our dataset and quantify the increase in accuracy
resulting from higher point sensor density and the use of images.
It is our intent and belief that this dataset can enable advances
by other research teams working on air quality estimation.
Our dataset is available at https://github.com/implicitDeclaration/
HVAQ-dataset/tree/master.

Index Terms— Air pollution, evaluation,
dataset, image analysis, particulate matter (PM).

high-resolution

I. INTRODUCTION

IR pollution is a serious threat to human health and is
closely related to disease and death rates [1]-[5]. Accord-
ing to the World Health Organization (WHO), air pollution
causes seven million premature deaths per year, largely as a
result of increased mortality from stroke, heart disease, and
lung cancer. The most common harmful air pollutants are
particulate matter (PM), sulfur dioxide, and nitrogen dioxide.
This work focuses on PM, which can increase the rate of

cardiovascular and respiratory diseases [6], [7].
Air-monitoring stations are mainly used to obtain air pol-
lution data [8]. However, air pollution concentration can
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Fig. 1. Distribution of air monitoring stations in Hangzhou. On average,

there is one monitoring site for every 35 km?.

vary within a relatively short distance: the low sensor den-
sity (see Fig. 1) can lead to inaccurate estimation of the
high-resolution pollution field. Low measurement spatial den-
sity makes it especially difficult to estimate human exposure
to air pollution.

The PM concentrations are correlated with source distrib-
utions. For example, PM has heterogeneous sources [9], for
example, automobiles, manufacturing, and building construc-
tion. In addition, numerous factors, including wind, humidity,
and geography [10], [11], are related to PM distributions.
Increasing sensor density or adding image sensors supporting
high spatial resolution captures can increase the field estima-
tion accuracy and resolution of pollutant concentrations.

In addition to air quality sensors, image sensors can
also be used to estimate PM concentrations, potentially at
higher spatial resolutions [12], [13]. Image data can be
derived from several sources such as social media and digital
cameras [14], [15]. Moreover, consumer-grade cameras are
inexpensive and can gather pollution data over a wide field
of view (see Fig. 2). PM can be estimated by analyzing the
visual haze effect caused by scattering and absorption [13].
On days with high pollution, visibility is low because light is
scattered away from the camera by PM.

The ground-truth pollution data are typically obtained from
the nearest of several sparsely deployed monitoring stations.
Lack of high-resolution ground-truth pollution measurements
makes it difficult to evaluate vision-based pollution estimation
techniques, as pollution can vary rapidly with position [15].
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Fig. 2. (a) High-altitude quadcopter view and (b) low-altitude camera view.
Moreover, vision-based pollution estimation techniques gen-
erally assume homogeneous distributions of particles and
gases within images, implying constant light attenuation [15].
In reality, pollution concentration changes rapidly in space.
Therefore, accurate evaluation of vision-based estimation algo-
rithms requires high-resolution datasets [16].

This article presents a dataset containing high spatial (one
sensor every 2.5 km?) and temporal (one second interval)
resolution particle counter-based pollution measurements with
corresponding images, in addition to auxiliary information
including GPS locations, humidity, and temperature. These
properties are significant: this is the first publicly available
dataset capable of being used to train and evaluate vision-based
pollution estimation and forecasting techniques at high spa-
tial resolutions. To the best of our knowledge, there have
been no publicly available datasets enabling evaluation in
this context. Certainly, there are datasets containing high-
resolution [16], [17] and wide coverage [18], [19] air pol-
lution data. However, none of them contain corresponding
synchronized images. Based on the dataset, which is the
primary contribution of this article, we also make several
observations, for example, the rate of spatial variation in
pollution concentration and the evaluation of several exist-
ing vision-based PM concentration predication algorithms.
To evaluate the improvement brought by increasing sensor
spatial resolution and using images, we use heterogeneous
information for concentration estimation, that is, images and
particle counter-based PM concentrations, which were not
considered in the previous vision-based algorithms.

The rest of this article is organized as follows. Section II
summarizes related work. Sections III and IV describe our
data collection and analysis process. Section V presents the
experimental results. Section VI concludes this article.

II. RELATED WORK

The related work can be generalized into three categories:
environment monitoring methods, spectrum RGB cameras, and
vision-based techniques.

A. Environment Monitoring Methods

Most existing air quality monitoring systems [20]
have low temporal and spatial resolutions. For example,
Janssens-Maenhout et al. [21] provide a harmonized gridded
air pollution emission dataset. This dataset includes multiple
pollutants on a global scale with 0.1° x 0.1° spatial resolution
(latitude and longitude). De Vito et al. [22] collect an air
quality dataset containing 9358 instances of hourly averaged
responses from metal oxide chemical sensors. Devices are
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TABLE I
DATASETS COMPARISON
Spatla}] Tempo_ral Scale Images
resolution | resolution
Apte et al. High Second 30 km? No
ChinaHighPM10 Low Hour 9.6Mkm? No
ImgSensingNet High Hour 7km? Yes
Air monitoring 5
stations (Hangzhou) Low Hour 16 853 km No
HVAQ High Second 1km? Yes

deployed in a highly polluted area in Italy at high spatial
resolution. Li ef al. [23] provide a dataset of mobile air quality
measurements in Zurich. They use sensor boxes installed on
mobile trams. Static installations are also deployed close to
high-quality reference stations for calibration. Their sensors
move around the city, recording every 5 s. Apte ef al. [16] use
two Google street view vehicles equipped with data acquisition
platforms to collect the air pollution data of a 30km? city
area. Their data contain nitrogen oxides and black carbon.
Unlike our dataset, it does not contain PM concentrations,
images, and weather conditions. Wei er al. [18] describe
the ChinaHighPM10 dataset, which integrates multiple data
sources and contains hourly PM10 data in China with 1 km
resolution. Generally, these datasets typically do not include
images for the evaluation of vision-based pollution estimation.

Yang et al. [24] describe ImgSensingNet, an air qual-
ity monitoring system consisting of unmanned aerial vehi-
cles (UAVs) and ground sensors. Their system uses UAVs
for vision-based air quality index (AQI) monitoring and acti-
vates the ground sensing network based on vision-based AQI
inference. Their dataset differs from ours as follows: 1) it is
not public nor can be expected to be public in the near
future; 2) their data have time gaps, that is, there is ground
sensor data only when the UAV is uncertain about the AQI
in some areas, making the intervals without ground sensor
data useless for validating vision-based algorithms. In contrast,
our data acquisition system operated continuously; 3) their
dataset contains an irreversible AQI index inferred from
PM data, while our dataset provides raw PM data, meteorology
information, and environmental information; and 4) their point
sensor data acquisition period is 1 h (at best, depending on
whether the point sensors are activated) while ours is 1 s.
Table I compares different datasets. Our HVAQ is unique
in providing high spatial and temporal resolution pollution
measurements with corresponding images. Moreover, it has
been publicly released.

B. Spectrum-Based RGB Cameras

Image data are typically gathered using spectral mea-
surements, imaging systems, and multispectral imaging [25].
Spectral measurements acquire accurate color data without
structural information from the scene. Imaging systems such
as scanners or digital RGB cameras capture detailed structural
information [26] with a limited number of color channels.
Mismatches between the camera’s spectral sensitivities and
desired color matching functions can reduce the camera’s color
quality.

In contrast, multispectral imaging can produce accu-
rate, detailed representations of the scene for both color

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 20,2022 at 02:08:00 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: HVAQ: HIGH-RESOLUTION VISION-BASED AIR QUALITY DATASET

and structure [27]. Nonetheless, multispectral imaging systems
are expensive, while spectral measurements provide very lim-
ited spatial resolution.

C. Image-Based Techniques

Vision-based pollution estimation is being studied due to its
spatial range and low cost. Li ef al. [14] analyze photographs
acquired from social media and establish the correlation
between visual haze and PM2.5 concentration. Liu et al. [15]
estimate PM2.5 using support vector regression on six features
extracted from images. Zhang et al. [12] describe an air pollu-
tion estimation algorithm that uses outdoor photos. They use
a convolutional neural network to predict the pollution level.
Rijal et al. [28] integrate the prediction of multiple neural
networks to calculate the PM2.5 of images. The ensemble
of neural networks provides more accurate estimation than
a single network. Gu et al. [29] designed a vision-based
estimation of PM2.5 concentration. It requires low-pollution
reference images for each area of interest. Zhang and Dick [13]
estimate multiple pollution concentrations from images using
scattering and absorption models.

The main problem is that it is unclear as to how accurate
these methods are because, until now, ground-truth data are
of very low spatial resolution. Therefore, our dataset makes it
possible to evaluate them in a high-resolution scenario.

III. SENSOR DEPLOYMENT

This section describes the deployment of our sensors and
cameras in order to collect both high-resolution ground-truth
data and corresponding images.

A. Sensor Calibration

Our sensing platform is equipped with humidity and tem-
perature sensors. The precision is 3% relative humidity (RH)
and £0.3 °C, respectively. The PM sensor can detect particles
with 0.3-10 um diameters according to the scattered light
intensity in a specific direction [30].

We calibrated our particle counting sensors based on
the measurements from the air quality monitoring site of
Hangzhou Meteorological Bureau in Hemu Primary School
using co-location method [31]. Our device is co-located
with an air monitoring station, which is equipped with a
high-precision sensor. The device collects data for 58 h contin-
uously. The station data are considered ground truth. We use
the least-squares method to fit a quadratic function to the
ground truth data. According to the measured concentration,
we fit the data into a two-stage piecewise linear function. The
fitted function is as follows:

_ 1.61x +16.01 for 0 < x <30 and )
Y7 10.13x +29.48 for x > 30
where x is the original value and y is the calibrated one.
The calibration data are gathered during a 2-day period and
the result is shown in Fig. 3. Calibration reduces root mean
squared error from 32.74 to 3.88 ug/m?, while the variance
for all the data over all locations is 9.33 ug/m?.
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B. Deployment Details

Our dataset! contains both high-resolution ground-truth
data and wide-view images. The sensors are placed outdoors
and close to living areas. The city center is very crowded
and the air quality here affects people more significantly.
We deploy our sensors in the urban area of Hangzhou, a city
of more than eight million residents and frequently affected
by high PM2.5 concentrations [32]. Existing research [33]
shows that in the main urban area of Hangzhou, the sources
of PM2.5 are biomass burning/construction dust (41.6%),
vehicle exhaust/metallurgical (metals’ production and purifica-
tion) dust (29.3%), unknown source (11.2%), oil combustion
(9.8%), and soil (8.0%). As shown in Fig. 4, the main
pollution sources are marked on the map and the sensors are

I Available  at
master.

https://github.com/implicitDeclaration/HVAQ-dataset/tree/
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TABLE II
GPS LOCATIONS OF OUR SENSORS AND PICTURE
Location Pl P2 P3
Longitude 120.153173° 120.15488° 120.153894°
Latitude 30.269884° 30.268726° 30.27096°
P4 P5 P6 P7
120.156252° | 120.153905° 120.15936° 120.155162°
30.270242° 30.27358° 30.273139° 30.278369°
P8 P9 P10 Photo location
120.161912° | 120.164792° | 120.156541° 120.153955°
30.276465° 30.279437° 30.283932° 30.267191°
TABLE III
PAIRWISE SENSORS DISTANCE (m)
PI P2 P3 P4 P5 P6 P7 P8 P9 P10
P1 0 113 168 281 464 697 1012 1150 1730 1625
P2 0 211 190 509 603 1040 1089 1537 1660
P3 0 245 296 575 844 1000 1450 1457
P4 0 388 413 871 899 1347 1510
P5 0 464 548 819 1250 1161
P6 0 625 486 934 1170
P7 0 656 918 613
P8 0 4438 953
P9 0 877
P10 0

located on two straight lines from the observation point. The
GPS locations and distances between each pair of sensors
are listed in Tables II and III. The sensors are sampled
every second and an image is captured every 20 min. Since
the temporal variation of PM concentration is slower than the
acquisition rate of the sensors, and the image acquisition rate
is also limited by the flight time of quadcopter, images are
captured less frequently.

Table IV lists our equipment. To derive a wide-view image
covering all sensor locations, we mount a camera on a
quadcopter, as shown in Fig. 5. We use two approaches
to take photographs. First, we use a quadcopter equipped
with a 4864 x 3648 camera at 90 m altitude. Moreover,
since the quadcopter has limited carrying and battery capac-
ities, we also take pictures at a fixed location on the
mountain top with a resolution of 2592 x 1936 using
an iPad and at a resolution of 4000 x 3000 using a phone.
The parameters of our cameras are listed in Table V. The
quadcopter camera uses the Sony Exmor R CMOS sensor.
The other two cameras types are the Apple iSight and
Sony IMX586. Hundred and six images and over 300000 PM
samples were gathered in three days.

Apparently, the cost of vision-based approach (about $30)
is much less than the total cost of the sensors (about $670).
Thus, predicting air pollution concentrations using images is
more convenient and less expensive than particle counters, but
requires sophisticated image-processing algorithms.

IV. DATASET ANALYSIS

Q1) What is the impact of environmental conditions on
measurement accuracy?

Our data collection period spans three days with varying
environmental conditions. The impact of the environmental
conditions determines the corresponding parameters of the
calibration functions. Thus, it is important to investigate the
relationship between the impact of environmental conditions
on measurement accuracy.
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Fig. 5. Quadcopter (Dji Phantom 4 Pro) used in our deployment.
TABLE IV
USED EQUIPMENT
Camera Quadcopter Sensors Battery | Platform
P(rg‘ge 200-460 1500 315 12 37
Quadcopter PM2.5,
default PM10,
Model camera, Dji Phantom humidi- 4000 Raspi
iPad, Onplus 4 Pro ty, mAh 3B+
7 phone tempera-
camera ture
TABLE V
CAMERA PARAMETER
Camera Pixel Sensor Aperture
quadcopter | 20,000,000 | Sony Exmor R | f/2.8-f/11
pad 8,000,000 1Sight /2.4
phone 48,000,000 | Sony IMX586 /1.6

Q2) What are the spatial variation characteristics of
PM2.5 concentration?

Since the spatial distribution of PM2.5 determines the
required sensor density, this information helps us to determine
the benefits of increasing the spatial resolution of a pollution
sensor network.

Q3) How does the correlation of pollution concentrations
at two different locations depend on their separation?

The relationship between PM2.5 concentration and distance
provides information relevant to the required number of sen-
sors. For example, if the PM2.5 concentrations at two locations
are highly correlated, one sensor might be used to determine
the concentrations at both locations.

04) How much do additional point sensors and vision-based
methods improve estimation accuracy?

This question builds on Q2 and Q3. To evaluate the effec-
tiveness and novelty of our new air quality dataset, it is
important to understand how the sensor density and the use of
images relates to the PM2.5 estimation accuracy.

A. Temperature and Humidity Correlations With Pollution
Concentrations

Environmental factors such as weather conditions can affect
sensor readings. For the deployments on October 19 and
November 10, we calculate the R? correlation coefficients
for PM2.5 and several environmental factors.

Al: Environmental Conditions Have Limited Impact: The
results in Table VI shows that the correlations between
PM2.5 and weather factors are insignificant. Wu et al. [34]
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TABLE VI

PM2.5 CORRELATION WITH ENVIRONMENTAL
FACTORS ON OCTOBER 19 AND NOVEMBER 10

PM2.5 | Temperature | Humidity
PM2.5 1.0 0.298 0.306
Temperature | 0.298 1.0 0.808
Humidity 0.306 0.808 1.0
TABLE VII
STATISTICS FOR PM AND ENVIRONMENTAL DATA
Data in Different Standard Data Average Date
Days Deviation Range Value
PM2.5 (ugm~—3) 2.03 4.56 13.93 Jul. 24
PM2.5 (ugm~—2) 222 5.11 25.03 Jul. 06
PM2.5 (ugm~—3) 6.68 2221 56.90
Temperature (°C) 5.64 16.02 26.40 Oct. 19
RH (%) 12.36 37.63 45.13
PM2.5 (ugm~—3) 4.77 16.51 48.76
Temperature (°C) 4.53 14.21 24.79 Nov. 10
RH (%) 10.20 34.71 40.16

report that temperature is not significantly correlated with
PM concentrations in Hangzhou and PM2.5 concentration
is only significantly elevated when RH is higher than 60%.
Moreover, the correlation between environmental factors and
PM concentration also depends on the region and season, for
example, Zhu et al. [35] report that PM concentration and
RH show seasonal correlation. However, since temperature and
humidity do not directly affect the measurement process of
particle counters, we do not include temperature and humidity
in our calibration functions.

B. Correlations of PM Readings

Our measurements demonstrate that it typically takes more
than 10 min for concentration to change by 10 xg/m>. Our data
sampling period is 1 s and is considered adequate given the
relatively slow concentration change. We quantify the spatial
variation of pollution by calculating the standard deviations
over all sensors.

A2: Spatial variation of PM?2.5 is high. As shown
in Table VII, the two locations have different concentration
and variation trends. Moreover, the large differences indi-
cate that multiple pollution levels coexist in a single image.
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Fig. 6 shows the sensor correlations during the November 10
and October 19 deployments. We expect the correlations to
decrease with increasing inter-sensor distances. The deploy-
ment results confirm our hypothesis.

A3: Pollution concentrations are spatially correlated. We
quantify the correlations for further analysis. Fig. 7 shows
sensor correlations as a function of pairwise distance. The
correlation is measured by the Spearman correlation coefficient

6> d?
N(N?—1)

where d; represents the position difference of the paired
variables after the two variables are sorted separately and N
is the total number of samples. The slope of the fitting line is
0.155 /km and the coefficient of determination (R?) is 0.421,
which implies that closer sensors enable more accurate
estimates.

p=1 @)

V. EXPERIMENTAL RESULTS

In this section, we evaluate the impacts of changing sen-
sor density and using vision-based techniques on estimation
accuracy. Specifically, we estimate PM2.5 concentration based
on vision-based analysis using transmission information and
standard deviation of gray-scale pixel values and compare the
performance of several state-of-the-art estimation algorithms.

A. Experimental Setup

We design a portable sensing platform to collect, process,
and transmit data, as shown in Fig. 8. The system battery
life is 3.5 h. The following algorithms are used to estimate
pollutant concentration from the measured data.

1) Random forest regression (RFR): This is a widely used
algorithm for regression and classification. It combines
multiple weak models to form a strong model with much
better performance. Random forests contain multiple,
unrelated decision trees. The final output depends on
the decisions of all trees.

Gradient boosting regression (GBR): This method com-
bines a group of weak learners with low complexity and
low training cost. It reduces the problem of overfitting
and modifies the weights at each training round to

2)
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Fig. 8. Sensing platform consisting of battery, Raspberry Pi, and sensors.
produce a strong learner. Gradient boosting modifies its
models based on the gradient descent direction of the
loss functions of the previously established models.

3) Support vector regression (SVR): Support vector regres-
sion aims to find a regression plane with minimal
distance to the dataset. Generally, there is a kernel
function mapping data to high-dimensional space for
better performance on complex manifolds.

The algorithms are implemented using the Python package
sklearn. The RFR parameter n_estimators is set to 100 and
criterion is set to mean squared error. We set the GBR
parameter learning_rate to 0.1 and n_estimators to 100,
using least-squares regression. We set the SVR parameter ¢
to 1.0 and epsilon to 0.1, using a radial basis function
kernel. The parameters are chosen to maximize the training
performance. We use the following equation to combine sensor
readings and image properties:

Sx, 1) = G(s1(1), 52(0), - .., 510(0), Lacp (1), Bsa(r))  (3)

where x is the location index, S(x, ¢) is the concentration esti-
mation at time ¢, s, o, ..., S19 are the available ten sensors,
tacp(t) is the transmission information at time #, Buq(t) is the
standard deviation of gray-scale image, and G is the estimation
algorithm, which refers to RFR, GBR, or SVR. We use #4cp(f)
for low-altitude data and Sy (¢) for high-altitude data. We later
describe how #4cp(¢) and f(t) are obtained for each image in
the dataset in Section V-B.

We use data from July 24, October 19, and November 10 for
all time stamps and use the mean absolute error (MAE) as the
evaluation criteria

|

MAE = N;m =i “)

where y; is the actual PM2.5 concentration and J; is the
predicted PM2.5 concentration.

There are two classes of images in our dataset. Those in

the first class were captured from the ground, on top of a

mountain (78 m). The second class contains images from

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 9.

Transmission estimation result.

a quadcopter flying above the same mountain (78 m + 90 m).
We tried to take the images from the quadcopter and mountain
at the same angle and keep the images as similar to each other
as possible, but there is some (unavoidable) variation in camera
orientation (see Fig. 2).

We divide our data into “low-altitude” and “high-altitude”
subsets according to the image class and evaluate our algo-
rithms separately on the two classes. We analyze 19 images
from the high-altitude dataset and 26 images from the
low-altitude dataset. Furthermore, each dataset is divided as
follows: 75% of the data and images are randomly selected
as a training set and the rest are the testing set. We run the
prediction model 50 times per random split of the training and
testing datasets.

B. Image-Enhanced Concentration Estimation

Images can be used to estimate PM concentrations in large
areas because images can extract the haziness information.
We predict PM2.5 concentrations at locations without sensors.
Since PM2.5 attenuates light, we estimate PM2.5 concentra-
tion in part through the light attenuation coefficient £ from
the haze model. We use the following image features to
estimate PM2.5: the dark channel #q.p(x) and the standard
deviation f. tap(x) is determined using (13) and fy is
determined using (21). Fig. 9 is an example of applying the
dark channel prior to an image. The left image is the original
hazy image, and the right image is the transmission estimate
for each pixel using dark channel prior. Note that certain
kinds of weather conditions like rain and snow might be
misinterpreted as pollution. Our PM2.5 estimation algorithm
mainly works in sunny and cloudy conditions, which are
common in Hangzhou.

The atmospheric model describing an image influenced by
haze follows [36]:

I(x)=Jx)t(x)+ A —t(x)) 5)

where x is the pixel location, I is the observed image, J is the
scene radiance (image without any haze), A is the atmospheric
light, ¢ is the transmission function.

Images with higher air pollution tend to look hazier due
to lower transmission and contrast. Hence, image features
that correlate to haze level enable pollutant concentration
estimation.

1) Dark Channel Prior: The dark channel prior, which has
been widely used for haze removal, can be used to estimate
the transmission of each image pixel. The dark channel prior
method is based on the observation that in most haze-free
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patches, at least one color channel has some pixels with very
low intensities. The dark channel is defined as the minimum
of all pixel colors in a local patch and can be calculated using
the following [37]:

Jdar = mi in J¢ 6
ark (x) = min, (y min, (y)) (6)
where J¢ is an RGB channel of J, and Q,(x) is a local patch
centered at x with the size of 15 x 15. Assume the atmospheric
light A is given and the transmission in a local patch Q, (x)
is constant, taking the minimum operation in the local patch
on (5), we have
in (I° =1 in (J€ 1 —i(x))A° (7
yé?f,_r(‘x)( () =7(x) yé?f,_r(‘x)( ) + (1 —i)Ac (D)
where 7(x) is the patch’s transmission. The minimum opera-
tion is performed on three color channels independently, which
is equivalent to

min (Ic(y)) = 7(x) min (Jc(y))+(1—f(x)). @)

yeQ, (x)\ A€ yveQ,(x) | AC

By taking the minimum of three color channels, we have

. ( . (Ic(y))) TR ( . (Jc(y)))
min{ min = f(x) min{ min
c e\ A° c e\ A€

+(1=7). O

According to the definition of dark channel prior, the dark
channel Jy,x of the haze-free radiance J tends to be zero

Jgark(X) = min( min Jc(y)) =0. (10)
¢ \yeQ,(x)
Because A€ is always positive, this lead to
JC
min( min (?)) —0 (11)
c \yeQ,(x) A€

Substituting (11) into (9), we can estimate the transmission
as follows:

. . 1)
tx)=1- . 12
) mcln(yéglrl(lx) o (12)
In practice, the atmosphere always contains some haze,
which provides depth information. We can optionally keep a

small amount of haze by introducing a constant parameter
w (0 <w < 1) into (12)

13)

ix)y=1 —a)min( min ! (y)).
c \yeQ,(x) A€

We fix the value of w to 0.95 because this approximates
the sparse haze present even on relatively clear days. The
atmospheric light A is estimated through this procedure: we
pick the top 0.1% brightest pixels in the dark channel and the
input image I to calculate the atmospheric light. For each hazy
image in our dataset, we take the average of the pixel-level
transmissions estimated using (13). The resulting average is
used for low-altitude data.
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2) Standard Deviation: In order to calculate the intensity
standard deviation for each image, we convert the RGB image
to a gray-scale image and then calculate the standard deviation
of all the pixel intensities. The standard deviation is closely
related to haze density [38]. The scattering coefficient is a
measure of haze density. The higher the scattering coefficient,

the higher the haze density. The transmission function is
1(x) = P4 (14)

where f is the scattering coefficient and d is the depth.
Substituting (14) into (5), we have

I,(x) = J(x)e’™ + A(1 — /1), (15)
The variance of a gray-scale image is
2
1 < 1<
o = 5 2| L) = 5 D 1:U)
i=1 j=1
2
| < 1 <
= MW — Ji) —— > J( 16
e N; (M) N; () (16)

where I, is the gray-scale image and N is the number of pixels
in the image. When f = 0, we have

1< 1< ’
o=~ 210 -5 20 (17)
i=1 j=1
Combining (17) and (16) yields
o, =e Yo (18)

After taking the logarithm of both sides, the scattering
coefficient can be expressed as

ﬁ:ln 0'0—111 O'[g. (19)

Since ¢ is changed at each image, (19) can be expressed
using the first-order Taylor series approximation

ﬁ:l—i—h’l O'(]—O'[g. (20)

When f = 0, the variance of the scene radiance approxi-
mates 1. Thus, we have

p=1—Inoy,. 1)

Therefore, we can estimate the concentration using the
standard deviation of the gray-scale image. The standard
deviation is used for high-altitude data.

C. Concentration Estimation Results

For each available sensor deployment location, we specu-
latively remove one or more sensor’s data and use estimation
techniques with access to the remaining sensors to infer con-
centration(s), thereby allowing comparison with ground-truth
measurements. We investigate the impact of the number of
sensors on the estimation accuracy by using all possible
combinations of speculatively removed sensors and averaging
the results. We also consider the impact of using image data
on estimation accuracy.
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We plotted the results from the best-performing algo-
rithm: GBR. The density improvements in Figs. 10 and 11 are
compared with the n = 0 (no images) case. If image features
are used, the improvements are compared with the n = 1
case. Note that the lower MAE is, the better the estimation
accuracy. Thus, a negative change indicates improvement.
The bars in Figs. 10-13 represent the MAE resulting from
using different numbers of sensors. The lower bars indicate
higher accuracies. The lines in Figs. 10-13 indicate percentage
change to MAE in different cases (e.g., using images or
more sensors). The lower the percentage change, the larger
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Fig. 13. Relationship between mean average error and using images for
gradient boosting regression on low-altitude data.

the improvement, and positive percentage changes imply
(undesirable) increases in MAE.

As sensor density increases, the estimation MAE decreases.
This implies that accuracy improves with sensor density, even
at densities much higher than those of modern stationary
sensor deployments. Moreover, as shown in Fig. 7, sensor
correlations decrease with increasing distance. This is the
reason estimation accuracy improves with increasing sensor
density. Using the four nearest sensors instead of one sensor
improves estimation accuracy by 23.3% on average without
using images, and 20.75% when using images. The fact
that increasing sensor density improves accuracy less when
images are available does not imply that images are unhelpful.
In contrast, it implies that using images allows higher accuracy
when few sensors are available, leaving less potential for
improvement if sensor density is later increased.

A4 vision-based techniques significantly improve estimation
accuracy As shown in Figs. 12 and 13, PM2.5 concentration
prediction accuracy improves when the images are used. In the
case of n = 0, we average all the available concentrations. The
MAE is 20.821 ug/m? for high-altitude data and 6.929 xg/m?
for low-altitude data. The high-altitude images enable higher
accuracy because some sensor locations are occluded in the
low-altitude images. When images are used, MAE drops to
1.45 and 5.35 ug/m® respectively. For the case where n = 1,
when we use the PM2.5 concentrations of the nearest available
sensor for estimation image data improves prediction accuracy
by 16.9% on average. The benefits of using images are greatest
when the fewest particle counters are used.

To determine whether the improvement is systemic and
statistically significant, we use the Kolmogorov—Smirnov test.
We compare the data for the MAE without using images that
using images for each number of sensors (n = 1,...,4) to
determine whether the two datasets have the same distribution.
The test is nonparametric and requires no knowledge about the
distribution of data.

We determine that there is a statistically significant dif-
ference between the distribution of the MAE when using
images and the distribution without using images, that is,
the difference between the two distributions is not due only
to chance or noise, but due to a genuine improvement
in accuracy when using the image data. If the p-value is
below 0.10, we can reject the null hypothesis and conclude
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TABLE VIII
P-VALUES OF GBR ON HIGH-ALTITUDE DATA
GBR
n=1 n=2 n=3 n=4
< 0.001 < 0.001 < 0.001 0.064
TABLE IX
P-VALUES OF GBR ON LOW-ALTITUDE DATA
GBR
n=1 n=2 n=3 n=4
0.068 < 0.001 < 0.001 < 0.001

that using images does improve our results. As shown
in Tables VIII and IX, on low-altitude data, the p-values of
GBR in all cases are less than 0.10, and on high-altitude
data, GBR’s p-values are less than 0.10. As a result, we are
confident that using images improves the estimates.

Certain fixed-location images show slightly negative results
for the GBR method. Since the fixed-location images are
taken from a low altitude, some of the sensor locations are
blocked by buildings. For the quadcopter images taken at a
higher altitude, all estimation techniques improve accuracy.
In general, images decrease MAE by 8.44% on average, when
n < 1, adding a camera to collect images helps more than
adding more sensors.

Increasing sensor density and using images change the rela-
tive accuracy of the estimation algorithms. When we use only
one sensor and no images, RFR has lower MAE than GBR
on low-altitude data. When the sensor density is increased
(n = 4) and images are used, GBR outperforms RFR. This
result demonstrates that it is important to evaluate estimation
algorithms using appropriate sensor densities and access to
image data. A sparsely deployed and less accurate sensor
network can lead to false conclusions about pollution concen-
trations, and about which pollution concentration estimation
algorithms are most accurate.

To summarize, both higher sensor densities and image data
improve estimation accuracy, and adding image data has a sim-
ilar effect to increasing particle counter density by 0.61 sensors
km~2. Of the three estimation techniques evaluated, GBR had
the highest accuracy with MAE = 1.45 ug/m3. In particular,
our developed method is unlikely to work as well on night-time
images and images with adverse weather conditions such as
rain and snow. The main limitation of our dataset is that it
does not contain night-time images.

VI. CONCLUSION

This article presents a PM dataset with high spatial
and temporal resolutions. In contrast with existing datasets,
HVAQ contains images covering the locations of stationary
point sensors, making it suitable for evaluating and validating
vision-based pollution estimation algorithms. Through our
analysis, we find that: 1) the estimation accuracy can be
improved significantly using vision-based techniques; 2) the
spatial pollutant distribution is spatially correlated; 3) spatial
variation of PM2.5 is high; and 4) temperature and humid-
ity had limited impact on PM concentration in our dataset.
We also evaluate our data using state-of-the-art prediction
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methods. Accuracy correlates with density with a coefficient
of 0.2875 ug/m> MAE per sensor and vision-based estimation
improves accuracy by 0.1813 ug/m® MAE, on average.
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