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ABSTRACT 
Self-tracking using commodity wearables such as smartwatches 
can help older adults reduce sedentary behaviors and engage in 
physical activity. However, activity recognition applications that 
are typically deployed in these wearables tend to be trained on 
datasets that best represent younger adults. We explore how our 
activity recognition model, a hybrid of long short-term memory 
and convolutional layers, pre-trained on smartwatch data from 
younger adults, performs on older adult data. We report results on 
week-long data from two older adults collected in a preliminary 
study in the wild with ground-truth annotations based on activPAL, 
a thigh-worn sensor. We find that activity recognition for older 
adults remains challenging even when comparing our model’s per-
formance to state of the art deployed models such as the Google 
Activity Recognition API. More so, we show that models trained 
on younger adults tend to perform worse on older adults. 
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1 INTRODUCTION 
After a year of social distancing due to COVID-19, there is a con-
cerning increase in sedentary behavior [33]. The lack of physical 
activity is a leading factor behind preventable chronic diseases such 
as diabetes, heart disease, and cancer, with older adults at a higher 
risk [5]. Prior work has shown that psychoeducational interventions 
can decrease sedentary behavior in older adults [25, 28] and techno-
logical interventions employing self-tracking can increase behavior 
awareness, yielding positive behavioral changes [10, 23, 43]. As we 
move away from deficit-based perspectives [16], there is a need for 
better activity recognition models to be employed in innovations 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
ASSETS ’21, October 18–22, 2021, Virtual Event, USA 
© 2021 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-8306-6/21/10. 
https://doi.org/10.1145/3441852.3476475 

that support older adults’ agency, enjoyment, and overall well-being 
later in life [16]. 

Automated and less complex systems with low data capture 
burden are more effective and easily adoptable [8, 22]; hence smart-
watches, which have evolved into health-tracking hubs, are promis-
ing candidates [31]. While studies show that older adults are inter-
ested in using self-tracking sensors [9], they have adopted these 
technologies less [13], as the current physical activity trackers do 
not effectively identify and track older adults’ activities [40]. A 
reason behind this ineffectiveness can be that most self-tracking 
models are trained on younger adults whose activities and move-
ment patterns differ from older adults [14]. A further problem is 
the scarcity of older adult data [19, 21, 30], with widespread human 
activity recognition (HAR) datasets representing younger adults 
between the ages of 18-48 [4, 24, 32]. 

In this study, we train an activity recognition model on younger 
adult smartwatch accelerometer data to explore how much the 
performance deviates when predicting younger versus older adults’ 
(>65 years old) activities. We develop a hybrid model of long short-
term memory and convolutional neural network layers (LSTM-
CNN). Additionally, we compare our model to prior approaches both 
in academia and industry such as the multilayer perceptron [37] 
and the Google Activity Recognition API [1]. 

2 RELATED WORK 
Through a systematic literature review, we find that there are three 
main smartwatch datasets, none of which represent older adults: 
WISDM [38, 39], UCI-HHAR [34], and the Extrasensory [36] dataset. 
In this work, we adopt the Extrasensory dataset, the largest, with 
60 users (ages 18-42), 300K samples, and 51 activity labels. The 
samples are collected in the wild, or in a real-life setting, adding 
diversity and imbalance. 

We observe that different activity recognition algorithms have 
been used with this dataset such as Logistic Regression [36], Multi-
layer Perceptron [37], CNN-Random Forest [11], Active Learning 
with Logistic Regression [3], and Boosting methods [35]. However, 
these studies typically include not only smartwatch data, as in this 
work, but also smartphone sensors with some of the highest accura-
cies reported being around 89%. More recent neural network archi-
tectures such as LSTM-CNN [42], have demonstrated higher per-
formance on similar tasks that involve time series data [6, 7, 29, 41]. 
Thus, in this work we develop an LSTM-CNN model and train it 
on the Extrasensory dataset. 

3 ACTIVITY RECOGNITION MODELS 
Proposed Model. A hybrid LSTM-CNN model is proposed to ex-
tract spatio-temporal features from the data. The pre-processed 
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data is first taken as input by a 2 layer LSTM with 64 and 32 neu-
rons respectively to learn time-related features. Spatial features are 
next extracted using 2 convolutional layers of 128 filters each. A 
max-pooling layer is placed between the convolutional layers and 
the model ends with a global average pooling layer and a batch nor-
malization layer. The output dense layer has a sigmoid activation 
layer to derive a probability distribution for classification. 

Baseline Model. We attempt to replicate the Multilayer Per-
ceptron (MLP) algorithm with two 16 neuron hidden layers used 
by Vaizman et al. [37], who developed the Extrasensory dataset. 
However, compared to their effort, we use only smartwatch ac-
celerometer data, leaving out phone sensors and location insight 
for participant privacy. 

The models were trained on the Extrasensory dataset to classify 5 
primary participant activities: Sitting, Walking, Running, In-Vehicle, 
and Standing. These labels are selected as they are the only ones 
present in our older adult data that correspond to both the activ-
PAL [2] and the Google Activity Recognition API labels. These 
labels are the primary labels to other fine-grained secondary la-
bels classified by the model trained on the Extrasensory dataset 
like Cooking or Computer Work. Table 1 shows our label mapping 
method which will be used when calculating model accuracy. Fur-
thermore, to address the challenge of unbalanced data, balanced 
accuracy (BA) is also measured. 

4 PRELIMINARY STUDY AND DATA 
COLLECTION 

Data Collection. We employ preliminary smartwatch accelerom-
eter data from two older adults (PP1, PP2), collected as part of a 
larger project in a a week-long in vivo study. We obtained ground 
truth labels using activPAL [2], a thigh-worn activity tracker. We 
also obtain activity predictions from the participants’ Google Wear 
OS smartwatch through the Google Activity Recognition API. To 
match the training Extrasensory dataset, the preliminary data was 
collected over a week using a 25Hz sampling frequency with 500 
samples/minute in a 20-second window. To further match the train-
ing data’s format, the older adult data was pre-processed to aggre-
gate the same statistical features [36] per minute window. 

Label Annotation. The annotations for our study were based 
on the the ground truth activPAL labels. However, there is no one-
to-one mapping between the activity labels across activPAL, the Ex-
trasensory dataset, and the Google API, used in this work. Thus, we 
estimate an alignment shown in Table 1. Some mappings are more 
straightforward such as (Seated Transport, In-Vehicle, In-Vehicle). 
Others are not, so we use hybrid labels. For example, (Sedentary, 
Sitting, Tilting & Still or Still) was chosen as the mapping that 
yielded the highest prediction across all plausible mappings. 

5 EXPERIMENTS AND RESULTS 
Performance on younger adult data. It is already challenging 
to classify in the wild activities for younger adults using multiple 
sensors, with Vaizman et. al. reporting an average 87% accuracy 
and 77% balanced accuracy (BA) across 25 labels [36]. Using a 
single sensor, performance is generally lower with Vaizman et. al. 
reporting an average 73% accuracy and 68% BA using only phone 
accelerometer data. On younger adult data from two participants 

(EP1, EP2) left out from the same dataset, our LSTM-CNN model 
has an average ~89% accuracy and ~67% BA across five labels. While 
the accuracy is ~2% greater than the multiple sensor model, the BA 
is 10% lower than the multiple sensor method and ~1% lower than 
the phone accelerometer model. This highlights the limitation of 
unbalanced data and the lesser amount of participants who provided 
watch data compared to phone data. Performance differed across 
labels, with LSTM-CNN working better on Walking, Running, and 
In-Vehicle labels. Lower performance is seen for Standing and Sitting, 
as the upper body could be engaged in diverse secondary activities 
across participants involving the wrist, while the lower body is still. 
Primary activities, like Standing, with diverse secondary activities 
have displayed lower accuracies in the literature even with mixed 
sensor models [36]. 

Performance on older vs. younger adult data. The model 
trained on younger adult data performs better on younger partic-
ipants than on older participants. As seen in Fig. 1a,d1 , there is 
an average ~25% greater accuracy and ~11% greater BA across the 
selected activities for the younger participants compared to the 
older participants. For older adults, the accuracy and BA are much 
lower across all labels, except Standing, with a poor ~51% average 
BA. This agrees with previous literature on fitness tracking sensors 
inaccurately reporting older adult activities like Walking, especially 
at slower speeds [40]. While Standing had a higher accuracy for 
older adults (+9%), the BAs show very close numbers with a ~3% 
difference and EP2 having the greatest BA. 

Past Models. While LSTM-CNN works better than the past 
MLP model for younger adults, for older adult participants, there 
are mixed results. LSTM-CNN performs better for Walking and 
Running while MLP performs better on Sitting. We also compared 
the Google API’s performance with our model’s performance on 
the older adults’ data using activPAL data as ground truth as seen 
in Fig. 1c,f. In terms of accuracy and BA, our model performs better 
or comparably to the Google API for Walking (+4%,+1%), Running 
(+4%,+1%), and Standing (+46%,+12%). The Google API still performs 
better for In-Vehicle in terms of accuracy by 2.5% for PP1 and PP2 
and BA for PP1 by 30%. For Sitting, the Google API performs better 
by 5% in terms of both BA for PP1 and PP2 and accuracy for PP2. 
These two activities depend less on lower body motion, which the 
ground truth (activPAL) tracker gains more insight from, than the 
other activities. This could give insight into the greater performance 
of the Google API on the two labels (In-Vehicle, Sitting). We consider 
the limits of assessing the industry model with ground truth from 
the activPAL which has limited labels gaining data from lower body 
motion. With that in mind, this shows that for two participants, the 
Google API is not optimal for older adult HAR. 

Limitations. We present findings with two older adults and 
given that older adults’ activities vary, the results are limited. Both 
the Extrasensory and our dataset have imbalanced data across the 
activities, which is common for data obtained in the wild (people 
tend to do some activities more than others). So for this analysis, 
we limited the types of activities in an attempt to constrain the 
imbalance. More importantly, there is a difference in how ground 
truth labels were obtained for younger vs. older adults (self-reported 
vs. activPAL), which could explain some of the differences. 

1Color-blind safe and print friendly colors were chosen from: https://colorbrewer2.org. 
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Table 1: Extrasensory, activPAL, and Google Activity Recognition API Label alignment 

activPAL Labels Our Baseline Model Labels (Extrasensory Dataset) Google API Labels 
Sedentary Sitting Tilting & Still or Still 

Upright & Sedentary Standing On Foot & Still or Still 
Stepping (low cadence) Walking On Foot and Walking 
Stepping (high cadence) Running On Foot and Running 

Seated Transport In-Vehicle In-Vehicle 

Figure 1: (a-c) Accuracy of younger adult participants (EP1, EP2) and older adults (PP1,PP2) using the LSTM-CNN, MLP, 
and Google API models respectively and activPAL ground truth data. (d-f) Balanced Accuracy (BA) of EP1, EP2, PP1, 
and PP2 using LSTM-CNN, MLP, and Google API models respectively and activPAL ground truth data. 

6 CONCLUSION 
After pre-training machine learning models on the largest younger 
adult smartwatch dataset (Extrasensory) and classifying 5 primary 
activities, our LSTM-CNN model performs comparably or better 
than past models like MLP on younger adult data and the Google 
API on older adult data. As hypothesized, the models trained on 
younger adult data generally perform less accurately on preliminary 
older adult data. While this represents two participants, the low 
BA of 51% shows a need for larger training datasets with older 
adult representation. The challenge of data scarcity, unbalanced 
data, and diverse self-reported secondary activities in both younger 
and older adults calls for model personalization through methods 
like teachable machines [12, 17, 18, 26], which leverage advances 
in transfer learning [20] and meta learning [15, 27] and empower 
end users to fine tune models to their idiosyncratic characteristics. 
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