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Abstract

Federated learning is generally used in tasks
where labels are readily available (e.g., next word
prediction). Relaxing this constraint requires de-
sign of unsupervised learning techniques that can
support desirable properties for federated train-
ing: robustness to statistical/systems heterogene-
ity, scalability with number of participants, and
communication efficiency. Prior work on this
topic has focused on directly extending central-
ized self-supervised learning techniques, which
are not designed to have the properties listed
above. To address this situation, we propose Or-
chestra, a novel unsupervised federated learning
technique that exploits the federation’s hierarchy
to orchestrate a distributed clustering task and en-
force a globally consistent partitioning of clients’
data into discriminable clusters. We show the al-
gorithmic pipeline in Orchestra guarantees good
generalization performance under a linear probe,
allowing it to outperform alternative techniques
in a broad range of conditions, including variation
in heterogeneity, number of clients, participation
ratio, and local epochs.

1. Introduction

Federated Learning (FL) (McMahan et al., 2017) enables
collaborative training of machine learning models while
avoiding transfer of raw data from clients to server. As re-
marked by Li et al. (2019), recent work on this topic focuses
on addressing the issues of statistical and systems hetero-
geneity (Cho et al., 2022; Li et al., 2020a; Karimireddy et al.,
2020; Hsu et al., 2019; Zhao et al., 2018; Hsieh et al., 2020);
achieving scalability, privacy, and fairness for participating
clients (Charles et al., 2021; Bonawitz et al., 2017; Li et al.,
2020b; 2021b; Smith et al., 2017); and improving commu-
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Figure 1. Robustness to Heterogeneity. We use CIFAR-10 and
100 clients to compare our proposed method (Orchestra) against
federated versions of centralized SSL techniques (Chen et al.,
2020; Chen & He, 2021; HaoChen et al., 2021; Grill et al., 2020).
Under the linear probe protocol (Chen et al., 2020), we see that
these direct extension methods are sensitive to heterogeneity, while
Orchestra remains robust and achieves better absolute accuracy.

nication efficiency (Acar et al., 2021; Kone¢ny et al., 2016;
Reddi et al., 2021; Lai et al., 2021). However, existing FL al-
gorithms generally assume a participating client holds high
quality labels that can be used for gradient-based local train-
ing (McMabhan et al., 2017). In cross-silo settings, where
large organizations collaborate to train a model (Kairouz
et al., 2021), one can expect each client has an expert to
locally label their data. However, in the more constrained
scenario of cross-device FL (Kairouz et al., 2021), clients
are generally edge devices and users need to actively interact
with the device to label their data locally. This interaction
can be hard to arrange beyond specific applications (e.g.,
next word prediction), thereby hindering FL'’s adoption with
more complex modalities such as vision.

One possible solution to address this problem is use of
unsupervised representation learning algorithms alongside
federated training. Some prior works have tried this route
by developing direct extensions of self-supervised learning
(SSL) techniques from centralized settings, such as Sim-
CLR (Chen et al., 2020), BYOL (Grill et al., 2020), and
SimSiam (Chen & He, 2021). However, by using stateful
clients (Zhuang et al., 2021; 2022), requiring large batch-
sizes (He et al., 2021), or sharing representations across
clients (Wu et al., 2021; Zhang et al., 2020), these meth-
ods are either only applicable in the cross-silo setting or
undermine clients’ privacy by enabling inversion of repre-
sentations (Dosovitskiy & Brox, 2016; Nash et al., 2019)
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(see also Appendix, Tab. 3). If one addresses these limita-
tions by removing state-based operations and constraining
training to local data, these methods become mere applica-
tions of centralized SSL objectives with federated training.
Since centralized SSL techniques are known to be sensitive
to heavy-tailed gradient distributions (Tian et al., 2021b) and
require large batch-sizes (Chen et al., 2020), it is unlikely
their direct extensions will function well in the high hetero-
geneity and resource constrained setting of cross-device FL.
We demonstrate this behavior in Figure 1, where we show
direct extension methods lose noticeable performance with
increased heterogeneity in a cross-device FL setting.

To resolve the limitations noted above and tackle the lack
of labelled data in FL, we argue an unsupervised learning
framework needs to be developed that is mindful of the chal-
lenges seen in federated training. We thus propose Orches-
tra, a novel clustering-based SSL technique that exploits the
federation’s hierarchy to orchestrate a global partitioning of
data distributed across participating clients. Our clustering
based perspective arises out of a generalization analysis of
models capable of clustering distributed client data into dis-
criminable, low-similarity partitions. As we show, such a
model necessarily has a small test error and its performance
generally improves with increase in heterogeneity (e.g., see
Figure 1). To exploit this result, we propose to use the server
to compute centroids capable of partitioning clients’ data
into a predefined number of clusters, subsequently asking
the participating clients to use these centroids and locally
train a model that enforces a sample’s cluster assignments on
its augmentations. Experiments show that Orchestra scales
well with number of clients, achieves strong communication-
efficiency, and thrives under heterogeneity. While our focus
in this work is resource-constrained, cross-device FL set-
tings, we find Orchestra also outperforms prior works in
cross-silo settings. Our primary contributions follow.

* Orchestrating Unsupervised FL: We propose Orches-
tra, an unsupervised learning technique that addresses the
lack of labelled data in FL. The theoretical results moti-
vating our method are discussed in §3 and its practical
implementation is provided in §4.

* Unsupervised Hyperparameter Tuning: Since FL
algorithms can be sensitive to training hyperparame-
ters (Karimireddy et al., 2020; Khodak et al., 2021), we
propose a tuning method for self-supervised FL techniques
in §5. Our method relies on unlabelled data and finds con-
figurations that yield high (low) representational similarity
for related (unrelated) samples.

» Extensive Empirical Analysis (§6): We extensively com-
pare Orchestra with several federated versions of central-
ized SSL techniques. We show, unlike Orchestra, direct
extension techniques are often sensitive to several impor-
tant FL parameters (e.g., participation ratio, local epochs).

2. Preliminaries

Self-Supervised Learning: SSL is a recent paradigm in un-
supervised learning wherein either an application-relevant
signal is promoted by predicting properties of the data or an
application-irrelevant signal is discarded by discriminating
perturbed data (Tsai et al., 2021). In vision, examples of
predictive tasks include colorization (Vondrick et al., 2018),
rotation prediction (Gidaris et al., 2018), or predicting patch
permutations (Noroozi & Favaro, 2016). Due to high re-
dundancy in visual data, defining task-relevant signal can
be difficult and hence predictive tasks rarely yield good
results (Doersch et al., 2015; LeCun, 2019). In contrast,
discriminative SSL tasks have revolutionized visual pre-
training. Such tasks train the model to enforce invariances
to artificial transformations defined using data augmenta-
tions, enabling good performance if these transformations
encode task-relevant priors (Wen & Li, 2021; Tian et al.,
2020). Popular techniques are based on contrastive learn-
ing (Chen et al., 2020; He et al., 2020; HaoChen et al.,
2021), similarity-promotion (Grill et al., 2020; Chen & He,
2021)), redundancy reduction (Zbontar et al., 2021), and
clustering (Asano et al., 2020; Caron et al., 2020).

As mentioned in §1, several FL papers directly extend the
centralized SSL techniques listed above, but their methods
are either only applicable in cross-silo settings due to use of
stateful clients and large batch sizes, or undermine clients’
privacy by sharing representations across clients (see also
Table 3). We highlight a notable recent exception by Lu et
al. (2022), who assume the server has knowledge of client-
level class priors, allowing it to retrieve the exact labels
by solving a classic label proportions problem (Quadrianto
et al., 2008). This strong assumption may be justifiable in
cross-silo settings if participating clients actively agree to
share information about expected class priors, but cannot be
met in the cross-device setting, where clients are passive.

Clustering and Representation Learning: Prior work
has studied the task of clustering a predefined set of vec-
tors distributed across a federated network (Dennis et al.,
2021) or clustering clients for designing better client selec-
tion strategies (Ghosh et al., 2020). In contrast, our work
addresses the problem of learning clustering-friendly repre-
sentations (Yang et al., 2017). This problem is known to be
difficult even in the centralized setting due to the existence
of degenerate solutions, requiring either several expensive
reassignment steps (Caron et al., 2018; 2019), degeneracy
regularization with autoencoders (Dizaji et al., 2017; Fard
et al., 2018), or partition constraints on large prototype mem-
ories (Huang et al., 2020; Zhan et al., 2020).

For the reasons listed above, we highlight that clustering-
based centralized SSL methods like SeLa (Asano et al.,
2020) or SWAV (Caron et al., 2020) are not directly appli-
cable to federated settings because they avoid degenerate
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solutions using periodic cluster re-assignments every few
training steps on a large memory module with 4K—1M sam-
ples, while also assuming a uniform class prior on the data.
Since communication is expensive in FL, each client has
only a few samples, and class priors are highly non-uniform.
Such requirements make SeLLa and SwWAV infeasible for
federated learning. We note that Orchestra avoids prob-
lems noted above by exploiting the federation’s hierarchy.
Specifically, Orchestra uses the server in a federated man-
ner to find centroids that can partition the clients’ data into
discriminable clusters. The clients then locally solve an
unsupervised clustering problem alongside a predictive SSL
task to avoid degenerate solutions. Together, these steps
allow Orchestra to learn “clusterable” representations.

Theory of SSL: Recently, substantial advances have been
made towards demystifying SSL methods from the perspec-
tives of learning theory (Arora et al., 2019), information
theory (Tsai et al., 2021), causality (Kugelgen et al., 2021),
and dynamical systems (Tian et al., 2021a). We use tools
proposed in these works to motivate principles behind Or-
chestra. Specifically, our analysis in §3 is based on recent
works by HaoChen et al. (2021) and Wei et al. (2021), who
derive a holistic framework that allows analysis of general-
ization error of an unsupervised model. To derive this result,
the authors assume there exists a classifier that is able to
predict the label of an augmented sample, given the original
sample, up to a small error. By being able to predict the la-
bels of both an augmented sample and an original sample (a
no-transform augmentation), this assumption implies there
exists a latent space where related samples are sufficiently
similar and underlying classes are sufficiently dissimilar.

Notations: Before continuing, we define our settings. As-
sume we have N > 2 samples X ~ X that are distributed
across K clients. We assume a ground-truth labelling func-
tion Y () : X — [M]. The i sample () € X is assigned
to client k(¥ € [K]; client k has N* samples denoted X*.
We define a stochastic augmentation function 7 : X — X
that transforms its input x to the space of augmented sam-
ples by randomly selecting a transform from a large, finite
set of predefined transformation functions. The set of aug-
mented samples is denoted as X := {7 (z) : 2 € X}. We
define a parametric representation function f : X — RP”
and compute its error under a linear probe as E(f) :=
miny E,cx[arg max(W7 f(x)) = y(x)]. Note this defini-
tion uses the optimal linear classifier for a distribution, mak-
ing its guarantees stronger than a linear probe derived from
training data only. The set of representations on a set  is de-
noted as R, = {f(z) : € x}. We use C(B, G) to denote
a clustering algorithm that returns G clusters with centroids
p € RP*Y oniits input B. 1, denotes centroid of cluster g.
Cluster assignment probabilities are computed as Py(x) :=
o(sy(x, ), where o(.) denotes the softmax function and
s¢(x, u) = pT f(z). H(.,.) denotes cross-entropy between

two discrete distributions. F denotes a hypothesis class that
has a global minimizer of the following loss (HaoChen et al.,
2021): Lspec = _QE:CGX,QENT(E) [Sf (:L‘7 M)Tsf (j'a :Uf)] +
Eoyex((sy(@, 1) ss(y, 1))?].

3. Clusterability: Symphony Behind Orchestra

In this section, we motivate our reasons for using clustering
as the principle behind Orchestra. We begin by analyzing an
intentionally idealized framework where clients are allowed
to share their representations with the server. Our goal is to
determine whether evaluating the “clusterability” of repre-
sentations of a federated model trained in an unsupervised
manner can provide insights into the quality of the model.
To this end, we first define the following.

Definition 3.1. (4, Inter-Cluster Mixing) Assume we com-
pute G clusters on a dataset 3. Then, inter-cluster mixing is
defined as 0 := maxgecq maxpe(p—gy (12 D).

Analogous to the concept of modularity in pairwise clus-
tering (Newman, 2008), § is a similarity measure that can
be used for analyzing partition-based clustering algorithms,
which explicitly compute centroids and assignments. A
smaller § denotes better separation between clusters, indi-
cating better “clusterability” of the dataset.

Proposition 3.2. Assume f € F. Compute G > 4M + 2
clusters pn = C({Rx» : k € [K]|},G) s.t. all clus-
ters are equally sized. Then, if f minimizes L =

Ereik) [Eoexy T (@) [H (Pr(x), Pr(Z))]], we have
E(f) < Cx+0 (264 (G —1)8%). (1)

Here (x is a constant that measures the similarity of la-
tent variables of two classes from distribution X', while O
hides constants that primarily depend on the dataset size
N. Cluster size constraints are employed to ensure that for
all classes in the dataset, there is at least one non-trivially
sized cluster that contains samples corresponding to that
class. If the class-priors were known beforehand, one could
enforce size constraints proportional to them, yielding a
tighter bound (Wei et al., 2021). However, in unsupervised
settings, such priors are unlikely to be known and hence
we are forced to use a uniform prior. Intuitively, Prop. 3.2
says that if the representations learned by f are sufficiently
diverse to enable computation of G “global” clusters with
small inter-cluster mixing 0, then f must have a small linear
probe error. Further, the smaller ¢ is (more “clusterable”
representations), the smaller f’s error is.

Overall, Prop. 3.2 gives us a target to optimize for while
designing our unsupervised FL technique: we must design
a method that minimizes § and consequently learns good
representations. However, the illustrative method above is
not yet practical. In particular, requiring that representa-
tions of all data be shared with the server can lead to high
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Figure 2. Global Clusters from Different Settings. Squares de-
note global clusters. Smaller/larger circles denote samples/local
clusters. Colors denote assignments from the idealized setting.
(a) Idealized setting. (b) Under low heterogeneity, samples from
different ideal clusters exist on a client and can be merged together
during local clustering. This leads to global clusters inconsistent
with the idealized setting. (c) As heterogeneity increases, samples
from fewer idealized clusters exist on each client, thereby reducing
inconsistencies and yielding global clusters similar to (a).

communication costs over multiple FL rounds. Further, if
the server is semi-honest (Kairouz et al., 2021), sharing
representations can undermine clients’ privacy via inversion
of representations (Dosovitskiy & Brox, 2016; Mahendran
& Vedaldi, 2015). Thus, we need to design a framework
that offers a result similar to Prop. 3.2 and is yet practical
for federated settings. To this end, we propose to perform a
local clustering operation on our clients.

Specifically, we compute L) local centroids from N (¥)
representations at each client k, share these centroids with
the server, and run another clustering operation there to par-
tition the overall set of local centroids into G global clusters.
This scheme reduces the communication cost per client to
just L) which can be small if few centroids are used. Fur-
ther, it provides a general operation where, depending on a
system’s constraints, different levels of privacy can be added
locally without affecting other parts of the pipeline. E.g.,
for strong privacy guarantees at possibly high loss in utility,
locally differentially private (local-DP) clustering methods
can be used (Balcan et al., 2017; Chang et al., 2021); for
slightly weaker guarantees but higher utility, K -anonymous
clustering methods can be used (Aggarwal et al., 2010;
LeFevre et al., 2006; Byun et al., 2007). Most importantly,
we find local clustering can provide us a generalization
guarantee similar to Prop. 3.2.

Proposition 3.3. Assume f € F. Denote the set of local
centroids as y* = {C(Rxw, L'®)) : k € [K]} and compute
new global centroids ¢ = C(u*,G) s.t. all clusters are
equally sized. Assume at least a fraction c samples are
“consistently” assigned, i.e., they match their assignments
from the idealized setting. Then, if f minimizes the loss

L= Breix) [Eeex, an(@) [H (Pr(z), Pr(E))]),

EF)<Cxr+O(v(1 - )+ (26 + (G- 18%)). @

Here v < 1.5 is a constant and the term 1 — ¢? signifies
the influence of “inconsistent” assignments. In particular,
consider a case where samples from multiple idealized clus-
ters are present on a client; during local clustering, such

samples can get assigned to the same local cluster. When
the centroid of this local cluster is used for global clustering,
it inevitably forces samples with different idealized setting
assignments to the same global cluster (see Figure 2). This
increases inconsistencies with the idealized setting (smaller
c), consequently increasing the upper bound in Prop. 3.3.

Interestingly, we observe that heterogeneity in FL setups is
beneficial in addressing this challenge! As shown by Dennis
et al. (2021), if the federation has heterogeneity such that a
client’s data predominantly belongs to only a few clusters
(e.g., a smartphone may have several images of the same
location), the probability that assignments from centralized
clustering match assignments found using global cluster-
ing of local centroids approaches 1. If we consider model
representations to be a predefined set of vectors distributed
across clients, this result directly becomes applicable to our
settings: with increase in heterogeneity, c approaches 1 and
consequently the bound in Prop. 3.3 matches the bound in
Prop. 3.2. That is, local clustering can use higher hetero-
geneity to its advantage and achieve guarantees similar to
the idealized setting.

In summary, limitations discovered in the idealized setting
(i.e., sharing representations with the server) can be circum-
vented by relying on local clustering. Furthermore, this
general, modular operation exploits heterogeneity to its ben-
efit, preserving guarantees provided by the idealized setting.
Thus, our target for optimization via FL remains the same
as in Prop. 3.2: we need to develop a training process that
produces consistent representations across augmentations,
induces sufficient number of global clusters, and has low
inter-cluster mixing 8. Our insight uncovered in Prop. 3.3 is
that it is sufficient if these global clusters are computed over
local centroids, instead of client representations themselves.

4, Method: How to Conduct an Orchestra

We now detail the steps underlying our proposed unsuper-
vised FL technique, Orchestra. See appendix §C.2 for a
formal algorithm, implementation details, and Github link.

Pipeline: As shown in Prop. 3.3, we must ensure ¢ is small.
To this end, every round, we have clients convert their data
into representations and run a clustering algorithm to parti-
tion them. The local centroids computed by the clients are
then shared with the server, which runs another clustering
algorithm on these aggregated centroids. To enforce size
constraints from Prop. 3.3 and obtain maximally dissimilar
clusters, we use Sinkhorn-Knopp based clustering (Genevay
et al., 2019). These methods rethink clustering as an op-
timal transport problem and are generally guaranteed to
obtain good approximations of maximally dissimilar clus-
ters. We then communicate the resulting global centroids
with the clients, who use them to minimize the cross-entropy
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Figure 3. Pipeline: (1) Orchestra first prompts its clients to compute representations (reps.) on local data. (Z) Local centroids are computed
via a Sinkhorn-Knopp based clustering algorithm (Genevay et al., 2019) to constrain clusters to be equally sized. This operation is made
extremely efficient via caching of target model representations (0.009% of client runtime; see Figure 11) and enables a K-anonymity
privacy guarantee, though local-DP also works well at the expense of some utility (see §D.4). 3) Local centroids from all clients are
aggregated at the server, which again uses Sinkhorn-Knopp clustering (Genevay et al., 2019) to compute equally-sized global clusters.
Note that Sinkhorn-Knopp is used here to satisfy constraints of Prop. 3.3, not to anonymize the data. @ Standard FL model averaging
step. (® The global centroids are returned to the clients, who use them for local training. Local Training: &) An input « is randomly
sampled and transformed to Z. x is converted to rep. fr(z) using an EMA model to enable assignment prediction; Z is converted to
fo(z) using the online model. Cluster assignments Py, (z), Py, (£) are computed by matching reps. with global centroids, which are then
matched using a cross-entropy loss (Equation 4). A predictive SSL task is used to avoid degenerate solutions (Equation 3).

between the cluster assignments of a sample and its augmen-
tations. By using the same set of global centroids across all
clients, Orchestra’s pipeline globally moves cluster mem-
bers closer to each other, hence reducing § every round.
More details of the pipeline are provided in Figure 3.

Local Training: As noted by prior works in the centralized
setting (Dizaji et al., 2017; Caron et al., 2018), the unsta-
ble training dynamics of clustering-based representation
learning often yields degenerate solutions. This problem
can arise during local training and disallows reduction of &
beyond a point. We now address this problem to complete
the design of Orchestra (see Figure 3).

1. Preventing Degenerate Solutions: During local train-
ing, we minimize the KL-divergence between assignments
of a sample and its augmentations. Early in the training
process, the cluster centroids inevitably correspond to ran-
dom features and therefore cannot yet yield a sufficiently
discriminative signal for training, resulting in degenerate so-
lutions. Centralized methods avoid this problem by adding
a degeneracy regularizer in the form of a predictive SSL
task that prevents the model from outputting a constant
representation. These works primarily use denoising au-
toencoders (Xie et al., 2016; Chang et al., 2017; Yang et al.,
2017) for this purpose, but other predictive SSL tasks can
also be used, e.g., Rotation Prediction (Gidaris et al., 2018),
Colorization (Vondrick et al., 2018), Jigsaw (Noroozi &
Favaro, 2016), or Context Prediction (Doersch et al., 2015).
However, except for rotation prediction, predictive SSL
tasks can have high resource requirements because they
require larger models (autoencoders, colorization) or com-
putation of representations from several patches of an input
(Jigsaw, Context Prediction). Rotation Prediction is best
suited to our federated settings because it adds only an extra

forward/backward pass and a linear layer worth of memory
cost. Thus, every training step, we rotate each sample z
in a batch to R(x, #) by sampling an angle  from the set
a = {0°,90°,180°,270°} via uniform distribution ;. A
linear layer W, € RP>* is then trained to predict the sam-
ple’s rotation from its representation. Specifically, if W, ;
and o; index W, and o, we get the following objective.

Lé];; =E,exk icu, [arg max (WTTZf(R(ﬁ, ozl))) = z} 3)

2. Predicting Assignments: After training for a few itera-
tions, the model representations change; possibly changing a
sample’s cluster assignment. This pushes the model to learn
varying assignments for the same sample over time, forcing
it to predict uniform assignments for all samples (Zhan et al.,
2020). Prior works in centralized settings have proposed
to solve this problem by calculating assignments alongside
clusters and keeping them fixed until the next clustering op-
eration, which happens every few iterations. In our setting,
this solution would require more frequent communication
between the server and the clients, which will be expensive.
Instead, we propose to use two models: an online model that
is trained using gradient descent and another model whose
parameters are an exponential moving average (EMA) of
the online model: T! = mT* ! 4+ (1 — m)O, where m is
a scalar close to 1, T denotes parameters of EMA model,
and O denotes parameters of the online model. While cen-
tralized SSL works also use such EMA models (Grill et al.,
2020; Caron et al., 2021), our primary motivation for this
design choice is that its representations evolve slowly over
time and hence its assignments remain consistent with the
original ones. This yields the following loss function for
promoting clusterability of representations:

L) = Euexk zoro [H (Pr(2), Pro(2)]. @)

cluster
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Figure 4. Hyperparameter tuning. We find linear combination of
similarity scores (Equation 5) is highly predictive of kNN accuracy
across all methods. Here, x-axis denotes Align + 0.2 * Unif and
T is set to 0.2, based on Wang and Isola (2020). For all methods,
ResNet-18 models are trained on CIFAR-10 using different settings
of learning rates (0.3, 0.01, 0.003, 0.001), heterogeneity (10 or
~73.5 classes per client), and number of clients (10 or 100).

Notice that asymptotically, the target model and online
model will share the exact same parameters. Our results
in Prop. 3.2 and 3.3 are primarily designed for this regime,
hence they continue to hold for Eq. 4.

5. Hyperparameters: Tuning our Instruments

Properly tuning hyperparmeters is of paramount importance
in FL (Khodak et al., 2021). However, due to lack of labelled
data, this can be particularly hard for unsupervised FL and
can lead to conflicting results. E.g., we note that while
Zhuang et al. (2021) find BYOL outperforms its competitors
in federated settings, He et al. (2021) claim it collapses to
degenerate solutions. This discrepancy likely stems from
the use of a different EMA in the two works (0.99 vs. 0.9).

To avoid such inconsistencies and ensure fair comparisons,
we propose to tune the hyperparameters of all methods
in an unsupervised manner. Specifically, we compute the
following two similarity scores:

Align(f) = EkE[K] [EzeXk,it~T(z) [8(‘E7‘E)H s and

Unif(f, 7) = —Epex) [Ezexk [log Eyex, [e“’“”/f} H L ©
where s(z,y) = F@)" F¥)/| f(z)] ()| denotes cosine sim-
ilarity of representations and 7 is a vMF distribution pa-
rameter (Banerjee et al., 2005). Proposed by Wang and
Isola (2020), the two scores are respectively large if the rep-
resentations are similar for augmentations of a sample (high
alignment) and dissimilar across samples (high uniformity).

Different versions of these scores show up in generaliza-
tion bounds of SSL. methods, under the assumption of task-
relevant augmentations (Sanushi et al., 2022; Arora et al.,
2019; Wei et al., 2021; Huang et al., 2021; HaoChen et al.,
2021). Given this intricate relationship, we argue these
scores are likely to be predictive of the quality of model
representations. We verify this claim by plotting the kNN
accuracy (k = 200) achieved by different methods in differ-
ent settings as a function of a linear combination of the two
scores. As shown in Figure 4, across all methods, the simi-
larity scores are highly predictive of achieved accuracy (R =
0.87, on average). Thus, for all methods in our experiments,

we propose to choose hyperparameters that maximize the
linear combination of the similarity scores above.

6. Experiments: The Concert

This section compares Orchestra with federated versions of
several discriminative SSL. methods: SimCLR (Chen et al.,
2020), SpecLoss (HaoChen et al., 2021), SimSiam (Chen
& He, 2021), and BYOL (Grill et al., 2020). Results on
rotation prediction (RotPred) (Gidaris et al., 2018) and su-
pervised FedAvg (McMahan et al., 2017) are also provided.
For cross-silo experiments, we use implementation tricks
by recent self-supervised FL (Zhuang et al., 2021) papers to
make our baselines even more competitive.

Setup. We use CIFAR-10/-100 datasets. To partition data
across K clients, we sample class priors from a Dirichlet dis-
tribution (Hsu et al., 2019). A smaller Dirichlet parameter
« yields more heterogeneous splits. All methods are imple-
mented using PyTorch and the Flower framework (Beutel
et al., 2020). We use ResNet-18 as the backbone archi-
tecture; Projector/Predictor architectures follow original
papers. Orchestra uses a 2-layer Projector, but no Predictor.
We compute 64/128 global clusters and 8/16 local clusters
for CIFAR-10/-100. All results are averaged over 3 seeds.
Standard deviations are shown in figures, but omitted from
tables and deferred to the appendix due to space constraints.
Learning rate is tuned for all SSL methods as per §5; for
FedAvg, we borrow values from Charles et al. (2021). We
tune the EMA value m for BYOL. Batch-size is set to 16
(256) for cross-device (cross-silo) settings. Unless stated
otherwise, we set « to 0.1, number of local epochs £ to 10,
communication rounds C' to 100, and participation ratio R
to 0.5 (1.0) for cross-device (cross-silo) experiments. Please
refer to §C for more details on the experiment setup.

Evaluation Protocol. We primarily use the standard linear
probe protocol, where the model is frozen and a linear clas-
sifier is learned on top of the backbone (Chen et al., 2020).
When comparing communication efficiency, we use a kNN
accuracy probe (Chen & He, 2021). For semi-supervised
evaluation, we fine-tune the entire model using limited la-
belled data (1% or 10% labels).

6.1. Linear and Semi-Supervised Evaluation

We first assess the accuracies of different methods using
both a linear probe protocol and semi-supervised evaluation.
Though our primary motivation in designing Orchestra is
cross-device FL, for this experiment, we evaluate its per-
formance in cross-silo settings as well. Our cross-device
setting has 100 clients, while the cross-silo setting has 10
clients. « is set to 0.1. Results are shown in Table 1.

We make several observations. (i) Orchestra often outper-
forms alternative techniques by a large margin under the
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Table 1. Accuracy (%) in non-IID («=0.1) cross-device (100 clients) and cross-silo (10 clients) settings on CIFAR datasets. For cross-
device settings, due to a lack of baselines, we use FL-extensions of several centralized techniques; for cross-silo settings, we follow
implementations of these techniques proposed by recent works that use stateful clients and divergence-aware predictor updates (Zhuang
et al., 2021). We evaluate models using the popular linear probe technique and semi-supervised fine-tuning with 1%/10% labelled data.
Consistent with prior work (Zhuang et al., 2021), we note that linear probe can outperform semi-supervised evaluation on CIFAR-10.

Dataset | CIFAR-10 | CIFAR-100

Setting | Cross-Device (K = 100) | Cross-Silo (K=10) ‘ Cross-Device (K = 100) ‘ Cross-Silo (K=10)
’ Linear ’ 1% ’ 10% ’ Linear ’ 1% ’ 10% ‘ Linear ‘ 1% ’ 10% ‘ Linear ’ 1% ’ 10%
f-SimCLR 58.36 | 41.95 | 44.64 | 69.29 | 57.76 | 68.27 | 34.52 | 4547 | 51.88 | 44.33 | 57.61 | 67.84
f-SimSiam 61.61 | 49.99 | 5643 | 75.12 | 64.04 | 72.25 | 3496 | 47.17 | 55.13 | 43.16 | 53.38 | 63.19
f-SpecLoss 66.51 | 55.66 | 62.09 | 80.71 | 70.88 | 77.96 | 37.60 | 47.11 | 5091 | 56.539 | 62.15 | 72.09
f-BYOL 65.85 | 56.05 | 64.15 | 76.08 | 65.55 | 73.18 | 3847 | 52.89 | 58.56 | 49.64 | 57.34 | 66.13
Orchestra 71.58 | 60.33 | 66.20 | 82.14 | 71.30 | 79.51 | 40.37 | 54.01 | 59.07 | 55.89 | 63.73 | 73.06
RotPred (pred) | 44.44 | 34.71 | 46.15 | 55.68 | 45.84 | 51.32 | 16.85 | 15779 | 19.52 | 25.0 | 27.64 | 28.81
FedAvg (sup) | 80.85 | 82.76 | 80.34 | 79.22 | 86.81 | 87.12 | 58.71 | 59.07 | 64.01 | 65.59 | 6248 | 71.59
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Figure 5. Sensitivity to Statistical Heterogeneity on CIFAR-10
(left) and CIFAR-100 (right). Except for Orchestra, we find all

methods lose performance with increased heterogeneity.
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Figure 6. Scalability with number of clients on CIFAR-10 (left)
and CIFAR-100 (right). Orchestra outperforms other methods and
is generally robust to number of clients in the federation.

linear probe protocol, where primarily the quality of learned
representations is evaluated. (ii) Under semi-supervised
settings, the gap reduces, but remains high when only 1%
labels are used. (iii) Even though Orchestra was designed
with cross-device settings in mind, we find that it also out-
performs its competitors in cross-silo settings. We expect
Orchestra’s performance can be improved further with state-
ful operations and other enhancements allowed in cross-silo
settings. This is left to future work.

6.2. Attributes of Federated Learning

Statistical Heterogeneity. We use 100 clients and analyze
three levels of heterogeneity by setting a to 10° (none/IID),
10! (moderate), and 107 (high). Results are provided in
Figure 5. We see that FL-extensions of centralized SSL
methods are often sensitive to heterogeneity, especially on
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Figure 7. Sensitivity to participation ratio on CIFAR-10 (left)
and CIFAR-100 (right). While the accuracies of alternative tech-
niques decrease at smaller participation ratios, we find Orchestra
suffers minimal degradation.
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Figure 8. Robustness to local epochs on CIFAR-10 (left) and
CIFAR-100 (right). We find Orchestra achieves similar accuracy
to other methods in half the number of local epochs.

CIFAR-10. In contrast, Orchestra is robust and its perfor-
mance generally improves with increase in heterogeneity.
This observation matches our expectation from Prop. 3.3,
where we showed Orchestra’s theoretical guarantees im-
prove under increased heterogeneity. We also note that
since CIFAR-100 has fewer samples per class, increase in
heterogeneity appears to enable greater gains via reduction
in inconsistent assignments.

Number of Clients. We next consider the effects of chang-
ing the number of clients. Following prior work (Zhuang
et al., 2021), we linearly scale the number of local epochs
to ensure that the total number of training iterations remains
constant across all settings. Results are shown in Figure 6.
We find that unlike other methods, which suffer from fluc-
tuations in performance depending on number of clients,
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Figure 9. Communication efficiency on CIFAR-10 (left) and
CIFAR-100 (right). We plot kNN accuracy w.r.t. comm. rounds.
Orchestra has the fastest round-to-accuracy response for moderate
to high accuracies; SInCLR performs well on smaller accuracies.

Table 2. Sensitivity to number of global () and local (L) clus-
ters. We change (G and L one-by-one, keeping the other fixed.
Base values are reported in parentheses. “Reps” denotes the ideal-
ized setting, where representations are shared without local clus-
tering. As shown, Orchestra has minimal sensitivity to both, the
number of global and local clusters. Further, the performance is
generally very close to the idealized setting.
| CIFAR-10 (G=32, L=8) || CIFAR-100 (G=256, L=16)

G 8 16 64 128 64 128 256 512
Acc | 7025 | 71.05 | 71.04 | 71.38 39.89 | 40.27 | 4037 | 40.29
L 2 4 16 Reps 8 16 64 Reps
Acc | 7041 | 71.06 | 71.28 | 71.95 40.09 | 4037 | 40.25 | 41.19

Orchestra achieves similar performance for all settings.

Participation Ratio. Since only a fraction of participants
can be expected to be connected to the server at a given time,
participation ratio is an important attribute of cross-device
FL. As shown in Figure 7, all methods except Orchestra
suffer large decreases in accuracy when participation ratio
is decreased. In contrast, Orchestra maintains accuracy even
for the smallest participation ratios.

Local Epochs. Resource constraints may force one to limit
local training to few epochs, making robustness to limited
epochs a valuable attribute. Figure 8 shows that reducing
local epochs causes all methods to lose accuracy, but Or-
chestra is the most resistant to this loss. For example, on
CIFAR-10, Orchestra with 5 local epochs matches the per-
formance of other methods with 10 local epochs, i.e., using
Orchestra the training cost halves.

Communication Efficiency. Client-server communication
is one of the major bottlenecks for FL in cross-device set-
tings. Hence, it is ideal if an FL technique converges in
fewer rounds. We measure the kNN accuracy of different
methods during training and plot it as a function of the num-
ber of rounds. As shown in Figure 9, Orchestra takes the
fewest rounds to achieve moderate to high accuracy; mean-
while, for smaller values, SImCLR is often the fastest to
converge, but achieves poor ultimate accuracy.

6.3. Attributes Specific to Orchestra

Effect of Heterogeneity on Communication Efficiency.
Our theoretical result indicates and empirical results corrob-
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Figure 10. Heterogeneity improves communication efficiency
for Orchestra on CIFAR-10 (left) and CIFAR-100 (right), i.e., Or-
chestra thoroughly exploits heterogeneity to maximize efficiency.
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Figure 11. Client runtime per round, relative to Orchestra. We
use several NVIDIA Jetson devices to compare local training time
for different methods and the local clustering operation in Orches-
tra. Local training with Orchestra has similar costs as SImCLR
and BYOL. Further, the local clustering operation is very cheap
due to use of target model representations and local caching.

orate the expectation that Orchestra thrives under hetero-
geneity. We provide another demonstration of this result in
Figure 10, where we show the progress of KNN accuracy as
a model is trained using Orchestra. We find that not only
does heterogeneity help Orchestra improve performance, it
can also improve its speed of optimization.

Number of Clusters. Orchestra’s underlying principles
are rooted in Prop. 3.2 and 3.3, which provide the goal of
finding discriminable clusters. However, another important
attribute in those bounds is the number of global clusters G.
If GG is smaller than the number of classes, generalization
can suffer. Similarly, having few local clusters L can lead to
inconsistent assignments (larger ¢) and hurt generalization.
More local clusters can help avoid this, but if the number
approaches the size of the local dataset, privacy (anonymity)
is lost because all clusters will contain only one sample.
We thus study sensitivity of Orchestra to GG and L. Table 2
shows that Orchestra is robust to the number of global clus-
ters as long as it even slightly exceeds the number of classes,
achieving similar performance in all settings. We similarly
see that Orchestra is essentially robust to the number of lo-
cal centroids, but can see minimal performance loss if very
few clusters are used. Finally, these results also indicate
the values of G and L need not be precisely tuned, as most
settings yield good performance.
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Cost of Local Clustering. Since the operation of local clus-
tering will be carried out on low-resource client devices, it
is important to assess the feasibility of local clustering in
such contexts. To this end, we highlight that our implemen-
tation for Orchestra caches a small number of most recently
computed target model representations during local train-
ing (e.g., 128 for cross-device experiments above) and runs
clustering on this minimal set. Since a client is expected
to have only a few samples in cross-device settings, such a
minimal set should be able to represent the data sufficiently.
Further, by virtue of slow updating of the target model, we
can be certain the representations used for local clustering
will be essentially the same as the representations that the
model with latest parameters would compute, allowing us
to avoid the cost of re-computing model representations en-
tirely. Overall, this trick makes local clustering very efficient,
with no extra inference/memory costs. We demonstrate this
empirically in Figure 11 by deploying Orchestra on three
NVIDIA Jetson embedded devices (with RAM as low as
4GB). We plot time consumed by a client running other
methods, relative to when it runs Orchestra, and percent
time consumed by local clustering in a round of Orchestra.
As can be seen, Orchestra’s latency per round is similar to
other methods, and clustering accounts for < 0.009% of
the training cost, confirming Orchestra’s practicality for
cross-device FL.

7. Conclusion

To enable wider adoption of federated learning (FL) for
complex modalities such as vision, we need to reduce its
reliance on labeled data. Towards this goal, we presented
Orchestra, an unsupervised FL technique that orchestrates a
distributed clustering task and enforces a globally consistent
partitioning of clients’ data, while remaining mindful of the
core challenges seen in FL setups. Built on strong theo-
retical foundations, Orchestra is scalable, achieves strong
communication-efficiency, thrives under heterogeneity, and
remains robust to various FL parameters.
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Appendix

In this appendix, we provide more description about the federated learning settings studied in this paper (§A), and
contextualize prior works based on FL properties studied in them (§B). Thereafter, we provide the formal algorithm for
Orchestra and elaborate on our experiment, training, and evaluation setups (§C). Next, §D contains T-SNE visualizations,
ablation results, and shows the performance of Orchestra under a state-of-the-art differentially private local clustering
technique (Chang et al., 2021). The appendix ends by providing a recap of the key notations used in the paper and proofs for
Propositions 3.2 and 3.3.

A. Properties of Cross-Silo and Cross-Device FL.

Federated learning setups vary across different applications and circumstances. In general, they can be categorized into two
main settings: Cross-silo and Cross-device, as described in a recent federated learning survey by (Kairouz et al., 2021).

The cross-silo setting shares several properties of datacenter distributed learning, where the number of clients is often limited,
and the clients have a large amount of data and high-level of computational resources, are stateful, almost always available
with few failures. However, these requirements often are not applicable to many real-life FL setups, and the cross-silo
setting is more relevant when large organizations collaborate.

On the other hand, the cross-device setting has much fewer requirements on the clients: they can be any number of mobile or
IoT devices which have limited computational resources, be stateless, unavailable at any time, and unreliable. The relaxation
on the requirement of clients make it more applicable to real-world FL setups, but any proposed solution must tackle the
challenges that this setting brings.

Many existing centralized unsupervised representation learning algorithms are relatively straight-forward to be adapted to
work in a cross-silo setup, where the clients are often computationally powerful and can be assumed as stateful. However,
clients in the cross-device setting often have much less resources, and this brings many challenges in adapting centralized
algorithms. For example, the requirement of large batch-sizes (He et al., 2021) is difficult to meet in the cross-device setting
as mobile or IoT devices have limited runtime memory. Similarly, sharing representations across clients as done in (Wu
et al., 2021; Zhang et al., 2020) is disallowed due to user privacy concerns. Hence, designing a method which scales to
hundreds of participating clients, is stateless, works with small batch sizes and uneven distribution of data, and preserves
user privacy is crucial to the success of cross-device unsupervised representation learning. This was the primary motivation
behind the design of Orchestra.

Properties
Methods Stateless Privacy Supports small  # Clients Cross-silo  Cross-Device
Preserving Batch Size
FedCA (Zhang et al., 2020) v X X (128) 5 v X
FedU (Zhuang et al., 2021) X v X (128) 5 v X
FedEMA (Zhuang et al., 2022) X v X (128) 5 v X
SSFL (He et al., 2021) v v X (256) 10 v X
FCL (Wu et al., 2022) y  Usingan additional X (128) 5-10 v X
encryption module

Orchestra v v v (16) 10-400 v v

Table 3. Comparison of Orchestra with prior federated unsupervised learning approaches. Orchestra is unique in its capability to learn
from unlabeled data in a small batch size regime without requiring any stateful operations or sharing local representations with the
server. Moreover, unlike prior approaches which were evaluated only in small scale setups with 5-10 clients, Orchestra can easily scale to
large-scale cross-device settings with hundreds of participating clients.

B. More Related Work

In Table 3, we list various unsupervised FL approaches proposed in the recent literature and compare their properties with
Orchestra. As evident, Orchestra is unique in its capability to learn from unlabeled data in a small batch size regime without
requiring any stateful operations or sharing local representations with the server. Moreover, unlike prior approaches which
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were evaluated only in small scale setups with 5-10 clients, Orchestra can easily scale to large-scale settings with hundreds
of participating clients, making it particularly apt for cross-device FL.

Self-Supervised Learning: SSL techniques are a recent paradigm in centralized unsupervised learning, wherein a task-
relevant signal is extracted from the data itself and used to guide the training of a model. In vision, specifically, this
task-relevance prior is encoded by designing pretext tasks. Earlier examples of such tasks include predictive tasks, such
as rotation prediction (Gidaris et al., 2018) or predicting the patch order in a shuffled image (Noroozi & Favaro, 2016).
Recently, though, the task of instance discrimination has revolutionized unsupervised visual training (Wu et al., 2018).
Herein, task-relevant information in encoded by enforcing invariances to a set of data augmentations (Purushwalkam &
Gupta, 2020; Wen & Li, 2021; Kugelgen et al., 2021). Popular methods include contrastive techniques (SimCLR (Chen
et al., 2020), MoCo (He et al., 2020), SpecLoss (HaoChen et al., 2021)); similarity-based techniques (BYOL (Grill et al.,
2020), SimSiam (Chen & He, 2021), DINO (Caron et al., 2021)); redundancy reduction methods (Barlow Twins (Zbontar
et al., 2021), VICReg (Bardes et al., 2021)); and clustering based methods (SeLa (Asano et al., 2020), SWAV (Caron et al.,
2020), PCL (Li et al., 2021a)).

C. Experimental Details
C.1. Data

Datasets. Our experiments focus on the widely-used CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton, 2009).
Both datasets consist of 60,000 images, divided into two partitions: 50,000 for training and 10,000 for testing. CIFAR-10
consists of 10 object classes whereas CIFAR-100 have 100 object classes; with training samples equally distributed across
all classes. For federated training, we partitioned both the datasets across K clients. To this end, we sample class priors
from a Dirichlet distribution (Hsu et al., 2019) controlled by the Dirichlet parameter o. A smaller value of « yields more
non-IID splits across clients. More specifically, we experimented with three different levels of heterogeneity by setting « to
103 (IID), 10! (moderately non-IID), and 10~ (highly non-IID). To quantify the level of heterogeneity, we provide average
number of classes in Table 4. We consider two definitions for a class to be present on a client: if at least 1 sample from the
class is present on the client and if at least 1% samples belong to the class. ~ denotes an experiment that was not conducted.

Transformations. During the local training stage shown in Figure 3, we need to generate an augmentation of each input
sample. We use the same set of augmentations proposed by Grill et al. (2020). For the baseline SSL methods, we follow the
augmentations proposed in their original papers.

Table 4. Average number of classes per client. We use three values of a: 10° (IID), 10! (moderately non-IID), and 107 (highly
non-IID). We define a class to be present on a client in two ways: (i) at least 1 sample from the class is present on the client; (ii) at least
1% samples on the client belong to the class. ~ denotes an experiment that was not conducted.

\ CIFAR-10 \ CIFAR-100
o 1073 1071 10° | 1073 1071 10°
Heterogeneity | High Moderate None | High Moderate None
Cross-Device 1 sample 1.08 4.69 10 3.56 29.3 100
(100 clients) 1% 1.05 3.13 10 2.13 17.92 100
Cross-Silo 1 sample ~ 6.25 10 ~ 48.63 100
(10 clients) 1% ~ 4.87 10 ~ 355 100

C.2. Algorithm, Implementation, and Training Details

Algorithm: Below we provide a detailed algorithm of our pipeline, as described in §4 and outlined in Figure 3. Orchestra
involves federation and communication between clients and the server, and Algorithm 1 describes local training happening
on the clients, while Algorithm 2 outlines the computation happening on the server. We refer to the backbone and projector
models jointly as the ‘feature encoder’. Broadly, each client trains its feature encoders locally with both clustering and
degeneracy losses, and returns the local clusters. The server aggregates the feature encoders from all clients using any
federated averaging algorithm (e.g., FedAvg), and performs further clustering on the local centroids returned by all the
clients to obtain global centroids. The global centroids are then passed back to the clients for another round of local training.
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When Orchestra starts, the server has to initialize the global centroids to be used for training (Line 2 of Algorithm 2).
However, as the server does not have any prior data about the clients, the initial global centroids are initialized with a small
federation step with the clients: the initialized feature encoder £ is passed to the clients, and the clients compute the
representations by passing the local data through the encoder (similar to Line 5 of Algorithm 1). These representations are
then clustered (Line 18 of Algorithm 1) and the centroids are sent to the server, where a further clustering is performed
(Line 8 of Algorithm 2), forming the initial global centroids €.

The clustering algorithm C used in both the local and global clustering processes is based on the Sinkhorn-knopp algo-
rithm (Genevay et al., 2019). We run local clustering on a memory module that stores 128 most recent representations
computed during local training, i.e., representations computed during last 8 iterations. This allow us to avoid the cost of
computing model representations for local clustering again. Since we use the target model for clustering purposes, these
representations can be expected to be essentially the same as the representations that the model with latest parameters would
compute. Combined, this trick makes local clustering very efficient, with no extra inference/memory costs, as was shown in
Figure 11.

Implementation and Code: Orchestra is implemented using PyTorch and the Flower federated learning framework (Beutel
et al., 2020). Our primary results in cross-device FL settings are presented for K = 100 clients, which we simulate on 8
NVIDIA V100 GPUs using Flower’s Virtual Client Engine. Consistent with the paradigm of cross-device FL, we use a small
batch size of 16 on each client, set the number of local epochs F to 10, communication rounds to 100, and participation
ratio to 0.5. For cross-silo experiments, a batch size of 256 and participation ratio of 1.0 is employed. While evaluating the
scalability and communication efficiency of Orchestra in cross-device settings (§6.2), we also show results for different
values of K and E.

A working source code of Orchestra is provided available at following github link.

Algorithm 1 Orchestra - Local Training

1: Require: Data X k on client k, global centroids uG, batch size N, exponential update rate m, target encoder fr, online
encoder fo, stochastic augmentation function 7, rotation function R, clustering function with size constraints C

2: for sampled minibatch {z}, € X* do

33 forie{l,...,N}do

4 Compute transformed sample: z; < T (x;)

5: Compute representations: fr(x;) and fo(Z;)

6: Compute cluster assignment according to global centroids: Py, (z;) and Py, (Z;)

7 Select an random rotation angle index: a; ~ Uy

8 Convert to one hot encoding: R; < onehot(a;)

9 Rotate sample: &; < R(z;, o)

10 Compute representation: fo(Z;)

11: Predict rotation: R; < softmax (W fo(d:))

12:  end for

13:  Compute clustering loss: Lepyseer = —% ZZ]-V:l(H (Pr(x;), Pro (£:)))
14:  Compute degeneracy loss: Lgeg = — 7 SN (H(Ri, Ry))

15:  Update fo to minimize £ = Lejuster + Laeg

16:  Update fr < mfr+ (1 —m)fo

17: end for

18: Cluster uf + C({fr(z)|z € X*}, L)

19: return trained encoders fr, fo, local clusters ué

C.3. Network Architectures

Orchestra uses ResNet-18 as the network architecture for the Backbone, and a 2-layer multi-layer perceptron (MLP) with
512 units in each layer for the Projector, following SimCLR (Chen et al., 2020). No Predictor network is used. For all the
baselines, we use ResNet-18 as the Backbone, while Projector and Predictor architectures are borrowed from their respective
papers.
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Algorithm 2 Orchestra - Server Federation

1: Require: Number of rounds NV, Number of global centroids G, clustering function with size constraints C
2: Initialize global target encoder f&, global online encoder f§, global centroids

3: forroundi € {1,..., N} do
4:  Orchestrate local training with £&, OG uC

5. Collect results: {(fX, f&, uk)k € [K]}

6:  Aggregate encoders: f{¥ < & SSELfF and f§ « + SELrk
7. Aggregate centroids: ul < {ul|k € [K],p € uk}

8:  Update global centroids by clustering: u& + C(u”, G)

9: end for

10: return trained encoder f&

C.4. Hyperparameter Tuning and Scaling Schemes

Tuning: As mentioned in section 5, we find configuration that maximize a linear combination of alignment and uniformity
scores (see Equation 5). We set 7 to 0.2, similar to Figure 4. Tuning is performed by running a model for 20 communication
rounds with 10 local epochs. Other settings such as batch-size and participation ratio depend on whether we are in a
cross-silo or a cross-device setup and are defined above. In the following, we report our hyperparameter grids and the
retrieved values from tuning different methods. We denote learning rate using 7 and EMA value using m.

—_—

. SimCLR: 7: {0.03 (Cross-silo), 0.01, 0.003 (Cross-device), 0.001}

[\

. SimSiam: n: {0.03 (Cross-silo), 0.01 (Cross-device), 0.003, 0.001}

W

. SpecLoss: 7: {0.03 (Cross-silo), 0.01, 0.003 (Cross-device), 0.001}

4. BYOL: n: {0.03 (Cross-silo), 0.01 (Cross-device), 0.003, 0.001}; m: {0.9, 0.99 (Cross-silo), 0.996 (Cross-device) }

|91

. Orchestra: : {0.03, 0.01 (Cross-silo), 0.003 (Cross-device), 0.001}; m: {0.9, 0.99 (Cross-silo), 0.996 (Cross-device)}

Scaling Schemes for number of clients and participation ratio experiments: We tune our methods for two baseline
settings: (i) Cross-device with 100 clients; (ii) Cross-silo with 10 clients. For experiments where we change other number of
clients and participation ratio, we follow previous works and scale number of local epochs or learning rate to avoid the costs
of tuning a method again. Specifically, we have the following schemes.

* Number of Clients: When varying number of clients, we follow Zhuang et al. (2021) and linearly scale number
of local epochs. Given other variables remain fixed, this ensures a constant training budget in terms of number of
iterations. For example, if L is our base learning rate for a setting with K clients, we scale the number of local epochs
for a setting with K., clients as follows: Lyew = L - %

» Participation Ratio: When varying participation ratio, we follow Charles et al. (2021) and quadratically scale the
learning rate. Given other variables remain fixed, this helps achieve consistent performance across a large number of
settings for number of clients. For example, if n is our base learning rate for a setting with R participation ratio, we

Rpew

scale the learning rate for a setting with Ry, participation ratio as follows: Mew = 7 - ¥

C.5. Evaluation Protocol

To evaluate the quality of the representations learned by Orchestra, we primarily use the standard linear probe protocol,
where the model is frozen and a linear classifier is learned on top of the backbone (Chen et al., 2020). When comparing
rounds to accuracy, we also use kNN accuracy probe (Chen & He, 2021). Finally, during semi-supervised evaluation, we
fine-tune the entire model under limited labelled data (1% or 10% labels) where is held-out during the unsupervised training
stage.
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Table 5. We analyze Orchestra in the cross-device and cross-silo setting on CIFAR-10/CIFAR-100 datasets. For cross-device settings, due
to a lack of baselines, we use FL-extensions of several centralized techniques; for cross-silo settings, we follow implementations of these
techniques proposed by recent works that use stateful clients and divergence-aware predictor updates (Zhuang et al., 2021). We evaluate
models using the popular linear probe technique (Chen et al., 2020) and semi-supervised fine-tuning with 1% and 10% labelled data.

Dataset | CIFAR-10
Setting | Cross-Device (K = 100) | Cross-Silo (K=10)
| Linear | 1% | 10% | Linear | 1% | 10%

f-SimCLR 5836 +£0.19 | 41.95+0.85 | 44.64 £0.71 | 69.29 £0.28 | 57.76 £ 0.33 | 68.27 £ 0.67
f-SimSiam 61.61 £0.68 | 49.99 +0.26 | 56.43 £0.52 | 7512 £0.38 | 64.04 £0.41 | 72.25 £ 0.37
f-SpecLoss 66.51 £0.53 | 55.66 +0.80 | 62.09 £ 0.67 | 80.71 £0.31 | 70.88 £0.53 | 77.96 £ 0.55

f-BYOL 65.85 £ 0.19 | 56.05 £ 0.31 | 64.15+0.30 | 76.08 £ 0.30 | 65.55 £0.34 | 73.18 £ 0.40
Orchestra 71.58 £ 0.53 | 60.33 £0.63 | 66.20 = 0.71 | 82.14 +=0.38 | 71.30 = 0.27 | 79.51 + 0.51

RotPred (pred) | 44.44 £0.93 | 3471 £0.69 | 46.15 +£0.65 | 55.68 = 0.38 | 45.84 £ 0.53 | 51.32 £ 0.55
FedAvg (sup) | 80.85 £0.37 | 82.76 £0.71 | 80.34 £0.61 | 79.22+0.38 | 86.81 £0.53 | 87.12 £ 0.77

Dataset | CIFAR-100

Setting | Cross-Device (K = 100) | Cross-Silo (K=10)

Linear | 1% | 10% | Linear | 1% | 10%
f-SimCLR 3452 +0.34 | 4547 £032 | 51.88£0.56 | 44.33 £0.33 | 57.61 £0.27 | 67.84 £0.15
f-SimSiam 3496 £ 043 | 47.17 £0.73 | 55.13 041 | 43.16 £0.32 | 53.38 £0.66 | 63.19 + 0.81
f-SpecLoss 37.60 £0.37 | 47.11 £0.56 | 5091 = 0.15 | 56.59 + 0.45 | 62.15 4+ 0.67 | 72.09 + 0.56

f-BYOL 3847 +£0.34 | 52.89 £ 0.62 | 58.56 £ 0.92 | 49.64 £0.44 | 57.34 £0.45 | 66.13 £0.63
Orchestra 40.37 £ 0.30 | 54.01 £0.41 | 59.07 = 0.69 | 55.89 £0.49 | 63.73 +0.28 | 73.06 £ 0.67

RotPred (pred) | 16.85£0.74 | 1579 £0.64 | 1952 +£0.73 | 25.0£0.39 | 27.64 £0.95 | 28.81 £ 0.82
FedAvg (sup) | 58.71 £0.42 | 59.07 £ 0.50 | 64.01 =0.53 | 65.59 +0.38 | 62.48 £0.42 | 71.59 £ 0.79

D. Additional Results

D.1. Linear and Semi-Supervised Evaluation Results (with standard deviations)

In Table 5, we report the mean and standard deviation of accuracies obtained using linear and semi-supervised Evaluation.
Please note that this Table 5 is an extension of Table 1 presented in the main paper, with standard deviation values added to
it. Each experiment was run three times with different seeds to obtain the mean and standard deviation scores.

D.2. Ablations

To help avoid degenerate solutions and ensure performant cluster assignments, Orchestra uses two important operations in its
local training: degeneracy regularization and an EMA-based target model (see §4). We now provide ablative results for these
operations in Table 6. As can be seen, by removing either of the operations, Orchestra can lose substantial performance. As
expected, noisy assignments can be overcome with time and hence Orchestra is less sensitive to the use of target model. On
the other hand, degeneracy regularization is critical for Orchestra, as it helps prevent collapse of the model from the get-go.

Base Setting  No Degeneracy Regularization = No Target Model

CIFAR-10 71.58 56.62 68.63
CIFAR-100 40.37 28.86 36.8

Table 6. Ablation results for Orchestra’s target model and degeneracy regularization. These results show both solutions, degeneracy
regularization and use of target model are important. However, noisy assignments can be overcome with time and hence sensitivity to use
of target model is lower than the use of degeneracy regularization, which helps prevent representational collapse. Experiment settings are
the same as Table 1.
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Figure 12. TSNE visualizations obtained on the CIFAR-10 test set with models trained using different federated unsupervised learning
approaches. No labeled data was used to fine-tune the models and the plot shows the quality of representations learned only using
unlabeled data on the clients.

D.3. T-SNE Visualizations

In Figure 12, we present the T-SNE visualizations obtained on the CIFAR-10 test set with models trained using different
federated unsupervised learning approaches. These plots show the quality of representations learned only using unlabeled
data on the clients. We can see that Orchestra provides better class separation than other methods.

D.4. Orchestra and Privacy

Orchestra, by design, does not share any raw data or representations between clients and the server. Only the local centroids
computed on each client are shared with the server for the purpose of global clustering. Below we discuss how the design
of Orchestra aligns well with the idea of K-anonymous clustering, and how we can further improve Orchestra’s privacy
guarantees using local differentially private clustering.

K-anonymity: We first focus on the K -anonymous clustering perspective. Formally, a K -anonymity guarantee ensures that
for any randomly selected entry in a set, there are at least X' — 1 other entries with the same attributes. While in the discrete
setting quasi-identifiers can be used to attack K —anonymity guarantees, these mechanisms provably fail in the continuous
setting with high dimensional variables (Aggarwal, 2005), making them particularly useful for our settings due to their good
utility. K -anonymous clustering methods thus focus on finding clusters with at least ' members, providing non-uniform
privacy to different samples. Our solution enforces an equal-size constraint on all L local clusters using the sinkhorn-knopp
based clustering algorithm (Genevay et al., 2019). This enables uniform, /r-anonymity across all N samples present on a
client. Further, as we showed in Table 2, Orchestra is robust to the number of local clusters and can work with small values
of L, which increases the anonymity guarantees of the algorithm.

Local Differential Privacy: Differentially private (DP) algorithms (Dwork & Roth, 2014) seek to design randomized
mechanisms or algorithms with stochastic outputs by adding noise to the result of the mechanism. This guarantees that a
given result could have been generated from multiple viable datasets. Formally, let A be a randomized mechanism that takes
in a dataset D as input and whose image is denoted by the set S. Assume D; and Ds are two neighboring datasets, i.e., their
entries differ in only one point. Then, A is (¢, 0) differentially private if:

Pr[A(D;) € 8] < exp(e) -Pr[A(D2) € S|+ ¢ (6)

In the situation a dataset is distributed across multiple participants, DP algorithms assume an honest server will conduct
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the algorithm by acquiring necessary information from the participants. This can be problematic in the situation where a
server is only semi-honest and may seek to leak some sensitive information. To avoid this, local-DP guarantees have been
developed. In this case, one applies the DP definition for individual participants. For example, if ; and x5 denote two
participants, then local DP is defined as:

PrA(zy) € S] <exp(e) - Pr[A(z2) € S]+ 6 (7)

Recently, local DP has been used for designing private clustering algorithms for distributed settings (Balcan et al., 2017;
Stemmer, 2020; Chang et al., 2021). These algorithms follow a standard route generally: (i) find a coreset that is
representative of the dataset structure of a participant, but only approximately depends on it; (ii) use this coreset as an
approximate notion of clusters from a participant; and (iii) find centroids that partition the coresets. The caveat with this
approach is that since DP works on an aggregate scale, if a participant has few samples, the amount of noise that needs to be
added to guarantee strong privacy can be huge, as shown by Cohen et al. (2021). Thus, even though one seeks to ensure

e<l0andd ~ O (Wfsamples)’ production systems generally use € values of order 10.0 (Bureau, 2020).

In Table 7, we provide linear probe results on CIFAR-10 for Orchestra with local-DP based clustering using the current
state-of-the-art algorithm (Chang et al., 2021), which uses locality sensitive hashing for finding coresets in a participant’s
dataset. As can be seen, for practically useful values of e, Orchestra witnesses only a small performance drop w.r.t.
K -anonymity and is still outperforming alternative federated unsupervised methods (see Table 1).

No Privacy K-anonymity ¢=0.8 ¢=1.0 £=10.0
Accuracy 71.95 71.58 69.46 69.60 69.63

Table 7. Accuracy obtained using the linear probe evaluation technique (Chen et al., 2020) in five different privacy settings. ‘No Privacy’
represents the idealized setting when local representations are shared with the server — this setting is prone to representation inversion
attacks (Dosovitskiy & Brox, 2016; Nash et al., 2019). The K-anonymity result represents the performance of Orchestra with its
2-level clustering approach, however without any adding any DP protections. We can see that Orchestra’s performance with its built-in
K-anonymity is almost similar to the ‘No Privacy’ setting. Further, Orchestra works reasonably well with local-DP based clustering; for
practically useful values of e, Orchestra witnesses only a small performance drop w.r.t. the K-anonymity setting, and still outperforms the
various baseline techniques shown in Table 1. For these experiments, we use d=1e-3, Dirichlet «=0.1, 100 clients, 10 local epochs, and
100 communication rounds.

E. Deferred Proofs

We provide deferred proofs in this section. For better readability and reference, we first tabulate the notations used in the
paper in Table 8.

E.1. Orchestra’s pipeline reduces o

In §4, we claimed that by sharing the same set of centroids across all clients, Orchestra’s pipeline reduces inter-cluster
mixing J every round. We formalize this result below.

Proposition E.1. If the same set of global centroids 11 are used across all clients, minimizing a loss that brings a sample’s
assigned centroids and its representation closer will ensure Orchestra’s pipeline reduces § every round.

Proof. It is easy to see Orchestra’s pipeline is an Expectation-Maximization (EM) framework (McLachlan & Krishnan,
2008). Thus, a standard proof schematic for showing convergence of EM can be used. In particular, assume we compute set
of G global centroids from the local centroids 1 = C({C(Rxx, L™®) : k € [K]}, G). Denote the set of samples assigned to
global cluster g as m,. We overload the notation and let 7(x) denote the assignment of sample =. Then, without loss of
generality, we let (g/,,n") = argmax, g argmax, o X—my} pd f(n)', where the superscript denotes round ¢. That is,
ot = '“gfn f ()t During local training, if the similarity between z,,’s assigned centroid and its representation is increased,

we have U_:}F;(xn)f(xn)tﬂ > LL,Trt(wn)f(xn)t, and, consequently, u;nf(acn)t“ < ,ugfnf(xn)t = & due to the use of softmax

for computing assignments. With a similar argument for the server’s clustering algorithm, we find the cluster centroids are
brought closer to model representations that belong to that cluster. That is, “;’gl fla,)t < u;n flxn,)tt < 6t Now,

if 51t = ,ug;rlf(xn)t*l, then we have 6'*! < §¢. If the sample and cluster for computing § change, then without loss
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Notation Definition

X~X Unlabeled samples X drawn from a distribution X

K Number of clients

M Number of classes

N Number of samples

T: X=X A stochastic augmentation function that transforms its input x to the space of augmented

X :={T(z):2€X}

samples by randomly selecting a transform from a set of predefined transformation
functions that is finite, but can be large.
The collective set of augmented samples

f:X —=RP A parametric representation function

E(f) Error of f under a linear probe computed as miny E, ¢y [arg max(W7T f(z)) = y(z)]

Rs ={f(s):s€ S}  The setof representations on a set S

C(B,G) A clustering algorithm that returns G clusters on its input 5.

u € RP*G Centroids returned by the clustering algorithm C(B, G).

Iy The centroid of cluster g

sf(x) Cosine similarity between centroids and representations #” f @/ f ()|

Py (x) Cluster assignment probabilities computed as o (s¢(z)) where o (.) denotes the softmax
function

H(.,.) Cross-entropy between two discrete distributions

Lipec Spectral Contrastive Loss (HaoChen et al., 2021): = —2E,c x z7 () [5(2) T s¢(Z)] +
Ez,y;ﬁxGX[(sf (x)TSf(y))Q]

F Hypothesis class that has a global minimizer of the Lgpec

Table 8. Notations used in the paper

of generality, we assume 671 = u§t+1f(xnz)t+1 < flaa) < ugt f(x,)t < 6. Here, the last inequality follows

from definition of . Second last inequality follows from the fact that local training brings representation of f(x,) closer to
its assigned centroid and pushes it away from other centroids including i, _,. This is the step where we used the fact that
global centroids are the same across all clients, due to which the above statement could be made on a dataset level. The first
inequality follows from the global clustering step pushing p, , closer to representations of its assigned samples, which do
not include x,,/. O

Note an assumption in the above argument is that all centroids are different from each other, else bringing a sample’s
representation closer to a centroid will not push it farther from the other centroids. In the case the model representations
collapse to a single vector, as often observed in centralized clustering plus representation learning methods (Yang et al.,
2017), all centroids become equivalent and hence our assumption is contradicted. Our use of a degeneracy regularization via
predictive SSL was specifically motivated to enable this assumption, as it ensures representations do not collapse to a single
vector.

The above reasoning also explains why clustering-based SSL solutions (Caron et al., 2020; 2019; 2018; Li et al., 2021a)
from centralized settings cannot be directly used in federated settings. Note that SWAV and related methods avoid degenerate
solutions via per-iteration, partition-based clustering. Consequently, using SWAV in FL would require communicating with
the server every iteration. Since communication is very expensive in FL, SWAV becomes an infeasible baseline: for even 10
clients of CIFAR10, SwAV has 3100x higher communications costs than Orchestra’s! Upon using local training only (no
per-iteration operations), we indeed found SwAV reaches degenerate solutions.

E.2. Proofs for Propositions 3.2 and 3.3

Our results are based on the analysis by HaoChen et al. (2021). Therein, the authors derive a general result that shows a
minimizer of the loss —2E ¢y 7 (2) [f (2) f(2)] + Eoyex[(f(2)" f(y))?] will necessarily have small generalization
error under a linear probe. This result arises out of an analysis of spectral clustering algorithms. As noted in the paper,
our focus is partition-based clustering due to its straightforward application to distributed settings. Given the relationship
between spectral clustering and partition-based clustering is well established (Dhillon et al., 2004), we can use the result
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by HaoChen et al. (2021) for our purposes by showing Orchestra implicitly minimizes the objective above, consequently
achieving small generalization error if it belongs to a sufficiently complex hypothesis class that can minimize SpecLoss. We
first discuss the main concepts underlying those works.

E.2.1. BACKGROUND

The works above include an important assumption called “recoverability”, which is itself related to two important concepts
called “expansion” and “separation”. The notion of expansion and separation was originally proposed for manifolds by
Balcan et al. (2004), recently verified empirically by Wei et al. (2021), and converted to “recoverability” or graph connectivity
properties by HaoChen et al. (2021). Specifically, the authors assume that there exists a latent graph instantiating the data
distribution such that the neighborhood of any low probability set of connected nodes has a higher probability than the
set itself. Here a node represents a sample and edges represent joint probability of occurrence of two samples. Under
expansion, any given community of nodes on the latent graph is guaranteed to be sufficiently well connected such that if
a node with high enough probability is assigned a label, then via a loss promoting consistency to input perturbations, the
label will propagate throughout the community. If communities are assumed to be well separated, these labels will have
higher diffusion within the same community than between different communities. This induces sets of abstract classes with
semantically related nodes (e.g., community of dogs). Using standard pairwise clustering tools, one can compute node
representations that enable discrimination between these communities and, if a sufficiently expressive parametric model (e.g.,
a neural network) is trained to match these representations, it can be guaranteed the model will have small generalization
error on unseen data. The approach outlined above was recently used by HaoChen et al. (2021) to design SpecLoss,
an SSL technique with provable generalization guarantees. However, since pairwise clustering requires computation of
representation similarity between different datapoints, it is not amenable to use in decentralized, privacy-sensitive settings.
In our work, we circumvented this issue by designing a partition-based, federated clustering framework that first computes
centroids capable of partitioning the federation’s data into discriminable clusters and then asks clients to allocate their data
into these clusters.

Assumption E.2. Recoverability. Let & € T (z), where 2 ~ X, and assume its ground truth label is y(Z). We assume there
exists a classifier U such that g(x) = y(&) with probability at least 1 — ¢.

Let G denote a graph whose vertices v, represent samples from distribution X and whose edges denote joint probability of
occurrence of the graph nodes, i.e., w(x,Z) = Ez, 5,ca(x) [Pr(Z1, Z2)]

Definition E.3. Sparsest m-partition. For an integer m € [2,|X|], the sparsest m-partition is defined as p,, =

ming, s,,....s,, max{kg(S1),kg(S2), ..., kg(Sm)}, where {S1, S, ..., Sy} denotes non-empty sets that form a partition
N Zzesi,mesi w(zz’) .
of X and kg(S;) := I ST o denotes the Dirichlet Conductance.

Under these definitions, we have the following result.
Theorem E.4. (Theorem 4.2 from HaoChen et al. (2021)). Let Assumption E.2 hold, f,,, € F is the population minimizer

of Lypec, and assume G > 4M + 2,. Define (x = % -log(G). Then for an empirical minimizer function f of SpecLoss
such that Lopec(f) < Lspec(frop) + € we have:
E(f) <Cx+0O(e). (8)

Here, .y is a property of the data distribution X and O hides constants related to Rademacher complexity of the function
class. Essentially, if the classes of augmentations of a sample can be predicted from the sample, then ¢ and hence (x are
small. This happens if the latent variables instantiating the data generating distribution are similar so that the label of an
augmented sample can be predicted from the original sample itself. Further, the denominator pc/, depends on the average
probability of a partition. If we have G < 2M, pc/, will be zero and hence the error can be arbitrarily large. If G > 2M,
even though it can get larger with G, it will essentially remain constant since one starts inducing subpartitions of abstract
classes at this point.

The above theorem is our primary tool. Our idea is to show that instead of the pairwise clustering algorithm (spectral
clustering) used by HaoChen et al.(2021), one can use a partition-based clustering algorithm and exploit the result above to
understand if good generalization is feasible in a more practical manner for federated settings. To this end, we will compute
the loss achieved by a representation function that yields consistent representations over augmentations and can partition the
set of representations into G clusters with small inter-cluster mixing.
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E.2.2. PROPOSITION 3.2

We now provide proof for Proposition 3.2, restated below for convenience.

Proposition E.5. Assume f € F. Compute G > 4M + 2 clusters p = C({Rx+ : k € [K]}, Q) s.t. all clusters are equally
sized. Then, if f minimizes £ := Byer) [Evex, 5~7(2) [H (Pf(x), Pr(2))]], we have

E(f) <Cx+0 (264 (G —2)8°%). ©)

Proof. Assume the hypothesis class is expressive enough to guarantee a zero error population minimizer exists for SpecLoss.
Then, we need only bound the error of the empirical minimizer. We thus decompose Lyyec = Lt + L, where we define the

following terms Lt := _7N|7g(x)| ZweX,ieT(:p)(Sf(x)TSf(‘i)) and L~ := 7]\,(1\}_1) Y osex Zy¢x7yex(5f(33)T5f(y))2~
Let A; denote a vector whose i term is 1 and rest of the terms are J, the inter-cluster mixing. Then, we have the following:

S ) YD (ss@)Tsp(y))?

IGX y#x,yeX

< ST ZZSf Tsply

mGXyGX
_ IECDIPY ( 1) 51y )>
< Sa 0 oy

y g] (10)

-122(@ w0 (5
ZZ (W7 11g.)" (W7 11g,)

- G2 N-1) ZZ
N
- G(N-1) [(1+(G—1)8%) + (G —1) (26 + (G — 2)§°)]

_ % Ké) + (1 - é) (25 + (G — 1))
=0 (25+ (G -1)8)

In the above, the first inequality follows from two facts: one, s(.) is always unit norm, and hence the inner products are
bound to be less than one, allowing us to ignore squares; two, self-interaction terms are positive, i.e., s¢(x)Ts(x) > 0. The
second inequality follows from the definition of inter-cluster mixing. Note that P(x) = Py(Z) forz, % € ’T( ) since fis a
minimizer of £. Correspondingly, we have s;(z) = s(Z) since s(.) is scale invariant and hence we have L™ = 0. Adding
L™ and L™ provides us the value of € which can be directly substituted into Equation § to complete the proof. O

Note that we hide two constants in the final expression: a constant additive factor % and a multiplicative factor

(1 — —) The former will be close to 0 and the latter close to 1 for even moderately sized values of NV and G.

E.2.3. PROPOSITION 3.3

We now provide proof for Proposition 3.3, restated below for convenience.

Proposition E.6. Assume f € F. Denote the set of local centroids as p* = {C(Rxx, L") : k € [K]} and
compute new global centroids u© = C(u*,G) that are equally sized. Assume at least a fraction c samples are
“consistently” assigned, i.e., they match their assignments from the idealized setting. Then, if f minimizes the loss

L :=Eiex) [Eoex, it (@) [H (Pr(z), Pr(7))]],

E(f) <Cx+0(v(1—¢*) + (26 + (G — 1)5%)). (an
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Proof. The proof follows essentially the same route as subsubsection E.2.2. The part of the argument that changes is the
computation of L~, where we now have to account for the inconsistent assignments ¢’ = 1 — c. First, we have the following
(DT FENT ()T f(y)) < Aame = 1 + (G — 1)62 if 2 and y belong to the same global cluster in the idealized setting.
Similarly, ((u)T f(2)T (1T f(y)) < Agir = 26 + (G — 2)6%. We also define ng = N/G as the number of datapoints
assigned to a cluster. This implies the number of samples leaving a cluster are at least ¢’ng and can consider equality for
worst-case analysis. Define the term D;; as samples that were originally in global cluster ¢ in the idealized setting but
have now been moved to global cluster j due to the use of local clustering. Note that for any global cluster g, we have
> Dgi < ng, ie., number of samples coming from different clusters must equal the number of samples that have left the
given cluster. Again, for worst-case analysis, we can assume equality. Overall, we get the following.

1
I < v | 2 (@ =na)ene) + G Y Dij - (ng = Dij) | Awme
( ) 1€[G] i

+m Z ((1—cl)’l'LG)(N—c’n(;—TLG)+ZDij(N—2*nG+Dij) A

i€[G] ji
1 2 (12)
= ﬁ G(1—d)d nG + G nG’ —-1) ZDij Agame
NN-T) G(1-¢) — (14 d)ng) + Gd'ng(N = 2ng) + (G — 1) ZDZ-QJ. A gifr
S NN N(N 1) (G (2 — g Agame + (NGng(1 — ') — Gng (1 — ¢*) + ¢ Gna(N — 2dng)) Adirr) -

Substituting expressions for variable terms and simplifying, we get,

N (R e )

- s N - <c1; (1_]6\?2>+(1;(1—c2)+<<1_ 1(—;c)2_(1;> (26+(G—1)62)> (13)

=0 (v(1—c) + (20 + (G — 1)6?))

Here, v = m is a constant that is < 1 for G > 2. Again adding and substituting L™ and L~ in Equation 8
finishes the proof. O



