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ABSTRACT. We consider application of reduced order models (ROMs) to accelerating solutions of
the spatially homogeneous Boltzmann equation for the class of problems of spatially homogeneous
relaxation of sums of two homogeneous Gaussian densities. Approximation spaces for the ROMs
are constructed by performing singular value decomposition of the solution data matrix and ex-
tracting principal singular vectors/modes. The first ROM results from a straightforward Galerkin
discretization of the spatially homogeneous Boltzmann equation using a truncated basis of the
singular vectors. The model approximates solutions to the Boltzmann equation accurately during
early stages of evolution. However, it suffers from presence of ROM residuals at later stages and
exhibits slowly growing modes for larger ROM sizes. In order to achieve stability, the second ROM
evolves the difference between the solution and the steady state. The truncated singular vectors
are orthogonalized to the steady state and modified locally to enforce zero density, momentum, and
temperature moments. Exponential damping of ROM residuals is introduced to enforce physical
accuracy of the steady state solution. Solutions obtained by the second ROM are asymptoti-
cally stable in time and provide accurate approximations to solutions of the Boltzmann equation.
Complexity for both models is O(K3) where K is the number of singular vectors retained in the
ROMs. For the considered class of problems, the models result in up to three orders of magnitude
reduction in computational time as compared to the O(M?) nodal discontinuous Galerkin (DG)
discretization, where M is the total number of velocity points.

1. INTRODUCTION

With the emergence of novel applications of rarefied gas flows in hypersonic and space flights and
microscopic flows, there is an increased need for simulation tools capable of handling complex flow
geometries and of accurately predicting complex physics of the flows. The Boltzmann equation
is believed to be the most accurate model of rarefied gas and can provide important understand-
ing about the applications at hand. As a result, there is a significant need to develop efficient
methods for its solution. However, solution algorithms for the Boltzmann equation that would
make its use practical in multiple dimension with real gas effect, proved to be difficult to obtain.
A major challenge continues to be the evaluation of the multifold integral describing the effect
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of molecular collisions. Development of algorithms for collision integral with low computational
cost will dramatically improve applicability of the Boltzmann equation. A review of recent results
can be found in [20, 48]. Straightforward discretizations of the collision operator using uniform
discrete meshes in the velocity space result in O(n®) or higher complexity algorithms, where n is
the number of discrete velocity points in one velocity dimension [2, 1, 8, 9, 25, 60, 42]. With the
exception of the spatially homogeneous case, these discretizations become prohibitively expensive
for n > 20. In [50], L. Pareschi and B. Perthame proposed a Galerkin discretization of the colli-
sion operator based on the Fourier expansion of the velocity distribution function. By exploring
properties of the exponential basis, the authors derived a deterministic algorithms with O(n®)
complexity and proved that the discrete collision kernel is low-dimensional. Related approaches
were developed in [35, 38, 28, 24| based on applications of the Fourier transform to the collision
operator. Fourier-Galerkin approaches were used to simulate gases with internal energies in [47].
Discontinuous Galerkin discretizations on uniform grids with O(n%) complexity were developed in
[5].

Historically and recently, there has been a significant interest to develop algorithms of even
lower computational complexity than the above examples. Development of faster methods is
critical for the success of simulations of mixtures of gases and gases with internal energies. Two
main directions were pursued: derivation of discretization schemes that require fewer operations
than O(n%) to be used with large values of n, and methods that may have high complexity, e.g.,
O(n?), but that provide accurate solutions for low values of n. (The approach presented in this
paper is in the second category.) A. Bobylev and S. Rjasanow developed an O(n') algorithm
for evaluating the collision integral in the case of Maxwell’s pseudo-molecules in [14]. In [15],
the same authors used Carleman representation of the collision operator to separate integration
of the collision integral in the case of hard spheres potential reducing it to integration of one-
dimensional convolutions of the distribution function. The resulting approach has complexity
of O(Mn?logn) operations. Approaches were proposed based on discrete velocity models on
uniform meshes in which only small subsets of pairs of velocity points participate in evaluation
of the collision integral [10, 11, 49]. In these approaches, the velocity pairs are selected so as
to enforce conservation laws. An efficient method was introduced in [52] by formally applying a
Galerkin discretization in the velocity variable using a basis of Dirac delta-functions defined at
the nodes of a uniform velocity grid. Efficient evaluation of the collision integral is achieved by
introducing quasi-stochastic Korobov integration. The method has been applied to simulation of
gas mixtures and gases with internal energies in multidimensional applications [53, 39]. A related
approach was developed in [43, 55] using stochastic evaluation of the multifold collision operator.

C. Mouhot and L. Pareschi [45] used Carleman representation of the collision operator and
Fourier-Galerkin approximation of the velocity distribution function to develop an O(n?logn) ap-
proach by replacing the double integral with a sequence of decoupled one dimensional convolution
integrals in the case of the hard spheres potential, see also [15, 13]. The approach was extended
in [44, 22] leading to multidimensional simulations of gas in [21, 58, 36] and of gas mixtures in
[59]. A generalization of the approach to discrete velocity models with uniform velocity meshes
can be found in [46]. Following similar ideas, an O(mk*log k) algorithm was proposed in [26] for
formulations based on the Fourier transform of the collision operator.
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There is, however, a consensus in the research community that existing methods do not fully
utilize properties of the problems yet and that more efficient methods can be proposed for eval-
uation of the collision operator. In [23] a hyperbolic cross approximation of the solution in the
frequency space was proposed introducing adaptivity in spectral methods. A polynomial spectral
discretization was proposed in [29] and applied to solution of two dimensional super sonic flows.
A method based on the Fourier transform of the collision operator and using representations of
the solution on non-uniform meshes was proposed in [30]. In [27] a Galerkin-Petrov discretization
is proposed for the spatially homogeneous Boltzmann equation. In their approach, the velocity
distribution function is approximated using products of Laguerre polynomials and spherical har-
monics, allowing for compact approximations of smooth solutions. Polynomial test functions are
used to make the approach conservative by construction. The methods was applied to solution of
a one-dimensional Boltzmann equation in [37].

Recently, artificial neural networks and machine learning were applied to solution kinetic equa-
tions in [41]. An approach using low rank tensor approximations of model kinetic solutions was
proposed in [16]. Machine learning approximation of the collision operator were developed in
[32]. Among other attempts to obtain faster evaluation of the collision operator we mention
[4, 3] where approximation of kinetic solutions by sums of homogeneous Gaussians was used to
accelerate evaluation of the collision integral.

In this paper we use techniques of model reduction [57, 6, 7] to construct a compact discretiza-
tion basis for a class of solutions to problem of spatially homogeneous relaxation. The basis is
constructed by performing singular value decomposition of the collection of solutions. The reduced
order model (ROM) is obtained by performing Galerkin discretization of the spatially homoge-
neous Boltzmann equation using the constructed basis. The complexity of the developed approach
is O(K3), where K is the total number of the basis functions used in approximation. Thus the
proposed approach is prohibitively expensive asymptotically. However, for the considered class
of solutions, only a small number of basis functions is required achieving at least two orders of
magnitude acceleration as compared to the O(n%) nodal-discontinuous Galerkin discretization [5].

2. THE REDUCED ORDER MODEL

2.1. The Boltzmann equation. In the kinetic approach the gas is described using the molecular
velocity distribution function f(¢,Z, ) which has the property that f(¢, Z, v)dZ dv represents the
number of molecules that are contained in the box with the volume di around point ¥ whose
velocities are contained in a box of volume dv" around point ¢. In this work, we are concerned
with the solution of the spatially homogeneous flows that correspond to the assumption that the
f(t, &, ¥) is constant in the & variable. In this case, the dynamics of the gas is given by the spatially
homogeneous Boltzmann equation (see, for example [40, 19]),

0
3¢/ (4.9) = 1lf](t,9). (1)
Here I[f] is the molecular collision operator
11f1(¢, ) :/ / (f(t, ) f@t,u") = f(t,0)f(t,u©))B(|g|, cos 0) do dii, (2)
R3 Js?

where # and @ are the pre-collision velocities of a pair of particles, § = ¢ — @, S? is a unit sphere
in R? centered at the origin, « is the unit vector connecting the origin and a point on S?, 4 is the
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deflection angle defined by the equation cos @ = - G/|g|, do = sin 0 dfde, where ¢ is the azimuthal
angle that parametrizes W together with the angle 6. Vectors ¥ and @' are the post-collision
velocities of a pair of particles and are computed by

1
V=0-5G—lgld), @ =v-

; G+ lgl) g
The ROM considered in the paper is obtained by performing the standard Galerkin discretiza-
tion of (1). The key difference from other approaches is that the basis functions for the dis-
cretization are obtained numerically and are closely associated with discretization [2, 5], that is
used to computed it. In principle, one could consider these basis functions independently using
a suitable interpolation and derive a stand alone discrete scheme. Such approach could be ben-
eficial for spatially inhomogeneous problems, since is leads to low order discretizations of kinetic
equations. Development of such discretizations will be the future authors” work. In the spatially
homogeneous case, however, it appears practical to integrate the ROM with the “parental” nu-
merical method. Specifically, the ROMs presented in this paper are implemented as subroutines
in a multi-functional kinetic code and are used interchangingly with the full discretization of the
collision operator as a way to accelerate computation.

N | —

2.2. Nodal-DG Discretization of the Boltzmann Equation. We will start by briefly de-
scribing the high order nodal-DG discretization in the velocity variable that is used to obtain the
basis functions for the ROM. For additional detail, the reader is referred to [1, 2, 5. We will
assume that a rectangular domain in the velocity space is partitioned into uniform rectangular
parallelepipeds, K;, j = 1,..., M3 where M is the number of velocity cells in each dimension. On
each element K of this partition we introduce a nodal-DG basis ¢;.;(0), i = 1,...,s* associated
with Gauss-Legendre quadrature of order s [31]. The distribution function if sought in the form

F0) = 7 fig(t)diy (D). (4)

i=1,s3
j=1,M3

Following the standard Galerkin procedure the discrete velocity form of (1) is:

atfi;j(tv 17) - I(i)i;j ) (5)
where I,  is the projection of the collision operator on the basis function ¢,;(v):
8 _, N
Lo = g, @D 07 ©)

Due to the fact that elements K; are uniform, all basis functions ¢;;(@) can be obtained from
a single set ¢;(@0) by a shift, ¢;.;(7) = ¢;(d + ;). In [3], the bilinear convolution form of the
Galerkin projection of the collision operator was introduced

L) = o3z [ [ o=@ - 9670, g

where, in the case of inverse k-th power forces between particles,

Aw.5:00 = [ (6.0 + i) — i) — (00 (0)do.
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Here a« = (k — 5)/(k — 1) and all results obtained in the paper correspond to = 1 known
as the hard sphere model. We note that Iy, is recovered from I(&) by a substitution of the
corresponding w;, namely I, = I;(10;).

Integrals in (7) are discretized using Gauss quadratures native to the nodal-DG method yielding
a discrete convolution form of the collision operator:

g3

M3
Lij = L(@) = Y D fegiFongr—iAiving g (8)
i =14’ j"=1

where fi’;j’—j = f(t,ﬁi/;j/ - u7j), Ai,i’,i”;j’,j” = A(ﬁi’;j’ygi”;j”; ¢1)(WZ/AU/8) (wZ//A6/8) and the three
dimensional indices " and i” run over the velocity nodes within a single velocity cell and indices
j" and j” run over all elements K;. We note that some shifted indices j' — j point outside of the
velocity domain and the values of the solution outside of the domain are substituted with zeros.
The discrete convolution form can be evaluated directly with O(s? M®) operations as in [1, 2]. To
derive a faster method [5], all discrete arrays are extended periodically and the discrete Fourier
transform is applied resulting in a reduction of one sum:

s3 M3-1
Fllilp=M* > > F U aF T Aiir i lp-1 (9)
i i"=0 =0

where F~1[f;], is the inverse discrete Fourier transform of discrete solution f;; in index j and
F[A; i)y is the discrete Fourier transform of A(4,4',4”, j/, ) in indices j' and j”. Formula (9)
leads to the development of O(s? M%) method for evaluation of the collision operator. The method
parallelizes effectively in indexes 4,i’, i providing scalability. The assumption of periodicity and
the use of Fourier transform potentially introduces aliasing in solutions. To minimize aliasing
while keeping accuracy, the domain should be selected sufficiently large so that the diameter
of solution’s support is approximately half of the linear domain size. This leads to a waste of
degrees of freedom in the numerical scheme. Nevertheless, solutions can be computed at least
two orders of magnitude faster than with the O(s°M?®) direct convolution approach for s = 1,3,
M > 30. Additional comparison of the two methods can be found in [5]. In this paper, the Fourier
convolution approach is used to compute the collection of training solutions described in the next
section while the direct convolution is used for offline computations of the discrete kernels of the

ROMs.

2.3. Class of solutions and solution collection. The class of solutions for which the ROM
is constructed consists of solutions to the problem of spatially homogeneous relaxation with the
initial data given by two homogeneous Gaussian densities. The initial data is normalized so that
the velocity distribution function has unit density, zero bulk velocity and a set temperature. In the
simulations presented in this paper, the value of dimensionless temperature .2 was used. The value
of the temperature is selected so as to reduce aliasing in the scheme (9) above. The bulk velocities
of the homogeneous Gaussian densities have zero v, and vs components, thus the solutions are
radially symmetric in vyvs-velocity plane.

A collection of solutions is computed by randomly generating macroscopic parameters of density,
the v; components of the bulk velocity, and temperatures of two homogeneous Gaussian densities
and solving (5) until a steady state is reached. The numerically computed velocity distribution
functions are saved at multiple instances in time, each save becoming a data point in the collection.
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Ficure 1. (left) Constructing the training solution data matrix: 3V solutions are
reshaped into vectors f; which are then stacked as rows of the solution data matrix
D;;. (right) Singular values of the solutions data matrix and estimated accuracy in
Frobenius norm plotted on logarithmic scale.

We note that due to normalization of the initial data, the steady state is the same for all computed
solutions.

The saved discrete solutions are re-arranged as one dimensional arrays f;. Then f; are added
as rows to the matrix D;;, where index ¢ runs over all saved solutions and index j runs over all
discretization points. This process is schematically depicted in Figure 1.

Singular values of matrix D;;, i = 1,..., P, j =1,...,M® M = 41, P ~ 5000, are shown in
Figure 1. About 100 of cases of initial data are included in the results in Figure 1. It can be seen
that the singular values decrease very fast allowing for low rank approximation ﬁij of the data
matrix D;;:

K
Dij = ousg}. (10)
=1

Here o7 is the [-th singular value, y! is the I-th left singular vector and fjl. is the [-th right singular
vector of D;;. Vectors §§~ represent orthogonal modes in solutions and o; represents the relative
importance of these modes in the solution data. A SVD truncation theorem of numerical linear
algebra states that the relative L? norm of error of approximating D;; with a truncated sum (10)
is 3.68E-3 for K = 16, 1.63E-4 for K = 35, and 1.74E-5 for K = 53. The relative Frobenius norm
of the SVD truncation is given by the quantity ex = (31 ., 02)2/(X0, 02)/2. Values of ex
for K = 16, 27, 35, 42, and 53 are 6.71E-3, 1.14E-3, 3.51E-4, 1.53E-4, and 4.27E-5, respectively.
This suggests that training solutions can be approximated accurately with first 35 singular vectors
5; and these vectors provide a very efficient basis for representing this class of solutions (but not

other classes of solutions).
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2.4. Reduced Order Model for the Boltzmann equation. Assuming that an unknown so-

lution is represented by the training collection, a ROM can be readily obtained from lower rank
. . . _ l . . . . .

approximation (10). We define matrix H;; = {; that provides a linear projection mapping from the

space RM” where discrete solutions reside to the lower dimensional space R, K < M 3 of coeffi-
ments y; of linear combinations of first K singular vectors fl In particular, y;, = Z i1 Hlj f;j and

fi = 28, Hyjy,. Substituting the approximation f; in (8) and applying projection H; we obtain
our first ROM (here we assume s = 1 for Simplicity, although a generalization is straightforward):

3
Oy = O (i ijfj) ZHkJ Z Z (Z H ’J’—J?/k’> <Z Hyn "—jyk">AJ']"
j=1

l 1]Il 1 k/ 1 H 1
K K
= E E yk”yk”Ak’,k‘”,k‘ (11)
k'=1k"=1
where
M3 M3 M3
Avpri = Hig Y Y Hyy_jHpr jr_jAjo o (12)
Jj=1 Jj'=1j"=1

We note that for fixed values of k, &, k", the two internal sums are identical to (8). As a result, the
three index array Ak/,ku?k is pre-computed using either direct convolution or the Fourier convolution
approaches. Modifications of the existing nodal-DG solver [5] to compute fik/,k/@k are minimal.
There are two alternative formulations of ROM (11) that are of interest. First, we can use the
fact that the exact collision operator vanishes on homogeneous Gaussians and replace (11) with

K

Oy = Z (g + wir) (Yo — wir) Apr o (13)
K k=1

where wy, is the ROM projection of the steady state solution. The difference between (11) and

(13) is the term
K K

Z Z wk’wk”Ak’,k”,k

K=1k'=1
that is theoretically expected to converge to 0 as K — oo and as we increase the number of
points in the underlying nodal-DG discretization. In practice, however, the term is not expected
to converge due to accumulation of roundoff errors. In fact, this term is not small for the ROM
approximations of the steady state solution and subtraction of this term has been known to
improve approximations for solutions that are near the steady state. As a result, in simulations
presented in the next section, this form of ROM is used.

The second modification is due to the fact that wy is time independent and thus d;wy = 0.

Introducing ey, = yr — wy, we rewrite (13) as

K K
Orey = Z By ker + Z ek’ek”Ak’,k”,ka (14)

k=1 k' k=1

K ; . . .
where By, =2 1 Aw i gwir. One can see that e, = 0 is a solution of this system.
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One option is to implement the entire solver in the ROM basis using either (11), (13), or (14).
However, in this paper, ROMs (11), (13), and (14) are used inside the fully discretized nodal-DG
solver as subroutines for fast evaluation the collision operator. Specifically, in each call of the

subroutine, projection of the solution y; = Z]Afl Hy;f; is computed. Then, either (11), (13), or

(14) is used to evaluate 8. Finally, the recovery I ;= Z{; OwyiHyj is used to approximate the
value of the collision operator. The resulting method has complexity O(K?3) + O(K M?), which is
intractable for K > 10*, but yields significant acceleration when K3 < MS.

Evaluation of arrays flk/,ku,k and By i, represents the offline stage of the ROMs. Computational

costs for Ak’,k”,k and By ; are equivalent to costs of evaluating K 2 and K collision operators,
respectively. In practice, computations of these arrays for M = 41 grid resolution and K = 65
takes about 10 hours on an XSEDE’s Bridges HPC compute node using the Fourier convolution
approach. Direct convolution approach does not introduce aliasing errors, and was used for basis
functions with large supports, resulting in about 100 times slower computations. However, the
implemented scalable MPI parallelization of the code allows to achieve comparable wall times.
Updating the ROM basis, e.g., when an outlier is encountered, requires re-evaluation of compo-
nents of Ak/,ku,k and By ;. It is expected to be more time consuming than computing solutions
using the full discretization of the collision operator and is not practical in the online stage. As a
result, the approach is most useful for cases when many similar flows need to be computed cheaply,
e.g., in grid parameter searches or parameter optimization.

3. NUMERICAL RESULTS

In this section we discuss results of applying ROM (13), (12) to the solution of the problem of
spatially homogeneous relaxation. Our first numerical experiment is concerned with estimating
errors caused by projecting the solutions and the collision operator to the ROM basis formed by
singular vectors of the data matrix D;;. Benchmark solutions for this experiment are computed
using a nodal-DG formulation [5] on 41% grid points. In the following, solutions are identified by
their deviation from continuum at the initial time using the quantity e = ||£(0,7) — fM(9)|| 11,
where fM (%) is the homogeneous Gaussian density with the same macroscopic density, bulk ve-
locity, and temperature as f(¢,7). In Table 1, relative L' errors in approximate solutions and
collision operators are computed for different sizes of ROM bases for four randomly selected cases
of initial data identified by ¢ = .1, .24, .29, and 1.1. Values € = .1, .24, and .29 represent medium
deviations from continuum, and value € = 1.1 represents strong deviation from continuum. The
first two solutions presented in Table 1 (¢ = .29 and ¢ = 1.1) are part of the dataset used to
develop the ROM model. The last two solutions (¢ = .24 and ¢ = .1) were generated after the
ROM was trained. Thus, while they belong to the same class of solutions, these solutions were
not used to build the ROM. In total, ten randomly picked training solutions and ten randomly
generated new solutions were reviewed for accuracy and the results were consistent with those
included in Table 1.

It can be observed in Table 1 that, for the first two solutions, errors of the ROM approximations
decrease consistently with the SVD truncation estimates. In particular, as the size of the truncated
SVD basis is increased from 16 to 53, the errors decrease by two orders of magnitude. Errors of
approximating the collision operators are one order larger than for the corresponding solutions.
Nevertheless, the errors decrease with same rate. In contrast, the errors for the last two solutions
decrease only by one order of magnitude. It is not surprising: since the latter solutions are not
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included in the ROM training data, it is likely that these solutions are on the margins of the cases
that are familiar to the ROM and that the SVD basis may not be rich enough to approximate it
asymptotically. That is, we expect that non-negligible components are present in these solutions
that are orthogonal to the space spanned by the training data. One can see that errors are larger
for the ¢ = .24 solution than for the e = .1 solution. This suggests that the ¢ = .1 solution fell
withing the cases that are familiar to the ROM while the € = .24 solution is an outlier. We note
that larger values of € do not, in general, result in larger approximation errors. Instead, large
approximation errors happen when ROM encounters a case that is not covered by its basis. Only
about 100 cases of randomly initialized solutions were used to train the ROM. This, evidently,
is not sufficient to achieve good coverage of the solution manifold. It is expected that one could
improve the approximating properties of the ROM by increasing the size of the training data set.
However, it not clear how many random samples are needed to guarantee asymptotic convergence
with high probability for a randomly generated set of initial data. In all cases, convergence of
approximations of the collision operators follows the convergence of solutions, which suggests that
slow convergence of approximations of solutions could be used as a predictor of poor approximation
of the collision operator by the ROM.

€=.29 e=1.1 e=.24 e=.1
k | sol. Jcoll. op.| sol. [coll. op.| sol. |coll. op.| sol. |[coll op.
16 | 3.50E-2 | 1.82E-1 | 3.20E-2 | 8.28E-2 | 7.85E-1 | 3.07E-1 | 7.19E-3 | 8.30E-2
27 | 1.66E-2 | 7.58E-2 | 1.35E-2 | 3.37E-2 | 4.34E-2 | 2.24E-1 | 1.71E-3 | 2.41E-2
35 | 2.55E-3 | 2.05E-2 | 2.92E-3 | 1.20E-2 | 2.50E-2 | 1.01E-1 | 1.05E-3 | 1.02E-2
42 | 1.13E-3 | 1.13E-2 | 1.42E-3 | 6.98E-3 | 1.69E-2 | 9.39E-2 | 4.07E-4 | 9.41E-3
53 | 3.69E-4 | 3.97E-3 | 5.15E-4 | 2.34E-3 | 1.31E-2 | 4.68E-2 | 1.32E-4 | 3.22E-3

TABLE 1. Relative L! errors in approximating solutions and the corresponding
collision operators in truncated singular value bases.

In Figures 2 and 3 results are plotted for solving the problem of spatially homogeneous relaxation
using ROM. In Figure 2 relaxations of directional temperatures and third moments are compared
to those of solutions computed using fully discretized Boltzmann equation [5]. The moments
are defined as f,,, = [ps(vi — G)Pf(t,0)dv, i = 1,2, p = 2,3, U = (v1,v2,v3). Initial data for
solutions in these plots was generated after the ROM was constructed. That is, the ROM does
not include data from these solutions. The last two solutions from Table 1 are included in the
plots. It can be seen that approximations obtained by ROM model are very accurate. Not shown
here, differences could be observed in sixth moments, however, overall, the solutions achieve very
good accuracy. The computational speedup achieved by the ROM is summarized in Table 2. The
time is measured for a single threaded evaluation on Bridges HPC regular compute nodes (2 Intel
Haswell E5-2695 v3 CPUs with 14 cores per CPU, 2.3-3.3 GHz). Overall, at least two orders
of magnitude of speedup were observed. These CPU times also show significant improvement
compared to times reported in [26] for a fast spectral method. However, for a fair comparison,
we also need to consider costs of building the ROM, which in our case include several thousands
of evaluations of collision operator using full discretizations and are significant. As a result, the
approach is only suited for problems in which many like simulations need to be performed, for



10 A. ALEKSEENKO, R. MARTIN, AND A. WOOD

example, during a parameter grid search. For such problems, costs of training the ROM can be
offset by the savings of computing the collision operator.

2
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FIGURE 2. Relaxation of moments fy, , = [ps(v; — 0;)Pf(t,7) dv, i = 1,2, p = 2,3,
U — (Ula Uy, U?))'

k | CPU time, s | Speedup vs. O(M?®), 151 sec | Speedup vs. O(M?), 31116 sec

16 11 1.37E+3 2.82E+4
27 19 7. 75E+2 1.60E+4
35 21 7.31E+2 1.51E+4
42 27 5.42E+2 1.12E+4
93 .39 4.31E+-2 8.89E+3

TABLE 2. Speedup in evaluating one instance of collision operator using ROM.
Comparisons are made to the CPU times for evaluating the collision operator on the
mesh with 413 grid points using the nodal-DG Fourier transform based approach
with O(M?®) complexity (151 seconds average) and the direct convolution nodal-DG
approach with O(M?®) complexity (31116 seconds estimated). Here M is the number
of velocity points in one velocity dimension.

In Figure 3, the long term behavior of directional temperatures in ROM solutions is considered.
The presented solutions correspond to the last two cases of initial data included in Table 1:
solutions corresponding to the initial data with e = .24 are presented in the left plot, and solutions
with € = .1 in the right plot. All solutions are computed using ROM (13), (12) with different
sizes of the ROM basis. According to Table 1, approximation errors in the case of ¢ = .24 are
larger. As a result, the solutions are expected to be less accurate than the solutions for ¢ = .10
data. This indeed is the case, as the left plot shows a considerably larger errors in the steady
state solutions. It can be seen, however, that in both cases, solutions with K = 16,27, 35, and 42
reach steady states away from the theoretically predicted states. In the case of K = 53, a linear
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instability is present in both plots, but is more prominent in the case of ¢ = .24. Noticeably, in
this case, linear growth of energy and nonlinear growth of density are observed. We will attempt
to investigate causes of this linear instability next.
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Long term behavior of directional temperatures in ROM solutions.

To understand the source of instability in ROM solutions, we take a closer look at formula
(14), which is equivalent to (13). In Figure 4, largest real parts of eigenvalues of matrix By j are
plotted as functions of the ROM size (triangles). One can see that for K < 47, all eigenvalues
have strictly negative real parts and at least one eigenvalue has real part that is close to zero. For
K > 48, eigenvalues with positive real parts are present making the e, = 0 solution unstable. The
presence of these eigenvalues explains the unstable mode in Figure 3 for K = 53.

\ o o
- « o «

Max Re(A,) of the Linear Kernel By«

=
w«

FIGURE 4.
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basis of truncated singular vectors (triangles) and the zero conserved moments per-
turbation basis (circles).

To understand the non-physical long term steady state values in Figure 3, it is informative to
consider the portion of the solution that is not captured by the ROM basis. In Figure 5, the
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difference between the the steady state ROM solution and the exact solution is compared to the
error in approximating the initial data in the ROM basis for the case of K = 35. One can see that
the two errors are very similar, with the differences explainable by truncation errors in the model
including small errors in conservation that accumulated over 2.0E4-5 time steps of the simulation.

20 29
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110 1.0 /
1.5 / 15 "
20 / 20
£ / s |
Fﬁ% i | . / F% . /
BN Sl S
00 ™ 00 |
VZ 05 | V1 " 1o0ls 20 Vg 8.5 V1 1520
-K0 ; 0,00 05" EN) ¥ 0.5
243 -0.5 i -0.57
| 5-1.0 1510

FiGure 5. Failure of the ROM basis to capture the ¢ = .24 solution in the case
of K = 35: (left) difference between the long term steady state ROM solution and
the exact solution; (right) ROM residual in the initial data.

In Table 3, moments of the errors in the ROM projections of the initial data are shown for
e = .24 solution for different sizes of the ROM basis, including the case presented in Figure 5.
While the density, n, of the projection error is less than a percent of the total solution density,
other moments have large values. When combined with the ROM solution using known formulas,
these moments cause the non-physical values seen in Figure 3. Another important observation is
that the non-vanishing ROM projection errors affect the conserved moments. In particular, the
density, bulk velocity, and temperature of the ROM projection are not equal to those of the full
solution. To circumvent the non-physical steady state values, long term instability for large ROM
sizes, and loss of conservation, a modified ROM model can be proposed based on formulation (14)
as is discussed next.

k ‘ n ‘ 1_}1 ‘ T ‘ fv1,2 ‘ fvg,Z ‘ fv1,3
16 | -4.34E-3 -.04 241 -89 | .56 | 1.13
27| 2.87E-3 -.35 21| -.61 | 41 | .69

35| 1.29E-3 | -1.32 |-91|-1.65| .37 |-9.33
42| 547E-3 | -1.87TE-2 | 94 | 33 | .30 | -.22

TABLE 3. Moments of the ROM residuals in the initial data of ¢ = .24 solution.
Here n is the formal density, v7 is the v; component of the formal bulk velocity, T’
is the formal temperature, and f,, , = [ps(vi — ;)7 f(t, ¥) dv.
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3.1. Zero Conserved Moments Perturbation Basis. Consider a version of the ROM that
is based on formulation (14), but introduces modifications to both the truncated SVD basis and
the evolution equations. Specifically, we will add the discrete representation fJM of the exact
steady state fM(7) as the first basis vector of the new ROM basis. Clearly, singular vectors fj’ are
not orthogonal to f'. Starting with the ', the Gram-Schmidt orthogonalization is performed
to obtain a new set of orthogonal vectors. It was observed that the new vectors have non-zero
conserved moments. Beginning from the second vector, corrections are introduced to each vector
to nullify their conservative moments while keeping it orthogonal to the first vector, that is, to
the steady state solution. To minimize the effect of the conservative correction on the support of
the basis vectors, corrections are only introduced in the components that are larger than .01 in
magnitude. After the correction is introduced, the system is orthogonalized one last time and the
first vector is removed producing the final zero conserved moments perturbation (ZCMP) ROM
basis.

In ZCMP ROM, the problem of spatially homogeneous relaxation is solved by evolving the
deviation of the solution from the steady state, g(t,v) = f(t,7) — fM(¢). The steady state
solution is a Maxwellian distribution f™ (%) with mass, momentum, and temperature being the
same as of the initial data. By construction, the first basis function represents the steady state;
as a result, the coefficient of the first basis function is simply kept constant during simulation.
Values of ¢(t,v) are decreasing with time eventually leaving the Maxwellian as the steady state
solution.

Furthermore, the deviation g(t,¥) is split into two parts, g(¢,v) = grom(t, ¥) + g1 (¢, ¥), where
grom(t, V) is the projection of g(t,7) onto the ZCMP basis and g, (¢,7) is its orthogonal com-
plement. Evolution for grom(t, ¥) is given by (14), with the projection matrix Hy; and arrays
Ak/,k/@k and By, corresponding to the ZCMP basis. Following the ideas of [17, 56, 18], evolution
of g, (t,7) is simply an exponential decay

atgj_ (ta 17) = —vg1 (t> 17)7

where v is the dimensionless collision frequency v(t, Z) of the ES-BGK model [33],

NookvVTs 0T

L2V2R (1—a)u
Here 1 is the gas viscosity, a is the parameter that controls the Prandtl number of the ES-
BGK model; constants T, N, and L., are related to the dimensionless reduction and represent
reference dimensional temperature, number density, and characteristic length, respectively; & is
the Boltzmann constant; and R is the normal gas constant.

We note that the ZCMP ROM is conservative by construction. We recall that ¢(t,v) has zero
mass, momentum, and energy. By forcing basis functions of the ZCMP ROM to also have zero
mass, momentum, and energy, one guarantees that both the ZCMP ROM portion of the solution
grom(t, ¥) and the projection residual g, (¢, ¥) are free from violations of constraints up to round-off
errors. Additional ideas to enforce conservation laws in Galerkin methods with globally supported
bases can be found in [28, 61, 34, 51].

The first benefit of removing the steady state solution from the ROM (14) is that the solutions
become stable for large sizes of the ROM. In Figure 4, largest real parts of the eigenvalues of

the matrix By are presented for the ZCMP basis (circles). The real parts remain below —1
for K > 48. In Figure 6, long term behavior of the ZCMP ROM solutions is considered. The

(15)



14 A. ALEKSEENKO, R. MARTIN, AND A. WOOD

left figure corresponds to keeping the orthogonal complement ¢, (t,v) constant, while the right
figure corresponds to damping ¢, (¢, ') exponentially in time using (15). In both cases, no growing
instabilities are observed in the solutions even when sizes K = 53 and K = 65 were used for
the ZCMP ROM. We can still observe the non-physical steady-state values in the plots on the
left. However, it is clear that these values are caused by the non-vanishing component ¢g,. In
the simulations presented in the right plot, the component g, decays exponentially and the non-
physical values are not present.
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In conclusion, we compare solutions obtained by the ZCMP ROM with damping to those ob-
tained by the classical Bhatnagar-Gross-Krook (BGK) [12] and the ellipsoidal-statistical BGK
(ES-BGK) [33] models. In Figure 7 relaxation of the second and third moments are presented for
the case of initial data with € = .86. It can be observed that the relaxation of the second moments
is very accurately captured in all simulations. For the third moments, the ZCMP ROM solutions
are superior to the BGK and ES-BGK models. Not shown here, the results for fourth and higher
models are mixed with the BGK model sometimes being more accurate then the ZCMP ROM.

The computational costs for the ZCMP ROM K = 27 solution is about two times faster than
the BGK and ES-BGK models, while for K = 65 is about four times slower. It should be
noted, however, that both BGK and the ES-BGK models, while capturing the second moments
accurately, do not produce correct distributions f(¢,v). This fact is illustrated in Figure 8 where
vz = 0 cross sections of solutions are presented at about two mean free times mark. Plot (a)
shows the cross section of the solution to the Boltzmann equation, while plots (b), (¢) and (d)
show the differences between the solution to the Boltzmann equation and the BGK, ZCMP ROM
for K = 27 and K = 65 solutions, respectively. It it observed that the BGK solution has areas
with 3.7% error, while ZCMP ROM solutions have maximum error at about .55%. As a result,
ZCMP ROM solutions reproduce the velocity distribution function more accurately.

Another observation about the ROM solutions is that solutions with larger size of the basis, say
K = 65, produce less accurate values of moments then solutions for moderate size of the basis,
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FIGURE 7. Relaxation of second and third moments in solutions obtained by the
BGK model, the ES-BGK model, and the ZCMP model for sizes of the bases K = 27
and K = 65. A solution to the Boltzmann equation is included for comparison. All
solutions correspond to the case of initial data ¢ = .86.

K =27. An example of accuracy loss can be seen in Figure 7 for the third moments computation.
The reason for such loss of accuracy could be elucidated from Figure 8(c) and (d) where the errors
of approximating the Boltzmann solutions by the ZCMP ROM are presented for two different
sizes of the basis, K = 27 and K = 65. It was observed, that as the order number of the ROM
basis vector increases, its support expands and the basis vector becomes more oscillatory. It can
be seen in Figure 8(c) and (d), that K = 65 solution has a region of small errors, less than .05%
that stretch further out than that of the K = 27 solution. This problem seems to affect more the
solutions that are outliers with respect to the ROM training data. It appears that third moments
in Figure 7 are sensitive to these small perturbations.

The observed perturbations of solutions for large sizes of the ROM bases are likely caused by
oscillatory nature of the high order basis functions and the way the ROM residual g, is treated.
Initially, oscillations in the high order basis functions are “canceled out” by matching oscillations
in the residual resulting in a smooth solution. Once the residual starts to decay exponentially
with frequency given by (15), the residual and the solution are no longer “in sync”. In particular,
it appears that the residual is driven to zero at a rate faster than its counterpart in the ZCMP
ROM model. As a result, oscillations in the high order basis functions no longer cancel, producing
the observed perturbations in high order moments. A possible workaround to this problem could
be a more sophisticated procedure to treat the residual g, . In particular, one could try to deduce
a “correct” relaxation rate by averaging eigenvalues of the matrix By ;. Alternatively, a smoother
basis functions or a filtering technique could be proposed to reduce pollution by these small
oscillations. Addressing the nonphysical oscillations would be even more important in spatially
dependent simulations and will be the authors’ future work.
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FiGURE 8. Spatially homogeneous relaxation of initial data with ¢ = .86 captured
at about two mean free times mark. (a) The vz = 0 cross section of the solution
to the Boltzmann equation. (b), (c), and (d) The vz = 0 cross sections of absolute
values of the differences between the Boltzmann and the BGK solutions, (b); the
ZCMP ROM K = 27 solutions, (c); and the ZCMP ROM K = 65 solutions, (d).

4. CONCLUSIONS

We had developed, implemented, and tested reduced order models (ROMs) for the spatially
homogeneous Boltzmann equation for a class of solutions corresponding to relaxation of a mixture
of two homogeneous Gaussian streams. The first ROM is constructed by performing a SVD de-
composition and SVD truncation of the solution data matrix. The second ROM is constructed by
augmenting the truncated SVD basis by adding the steady state solution and enforcing conserva-
tion. The measured speedup of the ROM as compared to the underlying full discrete formulation
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is at least two and as high as three orders of magnitude. The ROM provides accurate represen-
tation of solutions although some perturbations in high order moments could be traced to the
way the approach handles ROM residuals. The future authors work will include improving resid-
ual damping procedures and design of smoother basis functions. The presented approach is best
suited for problems where many like simulations need to be performed, e.g., during a grid search
optimization. The reason for that are the considerable costs of off-line training of the ROM, the
process that requires many evaluations of the collision operator done beforehand. This, in partic-
ular means that the method can only be applied to problems for which solutions could be obtained
by other means. However, the approach will significantly accelerate the solutions once sufficient
data about the problem is gathered. The approach could be potentially used for simulations of
complex flows if local features of the flows could be reproduced on a smaller scale in order to train
the ROM. Another possible solution is to attempt model training online by studying solution
dynamics. Development of these approaches will be the authors’ future work.

5. ACKNOWLEDGMENT

The first and third authors were supported by AFIT and Air Force Office of Scientific Research
grant FAFGA08305J005. The first author was also supported by NSF DMS-1620497 and DMS-
2111612 grants. The second author was supported by Air Force Office of Scientific Research under
Award Number FA9550-20QCOR100 (PO: Fahroo). The research was supported in part by the
Air Force Research Laboratory Propulsion Directorate, through the Air Force Office of Scientific
Research Summer Faculty Fellowship Program, Contract Numbers FA8750-15-3-6003, FA9550-
15-0001 and FA9550-20-F-0005. Computational resources were provided by the Extreme Science
and Engineering Discovery Environment (XSEDE) [54], which is supported by National Science
Foundation grant number ACI-1548562.

REFERENCES

1. A. Alekseenko and E. Josyula, Deterministic solution of the Boltzmann equation using a discontinuous Galerkin
velocity discretization, 28th International Symposium on Rarefied Gas Dynamics, 9-13 July 2012, Zaragoza,
Spain, AIP Conference Proceedings, American Institute of Physics, 2012, p. 8.

, Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin
discretizations in the velocity space, Journal of Computational Physics 272 (2014), no. 0, 170 — 188.

3. A. Alekseenko, T. Nguyen, and A. Wood, A deterministic-stochastic method for computing the Boltzmann
collision integral in O(mn) operations, Kinetic & Related Models 11 (2018), no. 1937-5093_2018_5_1211, 1211.

4. Alexander Alekseenko, Amy Grandilli, and Aihua Wood, An ultra-sparse approzimation of kinetic solutions to
spatially homogeneous flows of non-continuum gas, Results in Applied Mathematics 5 (2020), 100085.

5. Alexander Alekseenko and Jeffrey Limbacher, Evaluating high order discontinuous Galerkin discretization of
the Boltzmann collision integral in O(n?) operations using the discrete Fourier transform, Kinetic & Related
Models 12 (2019), no. 1937-5093-2019_4_703, 703.

6. David Amsallem, Matthew J. Zahr, and Charbel Farhat, Nonlinear model order reduction based on local reduced-
order bases, International Journal for Numerical Methods in Engineering 92 (2012), no. 10, 891-916.

7. David Amsallem, Matthew J. Zahr, and Kyle Washabaugh, Fast local reduced basis updates for the efficient
reduction of nonlinear systems with hyper-reduction, Advances in Computational Mathematics 41 (2015), no. 5,
1187-1230.

8. V. V. Aristov and S. A. Zabelok, A deterministic method for the solution of the Boltzmann equation with
parallel computations, Zhurnal Vychislitel’'noi Tekhniki i Matematicheskoi Physiki 42 (2002), no. 3, 425-437.

9. V.V. Aristov, Direct methods for solving the boltzmann equation and study of nonequilibrium flows, Fluid
Mechanics and Its Applications, Kluwer Academic Publishers, 2001.




18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A. ALEKSEENKO, R. MARTIN, AND A. WOOD

Hans Babovsky, Discrete kinetic models in the fluid dynamic limit, Computers & Mathematics with Applica-
tions 67 (2014), no. 2, 256 — 271, Mesoscopic Methods for Engineering and Science (Proceedings of ICMMES-
2012, Taipei, Taiwan, 23-27 July 2012).

Hans Babovsky, Translation invariant kinetic models on integer lattices, AIP Conference Proceedings 1628
(2014), no. 1, 640-647.

P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. i. small amplitude
processes in charged and neutral one-component systems, Phys. Rev. 94 (1954), no. 3, 511-525.

A. V. Bobylev and S. Rjasanow, Numerical solution of the boltzmann equation using a fully conservative
difference scheme based on the fast fourier transform, Transport Theory and Statistical Physics 29 (2000),
no. 3-5, 289-310.

A.V. Bobylev and S. Rjasanow, Difference scheme for the boltzmann equation based on fast fourier transfrom,
European Journal of Mechanics - B/Fluids 16 (1997), no. 2, 293 — 306.

, Fast deterministic method of solving the boltzmann equation for hard spheres, European Journal of
Mechanics - B/Fluids 18 (1999), no. 5, 869 — 887.

Arnout M.P. Boelens, Daniele Venturi, and Daniel M. Tartakovsky, Tensor methods for the boltzmann-bgk
equation, Journal of Computational Physics 421 (2020), 109744.

Zhenning Cai, Yuwei Fan, and Yanli Wang, Burnett spectral method for the spatially homogeneous boltzmann
equation, Computers & Fluids 200 (2020), 104456.

Zhenning Cai and Manuel Torrilhon, Approzimation of the linearized boltzmann collision operator for hard-
sphere and inverse-power-law models, Journal of Computational Physics 295 (2015), 617-643.

C. Cercignani, Rarefied gas dynamics: From basic concepts to actual caclulations, Cambridge University Press,
Cambridge, UK, 2000.

G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numerica 23 (2014), 369-520.
Giacomo Dimarco, Rapha el Loubere, Jacek Narski, and Thomas Rey, An efficient numerical method for solving
the boltzmann equation in multidimensions, Journal of Computational Physics 353 (2018), 46 — 81.

F. Filbet, C. Mouhot, and L. Pareschi, Solving the Boltzmann equation in N logy N, STAM Journal on Scientific
Computing 28 (2006), no. 3, 1029-1053.

E. Fonn, P. Grohs, and R. Hiptmair, Hyperbolic cross approzimation for the spatially homogeneous Boltzmann
equation, IMA Journal of Numerical Analysis 35 (2015), 1533-1567.

I. M. Gamba and S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-Lagrangian
methods for the inhomogeneous Boltzmann transport equation, Journal of Computational Mathematics (2010).
I.M. Gamba and C. Zhang, A conservative discontinuous Galerkin scheme with O(N?) operations in computing
Boltzmann collision weight matriz, 29th International Symposium on Rarefied Gas Dynamics, July 2014, China,
ATIP Conference Proceedings, American Institute of Physics, 2014, p. 8.

Irene M. Gamba, Jeffrey R. Haack, Cory D. Hauck, and Jingwei Hu, A fast spectral method for the Boltzmann
collision operator with general collision kernels, STAM Journal on Scientific Computing 39 (2017), no. 4, B658—
B674.

Irene M. Gamba and Sergej Rjasanow, Galerkin—petrov approach for the boltzmann equation, Journal of Com-
putational Physics 366 (2018), 341 — 365.

Irene M. Gamba and Sri Harsha Tharkabhushanam, Spectral-Lagrangian methods for collisional models of
non-equilibrium statistical states, Journal of Computational Physics 228 (2009), no. 6, 2012-2036.

Philipp Grohs, Ralf Hiptmair, and Simon Pintarelli, Tensor-product discretization for the spatially inhomo-
geneous and transient Boltzmann equation in 2D, SMAI Journal of Computational Mathematics 3 (2017),
219-248.

Alexei Heintz, Piotr Kowalczyk, and Richards Grzhibovskis, Fast numerical method for the boltzmann equation
on non-uniform grids, Journal of Computational Physics 227 (2008), no. 13, 6681 — 6695.

J.S. Hesthaven and T. Warburton, Nodal discontinuous galerkin methods: Algorithms, analysis, and applica-
tions, Texts in Applied Mathematics, Springer, 2007.

Ian Holloway, Aihua Wood, and Alexander Alekseenko, Acceleration of boltzmann collision integral calculation
using machine learning, Mathematics 9 (2021), no. 12.

L. H. Holway, New statistical models for kinetic theory: methods of construction, Phys. Fluids 9 (1966), no. 9,
1658-1673.




34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

ol.

52.

93.

54.

95.

56.

o7.

98.

FAST EVALUATION OF THE BOLTZMANN COLLISION OPERATOR USING ROMS 19

Jingwei Hu, Jie Shen, and Yingwei Wang, A petrov-galerkin spectral method for the inelastic boltzmann equation
using mapped chebyshev functions, Kinetic and Related Models 13 (2020), no. 4, 677-702.

I. Ibragimov and S. Rjasanow, Numerical solution of the boltzmann equation on the uniform grid, Computing
69 (2002), no. 2, 163-186.

Shashank Jaiswal, Alina A. Alexeenko, and Jingwei Hu, A discontinuous galerkin fast spectral method for the
full boltzmann equation with general collision kernels, Journal of Computational Physics 378 (2019), 178 — 208.
Torsten Kefiler and Sergej Rjasanow, Fully conservative spectral Galerkin-Petrov method for the inhomogeneous
Boltzmann equation, Kinetic & Related Models 12 (2019), no. ”1937-5093_2019_3_507”, 507.

R. Kirsch and S. Rjasanow, A weak formulation of the Boltzmann equation based on the Fourier transform,
Journal of Statistical Physics 129 (2007), no. 3, 483-492 (English).

Yu. Yu. Kloss, F. G. Tcheremissine, and P. V. Shuvalov, Solution of the Boltzmann equation for unsteady flows
with shock waves in narrow channels, Computational Mathematics and Mathematical Physics 50 (2010), no. 6,
1093-1103 (English).

M.N. Kogan, Rarefied gas dynamics, Plenum Press, New York, USA, 1969.

Qin Lou, Xuhui Meng, and George Em Karniadakis, Physics-informed neural networks for solving forward and
inverse flow problems via the boltzmann-bgk formulation, 2020.

Armando Majorana, A numerical model of the Boltzmann equation related to the discontinuous Galerkin
method, Kinetic & Related Models 4 (2011), no. 1, 139-151.

A.B. Morris, P.L. Varghese, and D.B. Goldstein, Monte carlo solution of the boltzmann equation via a discrete
velocity model, Journal of Computational Physics 230 (2011), no. 4, 1265 — 1280.

C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Mathematics of
Computation 75 (2006), no. 256, pp. 1833-1852 (English).

Clément Mouhot and Lorenzo Pareschi, Fast methods for the Boltzmann collision integral., C. R., Math., Acad.
Sci. Paris 339 (2004), no. 1, 71-76 (English).

Clément Mouhot, Lorenzo Pareschi, and Thomas Rey, Convolutive decomposition and fast summation methods
for discrete-velocity approximations of the boltzmann equation, ESAIM: Mathematical Modelling and Numerical
Analysis - Modélisation Mathématique et Analyse Numérique 47 (2013), no. 5, 1515-1531 (eng).

Alessandro Munafo, Jeffrey R. Haack, Irene M. Gamba, and Thierry E. Magin, A spectral-Lagrangian Boltz-
mann solver for a multi-energy level gas, Journal of Computational Physics 264 (2014), 152-176.

A. Narayan and A. Klockner, Deterministic numerical schemes for the Boltzmann equation, preprint.

V. A. Panferov and A. G. Heintz, A new consistent discrete-velocity model for the Boltzmann equation, Math-
ematical Methods in the Applied Sciences 25 (2002), no. 7, 571-593.

Lorenzo Pareschi and Benoit Perthame, A Fourier spectral method for homogeneous Boltzmann equations,
Transport Theory and Statistical Physics 25 (1996), no. 3-5, 369-382.

Lorenzo Pareschi and Thomas Rey, Moment preserving fourier-galerkin spectral methods and application to the
boltzmann equation, 2021.

F. G. Tcheremissine, Solution to the Boltzmann kinetic equation for high-speed flows, Computational Mathe-
matics and Mathematical Physics 46 (2006), no. 2, 315-329.

, Method for solving the Boltzmann kinetic equation for polyatomic gases, Computational Mathematics
and Mathematical Physics 52 (2012), no. 2, 252-268 (English).

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka,
G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, Xsede: Accelerating scientific discovery, Com-
puting in Science & Engineering 16 (2014), no. 5, 62-74.

P. L. Varghese, Arbitrary post-collision velocities in a discrete velocity scheme for the Boltzmann equation, 25th
International Symposium on Rarefied Gas Dynamics, 21-28 July 2006, Saint-Petersburg, Russia (Novosibirsk,
Russia) (M.S. Ivanov and A.K. Rebrov, eds.), Publishing House of Siberian Branch of RAS, 2007, pp. 227-232.
Yanli Wang and Zhenning Cai, Approzimation of the boltzmann collision operator based on hermite spectral
method, Journal of Computational Physics 397 (2019), 108815.

Kyle Washabaugh, David Amsallem, Matthew Zahr, and Charbel Farhat, Nonlinear model reduction for cfd
problems using local reduced-order bases.

L. Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhang, Deterministic numerical solutions of the Boltzmann
equation using the fast spectral method, Journal of Computational Physics 250 (2013), 27 — 52.




20 A. ALEKSEENKO, R. MARTIN, AND A. WOOD

59. L. Wu, J. Zhang, J. M. Reese, and Y. Zhang, A fast spectral method for the Boltzmann equation for monatomic
gas miztures, Journal of Computational Physics 298 (2015), 602 — 621.

60. Chenglong Zhang and Irene M. Gamba, A conservative discontinuous galerkin solver for the space homogeneous
boltzmann equation for binary interactions, STAM Journal on Numerical Analysis 56 (2018), no. 5, 3040-3070.

, A conservative discontinuous galerkin solver for the space homogeneous boltzmann equation for binary

interactions, SIAM Journal on Numerical Analysis 56 (2018), no. 5, 3040-3070.

61.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY NORTHRIDGE, NORTHRIDGE, CA 91330,
USA

Email address: alexander.alekseenko@csun.edu
Email address: robert.s.martinl63.civ@army.mil
ARMY RESEARCH OFFICE, DEVCOM ARMY RESEARCH LABORATORY, DURHAM, NC 27709, USA

DEPARTMENT OF MATHEMATICS & STATISTICS, AIR FORCE INSTITUTE OF TECHNOLOGY, WPAFB, OH
45433, USA
Email address: aihua.wood@afit.edu



