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Abstract— Recent work on electromyography (EMG)-based
decoding of continuous joint kinematics has included model-
based approaches, such as musculoskeletal modeling, as well as
model-free approaches such as supervised learning neural
networks (SLNN). This study aimed to present a new kinematics
decoding framework based on reinforcement learning (RL),
which combines machine learning and model-based approaches
together. We compared the performance and robustness of our
new method with those of the SLNN approach. EMG and
kinematic data were collected from 5 able-bodied subjects while
they performed flexion and  extension of the
metacarpophalangeal (MCP) and wrist joints simultaneously at
both a slow and fast tempo. The data were used to train an RL
agent and a SLNN for each of the 2 tempos. All the trained agents
and SLNNs were tested with both fast and slow kinematic data.
Pearson’s correlation coefficient (r) and normalized root mean
square error (NRMSE) between measured and estimated joint
angles were used to determine performance. Our results suggest
that the RL-based kinematics decoder is more robust to changes
in movement speeds between training and testing data and has
better performance than the SLNN.

I. INTRODUCTION

Human neuromuscular signals, such as electromyograms
(EMGQG), have been used as inputs to human-machine interface
(HMI) systems for many applications in rehabilitation
engineering, such as exoskeleton [1] and prosthesis control
[2-5]. Recent work has focused on using EMG to
continuously estimate the motion of multiple joints
simultaneously. Much of this work can be divided into two
approaches: model-based and model-free prediction. Model-
based approaches include musculoskeletal models that use the
empirically determined Hill-type muscle model [2-4], as well
as state space kinematic models [6]. An example of a model-
free approach is training a supervised learning neural network
(SLNN) to map EMG data to joint torque or motions [7,8].

Each of these approaches has their advantages and
disadvantages. Model-based approaches make use of
empirically derived and studied systems, such as the Hill-type
muscle model [9], making them more robust to previously
unseen inputs [10]. However, they often require many
simplifying assumptions and require the optimization of many
musculotendon parameters. On the other hand, model-free
approaches can be quickly trained or optimized and can
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recreate complex behaviors that are difficult to explicitly
model. However, model-free approaches make use of black
box functions and are heavily dependent on the amount and
quality of training data provided.

In this paper, we use reinforcement learning (RL), an
advanced machine learning method, which allows actions
taken by an agent to be used as inputs to an environment that
calculates the final output [11]. This method seeks to
maximize a reward calculated by a predefined function. We
trained RL agents to map processed EMG signals and
previous kinematic states to wrist and metacarpophalangeal
(MCP) joint torques which were then input to a forward
dynamics model to calculate joint angles. Because EMG
signals have a closer relationship to forces exerted by muscles
than joint angles, this method has an advantage over the
SLNNs which were trained to map processed EMG signals
directly to joint angles. In this study, EMG and kinematic data
of the wrist and MCP joints were recorded and used as
training and testing data. The offline performances of the
trained RL agents and SLNNs were compared to determine if
it is feasible to use our RL-based framework for continuous
joint kinematics decoding. We hypothesized that the RL-
based decoder would be more robust and better able to predict
kinematics than the SLNN.

II. METHODS

A. Subjects

Experiments were approved by the Institutional Review
Board of the University of North Carolina at Chapel Hill. Five
able-bodied subjects (3 male, 2 female, age range 22-31, right-
hand dominant) provided informed consent to participate.

B. Experiment Protocol

Kinematic and EMG data were recorded simultaneously
from subjects with their right upper limb in a static posture in
which the shoulder was relaxed, arm and forearm were in
neutral posture, and elbow was at 90 of flexion. First, EMG
data were collected while subjects performed the maximum
voluntary contraction (MVC) for the flexion and extension of
the wrist and MCP joints. Then, to cover a wide range of
common movements, data were collected from subjects for 3
different movement patterns: isolated wrist flexion/extension,
isolated MCP flexion/extension, and simultaneous wrist and
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MCP flexion/extension. Each movement pattern was
performed for 10 s for one slow and one fast fixed tempo (0.25
Hz and 0.5 Hz, respectively). Each movement pattern was
repeated 3 times for each tempo, for a total of 18 trials for
each subject. Subjects rested between each trial.

C. Data Acquisition

The right forearm of each subject was wiped with an
alcohol pad and a bipolar electrode (Motion Lab Systems,
Inc., USA) was placed over each of the 4 muscles in the
forearm identified by palpation as shown in Fig. 1: flexor
digitorum superficialis (FDS), extensor digitorum (ED),
flexor carpi radialis (FCR), and extensor carpi radialis longus
(ECRL). Electrodes were connected to an EMG system
(MA300 DTU, Motion Lab Systems, USA) and signals were
recorded at 1000 Hz. To record motion in the hand, a Leap
Motion Controller (Leap Motion, Inc., USA) was chosen for
its ability to capture hand and wrist positions [12]. The
positions of the palm and metacarpal bone segments in the
hand were recorded at 120 Hz simultaneously with EMG
signals using the Leap Motion Controller placed on a table
approximately 4 below the subject’s hand.

D. Data Processing

The envelopes of the EMG signals were obtained by
calculating the mean absolute value (MAV) of a 200 ms
sliding window, adjusted in 10 ms increments resulting in 100
Hz processed EMG data. The maximum value of each
processed EMG signal from the MVC trials was used to
normalize the corresponding processed EMG signal in each
of the remaining trials.

The wrist angles during each trial were computed by
finding the angle between the palm segment and the axis
pointing directly away from the subject with the origin in the
center of the Leap Motion Controller. The MCP angles were
computed by finding the angle between the phalangeal
segment and the palm segment. The kinematic data were
downsampled to 100 Hz to match the processed EMG signals.

E. Reinforcement Learning Agent and Environment

The RL agent was implemented using the Deep
Deterministic Policy Gradient (DDPG) algorithm with a
neural network-based actor-critic structure for a continuous
action space [13] with the Reinforcement Learning Toolbox
in MATLAB 2021a (Mathworks, MA). The actor network
received a state s and output an action a. The critic network Q

ECRL

Fig. 1. Approximate locations of the 4 electrodes used and their
corresponding targeted muscle.

received both s and @ and output the expected long-term
reward. The critic network was created using an addition layer
to combine a neural network with an input layer for s and 2
hidden layers and a neural network with an input layer for a
and 1 hidden layer. The actor network was created with an
input layer for s and 2 hidden layers. Each hidden layer
contained 128 neurons. The rectified linear unit activation
function was used for each hidden layer and a tanh activation
function was used for the output of the actor network. No
activation function was used for the output of the critic
network. The output of p was scaled to the range [-3, 3]
selected to provide a full range of feasible values of wrist and
MCP joint torque. Temporally correlated noise sampled from
an Ornstein-Uhlenbeck process [14] V" was then added to this
result during training to encourage action exploration. Target
critic and actor networks Q'and p' were created with the same
structures as Q and p. The target networks were used in the
calculation of a target y used to train Q. The weights of the
target networks were updated using a smoothing method to
slowly track the weights of Q and p to help avoid the
divergence of O [13].

Eight observations were used to define si The
observations included the 4 processed EMG signals and the
estimated position and velocity of the wrist and MCP joints at

the current timestep A: @W,k, éw,k, @m’k, and ém’k. The actions
output from p given s; were the estimated torque values for
the wrist and MCP joints: 74 Tmk All estimated position,
velocity, and torque values were used as inputs to a planar
link-segment model of the hand and wrist [2], which was used
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Fig. 2. Block diagram of the interaction between the agent and the planar link-segment model.
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Algorithm 1 DDPG algorithm

Initialize O(s,a|W?) and p(s|W") with random weights W< and W™,
Initialize target networks Q' and p’ with weights W< and W,
Initialize replay buffer D.
Initialize M = 50, 6> = 0.5, § = 10°, N = 1000, y = 0.99, a = 0.001.
Initialize K as the total number of samples in the training data.
for episode = 1, M do
Initialize )V with variance o* and variance decay rate f.
Get initial state s;.
for k=1,K do
Take action ax = [Tk, Tmi] = W(sk|W¥) + N
Get reward r; and new state s;-;.
Store transition (sx, @, ¥x, Sk+7) in D.
Sample N random transitions from D.
Set yi=rit yQ' (i1, @y WO, ey
Update the critic network by minimizing the loss:
L=~ 0i= Qs al WOV, _ o
Update the actor network with the sampled policy gradient:
V= ~E,V,0(si af ) Vyna
Update the target networks:
W — alW? + (1 — )W2, W* — al* + (1 — ) ¥
end for
end for

ai= p(si| W)

to compute the estimated kinematics at the next timestep k+1.

The reward function at the current timestep was calculated as:
0.3 0.3

0.3+ 0,5 - 0,4 03+ 101~ 04l
to allow higher reward values for smaller differences in
estimated and measured positions for each joint, similar to a
previously used reward function for joint position decoding
using RL [15]. The DDPG algorithm used, adapted from [13],
is shown as Algorithm 1. The interaction between the agent
and the model is outlined in Fig. 2.

Tk

F. Supervised Learning Neural Network

A SLNN was created with the Deep Learning Toolbox in
MATLAB 2021a (Mathworks, MA). The SLNN took the 4
processed EMG signals as inputs and directly output the
estimated position of the wrist and MCP joints for the current
timestep. The SLNN was tested while the number of neurons
per hidden layer and then the number of hidden layers were
incremented starting from 1 each until performance no longer
significantly increased. One hidden layer with 5 neurons was
chosen for maximum performance.

G. Training and Testing

The data from 6 of the 9 trials (2 randomly selected from
each movement type) were used to train a SLNN and an RL-
based decoder for each of the two fixed tempos. The data from
the remaining three trials for each tempo were reserved as
testing data. The RL-based decoder was allowed to train for a
total of 50 episodes and the SLNN was allowed to train until
the gradient of the mean square error (MSE) fell below 107
All trained algorithms were used to predict joint angles for
both the slow and fast tempo testing data.

H. Evaluation Metrics

For each trained SLNN and RL-based decoder, the
kinematic predictions of the testing data were evaluated using
Pearson’s correlation coefficient (r) between measured and
estimated angles of each joint. The normalized root mean
square error (NRMSE) between measured and estimated
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Fig. 3. Representative plots of simultaneously predicted MCP (left) and
wrist (right) joint angles by an RL-based decoder (blue) and a SLNN
(red) compared to measured joint angles (black) for one subject. Both
algorithms were trained with slow kinematic data and plots were
generated for predictions on slow (top 2 rows) and fast (bottom 2 rows)
kinematic testing data.

angles of each joint was calculated by dividing the root mean
square error (RMSE) by the difference of the maximum and
minimum measured joint angles. The values of r and NRMSE
were averaged across all subjects and both joints for each
testing case.

1. Statistical Analysis

A student’s t-test was conducted to compare correlation
and NRMSE between the two algorithms (RL and SLNN) for
each testing case. Differences were considered statistically
significant for p<0.05. All results are represented as mean +
standard deviation unless specified otherwise.

III. RESULTS AND DISCUSSION

Trained RL-based decoders and SLNNs were able to
provide reasonable predictions of able-bodied subjects’ wrist
and MCP joint kinematics (Fig. 3). Evaluation of the RL-
based decoders and SLNNs trained with slow kinematic data
showed slow kinematic testing data was predicted with
similar accuracy, both in terms of correlation (RL: 0.67 +
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Fig. 4. Summary of RL-based decoder and SLNN kinematic prediction
accuracy. Correlation coefficient (top) and NRMSE (bottom) are shown
for RL agents and SLNNSs trained on slow kinematic data (left) and fast
kinematic data (right). Error bars represent standard error (N = 5) and
stars indicate significance at the p < 0.05 level.

0.06; SLNN: 0.65 £ 0.05; p =0.78) and NRMSE (RL: 0.19 +
0.01; SLNN: 0.19 £ 0.01; p = 0.84). However, the RL-based
decoders predicted fast kinematic data with significantly
higher correlation (RL: 0.74 + 0.04; SLNN: 0.55 + 0.05; p =
0.02) and lower NRMSE (RL: 0.19 = 0.01; SLNN: 0.23 +
0.02; p=0.15) than the SLNNS.

When RL-based decoders and SLNNs were trained with
fast kinematic data, the predictions of the RL-based decoders
showed significantly higher correlation (RL: 0.77 £+ 0.04;
SLNN: 0.64 + 0.03; p = 0.03) as well as lower NRMSE
(RLO.17£0.01; SLNN: 0.19+0.01; p=0.21) when tested on
fast kinematic data in comparison to the SLNN decoders.
When tested on slow kinematic data, the RL-based decoder
and SLNN predictions had similar correlation (RL: 0.66 +
0.05; SLNN: 0.61 £ 0.06; p=0.56) and NRMSE (RL: 0.19 +
0.01; SLNN: 0.21 £ 0.01; p = 0.28). Performance metrics are
summarized in Fig. 4.

In all test conditions, the RL-based decoders demonstrated
either similar performance to the SLNNs or significantly
better performance, as demonstrated by correlation and
NRMSE. Of particular note, the RL-based decoder trained
with slow kinematic data predicted fast kinematic test data
significantly better than the SLNNs trained on the slow
kinematic data. These results indicate the RL-based decoders
are more robust to inputs that differ from the provided training
data than the SLNNs.

A potential reason for this increased robustness is that the
RL-based decoders were trained to predict joint torques,
which have a stronger relationship with the EMG inputs than
the joint angles the SLNNs were trained to predict. By using
RL to train these agents, we were able to explicitly define a
forward dynamics model for the joints of interest to relate the
predicted torques of the agent to the measured kinematics.
This model could not be implemented with the SLNNSs, as
traditional NN optimization using backpropagation requires
the gradients of all functions in the system to be explicitly
known, demonstrating the flexibility afforded by using RL.

IV. CONCLUSION

This study compared our RL-based decoder with a SLNN
for predicting continuous joint angles when trained and tested
using different combinations of fast and slow tempo
kinematic data. For all testing cases, the RL-based decoders
performed similar to or better than the SLNNs. In addition,
the predictions of the RL-based decoder achieved
significantly higher correlation values than the SLNN when
trained using slow kinematic training data and tested using
fast kinematic data. This suggests the RL-based decoder is
more robust to differences in training and testing data than a
SLNN. Our results show that it is feasible to use the RL-based
framework presented in this paper for continuous joint
kinematics decoding. Future studies will evaluate the
performance of the RL-based decoder when trained and tested
on data from amputees.
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