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Abstract— The goal of this research was to develop an
intuitive wearable human-machine interface (HMI), utilizing an
optical sensor. The proposed system quantifies wrist pronation
and supination using an optical displacement sensor. Compared
with existing systems, this HMI ensures intuitiveness by relying
on direct measurement of forearm position, minimizes involved
sensors, and is expected to be long-lasting. To test for feasibility,
the developed HMI was implemented to control a prosthetic
wrist based on forearm rotation of able-bodied subjects.
Performance of optical sensor system (OSS) prosthesis control
was compared to electromyography (EMG) based direct control,
for six able-bodied individuals, using a clothespin relocation
task. Results showed that the performance of OSS control was
comparable to direct control, therefore validating the feasibility
of the OSS HMI.

I. INTRODUCTION

A human-machine interface (HMI) provides a means of
communication between humans and devices [1], [2].
Applications of HMIs range from manufacturing, unmanned
vehicles, assistive robotic devices, training, and virtual reality.
With the development of advanced robotic systems, such as
robotic hand prostheses and industrial manipulators, human
operators are often required to handle challenging tasks using
robotic systems with multiple degrees of freedom through
HMIs. To reduce the mental load involved in controlling these
robotic devices, intuitiveness becomes a key issue for success
of HMI design.

As shown in [3], an intuitive HMI permits users to interact
effectively, non-consciously using previous knowledge that is
classified as innate, sensorimotor, culture, or expertise, based
on when and how the knowledge is learned. Generally
speaking, the earlier knowledge is learned, the easier the
knowledge can be adopted non-consciously. Innate knowledge
is limited to reflexes or instinctive behavior, which are not very
useful in conducting specific tasks. Therefore, an HMI that
optimizes for sensorimotor knowledge, such as natural
motions of joints, is expected to deliver the best intuitiveness.
One successful example of intuitive HMIs is pattern
recognition (PR) control for upper limb protheses, which
correlates the prostheses’ action with natural hand movements.
PR control has been shown to impart less cognitive workload
on the user and allow for faster task completion time,
compared to direct control, which relies on expertise gained
through training after amputation [4]-[6].
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As with every wearable system, a wearable HMI needs to
minimize its obstructiveness [7], which is evaluated by how it
impedes wearers from conducting other tasks. Because hands
are often needed to conduct versatile functions in unexpected
environments, a wearable HMI to mimic hand motions needs
to maintain a low profile and minimize the number of involved
sensors to reduce its obstructiveness. Other requirements
include reliability for long-term usage and easy don/doff.

Forearm rotation, or pronation and supination of the wrist,
is regarded as a critical function for hand manipulation [8]-
[10] and is involved in many daily activities, such as opening
a door or pouring liquid into a cup. Similar functions are
provided in various robotic manipulators, such as 10S17
Electric Wrist Rotator (Ottobock, Germany) and RTE 400
(IGM, Austria). However, HMIs that permit intuitive control
of these robotic manipulators, based on forearm rotation of
human operators, still need further development.

Existing wearable HMIs that track wrist pronation/
supination can be classified into two groups based on whether
the wrist kinematics is measured or not. The most commonly
adopted wearable sensor to measure wrist kinematics is an
inertial measurement unit (IMU) [11], [12]. Although IMU
sensors are easy to mount and calibrate, at least two IMUs are
necessary to monitor the continuous wrist movement and the
two-sensor setup increases the obstructiveness. Another
wearable device to measure wrist kinematics is a torsiometer,
such as the Vital sign sensor Z110 (Biometrics Ltd, United
Kingdom), which measures the torsional motion of the
forearm through the use of a strain gauge [13], [14]. This
sensor has a limitation for long-term use because of its finite
lifecycle [14].

User intention of forearm rotation can also be identified
based on activity of forearm muscles. Surface
electromyography (EMG) [15] and ultrasound images
measured by wearable ultrasound probes [16] are standard
approaches to monitor these muscle activities. However,
because the muscles, which drive the wrist pronation/
supination, are either deep inside the forearm or also drive
other upper limb motions, it is impractical to link any surface
EMG measurements directly to the forearm movements.
Advanced data analysis based on pattern recognition or
neuromuscular models is needed to maintain intuitiveness of
the HMI [5], [17], [18]. Signal fluctuations from electrode-
skin impedance, electrode shift, and muscle fatigue [19]-[21]
often hinder the reliability of the EMG based HMIs. Although
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ultrasound imaging can be used to monitor the activities of
deep muscles, the use of gel impedes long-term usability [22].

This research proposes an innovative approach to measure
forearm rotation using an optical sensor system (OSS) that has
the potential to result in an intuitive wearable HMI. An optical
sensor was chosen because of its low profile and its capability
to track kinematics accurately through noncontact
measurements, which ensures its longevity. Additionally,
previous work for non-HMI systems have utilized an optical
sensor to monitor relative displacement [23]-[26]. By
mounting one optical sensor on the forearm using a small
orthosis, the proposed HMI could track the wrist motion
without impeding wearers’ capability to conduct other tasks.

The objective for this research was to develop an HMI that
implements an optical sensor to quantify wrist pronation/
supination. The optical sensor system was developed and a
bench test was performed to evaluate its accuracy. To test
feasibility of the OSS as an HMI, we applied the HMI to
control a prosthetic wrist rotator, for able-bodied individuals.
The measured wrist rotation was quantified and utilized as the
control input to the MC Wrist Rotator of the Utah Arm
(Motion Control, Inc., Salt Lake City, UT) prosthesis. The
performance of OSS based control was compared to an EMG
based direct control using a clothespin relocation task.

II. METHODS

A. Optical Sensor System Design

The OSS consisted of an optical sensor, printed circuit
board, lens, and an Arduino Leonardo microcontroller. The
optical sensor used was the PMW3360 Motion Sensor (JACK
Enterprises, Cookesville, TN), which implements PixArt’s
PMW3360DM-T2QU: Optical Gaming Navigation Chip
(PixArt, Taiwan) intended for gaming computer mice, Figure
1 a) and b). The sensor was chosen for its high resolution and
accuracy. It uses a navigation chip and an infrared LED to
calculate motion along the x and y axes. The chip has an
adjustable resolution of up to 12,000 counts per inch (CPI)
with a step size of 100 CPI, a resolution error of 1%, a
maximum distance of 3 mm from the lens to the moving
surface, and utilizes four wire serial peripheral interface (SPI)
communication.

Pronation (positive position)

Neutral (zero position)

R -t
+Y 4 m=p  Machine

Supination (negative position)

<)

b)
Figure 1: Optical Sensor and OSS HMI Conceptual Diagram. a) Sensor top
b) Sensor bottom with labeled axes c¢) The black part is the orthosis and the
green rectangle is the optical sensor.

Only one optical sensor was required and the housing,
designed in accordance with the sensor’s datasheet, was
approximately 34 mm x 27 mm x 12 mm, which minimized
obstructiveness. The optical sensor should be mounted to a
small orthosis, which is secured above the elbow joint to allow
the relative motion of the forearm to be measured. The neutral

forearm position of 90° between supination and pronation is
defined as zero position. Wrist pronation yields a positive
position, and supination yields a negative position, Figure 1 ¢).

B. Bench Test

The use of an optical sensor for measuring rotation was
validated with a bench test, Figure 2 a). This consisted of
rotating a tube beneath the optical sensor, at two different
speeds, and comparing the calculated degrees to a ground truth
value from a digital goniometer. The digital goniometer
(Husky, Atlanta, GA) has a range of 0 to 360°, accuracy of +/-
0.30°, and an incremental resolution of 0.05°. The tube was
positioned inside two wooden cradles that restricted vertical
and horizontal motion.

Both measurement systems were zeroed at the beginning
of each trial. The tube was rotated counterclockwise by hand
from a 0° reading on the goniometer to the desired angle. The
angles tested were 5 to 50° in increments of 5°. Three trials of
each angle were tested for two speeds: 2.5°/s and 5°/s. The
degrees rotated were calculated from the x displacement value,
in units of counts, Figure 2 b). The counts were accumulated
over time and divided by the resolution to obtain the arc length.
To determine the angle in degrees, the arc length was divided
by the radius of the tube.

Pixel Array
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@ New Position
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B Optical Sensor
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™

a) b)
Figure 2: Bench Test Setup and Rotation Measurement Diagram. ) How
the sensor calculates degrees rotated, 0, showing a simplified pixel array.
The sensor compares consecutive pixel arrays to calculate displacement.

C. Prosthetic Wrist Rotation Control Development via OSS

The OSS was tested for the wrist pronation/supination
control of an upper limb prosthesis, employing open loop
proportional velocity control, Figure 3. Intuitive control was
implemented, where the direction of the prosthetic wrist was
dependent on the direction of forearm rotation and the speed
was proportional to the forearm position.

The arc length formula used for the bench test could not be
implemented since the forearm is not cylindrical; instead, the
raw sensor value, in units of counts, was utilized. The Arduino
retrieved the x displacement value continuously from the
optical sensor, which was then polled by MATLAB using
serial communication. An adjustable deadband was applied to
prevent prosthetic wrist rotation for very small movements of
the forearm, to eliminate unintended motion. The change in
position value was accumulated to estimate the position of the
forearm. When the position was greater than an upper
threshold, the wrist pronated; when it was less than a lower
threshold, the wrist supinated; and when it was between the
two thresholds, the wrist was stationary. Subsequently, it was
determined if recalibration should occur. Next, the position
value was multiplied by a gain to create a voltage. This was
added to a base voltage, the minimum voltage for motor
movement, and applied directly to the wrist motor. The OSS
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control utilized the human in the loop method; through visual
and proprioceptive feedback, the user was able to close the
loop and control the prosthesis as desired.
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Figure 3: Wrist Rotation Control Block Diagram. Green blocks show the
inputs and outputs to the system. Blue blocks show operations or constant
values. Yellow blocks show decisions.

A recalibration decision was implemented to eliminate the
effects of measurement drift. During pronation or supination,
when a quick motion to the neutral position was made, the
sensor was zeroed, by setting the position to 0, and the wrist
control paused for a set amount of time. This pause allowed
the participant time to rotate their arm to the neutral position.
This method was chosen because it was a simple way to allow
the user to recalibrate the sensor and bypass the effects of
measurement drift.

D. Experimental Design of Upper Limb Prosthesis HMI

To evaluate the performance of the OSS control it was
compared to direct control (DC) [5], via a clothespin relocation
task (CRT), for six able-bodied individuals ranging in age
from 22 to 45 years. A 2 degree of freedom (DOF) prosthesis
with wrist pronation/supination and hand open/close
capabilities was utilized. EMG signals controlled both DOF
for DC and hand open/close for OSS control. A housing for
the OSS was designed to mount it to an able-bodied prosthesis
adapter, Figure 4 a). The design consisted of 3D printed parts
that allowed adjustments in the vertical, horizontal, and
proximal/distal directions. An elastic strap was implemented
to maintain contact between the skin and sensor housing.

The CRT, Figure 4 b), was chosen to evaluate the
performance because it has previously been used in studies to
compare and evaluate upper limb control techniques [4]-[6],
[17]. The task completed using the CRT was moving three
clothespins between the middle horizontal and vertical bars, as
fast as possible for two minutes. It was chosen because it
required the prosthetic wrist to move between 0 and 90°.

Optical Sensor (under strap) Able-Bodied Adapter
3D Printed Mount 1

Prosthesis

EMG Electrodes

a) b)
Figure 4: Experiment Devices. a) Able-bodied prosthesis adapter setup b)
Clothespin Relocation Task.

This study was conducted with IRB approval and informed
consent was obtained from all participants. The order of
control methods was randomized. After the control parameters
were tuned, the participants were given five minutes to
practice before performing five trials of moving clothespins.

III. RESULTS AND DISCUSSION

A. Bench Test

There was a linear relationship between the ground truth
values and OSS values, with correlation coefficients for both
speeds greater than 0.99, Figure 5. The maximum deviation of
the OSS angle calculation, compared to the ground truth, was
approximately 2.5° for angles less than or equal to 55°. This
accuracy was acceptable for the application of prosthetic wrist
pronation/supination control. The variation in the linear
relationship was expected, considering that the tube was
rotated by hand. As the rotation increased the difference
between the two measurement systems also increased, which
is due to an accumulation of integration error.

(Oﬂptical Sensor System (OSS) and Goniometer Rotation Values
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Figure 5: Bench Test Results. Goniometer rotation values plotted versus the
OSS values, for slow and fast speeds. The reference line shows the ideal
relationship.

B. Upper Limb Prosthesis HMI

The number of clothespins moved was used as the metric
for evaluation. The average number of clothespins moved
across all participants for OSS control and DC was 8.93 and
9.03, respectively. A paired t-test, with a 5% significance level
showed that the difference between these averages was not
statistically significant. The average number of clothespins
was greater for DC for four out of the six participants. The
maximum number of clothespins moved using OSS control
was greater than or equal to that of DC, Figure 6. These results
validate the feasibility of the OSS HMI and show the potential
for this application.

Number of Clothespins Moved for 5 Trials
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®* Average
v First Control Method Tested
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Figure 6: Boxplot of the Number of Clothespins Moved for 5 Trials.

Iv.

The short operating distance of the selected sensor is the
major limitation of the design. During the movement of the
forearm, the distance between the forearm skin and sensor

LIMITATIONS AND FUTURE WORK
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often falls outside of the measurement range. When this
happens, movement data is lost, which contributes to the
sensor drift caused by accumulation of integration error.
Although the recalibration function is introduced to mitigate
the impact of the measurement drift, it is not intuitive to
conduct and may not be suitable for other applications.

[11]

To overcome these limitations, several options are [12]
available: 1) adopting a sensor with a larger operating distance,

such as PAASI00JE-Q: Optical Tracking Chip (PixArt,

Taiwan) or PAT9130EW-TKMT: Optical Tracking Miniature [13]

Chip (PixArt, Taiwan); 2) adopting an adaptive filter to

eliminate the sensor drift [27]; and 3) to zero the sensor when

a line of contrasting color to the skin is in view, similar to how  [14]

[28] detected a black line to create an encoder. Future work

could also involve testing the OSS HMI for other HMI [15]

applications that utilize forearm rotation.

V. CONCLUSION
. . [16]
An innovative wearable OSS HMI that measures forearm
rotation was developed. The OSS implemented one optical
sensor and was mounted on a small orthosis, which minimized

the obstructiveness and enabled easy don/doff. This wearable (7]

HMI allowed for intuitive motions to be used as an input to a

machine. The OSS HMI was tested for the application of

prosthetic wrist pronation/supination control, for able-bodied
individuals. Despite the limitations, the OSS HMI was shown

to be feasible for this application. (18]
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