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EMG-driven neuromusculoskeletal models have been used to study many impairments and hold great potential to
facilitate human-machine interactions for rehabilitation. A challenge to successful clinical application is the need
to optimize the model parameters to produce accurate kinematic predictions. In order to identify the key pa-
rameters, we used Monte-Carlo simulations to evaluate the sensitivities of wrist and metacarpophalangeal (MCP)
flexion/extension prediction accuracies for an EMG-driven, lumped-parameter musculoskeletal model. Four
muscles were modeled with 22 total optimizable parameters. Model predictions from EMG were compared with
measured joint angles from 11 able-bodied subjects. While sensitivities varied by muscle, we determined muscle
moment arms, maximum isometric force, and tendon slack length were highly influential, while passive stiffness
and optimal fiber length were less influential. Removing the two least influential parameters from each muscle
reduced the optimization search space from 22 to 14 parameters without significantly impacting prediction
correlation (wrist: 0.90 + 0.05 vs 0.90 + 0.05, p = 0.96; MCP: 0.74 + 0.20 vs 0.70 + 0.23, p = 0.51) and
normalized root mean square error (wrist: 0.18 + 0.03 vs 0.19 + 0.03, p = 0.16; MCP: 0.18 + 0.06 vs 0.19 +
0.06, p = 0.60). Additionally, we showed that wrist kinematic predictions were insensitive to parameters of the
modeled MCP muscles. This allowed us to develop a novel optimization strategy that more reliably identified the
optimal set of parameters for each subject (27.3 + 19.5%) compared to the baseline optimization strategy (6.4 +
8.1%; p = 0.004). This study demonstrated how sensitivity analyses can be used to guide model refinement and
inform novel and improved optimization strategies, facilitating implementation of musculoskeletal models for
clinical applications.

1. Introduction osteoarthritis (Fregly et al., 2007), and provide insights into ankle

sprains (Boey et al., 2022), ACL reconstruction results (Kotsifaki et al.,

Computational neuromusculoskeletal models have been developed
to investigate various aspects of the human neuromusculoskeletal sys-
tem in healthy and impaired populations. Recently, researchers have
attempted to extend the application of musculoskeletal models beyond
the study and explanation of impairments to include treatment as well.
For example, musculoskeletal models have been successfully imple-
mented as human-machine interfaces (HMIs) for control of both upper
(Blana et al., 2020; Crouch and Huang, 2016; Pan et al., 2018; Sartori
et al., 2018) and lower (Filenberg et al., 2010) extremity prostheses,
HMIs for control of exoskeletons (Durandau et al., 2019), test platforms
for surgical planning (Delp et al., 1990; Rajagopal et al., 2020), guides
for therapy to relieve medial knee pain during gait due to the

2022), and gait (Valente et al., 2013) for clinical application.

While these applications are encouraging, direct clinical employ-
ment of musculoskeletal modeling remains rare. One reason for this
paucity of clinical translation is the challenge presented by model
personalization. While generic musculoskeletal models help elucidate
mechanisms of disorders and impairments, the anatomy, physiology,
and neural control are unique for each individual and generic models
may lack the predictive accuracy needed for clinical application (Zuk
et al., 2018). Unfortunately, customization of parameters describing
excitation-activation dynamics, muscle properties, and musculoskeletal
geometry is incredibly challenging (Bueno and Montano, 2017; Davico
et al., 2020; de Groote et al., 2010; Hoang et al., 2019; Manal et al.,
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2002; Modenese et al., 2016; Pizzolato et al., 2015; Saxby et al., 2020).
Many model parameters are not measurable, either directly or indi-
rectly, thus leading researchers to utilize numerical optimization stra-
tegies to approximate parameter values for individuals (Fregly, 2021).
As more parameters are included in the model, however, identification
of an optimal set of values becomes increasingly challenging due to
increased computational complexity and potential for finding local
rather than global minima.

In order to overcome the challenges presented by model optimiza-
tion, researchers have performed sensitivity analyses on musculoskeletal
models (Redl et al., 2007; Scovil and Ronsky, 2006). Such analyses aim
to determine the relative contributions of different parameters to model
performance to determine appropriate model complexity. In the existing
literature, many of these studies have focused on lower extremity and
gait models. They have tended to evaluate sensitivity based on the
impact of a parameter on model force generation (Ackland et al., 2012;
Bujalski et al., 2018). As models are more frequently used in clinical and
HMI applications to predict kinematics, it is important to perform
sensitivity analyses directly on kinematics instead of an intermediate
quantity like muscle force due to the nonlinearity of musculoskeletal
models (Fregly, 2021).

In this study we sought to perform a sensitivity analysis of a Hill-type
(Zajac, 1989) lumped-parameter upper extremity musculoskeletal
model previously developed to use surface electromyograms (EMG) to
predict wrist flexion/extension and metacarpophalangeal (MCP)
flexion/extension (Crouch and Huang, 2016). While the feasibility of
real-time control using this model has been demonstrated (Crouch et al.,
2018; Crouch and Huang, 2017), showing its potential for control of
upper extremity rehabilitation devices with a limited number of degrees
of freedom (e.g., prosthesis control), efficient optimization for in-
dividuals remains a significant barrier to implementation outside of a
research setting. We sought to determine model sensitivity to changes in
Hill-type and musculoskeletal geometry parameter values. Based on
existing literature, we hypothesized that while model prediction accu-
racy sensitivity would be muscle-dependent, it would be most influ-
enced by maximum isometric force, tendon slack length, and optimal
fiber length (Ackland et al., 2012; Bujalski et al., 2018; Redl et al.,
2007). Furthermore, we explored how such an analysis can be applied to
guide model designs and develop novel optimization strategies via
elimination of parameters that displayed limited influence without
sacrificing accuracy to make implementation outside of research settings
more feasible.

2. Methods
2.1. Subjects

The experimental protocol was approved by the University of North
Carolina at Chapel Hill Institutional Review Board. Eleven able-bodied
subjects (6 male, 5 female, ages 18-31 years, right hand dominant)
were recruited in the study. Subjects provided informed consent before
participating.

2.2. Experimental design and data collection

Subjects performed 5 different motions while holding their dominant
upper extremity with the elbow flexed to 90° and the forearm in a
neutral posture: isolated MCP flexion/extension, with fixed and variable
speed; isolated wrist flexion/extension, with fixed and variable speed;
and simultaneous wrist and MCP flexion/extension at a variable speed.
During fixed-speed movements subjects alternated between maximum
flexion, relaxation, and maximum extension at a fixed tempo (0.25 Hz).
A metronome set to 1 beat per second was used to provide subjects
feedback when to switch to the next sequence in the cycle. Subjects
moved at self-selected speeds and directions during variable-speed tri-
als. Each motion was performed twice for a minimum of 30 s, resulting
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in 10 trials per subject (5 movement types x 2 repetitions).

Kinematic and EMG data were recorded synchronously during each
trial. Four bipolar surface EMG electrodes (Biometrics, Newport, UK)
were placed over the extensor carpi radialis longus (ECRL), extensor dig-
itorum communis (EDC), flexor carpi radialis (FCR), and flexor digitorum
superficialis (FDS). Each muscle was identified via palpation and
anatomical reference. The EMG data were sampled at 960 Hz, high-pass
filtered at 40 Hz, rectified, enveloped, and then low-pass filtered at 6 Hz
(Crouch and Huang, 2016). Both filters were 4th-order digital Butter-
worth filters with zero phase shift. Processed EMG data were normalized
using subjects’ peak values from maximum voluntary contraction data
for each muscle. Normalized EMG data were down-sampled to 120 Hz
and converted to muscle activations (Lloyd and Besier, 2003).

Fourteen reflective markers were placed on anatomical landmarks of
the hand and forearm to track wrist and MCP flexion/extension motion
(Fig. 1). Three-dimensional marker position data were obtained at 120
Hz with a motion capture system (Vicon Motion Systems Ltd., UK).
Marker data were low-pass filtered at 6 Hz (4th-order Butterworth, zero-
phase). Joint angles were calculated from the filtered marker data in
OpenSim (Delp et al., 2007) via inverse kinematics using a musculo-
skeletal model modified to include the 2nd through 5th MCP joints
(Crouch and Huang, 2016; Holzbaur et al., 2005).

2.3. Subject-specific model generation

A previously described lumped-parameter, Hill-type musculoskeletal
model (Crouch and Huang, 2016) was optimized to predict wrist and
MCP flexion/extension angles from EMG inputs for each subject. The
model includes 6 parameters per muscle: optimal fiber length (Iy0,
maximum isometric force (Fpqy), moment arm at the wrist joint (mayisp),
moment arm at the MCP joint (man), fiber length at 0° (Iy—p), and
passive stiffness (K). For the wrist flexor and extensor muscles, which do
not cross the MCP joint, the MCP moment arm was set to zero, resulting
in 22 optimizable parameters. Fig. 2 shows a representation of the
model.

Parameters were optimized via minimization of the sum of squared
error of both joint angle predictions. MCP joint error was doubly
weighted to account for the smaller range of motion. Five of the 10 trials
collected (one of each movement type arbitrarily selected) were used for
optimization and the remaining trials were withheld for evaluation.
Optimization was performed in MATLAB 2020a (MathWorks, Inc.,
Natick, MA) using the simulated annealing algorithm (Higginson et al.,
2005) with MATLAB’s fmincon function called every 1,000 iterations
with randomly generated initial conditions, constrained by approximate
physiologic ranges.

2.4. Model performance evaluation

Joint angle prediction accuracies for each model were calculated
using the movement data sets withheld from the optimization. For each
evaluation movement trial, Pearson’s correlation coefficient (r) and root
mean square error (RMSE) between measured and predicted joint angles
were calculated over a continuous 16-second window from the middle of
each trial.

2.5. Monte-Carlo simulations

For each subject’s model, 22 simulations were performed with each
parameter perturbed by randomly selecting a value from a uniform
distribution scaled to the parameter’s approximate physiologic range
(Franko et al., 2011; Holzbaur et al., 2007; Lieber et al., 1990; Murray
et al.,, 2000) 20,000 times, similar to previous work (Ackland et al.,
2012; Bujalski et al., 2018). The number of simulations was also
confirmed via pilot testing, starting with simulation sizes of 10,000 and
incrementing by 1000 runs up to 25,000 runs and identifying when
simulation performance converged. All other parameters were set to the
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ECRL

Fig. 1. Experimental setup with electrode placement shown for the flexor carpi radialis (FCR), flexor digitorum superficialis (FDS), extensor carpi radialis longus (ECRL),
and extensor digitorum communis (EDC) on the left. Placement of 14 motion capture markers for tracking wrist and MCP flexion/extension is shown on the right.

Fig. 2. A cartoon of the lumped-parameter model
used in the study (Crouch and Huang, 2016). The
model includes wrist flexion/extension (1) and MCP
flexion/extension (2). The wrist extensors, wrist
flexors, MCP extensors, and MCP flexors are lumped
into ECRL, FCR, EDC, and FDS, respectively. Each

muscle is modeled as a single compartment with
moment arms acting at wrist and MCP joints.
Moment arms at the MCP joint were fixed at O for
ECRL and FDS since they do not cross the MCP joint.

optimized value for that subject. Additionally, all parameters of an in-
dividual muscle were simultaneously perturbed, resulting in 4 addi-
tional simulations.

2.6. Model refinement

For each muscle, the parameters were ranked from 1 (most influ-
ential) to 6 (least influential) and the sensitivity ranks were averaged
across all 4 muscles to determine final rankings of parameter sensitiv-
ities across all muscles in the model. The least influential parameter was
fixed to the median value of its approximate physiologic range for each
muscle and the remaining parameters were optimized as previously
described. This process was repeated, fixing an additional parameter in
order of increasing influence until all parameters were fixed to their

Fix least influential
remaining parameter
for each muscle to
median value

Determine parameter
influence rankings

—

—

median value. The correlation and normalized RMSE (NRMSE; root
mean square error normalized by joint range of motion) were evaluated
for each model refinement. Model refinement is summarized in Fig. 3.

2.7. Sensitivity analysis informed optimization

Based on the results of the sensitivity analysis, a new optimization
strategy was devised to improve model optimization by initially solving
two smaller optimization problems: one for each joint. Simulated
annealing was run with the same settings as described above, optimizing
only the extrinsic finger muscle (EDC and FDS) parameters. The new
extrinsic finger muscle parameters were then held constant, while the
wrist muscle (ECRL and FCR) parameters were optimized. Finally, all
parameters were allowed to be optimized simultaneously. This new

Calculate refined
model correlation and
NRMSE

Optimize remaining
parameters (random
initial point)

Fig. 3. A flowchart describing the model refinement process. The final parameter influence ranking from most to least influential was Finqx, lo—0, MAwrist, Mamep, lopss
and K. First, K was fixed to the median value for each muscle. The remaining parameters of the 4 muscles were randomly initialized and optimized. The correlation
and NRMSE of the resulting refined model’s predictions at each joint were calculated. Next, this process was repeated with [, fixed to a median value for each muscle
(and K also fixed still). This process was repeated until all parameters were fixed to median values. The accuracies (correlation and NRMSE) of the full model and
each refined model were compared.
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strategy (“dual optimization strategy”) was performed and the results
were compared to a single optimization of all parameters (“single opti-
mization strategy”) for all subjects. This optimization strategy was
compared to the baseline optimization mentioned above. The minimum
costs found during optimization of each subject’s model with both
optimization strategies were compared, as well as the percent of 10
repeated optimizations that the optimal solution was identified by each
strategy. All optimizations were performed on a desktop computer with
an Intel i7 4790 K processor and 16 GB of RAM.

2.8. Data analysis

Correlation and RMSE standard deviations were calculated for each
simulation where individual parameters were perturbed and were
averaged across all subjects. These average standard deviations were
used to rank the Hill-type parameter influences for each muscle, with
higher standard deviations indicating higher sensitivity.

A paired Student’s t-test was performed to compare the two opti-
mization strategies’ performance, as well as compare the performance of
the models generated with different numbers of parameters held con-
stant to the full model.

3. Results
3.1. Sensitivity analysis

As correlation results showed the same trends, only RMSE results are
presented for brevity. Sensitivities for model parameters were similar for
the wrist muscles. For ECRL and FCR, wrist angle accuracy had higher
sensitivity to Fpgy (12.38°+£6.71° and 18.25°+5.56°, respectively), ly—o
(5.99°+4.61° and 9.55°+2.93°, respectively), and mays; (14.38°+8.48°

25 1

20

15 1

10 1

Wrist RMSE Std Dev (deg)

‘eopt Fmaw

15 1

10 +

MCP RMSE Std Dev (deg)

zopt F, max
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and 7.00°+3.82°, respectively), and lower sensitivity to Iy, (1.21°
+1.27° and 1.36°£1.17°, respectively) and K (0.85°+£1.34° and 1.23°
+0.76°, respectively; Fig. 4 and Table 1). Wrist angle accuracy was
insensitive to all parameters of the extrinsic finger muscles (EDC and
FDS). Simultaneous perturbation of all parameters for a single muscle
resulted in slightly higher RMSE variance at the wrist joint than the most
sensitive parameter for each muscle.

Sensitivities of MCP joint angle accuracy are summarized in Table 2
and Fig. 4. MCP angle accuracy sensitivities varied by muscle and were
similar to those observed for the wrist angle accuracy. For EDC and FDS,
MCP kinematic prediction accuracy had higher sensitivity to Fpgx
(11.09°+5.98° and 11.60°+5.06°, respectively), ly—o (3.23°+2.24° and
11.82°+6.05°, respectively), and map, (6.17°+£5.22° and 12.39°
+8.10°, respectively), and lower sensitivity to l, (0.47°£0.50° and
2.57°+2.23°, respectively) and K (0.37°+0.53° and 0.49°+0.87°,
respectively). Kinematic prediction accuracy at the MCP joint was also
sensitive to the parameters of ECRL and FCR (Fyayx, ly—g, and mayis;
Table 2). Simultaneous perturbation of all parameters for a single
muscle resulted in slightly higher variation in prediction RMSE at the
MCP joint than the most sensitive parameter for each muscle.

The sensitivity ranks of each parameter were averaged across all
muscles and both joints to determine the final sensitivity ranks. The final
parameter rankings averaged across all muscles from most to least
sensitive are Fiqx, lo—0, Myrist, MAmep, lopr, and K.

3.2. Model refinement

Fig. 5 shows model performance across all subjects when different
number of parameters are removed from the optimization problem.
Optimization of the full 22 parameter model resulted in prediction
correlations of 0.90 + 0.05 and 0.74 =+ 0.20 for the wrist and MCP joints,

[lecrL Jrcr [JEpc [FDs |

MAyrist

Mayrist

Lo—o K
Mamep Lo—o K

Model Parameter

Fig. 4. Standard deviation of model prediction RMSE at the wrist (top) and MCP (bottom) joints for the Monte-Carlo simulation of each parameter for ECRL (blue),
FCR (orange), EDC (yellow), and FDS (purple). Higher standard deviation indicates greater influence by that parameter. Error bars indicate simulation stan-

dard deviation.
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Table 1
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Mean (u(6)) and maximum standard deviation (6max) Of wrist joint angle prediction RMSE (in degrees) for extensor carpi radialis longus, flexor carpi radialis, extensor
digitorum communis, and flexor digitorum superficialis. The parameter name shown above each column indicates a Monte-Carlo simulation for that parameter of the
muscle being perturbed individually for each subject. Parameters are listed in order of increasing sensitivities from left to right, with combined perturbation of all

muscle parameters in the far-right column.

Wrist RMSE Parameter Sensitivity Rank Combined Parameter Perturbation
Least Sensitive — Most Sensitive
6 5 4 3 2 1
Extensor Carpi Radialis Longus
maycp K Lopt lo—o Fmax Mayrist
n(o) - 0.85 1.21 5.99 12.38 14.38 17.12
Gmax - 6.08 4.60 24.98 25.76 33.38 37.39
Flexor Carpi Radialis
maycp K lopt Mmayrist lo—o Frax

n(o) - 1.23 1.36 7.00 9.55 18.25 20.31

Gmax - 3.08 5.57 18.68 16.58 29.27 28.05
Extensor Digitorum Communis

Lopt K maycp Mayrist lo—o Frax

p(o) 0.14 0.15 0.29 0.39 0.84 2.03 2.37

Gmax 0.58 0.86 0.96 1.48 3.07 8.98 8.08
Flexor Digitorum Superficialis

K Lopt Finax lo—o Mayrist maycp
n(o) 0.02 0.11 0.37 0.42 0.94 1.12 6.55
Gmax 0.18 1.42 1.41 2.50 6.20 5.07 20.50
Table 2

Mean (u(6)) and maximum standard deviation (6.,ax) of MCP joint angle prediction RMSE (in degrees) for extensor carpi radialis longus, flexor carpi radialis, extensor
digitorum communis, and flexor digitorum superficialis. The parameter name shown above each column indicates a Monte-Carlo simulation for that parameter of the
muscle being perturbed individually for each subject. Parameters are listed in order of increasing sensitivities from left to right, with combined perturbation of all
muscle parameters in the far-right column. MCP moment arm is left blank for the wrist muscles, as this parameter was fixed at zero.

MCP RMSE Parameter Sensitivity Rank Combined Parameter Perturbation
Least Sensitive — Most Sensitive
6 5 4 3 2 1
Extensor Carpi Radialis Longus
maycp K Lopt ly—o Finax Mayrist
p(o) - 0.21 0.42 2.24 4.38 5.19 6.57
Gmax - 1.84 1.89 7.08 11.49 15.12 16.41
Flexor Carpi Radialis
maycp Lopt K MaAyrist lo—o Frmax
n(oe) - 0.49 0.52 2.59 3.62 6.56 7.39
Gmax - 2.43 1.20 5.94 6.53 12.53 12.43
Extensor Digitorum Communis
Mmayrist K lopt lo—o maycp Fmax
n(oe) 0.17 0.37 0.48 3.23 6.17 11.09 12.27
Gmax 0.86 2.97 2.45 9.90 27.51 29.00 33.08
Flexor Digitorum Superficialis
K lopt Mawrist Fmax lo—o maycp
n(o) 0.49 2.57 2.60 11.60 11.82 12.39 18.66
Omax 4.51 7.83 8.82 22.36 26.18 34.66 31.37

respectively, and prediction normalized RMSE (NRMSE) of 0.177 +
0.031 and 0.182 + 0.064 for the wrist and MCP joints, respectively.
Fixing K and Iy to median values for all muscles and optimizing the
remaining parameters resulted in similar model performance for both
the wrist (correlation: p = 0.96; NRMSE: p = 0.16) and MCP (correlation:
p = 0.51; NRMSE: p = 0.60) compared to the model with all parameters
optimized. A significant increase in NRMSE was observed for the MCP
joint when map, was fixed to its median value in addition to K and I,y
(p = 0.02; Fig. 5, dashed orange line). Additionally fixing mays: to its
median value results in a significant increase in NRMSE for the wrist

joint (p < 0.001), as indicated by the dashed blue line in Fig. 5, and a
significant decrease in correlation for both the wrist (p = 0.03) and MCP
(p = 0.007) when compared to the model with all parameters optimized.

Fig. 6 shows representative examples of predictions for both joints
for the original model optimization (6 parameters per muscle) and two
simplified model optimizations (4 parameters per muscle and 2 pa-
rameters per muscle). While wrist angle predictions are qualitatively
similar for all models shown in Fig. 6 (r = 0.98, 0.98, and 0.95 for 6, 4,
and 2 parameters per muscle, respectively), the degradation of MCP
angle accuracy with fewer optimized parameters is apparent (r = 0.92,
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0.2 1
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0 . . . . . . .

# of Optimized Parameters per Muscle

Fig. 5. Model predictive correlation (left) and normalized RMSE (right) for the wrist (blue) and MCP (orange) joints for different numbers of optimizable parameters
per muscle. On the x-axis 0 indicates all parameters were assigned a median value, 1 indicates the most influential parameter (F,,q.) Was optimized for each muscle,
up to 6 indicating inclusion of the least influential parameter (K) in the optimization. Order of parameter inclusion in order from most to least sensitive is Fyqax, lg—o,
MGyrist, MAmeps Lo, and K. No significant decrease in correlation compared to the full model is observed until only the 2 most influential parameters are optimized per
muscle (black dashed line) for the wrist (r = 0.87 + 0.05, p = 0.03) and MCP (r = 0.59 + 0.21, p = 0.007). A significant increase in normalized RMSE is seen with
only the 3 most influential parameters optimized per muscle for the MCP joint (orange dashed line; NRMSE = 0.218 =+ 0.062, p = 0.02) and 2 parameters optimized
per muscle (blue dashed line; NRMSE = 0.210 + 0.031, p < 0.001) for the wrist joint. Error bars indicate 95% confidence intervals.
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Fig. 6. Representative comparison of estimated kinematics from a 6 parameters per muscle model (blue), 4 parameters per muscle model (orange), and 2 parameters
per muscle model (yellow) to measured kinematics (black) of the wrist (top) and MCP (bottom) joints from subject ABO1. Qualitatively, the 6 and 4 parameters per
muscle models’ predictions were similar, while the 2 parameter per muscle model performance was noticeably worse, highlighting the difference in performance

between the models of different complexities.

0.87, and 0.79 for 6, 4, and 2 parameters per muscle, respectively).

3.3. Sensitivity analysis informed optimization

Based on the relatively small influence that MCP muscle parameters
exert on the wrist joint predictions, we developed and tested the dual
optimization strategy described above. The dual optimization strategy
achieved either the same or better optimal solution for all subjects, as
evidenced by the lower cost function values (Fig. 7, top). Additionally,
the dual optimization strategy was able to successfully identify the
optimal solutions at a significantly higher rate of 27.3 4+ 19.5% than the
single optimization strategy rate of 6.4 + 8.1% (p = 0.004), although the

dual optimization strategy did require more computational time than
the single optimization strategy (Dual: 431 + 121 s; Single: 209 + 25 s;
p < 0.001).

4. Discussion

Previous sensitivity analyses on musculoskeletal models have
focused on determining model parameter effects on force generation and
global kinematic measures, such as center of mass acceleration in gait
models (Ackland et al., 2012). In contrast, this study evaluated sensi-
tivity to musculoskeletal model parameters for prediction of upper ex-
tremity joint kinematics. Study of upper extremity models is needed as
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Fig. 7. The minimum optimization cost function value (top) for the single (blue) and dual (orange) optimization strategies show the dual strategy identifies either the
same solution, or a better solution for all subjects. The identification rate of the optimal solution (left) and computational time (right) of both strategies are compared.
Identification rate was determined by applying each optimization strategy 10 times and calculating the percentage of those 10 optimizations the optimal solution was
identified. The dual optimization strategy identifies the optimal solution at a significantly higher rate (single: 6.4 + 8.1%; dual: 27.3 + 19.5%; p = 0.004).
Computational time is increased by the dual optimization strategy (dual: 431 + 121 s; single: 209 4+ 25 s; p < 0.001) but is still at a reasonable value at <10 min for a

single subject.

many are purely open kinetic chain, as no external force is modeled,
while the lower extremity gait models frequently studied are closed
kinetic chains, potentially altering parameter sensitivities between
lower and upper extremity models. Joint angle prediction accuracy
sensitivities were interrogated instead of force generation capacities
because the desired function of the model studied is to accurately predict
joint kinematics, which has been used for rehabilitation related appli-
cations, such as assistive device control (Blana et al., 2017; Crouch and
Huang, 2016; Lambrecht et al., 2009). Directly analyzing the desired
final output of the model (kinematics) instead of an intermediate value
(force) accounts for the effects of forward dynamic and computational
error effects on the influence of each parameter. Therefore, our
approach can directly benefit the applications of musculoskeletal model
for accurate motion prediction and can inform the efficient design and
personalization of musculoskeletal model-based EMG decoding system
for various HMI applications.

While sensitivity to parameters varied by muscle, some clear trends
emerged. Wrist joint kinematic prediction accuracy was found to be
highly sensitive to Fyax, lo—g, and may,s; for the two wrist muscles (Fig. 4
and Table 1). A muscle’s force-length curve magnitude is scaled by Fpgy
and greatly affects the force generation of a muscle and its resulting
kinematics. The parameter ly_ is analogous to tendon slack length,
which has consistently been identified as highly influential for muscle
force generation (Ackland et al., 2012; Bujalski et al., 2018). Tendon
slack length sets the operating region of a muscle’s force-length curve
(Zajac, 1989), thus substantially altering the force-generating potential
of a muscle and greatly changing the kinematics predicted at the wrist
joint. Moment arm determines the size of the operating region of a
muscle’s force-length curve, and therefore similarly influences its force-
generating capacity (Murray et al., 2000). It is worth noting some of the
magnitudes of the RMSE observed in Fig. 4 and Tables 1 and 2 are large
in the context of the wrist and MCP joints. However, the correlation of
the predictions remains strong (Fig. 5), thus allowing for feasible real-
time control as previously demonstrated (Crouch et al., 2018; Crouch
and Huang, 2017).

In contrast, previous analyses of lower extremity model kinematics

found moment arms to have significantly less influence on muscle force
production. The significant influence of moment arm on wrist kine-
matics, compared to the lower extremity, may potentially arise because
the upper extremity segments have much smaller masses and moments
of inertia compared to the lower extremity, making the kinematics more
sensitive to changes in torque. Adjusting moment arms will lead to
changes in joint torques, thus causing greater changes in kinematics due
to the smaller inertias.

By systematically studying the sensitivity of joint angle prediction
accuracy for both joints and removing the least sensitive parameters
from the optimization scheme, we were able to simplify the model
studied. Removal of the two least influential parameters (K and l,y,) for
each muscle greatly reduced the complexity of the model (and optimi-
zation) from 22 parameters to 14 parameters without sacrificing model
performance. As seen in Fig. 5, predictive correlation for both joints did
not significantly decline until the 4 least sensitive parameters were held
constant. However, NRMSE behaved differently between joints, with 3
constant parameters causing a significant increase in predicted MCP
angle error. These results demonstrate a systematic approach to guide
model refinement for clinical applications to avoid unnecessary
complexity in the system without sacrificing performance. This sys-
tematic approach works toward eliminating the barrier that optimiza-
tion of models (even simplified ones like the one evaluated here)
presents to clinical implementation, such as the control of upper ex-
tremity rehabilitation devices.

While it is known extrinsic finger muscles contribute to wrist mo-
ments (Lieber et al., 1996), the two extrinsic finger muscles modeled
here did not strongly influence wrist angle accuracy when perturbations
were applied to all parameters of these muscles (Fig. 4 and Table 1),
despite crossing the wrist joint and being active during isolated wrist
motion trials. This is possibly due to the higher moment of inertia of the
palm segment compared to the finger segment resulting in less kinematic
perturbation (Crouch and Huang, 2016). Nevertheless, MCP joint angle
predictions were highly sensitive to parameters of the wrist muscles,
despite no direct action at the MCP joint (Fig. 4 and Table 2). This may
be a result of the two-link nature of the model. The states of EDC and FDS
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(fiber length and velocity) depend on the kinematics of the wrist joint.
Therefore, while ECRL and FCR do not act directly on the MCP joint, the
strong influence their parameters exert on MCP joint kinematics is likely
due to their strong influence on wrist joint kinematics. These observed
sensitivities across joints motivated the formulation of the dual opti-
mization strategy: we initially optimize the extrinsic finger and wrist
muscle parameters separately, as lower dimensional optimization
problems are often faster and easier to solve. The dual optimization
strategy showed itself to be more robust than a single optimization of all
parameters simultaneously, as it was able to more reliably identify the
optimal solution (Fig. 7). While computational time increased, optimi-
zation required <10 min total on average. The benefits of the dual
optimization strategy highlight how the 2-DOF nature of the model and
observing the sensitivities of each degree of freedom were able to inform
model improvement and simplify computations.

This study is not without its limitations. The sensitivity analysis was
limited to Hill-type and musculoskeletal geometry parameters. The
model studied is also influenced by the modeled inertial properties of the
hand/wrist and excitation-activation dynamics. Analyses of the influ-
ence of these parameters’ effects on kinematic prediction accuracy are
warranted and will be the subject of future works. The study was also
limited by the design of the model itself. The muscles modeled did not
include an elastic tendon, instead treating the tendon as rigid. Addi-
tionally, the moment arms of each muscle were held constant with
respect to joint angle. While some muscles in the model have relatively
constant moment arm (FCR and EDC), others (ECRL and FDS) do not (An
et al., 1983; Gonzalez et al., 1997). This simplification could potentially
explain the observed sensitivity to moment arms, as the moment arm
potentially is less accurate in certain joint angles, while in a more ac-
curate representation, moment arm depends on the muscle path and
varies with joint angle. Finally, the inertial properties of the palm and
finger segments are approximated as two cylinders. These simplifica-
tions can be improved upon in future works but may require additional
computational resources, making the model more difficult to implement
in real-time as an HMIL.

5. Conclusions

Sensitivity analyses provide important insight into which parameters
exert the most influence on a model’s performance. In this study, we
examined the sensitivity of an EMG-driven lumped-parameter upper
extremity model to Hill-type and musculoskeletal geometry parameters.
While sensitivity was muscle dependent, we identified maximum iso-
metric force and tendon slack length as highly influential parameters,
consistent with previous force-based analyses. Additionally, muscle
moment arm exerted significant influence on kinematic prediction ac-
curacy, while previous work found moment arm exerted little relative
influence for force generation. This demonstrated the importance of
evaluating model performance according to the desired application and
will provide a framework for future analyses as models become more
widely used for kinematic predictions and HMIs. While other work has
studied the optimization of upper extremity model parameters (Goislard
de Monsabert et al., 2020; Goislard De Monsabert et al., 2018), these too
have focused on optimizing force generation, and to the best of our
knowledge, this is the first such analysis that examined an upper ex-
tremity model’s sensitivity in terms of local joint kinematic prediction
accuracy.

In addition to the biomechanical implications discussed, this study
demonstrated and quantified the interaction of multiple degrees of
freedoms in a model by observing performance of each joint’s prediction
accuracy in conditions of both isolated and simultaneous motion,
allowing us to greatly reduce model complexity. Furthermore, the
sensitivity analysis revealed the wrist joint prediction accuracy was not
strongly influenced by the parameters of the 2 included extrinsic finger
muscles, as modeled in this study. These results inspired a custom
optimization approach for the model studied, demonstrating how such
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an analysis can be applied to better inform optimization of models across
rehabilitation fields.
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