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A B S T R A C T   

EMG-driven neuromusculoskeletal models have been used to study many impairments and hold great potential to 
facilitate human–machine interactions for rehabilitation. A challenge to successful clinical application is the need 
to optimize the model parameters to produce accurate kinematic predictions. In order to identify the key pa
rameters, we used Monte-Carlo simulations to evaluate the sensitivities of wrist and metacarpophalangeal (MCP) 
flexion/extension prediction accuracies for an EMG-driven, lumped-parameter musculoskeletal model. Four 
muscles were modeled with 22 total optimizable parameters. Model predictions from EMG were compared with 
measured joint angles from 11 able-bodied subjects. While sensitivities varied by muscle, we determined muscle 
moment arms, maximum isometric force, and tendon slack length were highly influential, while passive stiffness 
and optimal fiber length were less influential. Removing the two least influential parameters from each muscle 
reduced the optimization search space from 22 to 14 parameters without significantly impacting prediction 
correlation (wrist: 0.90 ± 0.05 vs 0.90 ± 0.05, p = 0.96; MCP: 0.74 ± 0.20 vs 0.70 ± 0.23, p = 0.51) and 
normalized root mean square error (wrist: 0.18 ± 0.03 vs 0.19 ± 0.03, p = 0.16; MCP: 0.18 ± 0.06 vs 0.19 ±
0.06, p = 0.60). Additionally, we showed that wrist kinematic predictions were insensitive to parameters of the 
modeled MCP muscles. This allowed us to develop a novel optimization strategy that more reliably identified the 
optimal set of parameters for each subject (27.3 ± 19.5%) compared to the baseline optimization strategy (6.4 ±
8.1%; p = 0.004). This study demonstrated how sensitivity analyses can be used to guide model refinement and 
inform novel and improved optimization strategies, facilitating implementation of musculoskeletal models for 
clinical applications.   

1. Introduction 

Computational neuromusculoskeletal models have been developed 
to investigate various aspects of the human neuromusculoskeletal sys
tem in healthy and impaired populations. Recently, researchers have 
attempted to extend the application of musculoskeletal models beyond 
the study and explanation of impairments to include treatment as well. 
For example, musculoskeletal models have been successfully imple
mented as human–machine interfaces (HMIs) for control of both upper 
(Blana et al., 2020; Crouch and Huang, 2016; Pan et al., 2018; Sartori 
et al., 2018) and lower (Eilenberg et al., 2010) extremity prostheses, 
HMIs for control of exoskeletons (Durandau et al., 2019), test platforms 
for surgical planning (Delp et al., 1990; Rajagopal et al., 2020), guides 
for therapy to relieve medial knee pain during gait due to the 

osteoarthritis (Fregly et al., 2007), and provide insights into ankle 
sprains (Boey et al., 2022), ACL reconstruction results (Kotsifaki et al., 
2022), and gait (Valente et al., 2013) for clinical application. 

While these applications are encouraging, direct clinical employ
ment of musculoskeletal modeling remains rare. One reason for this 
paucity of clinical translation is the challenge presented by model 
personalization. While generic musculoskeletal models help elucidate 
mechanisms of disorders and impairments, the anatomy, physiology, 
and neural control are unique for each individual and generic models 
may lack the predictive accuracy needed for clinical application (Zuk 
et al., 2018). Unfortunately, customization of parameters describing 
excitation-activation dynamics, muscle properties, and musculoskeletal 
geometry is incredibly challenging (Bueno and Montano, 2017; Davico 
et al., 2020; de Groote et al., 2010; Hoang et al., 2019; Manal et al., 
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2002; Modenese et al., 2016; Pizzolato et al., 2015; Saxby et al., 2020). 
Many model parameters are not measurable, either directly or indi
rectly, thus leading researchers to utilize numerical optimization stra
tegies to approximate parameter values for individuals (Fregly, 2021). 
As more parameters are included in the model, however, identification 
of an optimal set of values becomes increasingly challenging due to 
increased computational complexity and potential for finding local 
rather than global minima. 

In order to overcome the challenges presented by model optimiza
tion, researchers have performed sensitivity analyses on musculoskeletal 
models (Redl et al., 2007; Scovil and Ronsky, 2006). Such analyses aim 
to determine the relative contributions of different parameters to model 
performance to determine appropriate model complexity. In the existing 
literature, many of these studies have focused on lower extremity and 
gait models. They have tended to evaluate sensitivity based on the 
impact of a parameter on model force generation (Ackland et al., 2012; 
Bujalski et al., 2018). As models are more frequently used in clinical and 
HMI applications to predict kinematics, it is important to perform 
sensitivity analyses directly on kinematics instead of an intermediate 
quantity like muscle force due to the nonlinearity of musculoskeletal 
models (Fregly, 2021). 

In this study we sought to perform a sensitivity analysis of a Hill-type 
(Zajac, 1989) lumped-parameter upper extremity musculoskeletal 
model previously developed to use surface electromyograms (EMG) to 
predict wrist flexion/extension and metacarpophalangeal (MCP) 
flexion/extension (Crouch and Huang, 2016). While the feasibility of 
real-time control using this model has been demonstrated (Crouch et al., 
2018; Crouch and Huang, 2017), showing its potential for control of 
upper extremity rehabilitation devices with a limited number of degrees 
of freedom (e.g., prosthesis control), efficient optimization for in
dividuals remains a significant barrier to implementation outside of a 
research setting. We sought to determine model sensitivity to changes in 
Hill-type and musculoskeletal geometry parameter values. Based on 
existing literature, we hypothesized that while model prediction accu
racy sensitivity would be muscle-dependent, it would be most influ
enced by maximum isometric force, tendon slack length, and optimal 
fiber length (Ackland et al., 2012; Bujalski et al., 2018; Redl et al., 
2007). Furthermore, we explored how such an analysis can be applied to 
guide model designs and develop novel optimization strategies via 
elimination of parameters that displayed limited influence without 
sacrificing accuracy to make implementation outside of research settings 
more feasible. 

2. Methods 

2.1. Subjects 

The experimental protocol was approved by the University of North 
Carolina at Chapel Hill Institutional Review Board. Eleven able-bodied 
subjects (6 male, 5 female, ages 18–31 years, right hand dominant) 
were recruited in the study. Subjects provided informed consent before 
participating. 

2.2. Experimental design and data collection 

Subjects performed 5 different motions while holding their dominant 
upper extremity with the elbow flexed to 90◦ and the forearm in a 
neutral posture: isolated MCP flexion/extension, with fixed and variable 
speed; isolated wrist flexion/extension, with fixed and variable speed; 
and simultaneous wrist and MCP flexion/extension at a variable speed. 
During fixed-speed movements subjects alternated between maximum 
flexion, relaxation, and maximum extension at a fixed tempo (0.25 Hz). 
A metronome set to 1 beat per second was used to provide subjects 
feedback when to switch to the next sequence in the cycle. Subjects 
moved at self-selected speeds and directions during variable-speed tri
als. Each motion was performed twice for a minimum of 30 s, resulting 

in 10 trials per subject (5 movement types × 2 repetitions). 
Kinematic and EMG data were recorded synchronously during each 

trial. Four bipolar surface EMG electrodes (Biometrics, Newport, UK) 
were placed over the extensor carpi radialis longus (ECRL), extensor dig
itorum communis (EDC), flexor carpi radialis (FCR), and flexor digitorum 
superficialis (FDS). Each muscle was identified via palpation and 
anatomical reference. The EMG data were sampled at 960 Hz, high-pass 
filtered at 40 Hz, rectified, enveloped, and then low-pass filtered at 6 Hz 
(Crouch and Huang, 2016). Both filters were 4th-order digital Butter
worth filters with zero phase shift. Processed EMG data were normalized 
using subjects’ peak values from maximum voluntary contraction data 
for each muscle. Normalized EMG data were down-sampled to 120 Hz 
and converted to muscle activations (Lloyd and Besier, 2003). 

Fourteen reflective markers were placed on anatomical landmarks of 
the hand and forearm to track wrist and MCP flexion/extension motion 
(Fig. 1). Three-dimensional marker position data were obtained at 120 
Hz with a motion capture system (Vicon Motion Systems Ltd., UK). 
Marker data were low-pass filtered at 6 Hz (4th-order Butterworth, zero- 
phase). Joint angles were calculated from the filtered marker data in 
OpenSim (Delp et al., 2007) via inverse kinematics using a musculo
skeletal model modified to include the 2nd through 5th MCP joints 
(Crouch and Huang, 2016; Holzbaur et al., 2005). 

2.3. Subject-specific model generation 

A previously described lumped-parameter, Hill-type musculoskeletal 
model (Crouch and Huang, 2016) was optimized to predict wrist and 
MCP flexion/extension angles from EMG inputs for each subject. The 
model includes 6 parameters per muscle: optimal fiber length (lopt), 
maximum isometric force (Fmax), moment arm at the wrist joint (mawrist), 
moment arm at the MCP joint (mamcp), fiber length at 0◦ (lθ=0), and 
passive stiffness (K). For the wrist flexor and extensor muscles, which do 
not cross the MCP joint, the MCP moment arm was set to zero, resulting 
in 22 optimizable parameters. Fig. 2 shows a representation of the 
model. 

Parameters were optimized via minimization of the sum of squared 
error of both joint angle predictions. MCP joint error was doubly 
weighted to account for the smaller range of motion. Five of the 10 trials 
collected (one of each movement type arbitrarily selected) were used for 
optimization and the remaining trials were withheld for evaluation. 
Optimization was performed in MATLAB 2020a (MathWorks, Inc., 
Natick, MA) using the simulated annealing algorithm (Higginson et al., 
2005) with MATLAB’s fmincon function called every 1,000 iterations 
with randomly generated initial conditions, constrained by approximate 
physiologic ranges. 

2.4. Model performance evaluation 

Joint angle prediction accuracies for each model were calculated 
using the movement data sets withheld from the optimization. For each 
evaluation movement trial, Pearson’s correlation coefficient (r) and root 
mean square error (RMSE) between measured and predicted joint angles 
were calculated over a continuous 16-second window from the middle of 
each trial. 

2.5. Monte-Carlo simulations 

For each subject’s model, 22 simulations were performed with each 
parameter perturbed by randomly selecting a value from a uniform 
distribution scaled to the parameter’s approximate physiologic range 
(Franko et al., 2011; Holzbaur et al., 2007; Lieber et al., 1990; Murray 
et al., 2000) 20,000 times, similar to previous work (Ackland et al., 
2012; Bujalski et al., 2018). The number of simulations was also 
confirmed via pilot testing, starting with simulation sizes of 10,000 and 
incrementing by 1000 runs up to 25,000 runs and identifying when 
simulation performance converged. All other parameters were set to the 
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optimized value for that subject. Additionally, all parameters of an in
dividual muscle were simultaneously perturbed, resulting in 4 addi
tional simulations. 

2.6. Model refinement 

For each muscle, the parameters were ranked from 1 (most influ
ential) to 6 (least influential) and the sensitivity ranks were averaged 
across all 4 muscles to determine final rankings of parameter sensitiv
ities across all muscles in the model. The least influential parameter was 
fixed to the median value of its approximate physiologic range for each 
muscle and the remaining parameters were optimized as previously 
described. This process was repeated, fixing an additional parameter in 
order of increasing influence until all parameters were fixed to their 

median value. The correlation and normalized RMSE (NRMSE; root 
mean square error normalized by joint range of motion) were evaluated 
for each model refinement. Model refinement is summarized in Fig. 3. 

2.7. Sensitivity analysis informed optimization 

Based on the results of the sensitivity analysis, a new optimization 
strategy was devised to improve model optimization by initially solving 
two smaller optimization problems: one for each joint. Simulated 
annealing was run with the same settings as described above, optimizing 
only the extrinsic finger muscle (EDC and FDS) parameters. The new 
extrinsic finger muscle parameters were then held constant, while the 
wrist muscle (ECRL and FCR) parameters were optimized. Finally, all 
parameters were allowed to be optimized simultaneously. This new 

Fig. 1. Experimental setup with electrode placement shown for the flexor carpi radialis (FCR), flexor digitorum superficialis (FDS), extensor carpi radialis longus (ECRL), 
and extensor digitorum communis (EDC) on the left. Placement of 14 motion capture markers for tracking wrist and MCP flexion/extension is shown on the right. 

Fig. 2. A cartoon of the lumped-parameter model 
used in the study (Crouch and Huang, 2016). The 
model includes wrist flexion/extension (1) and MCP 
flexion/extension (2). The wrist extensors, wrist 
flexors, MCP extensors, and MCP flexors are lumped 
into ECRL, FCR, EDC, and FDS, respectively. Each 
muscle is modeled as a single compartment with 
moment arms acting at wrist and MCP joints. 
Moment arms at the MCP joint were fixed at 0 for 
ECRL and FDS since they do not cross the MCP joint.   

Fig. 3. A flowchart describing the model refinement process. The final parameter influence ranking from most to least influential was Fmax, lθ=0, mawrist, mamcp, lopt, 
and K. First, K was fixed to the median value for each muscle. The remaining parameters of the 4 muscles were randomly initialized and optimized. The correlation 
and NRMSE of the resulting refined model’s predictions at each joint were calculated. Next, this process was repeated with lopt fixed to a median value for each muscle 
(and K also fixed still). This process was repeated until all parameters were fixed to median values. The accuracies (correlation and NRMSE) of the full model and 
each refined model were compared. 
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strategy (“dual optimization strategy”) was performed and the results 
were compared to a single optimization of all parameters (“single opti
mization strategy”) for all subjects. This optimization strategy was 
compared to the baseline optimization mentioned above. The minimum 
costs found during optimization of each subject’s model with both 
optimization strategies were compared, as well as the percent of 10 
repeated optimizations that the optimal solution was identified by each 
strategy. All optimizations were performed on a desktop computer with 
an Intel i7 4790 K processor and 16 GB of RAM. 

2.8. Data analysis 

Correlation and RMSE standard deviations were calculated for each 
simulation where individual parameters were perturbed and were 
averaged across all subjects. These average standard deviations were 
used to rank the Hill-type parameter influences for each muscle, with 
higher standard deviations indicating higher sensitivity. 

A paired Student’s t-test was performed to compare the two opti
mization strategies’ performance, as well as compare the performance of 
the models generated with different numbers of parameters held con
stant to the full model. 

3. Results 

3.1. Sensitivity analysis 

As correlation results showed the same trends, only RMSE results are 
presented for brevity. Sensitivities for model parameters were similar for 
the wrist muscles. For ECRL and FCR, wrist angle accuracy had higher 
sensitivity to Fmax (12.38◦±6.71◦ and 18.25◦±5.56◦, respectively), lθ=0 
(5.99◦±4.61◦ and 9.55◦±2.93◦, respectively), and mawrist (14.38◦±8.48◦

and 7.00◦±3.82◦, respectively), and lower sensitivity to lopt (1.21◦

±1.27◦ and 1.36◦±1.17◦, respectively) and K (0.85◦±1.34◦ and 1.23◦

±0.76◦, respectively; Fig. 4 and Table 1). Wrist angle accuracy was 
insensitive to all parameters of the extrinsic finger muscles (EDC and 
FDS). Simultaneous perturbation of all parameters for a single muscle 
resulted in slightly higher RMSE variance at the wrist joint than the most 
sensitive parameter for each muscle. 

Sensitivities of MCP joint angle accuracy are summarized in Table 2 
and Fig. 4. MCP angle accuracy sensitivities varied by muscle and were 
similar to those observed for the wrist angle accuracy. For EDC and FDS, 
MCP kinematic prediction accuracy had higher sensitivity to Fmax 
(11.09◦±5.98◦ and 11.60◦±5.06◦, respectively), lθ=0 (3.23◦±2.24◦ and 
11.82◦±6.05◦, respectively), and mamcp (6.17◦±5.22◦ and 12.39◦

±8.10◦, respectively), and lower sensitivity to lopt (0.47◦±0.50◦ and 
2.57◦±2.23◦, respectively) and K (0.37◦±0.53◦ and 0.49◦±0.87◦, 
respectively). Kinematic prediction accuracy at the MCP joint was also 
sensitive to the parameters of ECRL and FCR (Fmax, lθ=0, and mawrist; 
Table 2). Simultaneous perturbation of all parameters for a single 
muscle resulted in slightly higher variation in prediction RMSE at the 
MCP joint than the most sensitive parameter for each muscle. 

The sensitivity ranks of each parameter were averaged across all 
muscles and both joints to determine the final sensitivity ranks. The final 
parameter rankings averaged across all muscles from most to least 
sensitive are Fmax, lθ=0, mawrist, mamcp, lopt, and K. 

3.2. Model refinement 

Fig. 5 shows model performance across all subjects when different 
number of parameters are removed from the optimization problem. 
Optimization of the full 22 parameter model resulted in prediction 
correlations of 0.90 ± 0.05 and 0.74 ± 0.20 for the wrist and MCP joints, 

Fig. 4. Standard deviation of model prediction RMSE at the wrist (top) and MCP (bottom) joints for the Monte-Carlo simulation of each parameter for ECRL (blue), 
FCR (orange), EDC (yellow), and FDS (purple). Higher standard deviation indicates greater influence by that parameter. Error bars indicate simulation stan
dard deviation. 
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respectively, and prediction normalized RMSE (NRMSE) of 0.177 ±

0.031 and 0.182 ± 0.064 for the wrist and MCP joints, respectively. 
Fixing K and lopt to median values for all muscles and optimizing the 
remaining parameters resulted in similar model performance for both 
the wrist (correlation: p = 0.96; NRMSE: p = 0.16) and MCP (correlation: 
p = 0.51; NRMSE: p = 0.60) compared to the model with all parameters 
optimized. A significant increase in NRMSE was observed for the MCP 
joint when mamcp was fixed to its median value in addition to K and lopt 
(p = 0.02; Fig. 5, dashed orange line). Additionally fixing mawrist to its 
median value results in a significant increase in NRMSE for the wrist 

joint (p < 0.001), as indicated by the dashed blue line in Fig. 5, and a 
significant decrease in correlation for both the wrist (p = 0.03) and MCP 
(p = 0.007) when compared to the model with all parameters optimized. 

Fig. 6 shows representative examples of predictions for both joints 
for the original model optimization (6 parameters per muscle) and two 
simplified model optimizations (4 parameters per muscle and 2 pa
rameters per muscle). While wrist angle predictions are qualitatively 
similar for all models shown in Fig. 6 (r = 0.98, 0.98, and 0.95 for 6, 4, 
and 2 parameters per muscle, respectively), the degradation of MCP 
angle accuracy with fewer optimized parameters is apparent (r = 0.92, 

Table 1 
Mean (µ(σ)) and maximum standard deviation (σmax) of wrist joint angle prediction RMSE (in degrees) for extensor carpi radialis longus, flexor carpi radialis, extensor 
digitorum communis, and flexor digitorum superficialis. The parameter name shown above each column indicates a Monte-Carlo simulation for that parameter of the 
muscle being perturbed individually for each subject. Parameters are listed in order of increasing sensitivities from left to right, with combined perturbation of all 
muscle parameters in the far-right column.  

Wrist RMSE Parameter Sensitivity Rank Combined Parameter Perturbation 

Least Sensitive → Most Sensitive 

6 5 4 3 2 1 

Extensor Carpi Radialis Longus  
maMCP K lopt lθ¼0 Fmax mawrist  

μ(σ) – 0.85 1.21 5.99 12.38 14.38 17.12 
σmax – 6.08 4.60 24.98 25.76 33.38 37.39  

Flexor Carpi Radialis  
maMCP K lopt mawrist lθ¼0 Fmax  

μ(σ) – 1.23 1.36 7.00 9.55 18.25 20.31 
σmax – 3.08 5.57 18.68 16.58 29.27 28.05  

Extensor Digitorum Communis  
lopt K maMCP mawrist lθ¼0 Fmax  

μ(σ) 0.14 0.15 0.29 0.39 0.84 2.03 2.37 
σmax 0.58 0.86 0.96 1.48 3.07 8.98 8.08  

Flexor Digitorum Superficialis  
K lopt Fmax lθ¼0 mawrist maMCP  

μ(σ) 0.02 0.11 0.37 0.42 0.94 1.12 6.55 
σmax 0.18 1.42 1.41 2.50 6.20 5.07 20.50  

Table 2 
Mean (µ(σ)) and maximum standard deviation (σmax) of MCP joint angle prediction RMSE (in degrees) for extensor carpi radialis longus, flexor carpi radialis, extensor 
digitorum communis, and flexor digitorum superficialis. The parameter name shown above each column indicates a Monte-Carlo simulation for that parameter of the 
muscle being perturbed individually for each subject. Parameters are listed in order of increasing sensitivities from left to right, with combined perturbation of all 
muscle parameters in the far-right column. MCP moment arm is left blank for the wrist muscles, as this parameter was fixed at zero.  

MCP RMSE Parameter Sensitivity Rank Combined Parameter Perturbation 

Least Sensitive → Most Sensitive 

6 5 4 3 2 1 

Extensor Carpi Radialis Longus  
maMCP K lopt lθ¼0 Fmax mawrist  

μ(σ) – 0.21 0.42 2.24 4.38 5.19 6.57 
σmax – 1.84 1.89 7.08 11.49 15.12 16.41  

Flexor Carpi Radialis  
maMCP lopt K mawrist lθ¼0 Fmax  

μ(σ) – 0.49 0.52 2.59 3.62 6.56 7.39 
σmax – 2.43 1.20 5.94 6.53 12.53 12.43  

Extensor Digitorum Communis  
mawrist K lopt lθ¼0 maMCP Fmax  

μ(σ) 0.17 0.37 0.48 3.23 6.17 11.09 12.27 
σmax 0.86 2.97 2.45 9.90 27.51 29.00 33.08  

Flexor Digitorum Superficialis  
K lopt mawrist Fmax lθ¼0 maMCP  

μ(σ) 0.49 2.57 2.60 11.60 11.82 12.39 18.66 
σmax 4.51 7.83 8.82 22.36 26.18 34.66 31.37  
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0.87, and 0.79 for 6, 4, and 2 parameters per muscle, respectively). 

3.3. Sensitivity analysis informed optimization 

Based on the relatively small influence that MCP muscle parameters 
exert on the wrist joint predictions, we developed and tested the dual 
optimization strategy described above. The dual optimization strategy 
achieved either the same or better optimal solution for all subjects, as 
evidenced by the lower cost function values (Fig. 7, top). Additionally, 
the dual optimization strategy was able to successfully identify the 
optimal solutions at a significantly higher rate of 27.3 ± 19.5% than the 
single optimization strategy rate of 6.4 ± 8.1% (p = 0.004), although the 

dual optimization strategy did require more computational time than 
the single optimization strategy (Dual: 431 ± 121 s; Single: 209 ± 25 s; 
p < 0.001). 

4. Discussion 

Previous sensitivity analyses on musculoskeletal models have 
focused on determining model parameter effects on force generation and 
global kinematic measures, such as center of mass acceleration in gait 
models (Ackland et al., 2012). In contrast, this study evaluated sensi
tivity to musculoskeletal model parameters for prediction of upper ex
tremity joint kinematics. Study of upper extremity models is needed as 

Fig. 5. Model predictive correlation (left) and normalized RMSE (right) for the wrist (blue) and MCP (orange) joints for different numbers of optimizable parameters 
per muscle. On the x-axis 0 indicates all parameters were assigned a median value, 1 indicates the most influential parameter (Fmax) was optimized for each muscle, 
up to 6 indicating inclusion of the least influential parameter (K) in the optimization. Order of parameter inclusion in order from most to least sensitive is Fmax, lθ=0, 
mawrist, mamcp, lopt, and K. No significant decrease in correlation compared to the full model is observed until only the 2 most influential parameters are optimized per 
muscle (black dashed line) for the wrist (r = 0.87 ± 0.05, p = 0.03) and MCP (r = 0.59 ± 0.21, p = 0.007). A significant increase in normalized RMSE is seen with 
only the 3 most influential parameters optimized per muscle for the MCP joint (orange dashed line; NRMSE = 0.218 ± 0.062, p = 0.02) and 2 parameters optimized 
per muscle (blue dashed line; NRMSE = 0.210 ± 0.031, p < 0.001) for the wrist joint. Error bars indicate 95% confidence intervals. 

Fig. 6. Representative comparison of estimated kinematics from a 6 parameters per muscle model (blue), 4 parameters per muscle model (orange), and 2 parameters 
per muscle model (yellow) to measured kinematics (black) of the wrist (top) and MCP (bottom) joints from subject AB01. Qualitatively, the 6 and 4 parameters per 
muscle models’ predictions were similar, while the 2 parameter per muscle model performance was noticeably worse, highlighting the difference in performance 
between the models of different complexities. 
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many are purely open kinetic chain, as no external force is modeled, 
while the lower extremity gait models frequently studied are closed 
kinetic chains, potentially altering parameter sensitivities between 
lower and upper extremity models. Joint angle prediction accuracy 
sensitivities were interrogated instead of force generation capacities 
because the desired function of the model studied is to accurately predict 
joint kinematics, which has been used for rehabilitation related appli
cations, such as assistive device control (Blana et al., 2017; Crouch and 
Huang, 2016; Lambrecht et al., 2009). Directly analyzing the desired 
final output of the model (kinematics) instead of an intermediate value 
(force) accounts for the effects of forward dynamic and computational 
error effects on the influence of each parameter. Therefore, our 
approach can directly benefit the applications of musculoskeletal model 
for accurate motion prediction and can inform the efficient design and 
personalization of musculoskeletal model-based EMG decoding system 
for various HMI applications. 

While sensitivity to parameters varied by muscle, some clear trends 
emerged. Wrist joint kinematic prediction accuracy was found to be 
highly sensitive to Fmax, lθ=0, and mawrist for the two wrist muscles (Fig. 4 
and Table 1). A muscle’s force–length curve magnitude is scaled by Fmax 
and greatly affects the force generation of a muscle and its resulting 
kinematics. The parameter lθ=0 is analogous to tendon slack length, 
which has consistently been identified as highly influential for muscle 
force generation (Ackland et al., 2012; Bujalski et al., 2018). Tendon 
slack length sets the operating region of a muscle’s force–length curve 
(Zajac, 1989), thus substantially altering the force-generating potential 
of a muscle and greatly changing the kinematics predicted at the wrist 
joint. Moment arm determines the size of the operating region of a 
muscle’s force–length curve, and therefore similarly influences its force- 
generating capacity (Murray et al., 2000). It is worth noting some of the 
magnitudes of the RMSE observed in Fig. 4 and Tables 1 and 2 are large 
in the context of the wrist and MCP joints. However, the correlation of 
the predictions remains strong (Fig. 5), thus allowing for feasible real- 
time control as previously demonstrated (Crouch et al., 2018; Crouch 
and Huang, 2017). 

In contrast, previous analyses of lower extremity model kinematics 

found moment arms to have significantly less influence on muscle force 
production. The significant influence of moment arm on wrist kine
matics, compared to the lower extremity, may potentially arise because 
the upper extremity segments have much smaller masses and moments 
of inertia compared to the lower extremity, making the kinematics more 
sensitive to changes in torque. Adjusting moment arms will lead to 
changes in joint torques, thus causing greater changes in kinematics due 
to the smaller inertias. 

By systematically studying the sensitivity of joint angle prediction 
accuracy for both joints and removing the least sensitive parameters 
from the optimization scheme, we were able to simplify the model 
studied. Removal of the two least influential parameters (K and lopt) for 
each muscle greatly reduced the complexity of the model (and optimi
zation) from 22 parameters to 14 parameters without sacrificing model 
performance. As seen in Fig. 5, predictive correlation for both joints did 
not significantly decline until the 4 least sensitive parameters were held 
constant. However, NRMSE behaved differently between joints, with 3 
constant parameters causing a significant increase in predicted MCP 
angle error. These results demonstrate a systematic approach to guide 
model refinement for clinical applications to avoid unnecessary 
complexity in the system without sacrificing performance. This sys
tematic approach works toward eliminating the barrier that optimiza
tion of models (even simplified ones like the one evaluated here) 
presents to clinical implementation, such as the control of upper ex
tremity rehabilitation devices. 

While it is known extrinsic finger muscles contribute to wrist mo
ments (Lieber et al., 1996), the two extrinsic finger muscles modeled 
here did not strongly influence wrist angle accuracy when perturbations 
were applied to all parameters of these muscles (Fig. 4 and Table 1), 
despite crossing the wrist joint and being active during isolated wrist 
motion trials. This is possibly due to the higher moment of inertia of the 
palm segment compared to the finger segment resulting in less kinematic 
perturbation (Crouch and Huang, 2016). Nevertheless, MCP joint angle 
predictions were highly sensitive to parameters of the wrist muscles, 
despite no direct action at the MCP joint (Fig. 4 and Table 2). This may 
be a result of the two-link nature of the model. The states of EDC and FDS 

Fig. 7. The minimum optimization cost function value (top) for the single (blue) and dual (orange) optimization strategies show the dual strategy identifies either the 
same solution, or a better solution for all subjects. The identification rate of the optimal solution (left) and computational time (right) of both strategies are compared. 
Identification rate was determined by applying each optimization strategy 10 times and calculating the percentage of those 10 optimizations the optimal solution was 
identified. The dual optimization strategy identifies the optimal solution at a significantly higher rate (single: 6.4 ± 8.1%; dual: 27.3 ± 19.5%; p = 0.004). 
Computational time is increased by the dual optimization strategy (dual: 431 ± 121 s; single: 209 ± 25 s; p < 0.001) but is still at a reasonable value at <10 min for a 
single subject. 
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(fiber length and velocity) depend on the kinematics of the wrist joint. 
Therefore, while ECRL and FCR do not act directly on the MCP joint, the 
strong influence their parameters exert on MCP joint kinematics is likely 
due to their strong influence on wrist joint kinematics. These observed 
sensitivities across joints motivated the formulation of the dual opti
mization strategy: we initially optimize the extrinsic finger and wrist 
muscle parameters separately, as lower dimensional optimization 
problems are often faster and easier to solve. The dual optimization 
strategy showed itself to be more robust than a single optimization of all 
parameters simultaneously, as it was able to more reliably identify the 
optimal solution (Fig. 7). While computational time increased, optimi
zation required <10 min total on average. The benefits of the dual 
optimization strategy highlight how the 2-DOF nature of the model and 
observing the sensitivities of each degree of freedom were able to inform 
model improvement and simplify computations. 

This study is not without its limitations. The sensitivity analysis was 
limited to Hill-type and musculoskeletal geometry parameters. The 
model studied is also influenced by the modeled inertial properties of the 
hand/wrist and excitation-activation dynamics. Analyses of the influ
ence of these parameters’ effects on kinematic prediction accuracy are 
warranted and will be the subject of future works. The study was also 
limited by the design of the model itself. The muscles modeled did not 
include an elastic tendon, instead treating the tendon as rigid. Addi
tionally, the moment arms of each muscle were held constant with 
respect to joint angle. While some muscles in the model have relatively 
constant moment arm (FCR and EDC), others (ECRL and FDS) do not (An 
et al., 1983; Gonzalez et al., 1997). This simplification could potentially 
explain the observed sensitivity to moment arms, as the moment arm 
potentially is less accurate in certain joint angles, while in a more ac
curate representation, moment arm depends on the muscle path and 
varies with joint angle. Finally, the inertial properties of the palm and 
finger segments are approximated as two cylinders. These simplifica
tions can be improved upon in future works but may require additional 
computational resources, making the model more difficult to implement 
in real-time as an HMI. 

5. Conclusions 

Sensitivity analyses provide important insight into which parameters 
exert the most influence on a model’s performance. In this study, we 
examined the sensitivity of an EMG-driven lumped-parameter upper 
extremity model to Hill-type and musculoskeletal geometry parameters. 
While sensitivity was muscle dependent, we identified maximum iso
metric force and tendon slack length as highly influential parameters, 
consistent with previous force-based analyses. Additionally, muscle 
moment arm exerted significant influence on kinematic prediction ac
curacy, while previous work found moment arm exerted little relative 
influence for force generation. This demonstrated the importance of 
evaluating model performance according to the desired application and 
will provide a framework for future analyses as models become more 
widely used for kinematic predictions and HMIs. While other work has 
studied the optimization of upper extremity model parameters (Goislard 
de Monsabert et al., 2020; Goislard De Monsabert et al., 2018), these too 
have focused on optimizing force generation, and to the best of our 
knowledge, this is the first such analysis that examined an upper ex
tremity model’s sensitivity in terms of local joint kinematic prediction 
accuracy. 

In addition to the biomechanical implications discussed, this study 
demonstrated and quantified the interaction of multiple degrees of 
freedoms in a model by observing performance of each joint’s prediction 
accuracy in conditions of both isolated and simultaneous motion, 
allowing us to greatly reduce model complexity. Furthermore, the 
sensitivity analysis revealed the wrist joint prediction accuracy was not 
strongly influenced by the parameters of the 2 included extrinsic finger 
muscles, as modeled in this study. These results inspired a custom 
optimization approach for the model studied, demonstrating how such 

an analysis can be applied to better inform optimization of models across 
rehabilitation fields. 
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