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Abstract—In this paper, the subspace based output only
detection algorithm proposed in our previous work [1]–[3] is
applied to detect small changes in power systems. In this work,
the disturbances considered are the ones that cause the operating
point of power systems to change gradually or subtly over time,
which are difficult to be captured by most existing detection
tools. The simulation is carried out using the Opal-RT Real Time
Digital Simulator (RTDS). The IEEE 39-bus system is simulated
with this hardware in the loop testing platform. The changes
studied are slow load rampings in the system. Results show that
these small changes can be well detected by our algorithm.

I. INTRODUCTION

In this paper the algorithm proposed in our previous work
[1]–[3] will be tested. Our previous work demonstrated the
algorithm can successfully detect system operating point. The
algorithm has been applied to the detection of various events
such as forced oscillations, the topology changes of the system,
the ringdown events and so on. The focus of this work is to
evaluate the response of the proposed detection algorithm to
subtle and gradual changes such as the ramping events. The
testing is done by combining two major research topics namely
ramping events and hardware-in-the-loop testing for which a
brief introduction of each topic is given below.

A. Ramping Events

There is a lot of emphasis on integrating the renewable en-
ergy sources with the existing power grid. The uncertainty as-
sociated with the these energy sources present the researchers
with many new challenges as the power system operators strive
to operate the grid in a reliable, secure and economically
efficient way [4]–[6]. Of these one of the major challenges
is the ramping events which are caused by fluctuation with
varying magnitudes and durations.

Ramping events occur in wind power generation and pos-
sible causes include thunderstorms, wind gusts, and cyclones.
Solar power ramping might be caused by short term micro-
climates like passing of a cloud. Load ramping events will
generally be caused by human behavior. Generally the load
ramping is more stable compared with the renewable sources
of energy [5].

The renewable energy plant sites cannot be predetermined
in the same way as the conventional energy generation plant
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sites. The arbitrary development of renewable energy sources
can unexpectedly change the traditional grid load profile and
operational practices [7] which demands a more situational
awareness. The situational awareness can be achieved with
quick and accurate detection of even the smallest changes in
the system operating point.

B. Hardware-in-the-Loop Testing

The hardware in the loop (HIL) testing concept has been
around for at least last five decades [8]. In [9] the authors
define HIL testing. They have also introduced the advantages
of having a HIL simulation in the design and testing of the
control hardware and software. Testings can now be done
without having to operate a real process and under imaginable
extreme conditions in the laboratory environment.

HIL testing has been used in various fields such as flight
simulation, missile guidance system, anti-lock braking system.
to name a few. For power systems, HIL testing has also been
applied to test different scenarios. Examples include unified
testing platform for wind energy system [10], operation and
control function of micro grid [11], photo voltaic control
systems [12] and so on.

The significance of HIL testing has been recognized very
well. Therefore, a benchmark for testing the distributed energy
sources using HIL testing was published in 2018 [13]. It
focused on benchmarking two test setups for control HIL
(CHIL) and power HIL (PHIL) testing with recommendations
on the equipment and reference laboratory procedures.

In this paper, HIL testing is incorporated to take advantage
of the fact that the simulations can be carried out in real time.
Various scenarios can be generated even for the cases where
the data from real world is not available.

The rest of the paper is organized as follows. Section II gives
a brief overview of the subspace based output only change
point detection algorithm. Section III describes the HIL test
setup. Section IV first discusses the results based on a simple
system and next on the IEEE 39-bus system which uses the
HIL test setup described. Section V draws some conclusions
and highlights the future work to be done.

II. THE DETECTION ALGORITHM [3]

The basic idea of the detection algorithm is discussed in
papers [1], [2]. The enhancement of the algorithm with a sta-
tistical method called cumulative sum (CUSUM) is discussed
in [3]. Here a very brief summary of the algorithm is presented.
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In general, the dynamic model for a discrete-time system
can be given by

xk+1 = Fxk + εk

yk = Hxk + νk ,
(1)

where x is the state vector of size m× 1 , y is the observa-
tion/output vector of size n×1, F is the state transition matrix
of size m×m, H is the observation matrix of size n×m, εk
and νk are system input (m×1) and measurement noise (n×1)
respectively. In general, for any system, the measurement noise
can treated as additive white Gaussian noise. In the context of
power systems, εk is modeling the random load variations,
which can be represented by a white Gaussian noise. After εk
passes through the system represented by Eq. (1), the output
or the observation yk will be a colored noise.

A. Subspace-Driven Output-Only Based Change-Point Detec-
tion

The output-only covariance-based subspace system identifi-
cation is based upon the the auto-covariance of the output yk:
(see e.g. [14]–[17])

Ri = E(yT
k yk−i) . (2)

The Hankel matrix using the auto-covariance of the output
defines the signal space and is given by

Hp+1,q = Hank(Ri) =


R0 R1 R2 . . . Rq−1

R1 R2
. . . . . . Rq

...
...

. . . . . .
...

Rp Rp+1 . . . . . . Rp+q−1

 ,

where p and q are the model order used in the subspace
identification method. Defining the orthogonal matrix U such
that

UTU = I and UTHp+1 = 0 . (3)

The matrix U is not unique, but when the signal space remains
unchanged, then the following equation holds,

UHp+1,q = 0 . (4)

The matrix U can be also called the “null space” of the signal.
Eq. (4) holds only theoretically. In practice, the exact Hankel
matrix Hp+1,q is not obtainable and can only be estimated
from some available observation data as Ĥp+1,q via replacing
the expectation by the sample average. For each N -point
observation window starting at time n, we can define a residue
as

ζ(n) = ÛĤp+1,q(n) . (5)

B. The CUSUM Procedure

The residue derived above in Eq. (5) is extended here to
develop the CUSUM strategy [14], [16], [17]. This residue is
expected to have zero mean with a normal distribution by the
central limit theorem. The detailed derivation can be found in
[3]. A summary of the equations used is given here.

Let µ0 be the mean before change and µ1 after change with
µ0 < µ1. Suppose the mean changes at time r, then the change
in mean can be represented as

µn =

{
µ0, if n ≤ r − 1

µ1, if n ≥ r .
(6)

The problem is to detect the change in the mean µn and
estimate the change time r. The detection problem is basically
the testing between the hypotheses

H0 : r > n

H1 : r ≤ n .
(7)

Taking the likelihood ratio between the two hypothesis
and assuming Gaussian distribution, the maximum likelihood
estimate of unknown jump time r under H1 is

arg max
1≤r≤n

Sn
r (µ0, ν) , (8)

where ν = µ1 − µ0. Then the detector can be defined as

gn
def
= Λn(r̂n) = max

r
Sn
r (µ0, ν)

H1

R
H0

λ , (9)

where λ is the threshold and the detector in recursive form is

gn = (gn−1 + yn − µ0 −
ν

2
)+ . (10)

The + sign indicates that mean after change is greater than
mean before change (i.e., µ0 < µ1).

In practice, it is not always possible to know the mean
µ1 after the change, especially in the case of on-line testing.
Thus, two tests are run in parallel with ν being replaced with
minimum jump magnitude vm that is chosen a priori. One test
will be checking for an increase in mean while the second test
will be checking for a decrease in mean. The stopping rules
can be defined as:

When the mean increases after the change:

U0 = 0 (11a)

Un =
n∑

k=1

(yn − µ0 −
vm
2

) (11b)

mn = min
0≤k≤n

Uk (11c)

g+n
def
= Un −mn (11d)

alarm when g+n > λ (11e)

When the mean decreases after the change:

T0 = 0 (12a)

Tn =
n∑

k=1

(yn − µ0 +
vm
2

) (12b)

Mn = max
0≤k≤n

Tk (12c)

g−n
def
= Mn − Tn (12d)

alarm when g−n > λ (12e)

where λ is the threshold.
The first rule to stop makes the decision and the jump time n

is estimated by last maximum (or minimum respectively) time
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Fig. 1. The load profile.

before detection. Eqs. (11b) and (12b) represent the CUSUM
statistics and Eqs. (11c) and (12c) represents the extremes.
The Eq. (11d) and Eq. (12d) represent the CUSUM decision
statistics. The decision statistics will be zero until a change is
detected.

III. HARDWARE-IN-THE-LOOP SETUP

The standard IEEE 39-bus power system is simulated on
the Opal-RT Real Time Digital simulator (RTDS). The load
is varied externally and given as an input to the simulated
system. For simulation, the system model is built in simulink.
Using the RT-Lab software, which is a proprietary software
of Opal-RT, the modeled system is compiled and run on the
RTDS.

For the case presented here the phasor data was written
into a file and the detection algorithm was tested offline.
The Opal-RT RTDS is a powerful simulator with multiple
cores and several simulators can be interfaced together for
one simulation. This setup will help create a more realistic
testing model as the algorithm can be tested online while the
network latency and other parameters can mimic the real-world
scenario more closely.

The total simulation time is 5.5 hours. The load ramping
starts at 1.5 hours and ramped up till 4.5 hours. The load
connected to bus 20 of the simulated system is ramped up. The
ramp has a slope of 5× 10−6 as we want to see the behavior
of algorithm for small changes. The data is collected at 100
samples/second and down sampled to 5 samples/second. The
data from 30 mins to 1 hour is used for null space estimation.
The algorithm is run from hour 1 to hour 5.5 of the simulation
time with 10 min sliding window.

The Fig. 1 shows how the real power of the load connected
to bus 20 is varied over time. The starting point of the load
variation is taken directly from the solved power flow. The
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Fig. 2. The output of simulation of the simplified model.

figure shows only the variation profile but not the absolute
load values. It can be seen that the slope is very small and the
increment in the load is not significantly large. The algorithm
is able to detect the change in system’s operating point even
when it is this small.

IV. RESULTS

A. Illustration of the CUSUM Procedure using A Simple
System

The CUSUM results are first illustrated using a small system
[3] which was used in our previous work. The simulation
results are shown for a simplified system with 2 modes of
the minniWECC [18] selected as the poles. The change in
this system is the introduction of Forced Oscillations (FO’s).
The total simulation time is 20 mins. The FO’s are introduced
at the 15th minute. The Fig. 2 show the frequency devation of
the small system.

For the simple system to calculate the residue in Eq. (5),
the order p = 5 and q = 6 is selected. With the chosen order
numbers, the residue has a dimensionality of 5 resulting in
5 channels of decision statistics as shown in Fig. 3. Change
in any channel indicates that the system has changed, and
thus OR rule is used to detect the change. The residue (ζ(n))
from Eq. (5) is shown in Fig. 3. The first 10 minutes are
not shown here as that data is used for null space estimation
for calculating the residue. For the figures presented, we see
that all 5 channels show deviation from 0. In Fig. 3 it can be
observed that two channels show deviation with increase in
mean after the change and three channels show deviation with
decrease in mean.

The CUSUM decision statistics for the test checking for
an increase in mean is shown in Fig. 4 corresponding to Eq.
(11d). Fig. 5 shows the CUSUM decision statistics for the test
checking for decrease in mean coresponding to Eq. (12d).
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Fig. 3. The plot of residue.
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Fig. 4. The plot of g+n corresponding to Eq. (11d).

B. Hardware-in-the-Loop Testing using IEEE 39-bus System

For the hardware-in-the-loop testing, the standard IEEE 39-
bus system is used. This system will have 40 channels based
on the order chosen. The channel responding first, i.e., the
channel that first shows deviation from 0 will be shown here
since this is the used for rising the alarm with the help of the
OR rule. This is done to avoid the clutter created by drawing
all the 40 curves. The results presented here are of only one
test of the two tests being run in parallel based on which test
responded earlier.

The Fig, 6 shows the frequency deviation exhibited by the
system whose nominal operating frequency is 60 Hz which is
also the nominal operating frequency of the North American
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Fig. 5. The plot of g−n corresponding to Eq. (12d).
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Fig. 6. The Frequency deviation between two buses of 39-bus system.

grid. The frequency deviation was calculated using the Eq.
(18) in [2]. If the frequency deviation graph is observed it
is impossible to conclude that any change is occurring in the
system from 1.5 hrs to 4.5 hrs of the simulation.

Fig. 7 shows the residue corresponding to Eq. (5) from the
channel which responded for the change. This figure starts at
1 hours as the algorithm is started after estimating the initial
null space. The change is seen after about twenty minutes due
the fact that the change in the system is very small and also
the sliding window has about 10 minute memory.

Fig. 8 shows the CUSUM decision statistics corresponding
to Eq. (11d) indicating the test that responded first was the one
checking for increase in mean. Here it can be seen that there
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Fig. 8. The plot of g+n corresponding to Eq. (11d) for the channel that
responded first.

is more delay before the change is seen. This is in agreement
with results of our previous work in [3], where it was shown
that for having lower false alarm rate and missed detection
rate, the price is paid by having a slightly higher delay of
detection.

V. CONCLUSIONS

In this paper we have shown that the algorithm is able to
detect the gradual or subtle changes that occur in the power
system’s operating point. The sudden changes in the power
system’s operating point were examined in our previous works
[1]–[3] in detail. This work also shows that the algorithm

works efficiently even with hardware-in-the-loop testing. Thus
we can conclude the algorithm will be robust under varying
conditions since no assumption about the system is made. The
next steps would be to simulate larger system with HIL testing.
The other question that needs to be answered is how to reduce
the delay of detection without compromising the accuracy by
designing better detection statistics and rules.
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