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ABSTRACT: Diazirines have been recently demonstrated to serve as electrophilic amination reagents that afford diaziridines, ver-
satile heterocycles that are readily transformed into amines, hydrazines, and nitrogen-containing heterocycles. Here we report the 
photodecarboxylative amination of redox-active esters with diazirines using inexpensive photoactivators under mild conditions with 
an enhanced scope for primary substrates. The stability of diazirines to blue light is demonstrated, paving the way for further re-
search into other photochemical amination methods with these unique heterocycles. 

Nitrogen-containing compounds are ubiquitous in pharmaceu-
ticals, agrochemicals, catalysts/ligands, materials, and more.

1
 

As a result, the development of methods for C–N bond for-
mation continues unabated. Despite their popularity and obvi-
ous utility in a variety of areas,

2
 the use of redox-active esters 

(1, RAEs) for C–N bond formation has been relatively under-
explored. Of these few reports, all have used a transition met-
al/organophotoredox approach that was combined with copper 
catalysis (Figure 1A). The method developed by Peters and Fu 
recaptures the phthalimide after cleavage of the primary or 
secondary RAE to afford protected amines as the final prod-
ucts.

3
 Over the last several years, Hu has disclosed three 

methods that convert alkyl RAEs to aminated products. The 
first of these uses a ruthenium catalyst with an oxoacetic acid-
based ligand and copper halide that yields anilines with prima-
ry or secondary RAEs.

4
 This was followed by an iridium-and 

copper-catalyzed method that uses an electron-deficient bis-
arylated imine with primary, secondary, and tertiary RAEs

5
 

and, finally, an organophoto- and copper-catalytic method that 
can furnish either anilines or imines depending on the nitrogen 
source used.

6
 Recently we reported the use of diazirines and an 

iron-catalyzed system that reacts with RAEs to afford diaziri-
dines.

7
 

While historically neglected by synthetic chemists, diaziri-
dines 3 have now been demonstrated to be highly useful in-
termediates in the synthesis of amines, hydrazines, and nu-
merous nitrogen-containing heterocycles, such as pyrazoles, 
pyrroles, triazoles, pyridazinones, and others (Figure 1B).

7,8
  

Perfluorinated diazirines have also been shown to be effective 
in combination with fluorous phase synthesis.

7
 The main limi-

tation in our previously reported work was low reactivity of 
primary RAEs with diazirine 4 (Figure 1C). This was partially 
alleviated by the use of a perfluorinated diazirine instead of 4, 
which showed sufficient reactivity to deliver the desired prod-
ucts in synthetically useful yields. However, diazirine 4 is not 
only commercially available, but also more economical and 
able to be prepared in fewer steps. Therefore, we elected to 
develop a complementary approach that allowed for the use of 
diazirine 4 in the decarboxylative amination of redox-active 
esters. 

To overcome the limitation of the amination of primary RAEs 
with diazirine 4, we sought alternative activation modes for 1. 
In 2019, Shang and Fu reported the tri-
phenylphosphine/sodium iodide-mediated photocatalytic de-
carboxylative alkylation of redox-active ester 5 with silyl enol 
ether 6 (Figure 2A).

9
 This approach was particularly appealing 

since it uses inexpensive, readily available photoactivators that 
form electron donor-acceptor (EDA) complexes in the pres-
ence of blue light,

10
 avoiding expensive transition metal cata-

lysts or exotic organocatalysts.
11

 More recently this transfor-
mation has been achieved with a simple ammonium iodide 
catalyst in an amide solvent, which proceeds through an anion-
p interaction in a solvent cage (Figure 2A).12 
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redox-active esters with diazirines under iron-catalyzed conditions 
to photoredox conditions (this work). 

Initial attempts to directly translate the published catalytic 
conditions to the reaction of redox-ester 8 with diazirine 4 led 
to the desired diaziridine 9 in 19% yield (Figure 2B, entry 1, 
see SI for full details). Repeated attempts to optimize the cata-
lytic reaction with respect to phosphine (entries 3 and 6), sol-
vent, LED type/placement, and temperature were unsuccess-
ful.

13
 Instead, using 1.5 equivalents of both triphenylphosphine 

and sodium iodide led to 9 in 76% yield. A screen of phos-
phines (entries 2, 4, 5, and 7-10) revealed several (10, 12, 14) 
that worked in moderate to good yields (52-70%), but none as 
economically as PPh3. Acetone (entry 11), DMA (entry 12), 
and DMF (entry 13) afforded the desired product with some 
diminishment in yield but could be considered in cases where 
substrates are poorly soluble in acetonitrile. The temperature 
of the reactions proved critical (entries 14-17), with 26-28 °C 
providing optimal yields of diaziridine 9. Reactions below 18 
°C were sluggish in addition to giving lower yields; in reac-
tions above 38 °C only traces of product were observed. Final-
ly, the use of 1.5 equivalents of tetrabutylammonium iodide 
(TBAI) furnished diaziridine 9 in 54% yield (entry 18) and 
could represent an alternative set of conditions for this trans-
formation. 

Given that diazirines are typically photoactivated to form the 
corresponding carbenes,

14
 it was somewhat surprising to ob-

serve the near complete stability to blue LEDs over several 
days. Diazirine 4 ( l max = 353 nm)

15
 is stable to blue LEDs 

(456 nm, 2 lamps, each 3 cm from reaction vial) as a solution 
in cyclohexane for at least 48 hours. Small amounts of degra-
dation are observed in acetonitrile at 16 hours, though most of 
diazirine 4 is still present at 48 hours (see SI for details). 
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Figure 2. A. Phosphine/iodide-mediated decarboxylative 
amination of redox-active esters with silyl enol ethers. B. 
Optimization of the photodecarboxylative amination of redox-
active esters with diazirines. C. Competition experiment of 
diazirine 4 and cyclohexane (17) with blue LEDs. 

However, when exposed to a 500 W halogen lamp, diazirine 4 
decomposes completely within six hours in either cyclohexane 
or acetonitrile (4 has been reported to have a half-life of 25 
seconds with a 450 W mercury lamp placed 4 inches away).

15
 

After 24 hours of ambient light exposure, a solution of diazir-
ine 4 in acetonitrile shows small amounts of degradation. Al-
ternatively, the exposure of 4 to ambient light as a neat com-
pound begins to show degradation after 6 days (which demon-
strates 4’s ease of handling as a reagent, see SI for details). In 
order to probe the stability of 4 to blue LEDs further, competi-
tion experiments were run with the optimized reaction condi-
tions where RAE 8, diazirine 4 and cyclohexane (17, 1 equiv. 
and 20 equiv.) were exposed to blue LEDs for 40 h (Figure 
2C). The target diaziridine 9 was isolated in 67% yield (1 
equiv. 17) and 63% yield (20 equiv. 17) after full consumption 
of RAE 8.

16
 In contrast, when the reaction was set up with a 

500 W halogen lamp, only traces of diaziridine 9 were detect-
ed with nearly all of diazirine 4 decomposed within 90 
minutes. 

With optimized conditions in hand, the scope was evaluated, 
starting with primary redox-active esters (Figure 3). Gratify-
ingly, treatment of the redox-active ester derived from 4-
phenylbutanoic acid with diazirine 4 afforded diaziridine 19 in 
60% yield, significantly improved over the previous iron-
catalyzed conditions (variable 9-31% yield).

7
 Several more 
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direct comparisons with primary redox-active esters were 
made including: alkyl chloride 20 (71% vs. 36% with Fe), 
alkyne 21 (57% vs. 17% with Fe), ester 22 (74% vs. 30% 
with Fe), and dehydrocholic acid derivative 40 (84% vs. 
traces with Fe). Numerous natural products and pharmaceu-
ticals bearing primary carboxylic acids were amenable to the 
amination process including linoleic acid (24, 53%), myco-
phenolic acid (29, 50%), glutamic acid (30-33, 45-50%), 2,4-
D (35, 56%), fenbufen (36, 50%), gabapentin (39, 44%), 
dehydrocholic acid (40, 84%), and atorvastatin (41, 45%). 
The treatment of the redox-active ester of 3-phenylbutanoic 
acid under the diaziridine-forming conditions led to “β-
methylphenethylamine diaziridine” 37 in 73% yield. While 
the mono-aza phenethylamine and amphetamine classes of 
compounds are well studied,

17
 this approach also provides 

rapid access to the hydrazinyl versions. These di-aza deriva-
tives have been reported to possess a wide variety of activi-

 

ties including antihypertensive,
18

 analeptic,
19

 antidepres-
sive,

20
 and antibacterial,

21
 while acting as MAO

19
 and D-

amino acid oxidase inhibitors,
22

 and have even been explored 
as amphetamine prodrugs.

23
 

Glutamic acids 30-33 are notable due to the straightforward 
and economical access to the corresponding hydrazine deriv-
atives without epimerization. The hydrazines, particularly 
methylated versions related to 33, have previously been used 
in the synthesis of vancomycin aglycon analogs.

24
 Their lit-

erature preparation comes from expensive homoserine deriv-
atives (compared to inexpensive, readily available glutamic 
acid) in a fairly low-yielding process over 5-6 steps.

24
 

As anticipated from the success with the primary RAEs, both 
secondary and tertiary RAEs worked well, furnishing the 
desired diaziridines in moderate to high yields. In addition to 
commonly used building blocks for medicinal 
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Figure 4 Scope of the photodecarboxylative amination of 
secondary and tertiary redox-active esters with diazirines. 
General reaction conditions: RAE (1 equiv.), diazirine (2 
equiv.), PPh3 (1.5 equiv.), NaI (1.5 equiv.), MeCN (0.1 M), blue 
LEDs (2 lamps, 3 cm from reaction vial), 26-28 ºC, 24-48 h. a3 
equiv. of diazirine were used. 

chemistry (e.g. 9, 47-50), menthyl formic acid (45), gemfib-
rozil (52), and oleanolic acid (55) were successfully aminat-
ed. Interestingly, there were several examples where the 
photoredox method outperformed the iron-catalyzed ap-
proach: tetrahydrofuran derivative 42 (92% vs. 38% with 
Fe), ketone 49 (85% vs. 42% with Fe), and difluoro 47 (88% 
vs. 53% with Fe). Fluorous phase diaziridines 56 and 57 
were also prepared in good yields, which allows the photore-
dox amination to be coupled with a high throughput library 
synthesis for the rapid preparation and purification of diverse 
nitrogen-containing compounds.

7,25
 

Overall, the structural diversity of the primary, secondary, 
and tertiary RAEs was vast with a broad functional group 
tolerance including alkyl halides (20), alkynes (21), esters 
(22, 30-33, 56), ethers (23, 27, 29, 34, 35, 52), olefins (24, 
26, 29, 55), heterocycles, (9, 28, 41, 42, 46, 51, 54, 57), hy-
droxy/phenols (29, 48, 55), lactones (29), ketones (36, 38, 
40, 49), acetals (41), sulfones (46), and silyl ethers (50). 
Compatible amine protecting groups include Ac (30), Fmoc 

HN N OMe 
HN N 

Ph C8F17 

Ts 
N 

Ph C8F17 

Fluorous Phase 
O 

(31), Cbz (32, 33, 39), and Ts (9, 51, 57). In addition to the 
tertiary RAEs (51-55), other sterically hindered examples 
include diaziridines 39 and 45. The reactions were scaled to 
1 mmol with similar yields to the rest of the scope (22, 25-
27). 

In conclusion, we have reported a transition metal-free pho-
todecarboxylative amination of redox-active esters with dia-
zirines that proceeds under mild conditions with inexpensive, 
readily available triphenylphosphine and sodium iodide pho-
toactivators.

26,27
 The scope and yields of primary RAEs (24 

examples) are significantly improved over our previously 
reported method. Some functional group tolerance, especial-
ly with ketones, has also been improved. While the reasons 
for the observed differences in reactivity between the iron-
catalyzed and photoredox methods are not fully understood, 
experiments are ongoing and the results will be reported in 
due course. As has been previously demonstrated, the dia-
ziridines obtained from this reaction are easily converted to 
amines, hydrazines, and nitrogen-containing heterocycles. 
The demonstration of the exceptional compatibility of blue 
LEDs and diazirines that allows for the formation of amina-
tion products is expected to facilitate the exploration of re-
lated new methods; efforts toward this end are ongoing in 
our laboratory. 
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