
Pippi: Practical Protocol Instantiation
Samuel H. Christie V

North Carolina State University
Raleigh, NC, USA
schrist@ncsu.edu

Amit K. Chopra
Lancaster University

Lancaster, UK
amit.chopra@lancaster.ac.uk

Munindar P. Singh
North Carolina State University

Raleigh, NC, USA
mpsingh@ncsu.edu

ABSTRACT
A protocol specifies interactions between roles, which together
constitute a multiagent system (MAS). Enacting a protocol presup-
poses that agents are bound to the its roles. Existing protocol-based
approaches, however, do not adequately treat the practical aspects
of how roles bindings come about.

Pippi addresses this problem of MAS instantiation. It proposes
the notion of a metaprotocol, enacting which instantiates a MAS
suitable for enacting a given protocol. Pippi demonstrates the sub-
tleties involved in instantiating MAS arising from protocol compo-
sition, correlation, and decentralization. To address these subtleties
and further support practical application patterns, we introduce
an enhanced protocol language, with support for parameter types
(including role and protocol typed parameters, for metaprotocols),
interface flexibility, and binding constraints. We discuss the real-
ization of our approach through an extended agent architecture,
including the novel concept of a MAS adapter for contact man-
agement. We evaluate Pippi’s expressiveness by demonstrating
common patterns for agent discovery.

ACM Reference Format:
Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Pippi:
Practical Protocol Instantiation. In Proc. of the 21st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Multiagent systems (MASs) can be specified from multiple per-
spectives, including organizations, commitments, and interactions.
Yet, from a practical standpoint, how do agents come together to
instantiate a MAS?

We focus on multiagent systems specified through interaction
protocols [15], which are characterized by the messages that the
agents send to and receive from one another and the constraints
on the ordering and occurrence of those messages. For such a spec-
ification, the agents take on roles in a protocol, which specifies the
messages each role may send and receive. Most protocol specifi-
cation languages focus on the interaction itself and the order in
which messages may be sent and received, with little consideration
of how the roles are bound to agents. From a theoretical standpoint,
this is a reasonable assumption; role binding can be left as an im-
plementation detail. But for practical applications of interaction
protocols, it is important to consider how each agent learns of its
role and how each agent learns the bindings of the other roles it
must interact with.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Composition is a longstanding and challenging theme for practi-
cal applications [21]. Protocol composition presents crucial chal-
lenges for both modeling and verification [10] because protocols
focus on interaction and interaction in a decentralized setting is
nontrivial to deal with. Traditional protocol languages rigidly spec-
ify the sequences of events that agents can observe, making com-
position difficult. Information-based protocol languages such as
Splee [7] and BSPL [31] support composition but have their own
limitations. BSPL protocols have fixed conditions for completion,
meaning that protocols only have two states, complete and in-
complete, and must therefore hide any nuances. BSPL and Splee
protocol key constraints require a composition to have a common
key, imposing on their constituent protocols that would otherwise
have their own keys. Finally, current implementations propagate
meaning from the outermost composition into each constituent
protocol by substituting the parameter names; from a conceptual
point of view, this is correct (the meaning of each constituent does
change according to its use in the composition), but for modularity
each agent should only need to know the protocols it supports, not
the compositions they are used in.

We adopt the name Pippi (after the famous character in children’s
literature) for our approach because of its similarity with PPI (for
Practical Protocol Instantiation).

1.1 Scenario: Wedding
To illustrate some of these concepts, we adopt a marriage scenario.
The scenario starts with one agent, the proposer, who would like
to get married to another. The proposer is initialized as part of a
broader MAS context and can select potential partners from that
context. Once the proposer has selected a partner, they then propose
marriage; that is, they propose that the two agents enact a ceremony
(protocol) together that will produce a social result of marriage.
When the proposee has agreed to go through the ceremony (possibly
selecting which form of ceremony they will enact), they can begin;
note that this agreement to enact the ceremony is not the same
thing as committing to the marriage.

As they enact the marriage ceremony, they will need to bring in
other agents to participate; for example, in a court wedding, they
need a judge to officiate and a witness to sign the license. It should
be possible to ask someone to witness at the last second, and the
witness shouldn’t need to know any details about the rest of the
ceremony.

1.2 Objectives and Novelty
The scenario above presents challenges, which we address:

Dynamic Role Binding. How do agents come together at runtime to
enact a protocol?

AAMAS ’22, May 9–13, 2022, Online Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh

In the wedding scenario, the proposer starts by inviting their
prospective spouse, a judge, and a witness. The proposer must
communicate not only each invitee’s role in the protocol but also
the roles of the other agents they must interact with. The proposer
may prefer to use late binding to invite those agents only when
their role becomes necessary, to protect privacy for all parties, and
avoid overhead in case the enactment is terminated early.

Composition. How can we ensure that exactly the right amount
of information is shared between the constituent protocols in a
composition?

The wedding scenario can be decomposed into subprotocols,
e.g., a specific wedding ceremony and a generic witness protocol.
How do we ensure independence, that is, that each agent need only
be aware of the protocol it is enacting? A witness participating in
a wedding ceremony need only be aware of the generic witness
protocol and should not need to implement support for (or even be
aware of) the broader ceremony.

1.3 Contribution: Our Solution Conceptually
To negotiate which protocol to enact and which agents to play the
roles, agents need the ability to discuss these objects. We introduce
the concept ofmetaprotocols, which are protocols whose parameters
refer to the elements of another protocol.

Although metaprotocols can be implemented using normal pro-
tocols with special interpretation for some of the parameters, we
introduce protocol language extensions to make those meanings
explicit. We borrow role parameters from Splee [7], and add sup-
port for parameter type declarations. Parameters with the type
protocol may be used as variables for more flexible composition.

2 THE PROTOCOL LANGUAGE
BSPL [30], the foundational information protocol language, did
not address role binding, assuming that roles were bound prior to
protocol instantiation. Splee [7] supported treating roles as parame-
ters for dynamic binding but did not address practical instantiation
challenges.

We now introduce the core aspects of our protocol language,
illustrated through specifications of the scenario.

2.1 Syntax
The formal syntax of our language, derived from Splee and BSPL,
is given in Table 1, and described in detail below. A superscript of
+ indicates one or more repetitions, superscript ∗ indicates zero or
more, and ⌊ and ⌋ delimit expressions, which are optional when
without a superscript.
L1 . A specification document consists of a preamble and one or

more protocols (whichmay be individual messages). The pream-
ble contains key/value pairs used to declare common informa-
tion (such as author or default prefix) or terms for substitution
in the document (such as namespaces and IRI abbreviations).

L2 . A protocol declaration consists of a name, a public parameter
expression, optional private parameters, and references to con-
stituent protocols or messages. The public parameters with the
key qualifier form this declaration’s key. The private parame-
ters can be surrounded by parentheses to spread them across
multiple lines.

Table 1: Pippi Syntax

L1 Spec −→ ⌊Name :Value ⌋∗ ⌊Protocol |Message ⌋+
L2 Protocol −→ Name (ParamExpr)

{ ⌊private Parameter+ ⌋ Reference+ }
L3 ParamExpr −→ ParamClause ⌊, ParamClause ⌋∗ (ParamExpr)
L5 Parameter −→ ⌊ ⌊Qualifier ⌋ Name+ ⌊: Constraint+ ⌋ ⌋+
L6 Reference −→ Name (ParamExpr) | Message
L7 Message −→ ⌊Ad⌋ Name ↦→ ⌊Ad⌋ Name+: Name [ParamExpr]
L8 Ad −→ in | nil | out | any | opt
L9 Qualifier −→ ⌊key⌋ ⌊local⌋ ⌊set⌋
L10 Name −→ ⌊Prefix :⌋ (S)tring
L11 Constraints −→ ⌊Type ⌋ ⌊⊆ | ∈ |= |< |> Name |Value ⌋
L12 Type −→ role | protocol | Name

L3 . A parameter expression is a conjunction of parameter clauses,
written as a (possibly parenthesized) comma-separated list.

L4 . A parameter clause is a disjunction of parameter expressions
or an adorned parameter. If an adornment is not provided, it
should be inferred in a reference or default to ⌜in⌝.

L5 . A parameter has a name and optional qualifiers and constraints.
Multiple names can be included, separated by commas, as short-
hand for repeating the same adornments, qualifiers, and con-
straints, provided all the names are on the same line or paren-
thesized.

L6 . A reference to a protocol may consist of a name appended by
a parameter expression matching the protocol’s declaration.
The name must be the name of a protocol or the name of a
parameter whose type is protocol.

L7 . A message schema consists of a name, sending role and receiv-
ing role(s), and a parameter expression.

L8 . An adornment is usually either ⌜in⌝ or ⌜out⌝; ⌜nil⌝ indicates
an unknown parameter, ⌜any⌝ means either ⌜in⌝ or ⌜out⌝,
and ⌜opt⌝ means the parameter is optional.

L9 . Qualifiers indicate if a parameter is any combination of key,
local, and set. The order of the qualifiers is irrelevant.

L10 . Names are strings with an optional namespace prefix sepa-
rated by a colon and an optional abbreviation in parentheses
(the location of the abbreviation in the string does not matter).
Disallowed characters include: [(){}[]:;,] (whitespace, brackets,
and separators)

L11 . Constraints describe the possible values that a parameter bind-
ing may have, expressed as a semicolon-separated list. Example
constraints include type, enumerated values, relationships with
other parameters, and so on.

L12 . The type of a parameter may be role, protocol, or some name
that can be resolved using the context and prefixes declared in
the specification.

2.2 Illustration

Listing 1: Generic Witness Protocol
1 Witness (i n J , W: r o l e , i n key cID , out s i g or out o b j e c t i o n) {
2 p r i v a t e req
3 J −> W: Reques tApprova l [i n cID , out req]
4 W −> J : Approve [i n cID , i n req , out s i g]
5 W −> J : Ob jec t [i n cID , i n req , out o b j e c t i o n]
6 }

Pippi: Practical Protocol Instantiation AAMAS ’22, May 9–13, 2022, Online

TheWitness protocol, given in Listing 1, shows a simple protocol
involving five parameters: J (Judge) and W (Witness) are roles, cID
is the key that uniquely identifies each enactment (which is adorned
⌜in⌝ and therefore bound externally), and sig (signature) and objec-
tion are two parameters that may be bound during an enactment.
The public parameters declare the completion requirements for an
enactment: when all public parameters are bound, the enactment is
complete. In Witness, we demonstrate syntax for complex Boolean
completion formulas; only one of sig or objection needs to be bound
to complete the enactment.

The body of the protocol lists the subprotocols it is composed of;
a message is an elementary protocol. The RequestApproval message
on line 3 is sent by J (the role before the arrow) toW. Its payload
contains two parameters, cID and req; these parameters represent
the information conveyed by the message. The parameter cID is
adorned ⌜in⌝, and so must be bound before RequestApproval can be
sent. Conversely, req is ⌜out⌝, and so must not already be bound;
it is bound when sending RequestApproval. Parameter bindings
are functionally dependent on their keys; req may have only one
binding for each value of cID.

Messages may be sent when they are enabled by the satisfaction
of their causality constraints as specified by their parameter adorn-
ments. Only emissions are constrained; a message may be received
any time after it has been sent.

Listing 2: Court Wedding
1 CourtWedding (i n Propose (R) , Propose (E) , (J) udge , (W) i t n e s s : r o l e ,
2 any key cID ,
3 (out vowR , out vowE , out l i c e n s e) or out o b j e c t i o n) {
4 p r i v a t e s i g n a t u r e
5 J −> R , E : Ask [any cID , out qu e s t i o n s]
6 E −> J , R : EVow[in cID , i n que s t i on s , out vowE]
7 R −> J , E : RVow[in cID , i n que s t i on s , out vowR]
8 Witness (J , W, cID , s i g n a t u r e or o b j e c t i o n)
9 J −> E , R : Marry [i n cID , i n vowE , i n vowR , i n s i gna tu r e , out

l i c e n s e]
10 }

Listing 2 gives a protocol describing a court wedding. Note that
all of the role parameters are adorned ⌜in⌝; they must be bound
outside the context of the protocol. The key cID is adorned ⌜any⌝,
which means it can be either ⌜in⌝ or ⌜out⌝. In addition to the
features used in Witness, CourtWedding references Witness, and
handles the two outcomes separately. If the witness provides a
signature, then the judge can perform the marriage; otherwise, the
protocol terminates with an objection. CourtWedding exhibits the
role abbreviation syntax, e.g., identifying R as the abbreviation for
Proposer.

3 DYNAMIC ROLE BINDING
All that is required to enact a protocol is a group of agents willing
and able to play all its roles. In most existing work on protocols,
the role bindings are assumed; perhaps the MAS was hard-coded
or statically configured with the agents’ roles and endpoints.

For greater flexibility and to properly model real-life systems,
agents need to discover new peers and negotiate protocols with
them. Such dynamic role binding is useful even for simple systems,
such as where one seller enacts the same purchase protocol with

multiple customers. Explicit semantics for how the seller is intro-
duced to each customer and how those role bindings relate to the
enactment information is necessary for correct implementation.

Furthermore, we would like to support not only explicit role
binding but also late role binding, where some agents begin to play
their roles after the protocol has already been initiated. For example,
in a rideshare setting, riders might want to request a different
driver if the first is not coming without having to resubmit their
destination. In addition, it is reasonable to delay the involvement of
additional parties for efficiency and privacy reasons. If a customer’s
bank is notified every time the customer considers a purchase
regardless of their final choice, it unnecessarily exposes their actions
and wastes the bank’s resources.

To address the above concerns, we introduce two patterns of
protocol design: metaprotocols and self-contained protocols.

3.1 Metaprotocols
Metaprotocols are protocols that specify communication about
the elements of another protocol, such as its structure and role
bindings. Roles in a protocol may be represented by parameters in
a metaprotocol without any special semantics.

Late role binding is enabled in a metaprotocol by interleaving its
enactment with that of its target protocol. Then, messages binding
specific roles need not be sent until they are relevant in the target
protocol, though, of course, they may be sent earlier.

A metaprotocol capturing the proposal phase of the marriage
scenario might be implemented as follows:

Listing 3: Proposal Metaprotocol
1 Propo sa l (out r0 , r 1 : r o l e , out key mID , out a c cep tance or out

r e j e c t i o n) {
2 p r i v a t e (r2 , r 3 : r o l e ,
3 cID , R , E , J , W,
4 ceremony : p r o t o c o l)
5 out r0 −> out r1 : Propose [out mID , out ceremony , out R , out E]
6 r 1 −> r0 : Accept [i n mID , i n ceremony , out ac cep tance]
7 r 0 −> r1 : P lan [i n mID , i n ceremony , i n accept , out cID]
8 ceremony (R , E , J , W, cID , out vowR , out vowE , out r e s u l t)
9 r 0 −> out r2 : Schedu le [i n mID , i n cID , i n E , out J , out date]
10 r 0 −> out r3 : I n v i t e [i n mID , i n cID , i n J , out W, out

i n v i t a t i o n]
11 r 1 −> r0 : R e j e c t [i n mID , i n ceremony , out r e j e c t i o n]
12 }

The Proposal metaprotocol, given in Listing 3, sets up the roles
necessary for enacting a wedding ceremony such as CourtWedding.
First, the roles in this protocol are numbered because they have no
meaning in themselves; they are placeholders for the purpose of
inviting agents to perform the ceremony. Thus, r0 sends Propose to
r1, suggesting that they take on the roles R and E in some ceremony—
not necessarily in that order. The ceremony is specified by binding
it to the ceremony parameter. If r1 accepts, r0 may proceed to invite
other agents. Note that all of the roles from CourtWedding are
bound in this protocol, yet late binding is possible because r0 may
delay inviting r3 to perform the W role until it becomes relevant.

Metaprotocols can be used to implement protocol negotiation, as
Proposal demonstrates by using a parameter to reference a protocol:
r0 can propose the ceremony to enact, provided it matches the same
interface. However, not all metaprotocols involve negotiation; a
simple metaprotocol could simply communicate the relevant role
bindings to each participant.

AAMAS ’22, May 9–13, 2022, Online Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh

Metaprotocols cleanly separate discussion about the protocol
from discussion of its enactment. They are fully compatible with
BSPL even without our syntax enhancements and may be easily
written for existing protocols. Metaprotocols do not reduce flex-
ibility but enable it. Without a metaprotocol, role binding is not
flexible but merely unspecified, leading to tight coupling and hidden
complexity in a multiagent system.

3.2 Metaprotocol Generation
A simple algorithm for generating a metaprotocol from an existing
protocol is as follows:

(1) Compute a contact graph among the roles, with directed
edges following the message transmissions.

(2) Identify the initiating role, possibly with user input.
(3) Using the contact graph compute the rank of each role (dis-

tance of each role from the initiator).
(4) Generate a message from the initiator that binds a metapro-

tocol ID, and another binding the protocol ID.
(5) Generate messages from each agent to their contacts of

higher rank (flowing from the initiator), inviting them to the
protocol and naming any mutual contacts they have invited.

The above algorithm generates introduction messages for each
role according to the contact graph of the original protocol; in this
way, agents are responsible for inviting only agents they contact.
The rank-based invitation approach produces a minimal metapro-
tocol; that is, the smallest number of single-recipient messages that
cover all of the invitations. As such, the complexity of the metapro-
tocol is no worse than the original protocol; it has approximately
one message per role.

The resulting metaprotocol can be customized to support domain
requirements. For example, the metaprotocol for a purchase pro-
tocol can be customized so that the seller chooses the transaction
ID, even though the customer initiates the interaction. Or, in the
wedding example, the metaprotocol can specify that the proposer
will invite the witness even though the judge is the only agent who
contacts the witness during the ceremony.

Using the above algorithm on CourtWedding and arbitrarily se-
lecting R as the initiator, we can derive the following:

(1) R sends messages to J and E; J sends to R, E, and W; E sends
messages to R; W sends to J

(2) R has rank 0 (as the selected initiator), J and E have rank 1,
and W has rank 2

In general, the initiating agent could be identified from the pro-
tocol by looking at which messages declare the primary keys of
the protocol or depend only on external parameters. However, in
this particular example, the initiator for the metaprotocol (R) is not
the same as the first agent to communicate in the CourtWedding
protocol (J), so it must be explicitly selected as the initiator.

With the above contact graph and rank information, we can
derive the comprehensive metaprotocol shown in Listing 4. The
Generated protocol in Listing 4 is simple because the rank sorting
prevents J from inviting E and vice-versa. E is arbitrarily invited first
in, e.g., alphabetical order. Our example algorithm is far from the
only possibility; alternative algorithms could generate a multicast
message that simultaneously invites multiple agents or generate a
more complex metaprotocol to invite them in either order.

Listing 4: Generated Metaprotocol for CourtWedding
1 Generated (out r0 , r1 , r2 , r 3 : r o l e ,
2 out R , E , J , W: r o l e ,
3 out key mID , out cID ,
4 out vowR , vowE , out l i c e n s e or out o b j e c t i o n) {
5 out r0 −> out r1 : I n v i t e E [out mID , out cID , out R : r o l e = r0 ,

out E : r o l e = r1]
6 r 0 −> out r2 : I n v i t e J [mID , cID , R , E , out J : r o l e = r2]
7 r 2 −> out r3 : inv i teW [mID , cID , R , E , out W: r o l e = r3]
8 }

We used type and value constraints (e.g., ’role=r2’, where ’role’
is a type constraint and ’=r2’ is a value constraint) for the ⌜out⌝
role parameters; both are optional but make the protocol clearer.

3.3 Self-Contained Protocols
Although the previous approach to protocol configuration is con-
ceptually simple and compatible with existing BSPL semantics, it
can be somewhat impractical because every nontrivial protocol
must have a corresponding and cumbersome metaprotocol. Those
metaprotocols can add many messages as overhead solely for com-
municating contact information.

We propose further extensions to BSPL to support more practical,
progressive protocol instantiation at the cost of some complexity.

Listing 5: Self-Contained Wedding Protocol
1 S e l f −Contained −Wedding (out Propose (R) , Propose (E) : r o l e
2 out key cID , out r e j e c t i o n or
3 (out vowR , out vowE , out l i c e n s e or out o b j e c t i o n)) {
4 p r i v a t e (J) udge : r o l e , (W) i t n e s s : r o l e , s i g n a t u r e
5
6 out R −> out E : Propose [out cID]
7 E −> R : Accept [i n cID , out a c cep tance]
8 E −> R : R e j e c t [i n cID , out r e j e c t i o n]
9 R −> out J : Schedu le [i n cID , i n E , i n acceptance , out date]
10 J −> R , E : Ask [i n cID , out qu e s t i o n s]
11 E −> J , R : EVow[in cID , i n que s t i on s , out vowE]
12 R −> J , E : RVow[in cID , i n que s t i on s , out vowR]
13 R −> out W: I n v i t e [i n mID , i n cID , i n J , out i n v i t a t i o n]
14 Witness (J , W, cID , out s i g n a t u r e or out o b j e c t i o n)
15 J −> E , R : Marry [i n cID , i n vowE , i n vowR , i n s i gna tu r e , out

l i c e n s e]
16 }

The Self-Contained-Wedding protocol in Listing 5 does not rely
on a separate metaprotocol but instead specifies the process and
propagation of role binding internally.

Self-contained protocols are not superior to metaprotocols, but
may be an optimization if they can, e.g., communicate role bindings
alongside other information in the protocol.

4 COMPOSITION
Composition is another important aspect of information protocols.
Implicitly, agents can participate in multiple protocols at the same
time and must keep them separate. Protocols can be explicitly com-
posed into a larger protocol specification. Provided all the agents
know the composite protocol, composition adds no complexity to
an implementation. However, the following concerns arise with
respect to instantiation: (1) enabling interface flexibility, so that
protocols may share or hide information as necessary with the
broader composition (2) agents should not be required to know all
compositions containing the protocols they support (3) enabling
composition of protocols without needing a common key.

Pippi: Practical Protocol Instantiation AAMAS ’22, May 9–13, 2022, Online

4.1 Interface Flexibility
Existing information protocol languages BSPL and Splee have rigid
protocol interfaces; all public parameters must be bound for an
enactment to complete. Hence, protocol designers must encode
multiple termination states—such as accepting or rejecting a mar-
riage proposal—in a single result parameter.

Listing 6: Information Hiding Example
1 OpaqueOffer (i n B , S : r o l e , i n key oID , out item , amount , r e s u l t) {
2 p r i v a t e acceptance , r e j e c t i o n
3 S −> B : O f f e r [oID , out item , out amount]
4 B −> S : Accept [oID , item , amount , out r e s u l t]
5 B −> S : R e j e c t [oID , item , amount , out r e s u l t]
6 }
7
8 Purchase (out B , S : r o l e , out key pID , out t r a n s a c t i o n) {
9 p r i v a t e r eques t , item , amount
10 out B −> out S : RFQ[out pID , out r e que s t]
11 OpaqueOffer (B , S , pID , item , r e s u l t)
12 S −> B : Ship [pID , r e s u l t , out t r a n s a c t i o n]
13 / / no way to d i s t i n g u i s h outcomes in compos i t i on
14 S −> B : Cance l [pID , r e s u l t , out t r a n s a c t i o n]
15 }

OpaqueOffer in Listing 6 has only a single result parameter in its
public parameter line, hiding the actual response of B. If used in a
composition such as Purchase in the same listing, there is no way
to distinguish the outcomes except through internal agent logic
applied to the parameter bindings.

However, when protocols are used in a composition the limi-
tation becomes clearer; what if some subsequent actions should
be available only after acceptance, and others only after rejection?
For example, the wedding ceremony should be enacted only if the
proposee accepts the proposal. In this case, the ceremony has an
explicit dependency on the outcome of the proposal, so it should
not be hidden.

Our proposed solution is to enhance protocol interfaces to sup-
port more complex Boolean expressions over the protocol’s param-
eters. Where before the interface was a conjunction over the public
parameter bindings, now parameters can be grouped into disjoint
clauses.

Listing 7: Flexible Interface
1 T r an spa r en tO f f e r (i n B , S : r o l e , i n key oID , out item , amount ,

out ac cep tance or r e j e c t i o n) {
2 p r i v a t e acceptance , r e j e c t i o n
3 S −> B : O f f e r [oID , out item , out amount]
4 B −> S : Accept [oID , item , amount , out ac cep tance]
5 B −> S : R e j e c t [oID , item , amount , out r e j e c t i o n]
6 }
7
8 Purchase (out B , S : r o l e , out key pID , out package or out c ance l ed) {
9 p r i v a t e r eques t , item , amount , acceptance , r e j e c t i o n
10 out B −> out S : RFQ[out pID , out r e que s t]
11 T r an spa r en tO f f e r (B , S , pID , item , ac cep tance or r e j e c t i o n)
12 S −> B : Ship [pID , acceptance , out package]
13 S −> B : Cance l [pID , r e j e c t i o n , out c ance l ed]
14 }

TransparentOffer in Listing 7 shows how Boolean parameter
expressions enable more transparent interfaces that expose multi-
ple termination states, which can then be handled separately in a
composition. The parameters acceptance and rejection are normal
parameters joined into a disjunctive clause by the or keyword;
only one of the two bindings is necessary for completion. Thus, an

enactment of TransparentOffer is complete when the parameters
oID, item, amount, and either acceptance or rejection are bound.

Note that because messages are elementary protocols, they may
use Boolean parameter expressions. However, this flexibility can
obscure the meaning of the messages and so should be used with
care. For example, in a wedding or purchase protocol, sending an
explicit Accept message forms a commitment unambiguously and
can be interpreted at the event level without inspection. By contrast,
interpreting a more abstract Decide[ID, out acceptance or out
rejection] requires examining the payload.

4.2 Constituent Protocol Independence
Semantically speaking, when a protocol is referenced in a compo-
sition, its parameters are substituted by the parameters passed in
the reference. Thus, a bank transfer protocol may involve a param-
eter named amount that is used to transfer payment in a purchase
protocol or refund in a protocol for processing returns. Proper en-
capsulation and modularity require that the bank is able to enact
its role in the transfer without being aware of the broader purpose.
This requirement is violated by current implementations because
the bank would need to interpret the substituted parameter names
instead of the expected amount.

Listing 8: Dependent Representation
1 / / (D) eb to r , (C) r e d i t o r , (B) ank
2 / / o r i g i n a l : D −> B : T r a n s f e r [i n ID , out amount , C]
3 { " ID " : <uuid > , " amount " : 1 00 , "C " : " C r e d i t o r " }
4 / / (B) uyer , (S) e l l e r , Ban (K)
5 / / composed : B −> K : T r a n s f e r [i n pID , out payment , S]
6 { " pID " : <uuid > , " payment " : 5 0 , " S " : " S e l l e r " }

Listing 8 shows two versions of a message schema. The first
schema (line 2) is the generic transfer expected by the bank with
the parameter amount specifying the amount to be transferred. Its
representation in JSON is given on the following line, with the
expected parameter names as dictionary keys. Using the transfer
protocol in a purchase composition would result in substituting the
parameters, as shown on line 5. The subsequent JSON representa-
tion uses the parameter names from the composition, which may
not be understood by the bank.

To better support protocol independence, we propose a simplifi-
cation of message representations, where each message is encoded
as a (name, payload) pair, and the payload is simply an array of un-
named parameters. The name must uniquely identify the message
in the MAS; it could be an IRI or a more compact encoding defined
by the MAS for efficiency. The payload is interpreted by referring
to the message schema.

Replacing named parameters with a uniquely identified message
schema minimizes the context sensitivity of the message and sim-
plifies interpretation. That is, referring to the protocol that specifies
the message provides the information necessary for decoding the
message: which parameters are included in which order. However,
all semantic information is left out of the encoding, so each agent
can interpret the message according to its understanding of the
composition. This is similar to message encoding libraries such as
Protocol Buffers [18], which use an external schema to parse the
messages, enabling compact encoding and backward compatibility
across schema versions (since names can change without changing
the encoding).

AAMAS ’22, May 9–13, 2022, Online Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh

Listing 9: Independent Representation
1 / / o r i g i n a l : D −> B : T r a n s f e r [i n ID , out amount , C]
2 [< uuid > , 1 0 0 , " C r e d i t o r "]
3 / / composed : B −> K : T r a n s f e r [i n pID , out payment , S]
4 [< uuid > , 5 0 , " S e l l e r "]

In Listing 9, leaving out the parameter names does not make
the schema ambiguous but does make it independent of its use
in a composition. The bank receives the information necessary to
execute a transfer without being confused by the buyer’s intent to
use the transfer as payment for a purchase.

4.3 Global and Local Keys
We have added syntax for distinguishing global and local keys.
The purpose of the distinction is to enable invertible relationships
between protocol keys, without which protocols in composition
must share a common key to share information.

Listing 10: Noninvertible Key Composition
1 Non i n v e r t i b l e (B , S : r o l e , key ID , oID , dID ,
2 i tem , p r i c e , package) {
3 out B −> out S : S t a r t [out ID]
4 Order (B , S , ID , oID , item , p r i c e)
5 De l i v e r (B , S , ID , dID , item , package)
6 }

As shown in Listing 10, the Order and Deliver protocols must share
an ID to correlate the information, which intrusively imposes aware-
ness of the composition on those protocols. If written independently,
each would need only its own key.

An invertible relationship exists between keys if they are uniquely
associated with each other; that is, an agent receiving a message
containing one key can correlate it to an enactment of another
protocol using the other key. If a relational data model is used, the
agent’s adapter can construct queries for enactment information
using an association table to join information from the two proto-
cols. Or, the agent’s adapter can use a dictionary to map the unique
keys to a single shared enactment object.

Listing 11 shows a composition where the keys are universally
unique. Because both oID and dID are unique, the TrackingInfo
message declares an invertible relationship between them, enabling
both agents to correlate the messages inside Deliver to the broader
enactment without needing to propagate a common key.

Listing 11: Invertible Key Composition
1 I n v e r t i b l e (B , S : r o l e ,
2 key oID , dID / / new d e f a u l t o f g l o b a l keys
3 i tem , p r i c e , package) {
4 Order (B , S , oID , item , p r i c e)
5 S −> B : T r a c k i n g I n f o [i n oID , out dID]
6 De l i v e r (B , S , dID , item , package)
7 }

Global keys are the default. They are identified by the sole qual-
ifier key, and must be guaranteed unique within the MAS. We
include the local keyword to cover all other kinds of keys (e.g.,
sequence IDs or timestamps). Such keys are required to be unique
only within the context of the global keys. Thus, a local key must
be used in the context of a global key, possibly scoped further by
other ⌜in⌝ local keys. If multiple local keys are ⌜out⌝ in the same
message, they form a hierarchy based on the order in which they
are given.

Listing 12 gives an example of how local keys might be used in
a protocol. It specifies a support request protocol, where B opens a
ticket, specifying a topic and generating a new unique ID. Then, B
and S can continue replying with an indefinite number of messages,
each uniquely identified with reply IDs (possibly sequential or
timestamped), bound to brID and srID, respectively. These response
IDs need only be unique within the context of the support request
because they are local keys.

Listing 12: Local Key Example
1 Support (B , S : r o l e ,
2 key ID , / / g l o b a l key
3 l o c a l key brID , sr ID , / / l o c a l keys
4 t op i c , c l o s e d) {
5 B −> S : OpenTicket [out ID , out t o p i c]
6 S −> B : SReply [i n ID , i n t op i c , out sr ID , out con t en t]
7 B −> S : BReply [i n ID , i n t op i c , out brID , out con t en t]
8 S −> B : C l o s e T i c k e t [i n ID , out c l o s e d]
9 }

5 REALIZATION
Programming agents to support dynamic role binding and multiple
parallel interactions need not be complicated but is more involved
than supporting a single protocol.

In previous programming models for information protocols (PoT
[13], Bungie [11], Deserv [12]), agents adopt a single role in a single
protocol. Architecturally, each agent was instantiated using a pro-
tocol adapter configured with the role and protocol that the agent
supported. The adapter was configured with static role bindings
that were bound outside of the protocol enactment. However, it may
be possible to change these bindings; the adapter supported only
a single binding for each role and protocol. Supporting additional
protocols would require the agent to run multiple adapters with
separate endpoints.

5.1 Protocol Adapter
The protocol adapter must support multiple roles across several
protocols and metaprotocols. Each protocol is loaded in the context
of a specification, which may define terms used in the protocols.

The adapter would support a collection of initial protocols (or
metaprotocols), along with the roles it is willing to play in those
protocols and handlers for those messages. These initial protocols
could be implemented according to patterns such as peer-to-peer
introductions or a central registry, among others, whichwe examine
further in Section 6.

During the enactment of the initial protocols, the agent will
either propose enactments of protocols as specific roles or receive
invitations to take on a role. Fortunately, the agent need not specify
special-case handlers for these invitations any different from other
messages; the information structure of the protocols is enough to
guide further enactment.

Roles have become parameters bound within the context of a
protocol or metaprotocol instance key. No longer are roles implicitly
part of the message schema. A role must either be explicitly bound
in sending a message to a new role or provided by the enactment
history. Provided the protocol (or metaprotocol) is verified to be
live and enacted without violation or error, the agents will receive
the contacts they need to complete their role. How an agent selects
or approves the specific role bindings is left to their internal logic.

Pippi: Practical Protocol Instantiation AAMAS ’22, May 9–13, 2022, Online

5.2 MAS Adapter
To better support agent discovery and selection, we propose a
new component, the MAS Adapter. The MAS adapter is optional;
simple agents (such as web services) may handle each enactment
independently. Provided each role binding is used only within the
context of an enactment, the information management provided by
the protocol adapter is sufficient. The MAS adapter is responsible
for remembering the contacts and the history of interactions with
them beyond a single enactment.

The MAS adapter implements a registry of known agents. New
entries are automatically added as agents are introduced. Each
entry contains information about the protocols and roles that the
agent is believed to support, based on the introduction. Each entry
contains information about the roles that the agent has played and
the corresponding enactment histories. Additional information can
be added according to domain requirements, such as quality of
service ratings. An agent can query its MAS adapter to find agents
to enact protocols with.

6 EVALUATION
We now show how the above concepts can be applied toward cap-
turing canonical role-binding patterns in practical decentralized
applications.

6.1 Preconfigured Contacts
In peer-to-peer applications, it is common for the peers to be pre-
configured with the knowledge of some bootstrap nodes to get the
application going. Network applications are typically preconfigured
with a DNS server for purposes of resolving domain names.

In our context, preconfigured contacts are those an agent is given
before it is initiated. Preconfigured contacts are implemented in
the agent internals and used to bind the initial ⌜out⌝ roles of the
first protocols the agent enacts. This is a simple pattern, but it is a
necessary component of all more complex patterns.

Listing 13: Preconfigured Contacts Example (JSON)
1 { " S e l l e r " : [" h t tp : / / s t o r eA . com / agent " , " h t tp : / / s t o r eB . com / agent "] ,
2 " Bank " : [" h t tp : / / bank . com / agent "] }

Listing 13 shows how contacts might be declared in a JSON
file. Preconfigured contacts are not hard coded bindings; they are
candidates that are bound to roles dynamically according to the
protocol structure and agent logic.

6.2 Central Registry
The next level of complexity from a collection of preconfigured
contacts is a central registry provided as a service by another agent.
Discovering agents from a central registry is common in services.
The Uber application, e.g., uses Uber’s (the organization’s) cen-
tral registry of potential drivers to bind as the pickup driver in a
particular transaction with a customer.

A central registry is simple in that it means that an agent con-
figuration requires only a single registry connection. In addition,
a registry enables more dynamic and scalable peer discovery than
preconfiguration. As each agent comes online, they can enact a
registration protocol, notifying the registry of their existence and
willingness to perform specific roles. To enact a protocol, an agent

can first query the registry to discover potential peers. As the exam-
ple in Listing 14 shows, the pattern could be implemented as two
protocols, where a single well-known agent uses its MAS adapter
to remember and recommend contacts to other agents.

Listing 14: Central Registry
1 R e g i s t r a t i o n (out A , R : r o l e ,
2 out key ID , out endpoint , c on f i rma t i on
3 out s e t p r o t o c o l s : p r o t o c o l) {
4 out A −> out R : R e g i s t e r [out ID , out endpoint , out p r o t o c o l s]
5 R −> A : Confirm [in ID , i n endpoint , i n p r o t o c o l s , out

c on f i rma t i on]
6 }
7
8 Di s cove ry (out Q, R : r o l e ,
9 out key ID , out p r o t o c o l : p r o t o co l , out s e t agen t s : r o l e) {
10 out Q −> out R : Query [out ID , out p r o t o c o l]
11 R −> Q: I n t r odu c e [i n ID , i n p r o t o co l , out agen t s]
12 }

6.3 Peer Sharing
Peer sharing is characterized by the absence of any distinguished
system nodes that support discovery. Peer-to-peer discovery and
binding are common in MAS and distributed systems. For example,
it is used in referral networks [34], in the Contract Net [32]), and
in leader election protocols. Further, mesh networks and IoT-based
systems typically invoke the peer-to-peer pattern.

To find a desired peer, each agent checks its own MAS adapter
and queries its neighbors. The exact nature of the peer selection
and query process is application-specific, but generally, each query
will return more peers; either the desired peer will be among them,
or they can be queried in turn.

Listing 15: Peer Discovery
1 Di s cove r (out P1 , P2 : r o l e , out key ID ,
2 out s e t p r o t o c o l s : p r o t o co l , out s e t ne i ghbo r s : r o l e) {
3 out P1 −> out P2 : Query [out ID , out p r o t o c o l s]
4 P1 −> P2 : I n t r odu c e [i n ID , i n p r o t o co l , out ne i ghbo r s]
5 }

In the peer discovery protocol in Listing 15, there is no need for
registration; each agent simply needs an initial bootstrap peer to
connect to. Each time an agent asks a peer for neighbors, it naturally
introduces itself and reveals the protocol(s) it is interested in.

7 DISCUSSION
We conceptualized the problem of instantiating a MAS in terms of
binding the roles of the protocol that models the MAS. Although
multiagent systems are typically thought of as being open in the
sense of agents dynamically joining and leaving the system, MAS
approaches have not paid sufficient attention to the operational
aspects of the problem. Pippi demonstrates how MAS can be instan-
tiated dynamically by showing how a protocol’s roles are bound.
Our approach supports dynamic (not hard-coded) and late (just-
in-time) role bindings: not all roles in a protocol need to be bound
before enacting the protocol. We discussed a possible realization of
our approach and demonstrated how commonly used patterns can
be captured in our approach.

Dastani et al. [14] consider compatibility between agent and
role specifications as a basis for an agent’s decision whether or not
to play a role. Such internal decision making, although practically
relevant, is outside the scope of Pippi. Pippi is concerned with public

AAMAS ’22, May 9–13, 2022, Online Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh

aspects of decision making as reflected in protocol enactments.
HAPN [33] supports dynamic role binding; e.g., an auction’s winner
is dynamically bound. It does not give a general metaprotocol-based
approach that enables discovery and bindings of roles. Grenna et al.
[19] extended JADE to enable agents to enact roles, but within the
context of an organization rather than a protocol.

Günay et al. [20] propose a metaprotocol by which agents can
reach agreement on the commitment protocol: All agents should
accept that theywill create the commitments involved. They assume
role bindings (e.g., that there are customer and merchant agents).
Thus, Pippi complements their work. McGinnis and Robertson [23]
propose protocols as first-class abstractions for composing open
MAS. Pippi agrees with their intuition and demonstrates how role
bindings generated as information in the messages of one protocol
(the metaprotocol) can be used as roles (the senders and receivers
of messages) in another protocol via composition.

Multiagent systems are conceived of as open systems in the
sense that agents can join and leave the MAS. Mazouzi et al. [22]
give an early example of an agent wanting to join several groups
and show that abstract specifications can be refined depending on
requirements. Role binding, as we formalize here, is akin to “join-
ing” a MAS. However, because parameter bindings and hence role
bindings are immutable, “leaving” a MAS is not unbinding the role.
Leaving would be captured by communicating that the agent has
left the MAS. Immutability of information gives the immutability
of events, which is necessary for realism. For example, once bound
as a partner in some wedding, an agent is always a partner for that
wedding. Divorce is not an unbinding of the agent to the partner
role but a change in the normative relationships [9] between the
partners, perhaps via the creation of a new MAS. For example, two
divorced people may have joint custody of their children and may
thus function together in a MAS, albeit not the same MAS as when
they were married. Such ideas merit further study.

Minsky and Murata [25] discuss the robustness and manageabil-
ity of a MAS modeled as a law-based society [24]. In considering
robustness, Minsky and Murata bring up both static and dynamic
role binding in the law, which is realized as a set of Prolog-like rules.
The static bindings are given as facts, and the dynamic bindings
are established via events referred to in the rules. Our approach
is compatible with rule-based specifications (e.g., commitments or
other norms [9]) but captures the general operational aspects of
role binding in a decentralized system via protocols.

Ferrando et al. [17] consider the enactability [16] of protocols
specified in a language for specifying execution traces, where the
constraints specify message ordering. They evaluate the enactabil-
ity of protocols under different infrastructure assumptions, e.g.,
with or without FIFO delivery. Ferrando et al. do not consider the
problem of role binding. Other early work on formally specifying
[29] and enacting [28] multiagent interactions also doesn’t address
role binding as an explicit concern.

Pippi’s protocols can be enacted with the minimal set of infras-
tructure assumptions, namely that only sent messages be delivered.
Further, Pippi’s protocols can be interleaved without requiring to
be composed (this is a property of information protocols [8]), which
is not a possibility with trace-based approaches. Role binding for a
protocol can be interleaved with the enactment of the protocol, as
shown in the Proposal metaprotocol in Listing 3.

Chocron and Schorlemmer [6] consider the problem in open
MAS where agents know they are participating in the same in-
teraction (specified in temporal logic) but have different message
vocabularies. They propose a method by which agents can dynami-
cally align their vocabularies, that is, learn the mappings between
their vocabularies. Pippi currently assumes a shared vocabulary
(whatever is in the shared information protocols) but would benefit
from alignment techniques in scenarios where the assumption does
not hold. Arguably, aligning the “same” information protocol with
different vocabularies is a more natural and challenging problem
to address since information protocols can be more flexible than
message ordering constraints specified in temporal logic.

Rocha and Brandão [27] apply multiagent systems to model dy-
namism in Internet of Things applications. They model devices via
agents that enter and leave the system. Pippi enables realizing such
dynamism in a general way with clean, modular representations.

JADE [2] supports the discovery of agents via a directory facili-
tator that provides a yellow pages service. JADE supports FIPA in-
teraction protocols by providing endpoint implementations (classes
and methods) that agents can use to implement interactions with
others. However, JADE is not equipped to enable building multi-
agent systems off protocol specifications as Pippi’s adapter and
programming model enable. Further, discovery, although impor-
tant, differs from role binding. In the wedding scenario, an agent
can discover other agents looking for prospective partners via a
directory service but would need to bind one of them to Proposee
to enact Proposal. Briola et al. [4] demonstrate how JADE can be
used to discover agents and implement a peer-to-peer system. As
the foregoing examples demonstrate, Pippi supports both discov-
ery and role binding and thus enables the realization of arbitrary
applications as a peer-peer system.

Carriero and Gelernter’s [5] tuple space approach for coordinat-
ing processes has been influential in multiagent systems. It features
as the underlying coordination mechanism in CArtAgO [26], which
itself is part of JaCaMo [3], which Baldoni et al. [1] use to support
the implementation of commitment-based business processes. Tuple
spaces (like logic programming) are attractive for their information-
based abstractions (one works with tuples of information). However,
they represent a shared-memory approach, which is not suitable for
building decentralized MAS. It is widely argued that a tuple space
decouples the readers and writers of information, but that argument
holds only where the writers don’t care who reads the information
(as is the case in the classic “readers and writers” synchronization
problem). In MAS, agents communicate with particular agents, e.g.,
the Proposer wants to communicate different information to the
Proposee and to the Judge. Such coupling between agents is speci-
fied in the protocol. It would, however, be interesting to investigate
if tuple spaces can be used to implement an agent’s local state since
it provides information-based abstractions.

ACKNOWLEDGMENTS
Thanks to the anonymous reviewers for their helpful comments.
Christie and Chopra were supported by EPSRC grant EP/N027965/1
(Turtles). Singh was partially supported by the National Science
Foundation under grant IIS-1908374.

Pippi: Practical Protocol Instantiation AAMAS ’22, May 9–13, 2022, Online

REFERENCES
[1] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.

2019. Process Coordination with Business Artifacts and Multiagent Technologies.
Journal on Data Semantics 8, 2 (June 2019), 99–112. https://doi.org/10.1007/s13740-
019-00100-8

[2] Federico Bergenti, Giovanni Caire, Stefania Monica, and Agostino Poggi. 2020.
The First Twenty Years of Agent-Based Software Development with JADE. Jour-
nal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 34, 2 (2020), 36.
https://doi.org/10.1007/s10458-020-09460-z

[3] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and
Andrea Santi. 2013. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming 78, 6 (June 2013), 747–761. https://doi.org/10.1016/j.
scico.2011.10.004

[4] Daniela Briola, Daniela Micucci, and Leonardo Mariani. 2019. A Platform for
P2P Agent-Based Collaborative Applications. Software – Practice and Experience
49, 3 (2019), 549–558. https://doi.org/10.1002/spe.2657

[5] Nicholas Carriero and David Gelernter. 1992. Coordination Languages and their
Significance. Communications of the ACM (CACM) 35, 2 (Feb. 1992), 97–107.
https://doi.org/10.1145/129630.376083

[6] Paula Daniela Chocron and Marco Schorlemmer. 2020. Vocabulary Alignment in
Openly Specified Interactions. Journal of Artificial Intelligence Research (JAIR) 68
(May 2020), 69–107. https://doi.org/10.1613/jair.1.11497

[7] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2017. Splee: A
Declarative Information-Based Language for Multiagent Interaction Protocols.
In Proceedings of the 16th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, São Paulo, 1054–1063. https://doi.org/
10.5555/3091125.3091274

[8] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-
ation of Communication Protocol Languages for Engineering Multiagent Sys-
tems. Journal of Artificial Intelligence Research (JAIR) 69 (Dec. 2020), 1351–1393.
https://doi.org/10.1613/jair.1.12212

[9] Amit K. Chopra and Munindar P. Singh. 2016. From Social Machines to Social
Protocols: Software Engineering Foundations for Sociotechnical Systems. In
Proceedings of the 25th International World Wide Web Conference. ACM, Montréal,
903–914. https://doi.org/10.1145/2872427.2883018

[10] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2018. Composi-
tional Correctness in Multiagent Interactions. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Stockholm, 1159–1167. https://doi.org/10.5555/3237383.3237868

[11] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2021. Bungie:
Improving Fault Tolerance via Extensible Application-Level Protocols. IEEE
Computer 54, 5 (May 2021), 44–53. https://doi.org/10.1109/MC.2021.3052147

[12] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2021. Deserv:
Decentralized Serverless Computing. In Proceedings of the 19th IEEE International
Conference on Web Services (ICWS). IEEE Computer Society, Virtual, 51–60. https:
//doi.org/10.1109/ICWS53863.2021.00020

[13] Samuel H. Christie V, Daria Smirnova, Amit K. Chopra, and Munindar P. Singh.
2020. Protocols Over Things: A Decentralized Programming Model for the
Internet of Things. IEEE Computer 53, 12 (Dec. 2020), 60–68. https://doi.org/10.
1109/MC.2020.3023887

[14] Mehdi Dastani, Virginia Dignum, and Frank Dignum. 2003. Role-assignment in
open agent societies. In Proceedings of the 2nd International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). ACM Press, Melbourne,
489–496. https://doi.org/10.1145/860575.860654

[15] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. 2005.
Interaction Protocols as Design Abstractions for Business Processes. IEEE
Transactions on Software Engineering 31, 12 (Dec. 2005), 1015–1027. https:
//doi.org/10.1109/TSE.2005.140

[16] Nirmit Desai and Munindar P. Singh. 2008. On the Enactability of Business
Protocols. In Proceedings of the 23rd Conference on Artificial Intelligence (AAAI).
AAAI Press, Chicago, 1126–1131.

[17] Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum, and
Viviana Mascardi. 2019. On Enactability of Agent Interaction Protocols: Towards
a Unified Approach. In Proceedings of the 7th International Workshop on Engineer-
ing Multi-Agent Systems (EMAS) (Lecture Notes in Computer Science, Vol. 12058).
Springer, Montréal, 43–64. https://doi.org/10.1007/978-3-030-51417-4_3

[18] Google. 2022. Protocol Buffers. https://developers.google.com/protocol-buffers/.

[19] Roberto Grenna, Matteo Baldoni, Guido Boella, Leendert van der Torre, Mauro
Dorni, Andrea Mugnaini, and Valerio Genovese. 2008. Adding Organizations and
Roles as Primitives to the JADE Framework. In Programming Multi-Agent Systems
(Dagstuhl Seminar Proceedings, 08361), Rafael Bordini, Mehdi Dastani, Jürgen
Dix, and Amal El Fallah-Seghrouchni (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, Dagstuhl, Germany. http://drops.dagstuhl.de/opus/
volltexte/2008/1639

[20] Akın Günay, Michael Winikoff, and Pınar Yolum. 2015. Dynamically Generated
Commitment Protocols in Open Systems. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 29, 2 (March 2015), 192–229. https://doi.org/10.
1007/s10458-014-9251-7

[21] Michael N. Huhns, Nigel Jacobs, Tomasz Ksiezyk, Wei-Min Shen, Munindar P.
Singh, and Philip E. Cannata. 1992. Enterprise Information Modeling and Model
Integration in Carnot. In Enterprise Integration Modeling: Proceedings of the First
International Conference, Charles J. Petrie, Jr. (Ed.). MIT Press, Hilton Head, South
Carolina, 290–299. https://doi.org/10.7551/mitpress/2768.003.0036

[22] Hamza Mazouzi, Amal El Fallah Seghrouchni, and Serge Haddad. 2002. Open
Protocol Design for Complex Interactions in Multi-Agent Systems. In Proceedings
of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). ACM Press, Bologna, 517–526. https://doi.org/10.1145/544862.
544866

[23] JarredMcGinnis and David Robertson. 2005. Dynamic and Distributed Interaction
Protocols. In Proceedings of the Workshop on Adaptive Agents and Multi-Agent
Systems (Lecture Notes in Computer Science, 3394). Springer, Melbourne, 167–184.
https://doi.org/10.1007/978-3-540-32274-0_11

[24] Naftaly H. Minsky. 1991. The Imposition of Protocols over Open Distributed
Systems. IEEE Transactions on Software Engineering 17, 2 (1991), 183–195. https:
//doi.org/10.1109/32.67599

[25] Naftaly H. Minsky and Takahiro Murata. 2003. On Manageability and Robustness
of Open Multi-agent Systems. In Software Engineering for Multi-Agent Systems II,
Research Issues and Practical Applications (SELMAS) (Lecture Notes in Computer
Science, Vol. 2940). Springer, Portland, Oregon, 189–206. https://doi.org/10.1007/
978-3-540-24625-1_11

[26] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini. 2009. Envi-
ronment Programming in CArtAgO. In Multi-Agent Programming, Languages,
Tools and Applications, Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal
El Fallah Seghrouchni (Eds.). Springer, Dordrecht, Netherlands, Chapter 8, 259–
288. https://doi.org/10.1007/978-0-387-89299-3_8

[27] Vladimir Rocha and Anarosa Alves Franco Brandão. 2019. A Scalable Multiagent
Architecture for Monitoring IoT Devices. Journal of Network and Computer
Applications 139 (Aug. 2019), 1–14. https://doi.org/10.1016/j.jnca.2019.04.017

[28] Munindar P. Singh. 1998. A Customizable Coordination Service for Autonomous
Agents. In Intelligent Agents IV: Proceedings of the 4th International Workshop on
Agent Theories, Architectures, and Languages (ATAL-97) (Lecture Notes in Computer
Science, 1365). Springer, Providence, Rhode Island, 93–106. https://doi.org/10.
1007/BFb0026752

[29] Munindar P. Singh. 2003. Distributed Enactment of Multiagent Workflows: Tem-
poral Logic for Web Service Composition. In Proceedings of the 2nd International
Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS). ACM
Press, Melbourne, 907–914. https://doi.org/10.1145/860575.860721

[30] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491–498. https://doi.org/10.5555/2031678.2031687

[31] Munindar P. Singh. 2012. Semantics and Verification of Information-Based
Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.
https://doi.org/10.5555/2343776.2343861

[32] Reid G. Smith. 1980. The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver. IEEE Trans. Comput. C-29, 12 (1980),
1104–1113.

[33] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (Jan. 2018), 59–133.

[34] Pınar Yolum and Munindar P. Singh. 2005. Engineering self-organizing referral
networks for trustworthy service selection. IEEE Transactions on Systems, Man,
and Cybernetics, Part A 35, 3 (May 2005), 396–407. https://doi.org/10.1109/
TSMCA.2005.846401

https://doi.org/10.1007/s13740-019-00100-8
https://doi.org/10.1007/s13740-019-00100-8
https://doi.org/10.1007/s10458-020-09460-z
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1002/spe.2657
https://doi.org/10.1145/129630.376083
https://doi.org/10.1613/jair.1.11497
https://doi.org/10.5555/3091125.3091274
https://doi.org/10.5555/3091125.3091274
https://doi.org/10.1613/jair.1.12212
https://doi.org/10.1145/2872427.2883018
https://doi.org/10.5555/3237383.3237868
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/ICWS53863.2021.00020
https://doi.org/10.1109/ICWS53863.2021.00020
https://doi.org/10.1109/MC.2020.3023887
https://doi.org/10.1109/MC.2020.3023887
https://doi.org/10.1145/860575.860654
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1007/978-3-030-51417-4_3
https://developers.google.com/protocol-buffers/
http://drops.dagstuhl.de/opus/volltexte/2008/1639
http://drops.dagstuhl.de/opus/volltexte/2008/1639
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.7551/mitpress/2768.003.0036
https://doi.org/10.1145/544862.544866
https://doi.org/10.1145/544862.544866
https://doi.org/10.1007/978-3-540-32274-0_11
https://doi.org/10.1109/32.67599
https://doi.org/10.1109/32.67599
https://doi.org/10.1007/978-3-540-24625-1_11
https://doi.org/10.1007/978-3-540-24625-1_11
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1016/j.jnca.2019.04.017
https://doi.org/10.1007/BFb0026752
https://doi.org/10.1007/BFb0026752
https://doi.org/10.1145/860575.860721
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2343776.2343861
https://doi.org/10.1109/TSMCA.2005.846401
https://doi.org/10.1109/TSMCA.2005.846401

	Abstract
	1 Introduction
	1.1 Scenario: Wedding
	1.2 Objectives and Novelty
	1.3 Contribution: Our Solution Conceptually

	2 The Protocol Language
	2.1 Syntax
	2.2 Illustration

	3 Dynamic Role Binding
	3.1 Metaprotocols
	3.2 Metaprotocol Generation
	3.3 Self-Contained Protocols

	4 Composition
	4.1 Interface Flexibility
	4.2 Constituent Protocol Independence
	4.3 Global and Local Keys

	5 Realization
	5.1 Protocol Adapter
	5.2 MAS Adapter

	6 Evaluation
	6.1 Preconfigured Contacts
	6.2 Central Registry
	6.3 Peer Sharing

	7 Discussion
	References

