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are inherently deficient in abilities to reason well; our purely sym-

bolic logical systems are inherently deficient in abilities to represent

the all-important ’heuristic connections’ between things—the uncer-

tain, approximate, and analogical linkages that we need for making

new hypotheses”.

Here, the connectionist networks refer to neural networks and

representation learning that render the best predictive accuracy in

many tasks today, while symbolic systems refer to symbolic repre-

sentation of knowledge using logic symbols and rules. Minsky [22]

further establishes that “The versatility that we need can be found

only in larger-scale architectures that can exploit and manage the

advantages of several types of representations at the same time. Then,

each can be used to overcome the deficiencies of the others”.

This vision over three decades ago has also been echoed more

recently by some researchers [10, 16]. In particular, recent work

from MIT, IBM, and DeepMind [19] shows the power of combining

the two approaches, by building a neuro-symbolic concept learner

(NS-CL) that has two neural networks for scenes and text-based

question-answer pairs, respectively, and a symbolic rule system to

answer new questions about a different scene—a type of feat that

is far more challenging than can be done using a connectionist ap-

proach alone. It is also observed that while connectionist networks

may get good accuracy, it is inherently hard for them to explain

how they arrive at a solution; for many critical decision-making,

symbolic rule systems can help interpret the prediction results.

In a nutshell, connectionist networks are good at learning weak

and uncertain associations among data entities, while symbolic/rule

systems are strong at interpretation, reasoning, and working with

less data. A system would benefit greatly from having both archi-

tectures seamlessly integrated in an efficient and natural manner.

The goal of this paper is to show that it is feasible to simulta-

neously and efficiently perform representation learning (for

connectionist networks) and rule learning spontaneously

out of the same online training process for graph streams.

Note that we pay special attention to real-time throughput and

efficiency for high-speed streams.

To the best of our knowledge, we are the first to study the above

feasibility problem in the context of graph streams. As such, it is

not our intent to propose a new representation learning scheme

for graph streams; nor is it to improve the predictive accuracy. But

rather, we adapt an efficient graph representation learning method

(TransE [3])—which satisfies our real-time high-throughout require-

ment of graph streams—with three key novelties: (1) treating the

rules that we learn as a new type of relationship; (2) devising aggre-

gated subgraph embeddings using attention [32] for the head/tail

entities of TransE; and (3) calibrating the probabilities of the condi-

tional distribution rules by solving an optimization problem (Sec. 3).

The rules that we learn are temporal conditional distribution

(TCD) rules with respect to the attributes surrounding a graph

stream event/edge, in the form 𝑋 →𝑡 𝑌 , where 𝑋 is one or more at-

tributes,𝑌 is a single attribute,→𝑡 indicates the time delay between

the two sides, and such a rule specifies the conditional distribution

𝑃𝑟 [𝑌 |𝑋 ] (details are in Sec. 2.1). For instance, a TCD rule that we

discover from Example 1 contains “Warfarin (= 𝑦𝑒𝑠), Lisinopril

(= 𝑦𝑒𝑠)→+ Phytonadione (= 𝑦𝑒𝑠)” with a high probability. Indeed,

Warfarin and Lisinopril treat high blood pressure and prevent blood

clots in veins, and doctors often use Phytonadione later (→+ indi-
cates the time delay) to reduce the side effect of Warfarin (excessive

blood thinning).

Potential TCD rule candidates can be of a large number; it is un-

necessary and impractical to learn all of them. We propose a quality

score function using an information theoretic measure. Then we

devise an efficient online algorithm to continuously and adaptively

train and select top-𝑘 quality-score rules at any time. The main

idea of our online training/selection is to treat the problem as a

Multi-Armed Bandit (MAB) [34]. Using Markov chain coupling [23],

we show that our algorithm for solving it is provably fast (Sec. 4).

We perform a systematic experimental evaluation using two

large real-world graph stream datasets in different domains, com-

paring against four baselines. The results show that our RL
2
can

efficiently and effectively do representation learning and rule learn-

ing together. While prediction accuracy is not our main goal, RL
2
’s

prediction accuracy is competitive with deep learning methods that

do not learn rules, but has a two or more orders of magnitude higher

throughput, in addition to the obtained TCD rules which can be

used for result interpretation and building dynamic Bayesian net-

works (DBN) (Sec. 5). As a use case of the learned rules, we design

an algorithm to retrieve rules to build a DBN in the Appendix. Our

code and datasets are accessible at [8, 14, 27].

2 PROBLEM STATEMENT & RELATED WORK

2.1 Problem Statement

We consider a graph streamG = (E,R) over entities E = {𝜀1, . . . , 𝜀𝑛},
each of which corresponds to a vertex. In general, two entities may

be connected by either a static relationship (between head entity

𝜀ℎ and tail entity 𝜀𝑡 ) or a dynamic relationship (i.e., an interaction

between 𝜀ℎ and 𝜀𝑡 at time 𝑡 ) in R as a directed edge from 𝜀ℎ to 𝜀𝑡 .

There is a set of schemas 𝜎1, . . . , 𝜎𝑘 , each of which has a number

of attributes from the entities and/or relationships. Some schemas

contain attributes specific to one entity, while others across two

entities—for the interaction relations between two entities. In gen-

eral, the attributes𝐴 of a schema 𝜎 consists of three disjoint subsets

𝐴 = 𝐴ℎ ∪𝐴𝑡 ∪𝐴𝑟 , where 𝐴ℎ is the attributes at the head entity, 𝐴𝑡

is at the tail entity, and 𝐴𝑟 is from a relationship, e.g., the times-

tamp. The temporal conditional distribution rules (defined below)

will be with respect to such attributes𝐴 surrounding a graph stream

event/edge.

For such a graph stream, a relational representation learning

(a.k.a. knowledge graph embedding) method will generate embed-

ding vectors for each 𝜀𝑖 ∈ E and each relationship 𝑟𝑖 ∈ R, i.e.,
producing a function 𝑒𝑚𝑏 : E ∪R ↦→ R𝑑 , where 𝑑 is the dimension-

ality of the embedding vectors. A temporal conditional distribution

(TCD) rule is of the form𝑋1, ..., 𝑋ℓ →𝑡 𝑌 , where𝑋𝑖 , 𝑌 are attributes,

ℓ ≥ 1, and 𝑡 can be 0, +, or −, indicating the time relationship be-

tween the two sides. The three 𝑡 values correspond to 𝑌 being

“within the same time window” (of size 𝛿) as 𝑋𝑖 ’s, “in the next time

window”, and “in the previous time window”, respectively, where 𝛿

is application dependent. Each attribute has a finite set of values

(e.g., a numeric attribute is discretized into ranges).

A TCD rule specifies a distribution of 𝑌 conditioned on 𝑋𝑖 ’s,

with the corresponding time delay relationship. Each rule describes

𝑃𝑟 [𝑌 |𝑋1, ..., 𝑋ℓ ], i.e., for every 𝑋1 = 𝑥1, ..., 𝑋ℓ = 𝑥ℓ , it specifies





KDD ’22, August 14–18, 2022, Washington, DC, USA Qu Liu and Tingjian Ge

respectively, including a special one “entity-id” node that is unique

for the entity holding its own embedding vector. The training w.r.t.

this relationship 𝑟G is to minimize the loss

∥
∑︁

𝑥𝑖 ∈𝐸ℎ
𝑎𝑖 (x𝑖 + r𝑖 ) + rG −

∑︁
𝑦𝑖 ∈𝐸𝑡

𝑎𝑖 (y𝑖 + r𝑖 )∥ (1)

where

∑
𝑥𝑖 ∈𝐸ℎ 𝑎𝑖 (x𝑖 + r𝑖 ) is the attention-based aggregation at 𝐸ℎ

and 𝑥𝑖 iterates over each of the attribute-value nodes, as discussed

above. r𝑖 is the embedding vector of the connecting relationship 𝑟𝑖
between 𝑥𝑖 and the aggregate node. We useAG(𝐸ℎ) to denote this
attention-based aggregation at 𝐸ℎ . The treatment at the tail entity

𝐸𝑡 is similar.

Figure 2(b) illustrates the training of a rule’s vectors, where the

relationship is the time relationship 𝑟𝑡 , which is 𝑟0 (same time),

𝑟+ (followed by), or 𝑟− (preceded by). The head-entity side is the

attention-based aggregation of Figure 2(a), except that there is no

“entity-id” node, since this is the aggregation of attribute values for

the LHS of a rule.

We let the tail-entity be the centroid of the vectors of 𝑦 = 𝑣𝑖
(1 ≤ 𝑖 ≤ 𝑘) nodes, where 𝑦 is the attribute at the RHS of the

rule, 𝑘 is the number of values of 𝑦, and the mass/weight of each

vector is the corresponding value 𝑣𝑖 ’s probability in the rule. We

denote the centroid as C(𝑑𝑖𝑠𝑡 (𝑌 )), where 𝑑𝑖𝑠𝑡 (𝑌 ) is the probability
distribution of 𝑌 . Intuitively, a value with a greater probability

should be closer to the tail vector (centroid)—in the extreme, if a

particular value 𝑦 = 𝑐 has probability 1, the centroid is right at

that node. In Section 3.2, our probability recovery and calibration

algorithm will be based on this mechanism, generalizing to unseen

or less trained values/value combinations.

Note that our loss function in Equation 1 still follows the TransE [3]

algorithm, except that the head or tail entity is a subgraph whose

embedding is an attention-based aggregation or a weighted sum

based on the probabilities (in the case of the tail of Figure 2(b)).

Stochastic gradient descent (SGD) [4] is used to update all the em-

bedding vectors in Equation 1, as well as all the attention parameters

𝑎𝑖 .

Algorithm to Train a ChosenRule. We first present the basic sub-

module for jointly training a specific rule once, as well as a related

dynamic stream edge (relationship), and a randomly chosen static

relationship edge. In Section 4, we will discuss how to iteratively

and judiciously select a rule to train. This basic training module

algorithm is presented in RuleTrainingOnce.

When we parse the stream tuples to identify the rule candidates

in Section ??, we associate with each rule 𝜌 a set of relevant tuples in

which 𝜌 appears. Line 1 of the algorithm randomly chooses a tuple

among them. Lines 2-3 use attention-based aggregation for head

and tail entities and run SGD for a number of iterations over the

relationship edge based on Eq. 1. Similarly, line 4 randomly selects

a static relationship edge to train. Lines 5-6 are to sample tuples

relevant to 𝜌 and incrementally add to the frequency statistics (i.e.,

the frequency of the 𝑌 value given the 𝑋 value), before the rule is

trained in line 8.

3.2 Probability Recovery and Calibration

Probability calibration, i.e., accurately estimating the probabilities

of prediction results, is a much needed but challenging topic for

Algorithm 1: RuleTrainingOnce (G, 𝜌)
Input :G: graph stream;

𝜌 : a chosen rule

Output: updated embedding of G and statistics of 𝜌

1 tuple 𝜏 ← randomly chosen from 𝜌’s relevant tuples in G
2 if 𝜏 is graph stream tuple of relationship 𝑟G then

3 SGD over triple {AG(𝐸ℎ),AG(𝐸𝑡 ), 𝑟G} based on Eq. 1

4 randomly pick a static relation 𝑟𝑠 and run SGD over triple

{AG(𝐸ℎ),AG(𝐸𝑡 ), 𝑟𝑠 }
5 select a random set of tuples 𝑇 from G relevant to 𝜌

6 collect 𝑋 →𝑡 𝑌 frequency statistics of 𝜌 from 𝑇 and add it

to current frequency statistics F of 𝜌

7 for each 𝑋 →𝑡 𝑑𝑖𝑠𝑡 (𝑌 ) in F do

8 SGD over triple {AG(𝑋 ), C(𝑑𝑖𝑠𝑡 (𝑌 )), 𝑟𝑡 }

neural networks [24, 26, 28]. Even more intriguing in our problem

is that we need to calibrate the probabilities over relations to several

attribute-value nodes (i.e., the RHS 𝑌 ), generalizing to untrained

or less trained attribute-values due to the sparsity of training data

with respect to the large number of rules and value combinations.

Recall that we treat the centroid of a number of attribute-value

nodes (weighted by their probabilities) as the tail entity in a rule.

As discussed earlier, the training is based on incomplete data with

respect to all value combinations of all rule candidates. The idea

is that the representation learning has generalization capacity and

generalizes to unseen or rarely seen attribute values (in the RHS

of a rule) or value combinations (in the LHS of a rule). Thus, we

now discuss how we can recover and calibrate the probability dis-

tributions of the rule candidates based on the embedding vectors.

We have the following result. The proofs of all the theorems are in

Appendix A.

Theorem 1. Consider a rule 𝑋 →𝑡 𝑌 , where 𝑌 has 𝑘 possible val-

ues 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑘) with embedding vectors v𝑖 (1 ≤ 𝑖 ≤ 𝑘), and a value

combination 𝑥 of the attributes in 𝑋 with an aggregate embedding 𝒙 .
Let the embedding vector for the relationship→𝑡 be 𝒓 . Then setting

the probability vector of the rule for 𝑥 to be

(𝑝1, . . . , 𝑝𝑘 ) = b · A−1

where

b = ((x + r) · (v1 − v2), . . . , (x + r) · (v𝑘−1 − v𝑘 ), 1)

A =


v1 · (v1 − v2) · · · v1 · (v𝑘−1 − v𝑘 ) 1

.

.

.
. . .

.

.

.
.
.
.

v𝑘 (v1 − v2) · · · v𝑘 (v𝑘−1 − v𝑘 ) 1


minimizes the loss function defined for this rule.

The computational cost for calibrating the probabilities based on

Theorem 1 is 𝑂 (𝑘3𝑑), where 𝑘 is the number of values of the RHS

attribute of a rule and 𝑑 is the dimensionality of embedding vectors.

Typically 𝑘 is small for rules, based on the desired granularity of

values or value sets and ranges.
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4 SELECTIVE RULE LEARNING

Now we focus on methods to judiciously and efficiently select top

rules to learn. We first devise a score function that distinguishes the

qualities of different rule candidates. Then we cast this problem as

a Multi-Armed Bandit (MAB) problem [34], for which we propose

a novel solution and prove the correctness and efficiency of our

solution.

4.1 Score Function for Rules

A major challenge in learning the rules in Section 3 is that there are

somany rule candidates, and the quality of them varies significantly—

however, of course, we do not know the quality of a rule until we

sufficiently learn it. Let us first define a metric to quantify the qual-

ity of a rule. We resort to concepts from information theory, namely

entropy, conditional entropy, and mutual information [7].

Definition 1. We define the quality score of a rule 𝜌 : 𝑋 →𝑡 𝑌 ,

denoted as𝑞(𝜌), to be 1−𝐻 (𝑌 |𝑋 )
𝐻 (𝑌 ) =

𝐼 (𝑋 ;𝑌 )
𝐻 (𝑌 ) , where𝐻 (𝑌 ) is the entropy

of 𝑌 , 𝐻 (𝑌 |𝑋 ) is the entropy of 𝑌 conditioned on 𝑋 , and 𝐼 (𝑋 ;𝑌 ) is the
mutual information between 𝑋 and 𝑌 .

The conditional entropy 𝐻 (𝑌 |𝑋 ) measures the uncertainty of

the RHS attribute 𝑌 conditioned on a given value combination

of the attributes 𝑋 on the LHS. Intuitively, a rule that is more

informative, and hence of better quality, is more certain on 𝑌 given

𝑋 , which implies a smaller 𝐻 (𝑌 |𝑋 ) (a higher 𝑞(𝜌) value). However,
attribute 𝑌 might just be very “certain” by itself (i.e., with a skewed

distribution); thus, we need to normalize 𝐻 (𝑌 |𝑋 ) with the entropy

of𝑌 itself, i.e.,𝐻 (𝑌 ). Interestingly, it is known in information theory

that 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋 ) = 𝐼 (𝑋 ;𝑌 ), which is the mutual information

between𝑋 and𝑌 . The intuition is that, themoremutual information

there is between the LHS and the RHS, the more useful it is to know

LHS for the inference of RHS. During training, we will need to

repeatedly evaluate the quality of a rule. By definition,

𝐻 (𝑌 | 𝑋 ) = −
∑︁
𝑥,𝑦

𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)
𝑝 (𝑥)

= −
∑︁
𝑥,𝑦

𝑝 (𝑥)𝑝 (𝑦 | 𝑥) log𝑝 (𝑦 | 𝑥)

and𝐻 (𝑌 ) = −∑𝑦 𝑝 (𝑦) log𝑝 (𝑦).Wewill use Laplace smoothing [29]

to estimate 𝑝 (𝑥) and 𝑝 (𝑦) based on incremental frequency (similar

to RuleTrainingOnce in Section 3.1), and use Theorem 1 (proba-

bility calibration) to estimate 𝑝 (𝑦 | 𝑥). The range of a quality score

according to our definition is always in [0, 1], with a higher value

indicating a better quality.

4.2 Selecting Rules to Train

4.2.1 Intuition and Approach. We consider the training/learning

of a rule candidate as an accumulative process, and divide it into

epochs, each of which is shown in the RuleTrainingOnce algo-

rithm. Assume that a full training of a rule on average requires

𝛽 epochs, where 𝛽 is a hyperparameter. Our goal is to efficiently

retrieve the top quality rules, as measured by Definition 1, with-

out fully exhausting all 𝛽 epochs of every rule candidate. We treat

this as a Multi-Armed Bandit (MAB) problem [34] where each rule

candidate is an arm. Indeed, there is clearly an exploitation vs.

exploration tradeoff—one can either keep exploiting a promising

rule candidate to fully train it or try more training on other rule

candidates to discover even better rules.

We model the state of a rule candidate 𝜌 at epoch 𝑡 in its training

process as a triple (𝑞𝑡 ,Δ𝑡 , 𝑞𝑢 ), where 𝑞𝑡 is the current quality 𝑞(𝜌)
at time 𝑡 , Δ𝑡 is the current gradient of the change of 𝑞(𝜌), and 𝑞𝑢
is the (optimistic) upper bound of 𝑞(𝜌) following the current Δ𝑡 at
the end of 𝛽 epochs, i.e., 𝑞𝑢 = 𝑞𝑡 +Δ𝑡 (𝛽 − 𝑡). We use the Thompson

sampling method [30] to solve this MAB problem. For each arm (i.e.,

rule candidate), in general, we set the reward distribution of the

Thompson sampling to be a uniform distribution in [𝑞𝑡 , 𝑞𝑢 ]. The
intuition is that setting the reward to a sample value in the range of

the final quality scores will make us focus on the top quality rules.

However, one problem is that there is a large number of candidate

rules, and constantly evaluating a rule’s quality range and sampling

from it for each selection of arm is too computationally expensive.

Instead, we devise a very efficient sampling scheme to accomplish

the Thompson sampling.

4.2.2 Selective Learning Algorithm. Our key idea to improve the

efficiency of the Thompson sampling, i.e., sampling from [𝑞𝑡 , 𝑞𝑢 ]
of each rule candidate, is to only sample the score range of one rule

candidate in each training epoch rule-selection round, instead of

sampling the score ranges of all rules in each round. For other rule

candidates, we simply re-use their sample values from the previous

rounds.

Clearly, this will improve the speed dramatically. A natural ques-

tion is: How does it affect correctness? In other words, are we still

following Thompson sampling for the MAB problem? We show in

Section 4.3 that our iterative algorithm follows a Markov chain that

converges to a stationary distribution that is optimal (i.e., the same

as Thompson sampling). Moreover, we prove that the convergence

speed (called the mixing time) is very fast. Thus, our sampling is

very efficient and effective.

The overall rule candidate selection algorithm for iterative and

incremental learning is presented in SelectiveRuleLearning. In

line 1, we initialize a max-heap (priority queue)H , which will be

used to maintain and select a rule with the maximum quality score

sample to perform an epoch of training in each round. Lines 2-9

perform initial training of each rule candidate for two epochs to

get its initial state (𝑞𝑡 ,Δ𝑡 , 𝑞𝑢 ). We then get an initial quality score

sample for each rule in lines 5 and 8 and place them in H . Note

that lines 2-9 are only performed once over an initial portion of

the graph stream to initially push the rules into the heap H . By

contrast, the loop starting from line 10 is continuously performed

with the incoming graph stream, so that the top rules are adaptive

to the dynamic graph stream.

Note that here, as well as in the main body of iterative sampling

in lines 13-16, the score ranges where a sample is drawn from are

slightly different between the top-𝑘 rules (based on the current

score 𝑞𝑡 ) and those outside top-𝑘 , where 𝑘 is a rough estimate of

the number of top rules that will be retrieved. There is a slight

disadvantage for the current top-𝑘 rules, as the lower bound of the

sampling range is 0. The intuition is that we should give higher

priority to rules outside top-𝑘 so that we are not stuck at repeatedly

selecting the current top-𝑘 and miss the potentially better ones

simply because they are not trained enough yet. Indeed, if a high-

quality rule temporarily falls out of top-𝑘 , it can be picked up again
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Algorithm 2: SelectiveRuleLearning (G,R, 𝑘)
Input :G: graph stream;

R: set of rule candidates;
𝑘 : number of top rules needed

Output: a sequential list of top rules upon request

1 initialize a max-heapH
2 for rule 𝜌 ∈ R do

3 invoke RuleTrainingOnce (G, 𝜌) twice to get its state

(𝑞𝑡 ,Δ𝑡 , 𝑞𝑢 )
4 if 𝑞𝑡 is among top 𝑘 in R then

5 𝑤 ← pick value in [0, 𝑞𝑢 ] uniformly at random

6 add 𝜌 toH with weight𝑤

7 else if 𝑞𝑢 > 𝑘-th ranked 𝑞𝑡 in R then

8 𝑤 ← pick value in [𝑞𝑡 , 𝑞𝑢 ] uniformly at random

9 add 𝜌 toH with weight𝑤

10 while 𝑡𝑟𝑢𝑒 do

11 𝜌 ← random node ∈ H
12 re-evaluate 𝜌’s state (𝑞𝑡 ,Δ𝑡 , 𝑞𝑢 )

13 if 𝑞𝑡 is among top 𝑘 in R then

14 𝜌.𝑤 ← pick value in [0, 𝑞𝑢 ] uniformly at random

15 else

16 𝜌.𝑤 ← pick value in [𝑞𝑡 , 𝑞𝑢 ] uniformly at random

17 𝑟 ← root node ofH
18 if 𝜌.𝑤 > 𝑟 .𝑤 //change 𝜌 to be root

19 then

20 𝑃 ← list of nodes on the path from 𝑟 to 𝜌 inH
21 circularly move each node in 𝑃 to the one below

22 root ofH ← 𝜌

23 RuleTrainingOnce (G, root ofH )

24 if request of top rules then

25 return rules fromH in descending order of 𝑞𝑡

and go back to top-𝑘 . We call this process “chasing top-𝑘”. When

the process stabilizes, so will the top-𝑘 membership.

Each loop starting from line 10 is a round of sampling and train-

ing a selected rule for one epoch. In line 11, we select a rule from

H uniformly at random. We re-evaluate the selected rule’s state be-

cause its embedding (based on attribute-value nodes, relationships,

and attentions) might have changed from the last time its state is

evaluated. In lines 17-22, we compare the new score sample of this

node 𝜌 with the score sample of the current root node ofH (which

has the previously highest score sample). If 𝜌’s score sample turns

out to be higher, it will replace the current root node in lines 18-22.

Finally, the rule at the root node ofH is selected to be trained for

one epoch in line 23. At any time, upon request, lines 24-25 return

rules in descending order of their quality scores 𝑞𝑡 . In particular,

the rules will be retrieved in Section B.1 to form a DBN.

4.3 Analysis of Correctness and Efficiency

Let us now analyze the behavior of SelectiveRuleLearning. We

show that its state (i.e., which rules get selected for training for

an epoch) follows a Markov chain, which converges to a station-

ary distribution that is optimal and the same as our intention of

Thompson sampling for the Multi-Armed Bandit. Furthermore, we

prove that this Markov chain has a nice property of converging

very fast. Note that, in practice, most Markov chains do not have

provable bounds of convergence time, even if they converge (i.e.,

they can be converging very slowly).

Theorem 2. Given a set of 𝑛 rules in the heap H , let the state

of a continuous execution of SelectiveRuleLearning be the ID of

the rule that is at the root of H . Then the execution states follow

a Markov chain that has a unique stationary distribution 𝝅★ =

(𝜋★
1
, 𝜋★

2
, . . . , 𝜋★𝑛 ), where 𝜋★𝑖 (1 ≤ 𝑖 ≤ 𝑛) is the probability that rule

𝑖’s quality score sample ranks the highest.

Our analysis in Theorem 2 establishes the correctness of Selec-

tiveRuleLearning, as it is Thompson sampling for MAB. We now

show that this execution-state Markov chain converges very fast,

and therefore it is efficient and effective.

Theorem 3. In the Markov chain stated in Theorem 2, starting

from any initial state, the variation distance between the distribu-

tion of the state of the chain after 𝑛 ln 𝑛
𝜀 steps and the stationary

distribution is at most 𝜀, where 𝑛 is the number of rules in R.
Now that we have shown the correctness and sampling efficiency,

we further point out that, due to the fact that we perform efficient

graph neural embedding, SelectiveRuleLearning can be run con-

tinuously with the data stream. Thus, the results, specifically the

top rules, are adaptive to the graph stream G.

5 EXPERIMENTS

We use the following real-world datasets in two different domains,

namelymedicine and humanmobility and social communication: (1)

MIMIC data (Medical Information Mart for Intensive Care III [14]),

and (2) FF data (the Friends and Family dataset [1]). We compare

against the following baselines: (1) Multivariate LSTM model [11],

(2) State-of-the-art temporal knowledge graph neural network

model RE-Net [13], and (3) A variant of our method, where all the

rule candidates are selected uniformly for training. We describe the

details of the datasets, baselines, and machine setup in Appendix C.

5.1 Experimental Results

For the MIMIC data, we treat the diagnoses and procedures of each

patient as static relationships, and timestamped data such as input

events (fluids administered to the patient), lab events (lab measure-

ments), and prescriptions as dynamic graph streams. The attributes

in the conditional distribution rules are associated with the hetero-

geneous events, outcomes, and prescription drugs.

For the FF data, we treat relationships among subjects such

as the couple (family) relations and the friends relations as static

relationships, and dynamic information and interactions such as

accelerometer readings (sampled up to 4 times per second), proximity

of others by scanning Bluetooth devices, location updates and speed

estimates, phone calls, and text messages as local and graph streams.

Some attributes are derived from an aggregate of the original raw

tuples, such as the “surrounding crowd size”, which is the number

of distinct people (scanned Bluetooth devices) within a period of

time.
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5.1.1 Representation Learning and Rule Learning. In the first set

of experiments, we examine the step of obtaining a set of TCD

rule candidates from the heterogeneous graph streams, which will

be subsequently used for selection of top rules. A parameter here

is the size of a sliding window within which we consider as the

“same time unit” dependency→0 (dependencies with the next and

previous windows are →+ and →−, respectively). We vary this

sliding window size and measure the stream system throughput

when continuously performing this step. The results are shown in

Figure 3 for both the MIMIC and the FF datasets.

The throughput is measured in the number of raw stream tuples

processed (among all local and graph streams) per second. We can

see that, while the throughputs for both datasets are high (over fifty

thousand tuples per second), it is much faster for the FF data than

the MIMIC data for the same window size that is not too small (e.g.,

above 5 minutes). This is because the FF data contains some very

fast streams, e.g., the accelerometer readings (sampled 4 times per

second), and we perform fast aggregation within the time window

to get stream attribute values that are not too dense; hence the

throughput is much higher with respect to the original raw tuples.

Moreover, as the window size increases, the throughput with the

MIMIC data slightly decreases, as a window contains more events

and hence more correlations need to be examined. This is not the

case with the FF data since we aggregate more raw tuples into

discrete events as window size increases.

It is worth noting that the rule candidate generation step does not

have to be run very often, as the set of rule candidates is relatively

stable—although the conditional distribution rules themselves and

which ones have top quality scores might be more dynamic and

can be continuously learned.

We then proceed to our SelectiveRuleLearning algorithm

for simultaneous graph neural embedding and rule training. We

first measure the system throughput as the learning algorithm is

continuously and adaptively executed with the incoming streams.

The results are shown in Figure 4 for the MIMIC dataset and in

Figure 5 for the FF dataset. One parameter here is the dimensionality

of the embedding vectors, which we vary from 30 to 150 dimensions.

We also compare against the training throughput of the two baseline

methods using Multivariate LSTM and RE-Net, respectively.

From Figures 4 and 5, we can see that our simultaneous graph

embedding and selective rule learning algorithm is very efficient,

achieving throughput over 100K tuples per second and 3 million

tuples per second when the dimensionality is 50 (our default) for

the MIMIC and FF datasets, respectively. The higher throughput

with the FF data is again due to the aggregation of raw tuples. As

the embedding dimensionality increases, the throughput decreases.

This is because many of the stochastic gradient descent training

steps have a cost proportional to the dimensionality of the embed-

ding vector. In subsequent experiments, we will see the tradeoff

between this dimensionality cost and inference accuracy.

Furthermore, our embedding and rule learning method is about

2 and 4 orders of magnitude faster than the Multivariate LSTM

model and the RE-Net model training, respectively. Those two

baselines are deep and complex neural network models that are

known to be computationally intensive. Especially, RE-Net consists

of multiple layers of graph convolution networks and sequence

models. Moreover, they do not learn the rules as we do.

5.1.2 Learning Effectiveness and Rule Quality. We then examine

the validity and effectiveness of our neural embedding and selective

rule learning. The first aspect of the evaluation is to look at the

stochastic gradient descent training process with the attention-

based aggregation, by checking the change of the loss function

value discussed in Section 3.1 over the training epochs of a top rule.

This is plotted in Figure 6 for the MIMIC data and Figure 7 for the

FF data.

We can see that the training process is very effective. The loss

function value drops precipitously over the initial epochs, and

flattens after 30 to 50 epochs. In addition, it can be observed that

the training is somewhat easier for the MIMIC data than for the FF

data, as the loss function curve levels off and stays low after only

20 or 30 epochs. This is mainly due to the nature and predictability

of the data—arguably, the medical domain is more predictable than

human mobility and social communication. Interestingly, this also

coincides with rule quality scores and prediction accuracy which

we examine subsequently.

As another aspect of training effectiveness evaluation, we now

look at how the average quality score of top 30 rules evolves over

their training epochs. The results are shown in Figure 8 for the

MIMIC data and in Figure 9 for the FF data. We can see that the rule

quality scores increase sharply during the initial epochs. Moreover,

it is easier and faster to get to a level of better quality scores for the

MIMIC data than for the FF data. This is consistent with the result

of loss function value change in Figures 6 and 7 as discussed above.
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5.1.3 More Baseline Comparisons and Interpretable Inference. Re-
call that our SelectiveRuleLearning algorithm treats the training

as a Multi-Armed Bandit problem and uses Thompson and Markov

chain sampling to improve the performance. We now compare it

against our second baseline method that does uniform learning

over all rule candidates. The throughput results are shown in Fig-

ure 10 for the MIMIC data and in Figure 11 for the FF data. We

can see that SelectiveRuleLearning has between 1 and 2 orders

of magnitude higher throughput than the uniform rule learning,

since it judiciously selects the rules, focusing on learning the most

promising ones for top quality scores, and pruning the low quality

ones early.

We now continue to iterating through the top conditional distri-

bution rules as in BuildingDBN (use case presented in Appendix B).

We first look at the impact of this to system throughput. The result

is shown in Figure 12 with both datasets, for different 𝑘 parameter

values (the number of top rules retrieved). We can see that it only

slightly decreases the throughput, even for the larger 𝑘 values.

Last but not least, we proceed to the final aspect of evaluating

the effectiveness of our neural embedding and rule learning by

examining the accuracy of predicting missing attribute values. We

reserve some tuples for testing and remove them from the training

set. As typical for graph embedding, the prediction goes by selecting

the attribute value that would result in a smaller loss function value

compared to the alternative values.

We also compare the accuracy against the Multivariate LSTM

and the RE-Net baseline methods. Of course, a major advantage of

our RL
2
approach is that we have auxiliary conditional distribution

rules that provide explanations of the prediction result. The results

are shown in Figure 13 for the MIMIC data and in Figure 14 for the

FF data. We use two standard metrics precision and recall [29] for

accuracy. In addition, we examine the accuracy for three different

dimensionality values of embedding vectors, 25, 50, and 100. We

can see that the prediction accuracy of our method is competitive

with that of the Multivariate LSTM and RE-Net. We also find that

the accuracy performance of RE-Net is not very stable—it is sig-

nificantly worse than Multivariate LSTM and our method for the

MIMIC dataset, but significantly better for the FF dataset. This is

because RE-Net is a very sophisticated model involving multiple

layers of graph convolution networks and sequence models, which

depends heavily on the suitability and amount of stream data used

for training.

Moreover, for our method, as the dimensionality of embedding

vectors increase from 25 to 50, the accuracy gain is much more sig-

nificant than the increase from 50 to 100. Our experiments earlier

indicate that a higher dimensionality implies a higher computa-

tional cost. Thus, there is a tradeoff. For our method, the precision

and recall values are around 0.8 and 0.9. In addition, the accuracy

values for the MIMIC data are slightly higher than those for the

FF data. This is consistent with our observations earlier for loss

function values and rule quality scores during the training.

Case Study of Using Rules to Interpret. An advantage of our

approach is that we also obtain the symbolic TCD rules. We perform

a case study of using the obtained TCD rules to interpret prediction

results based on the connectionist networks (graph embedding).
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We give some examples of the rules returned by our algorithms

that provide explanations of the prediction results we get. For the

MIMIC data, one prediction of the prescription Ondansetron can be

explained by a conditional distribution rule we have found “Simvas-

tatin, 0.9% Sodium Chloride→ Ondansetron”. Indeed, the co-use

of Simvastatin and Ondansetron for certain diseases has been doc-

umented in the literature [6]. Another example is the prediction of

Aspirin explained by the probabilistic rule “Pantoprazole, Ferrous

Sulfate, 0.9% Sodium Chloride→ Aspirin”, as also verified in [35].

Yet another example is to explain the prediction result of “Phytona-

dione” usage by the usage of Warfarin and Lisinopril at an earlier

time and the rule “Warfarin, Lisinopril→+ Phytonadione”. Specifi-
cally, Warfarin and Lisinopril treat high blood pressure and prevent

blood clots in veins, and doctors often use Phytonadione later to

reduce the side effect of Warfarin (excessive blood thinning).

For the FF dataset, an example is the prediction result of a “long

phone call” (defined as longer than two minutes) is explained by

a conditional distribution rule that we have found “CallFriend→
LongCall”. As another example, the prediction result of “surround-

ing crowd size of 2 to 3 people” is probabilistically explained by

a rule that we find from the data “if someone is next to a friend,

with higher probability the surrounding crowd size is medium (no

more than 3) than large (4 or above)”. These distribution rules make

intuitive sense, at least based on the data from which they are

discovered. By contrast, the prediction results using a model like

Multivariate LSTM or RE-Net lack such interpretability power due

to the deep hidden layers.

6 CONCLUSIONS

In this paper, we propose an approach RL
2
to provide synergistic

symbiosis of representations and rules in graph streams. We are the

first to demonstrate the feasibility of simultaneous representation

learning and rule learning efficiently and effectively out of the same

online training process. We devise neural embedding and rule learn-

ing with attention-based aggregation, probability calibration, and a

novel Markov chain sampling based Multi-Armed Bandit solution.

Our experimental evaluation shows its efficiency, effectiveness, and

superiority over baselines.
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A PROOFS OF THEOREMS

A.1 Proof of Theorem 1

Proof. For brevity, let 𝒉 = 𝒙 + 𝒓 . Then the loss function for the

training of this rule is ℓ =
∑𝑑
𝑖=1 (ℎ𝑖 − 𝑝1𝑣1𝑖 − . . . − 𝑝𝑘𝑣𝑘𝑖 )2, where

we use L2 loss function, 𝑣 𝑗𝑖 is the 𝑖’th dimension of 𝒗𝒋 , and 𝑑 is the

dimensionality of embedding vectors. We also have the constraint

𝑝1 + . . . + 𝑝𝑘 = 1. Applying Lagrange multipliers [31], we get the

Lagrangian function

L(𝑝1, . . . , 𝑝𝑘 , 𝜆) =
𝑑∑︁
𝑖=1

(ℎ𝑖 −
𝑘∑︁
𝑗=1

𝑝 𝑗𝑣 𝑗𝑖 )2 − 𝜆(
𝑘∑︁
𝑖=1

𝑝𝑖 − 1)

Setting the derivatives to 0, we get

𝜕L
𝜕𝑝1

= −2
𝑑∑︁
𝑖=1

[(ℎ𝑖 − 𝑝1𝑣1𝑖 − . . . − 𝑝𝑘𝑣𝑘𝑖 )𝑣1𝑖 ] − 𝜆 = 0

.

.

.

𝜕L
𝜕𝑝𝑘

= −2
𝑑∑︁
𝑖=1

[(ℎ𝑖 − 𝑝1𝑣1𝑖 − . . . − 𝑝𝑘𝑣𝑘𝑖 )𝑣𝑘𝑖 ] − 𝜆 = 0

𝜕L
𝜕𝜆

= 1 − 𝑝1 − . . . − 𝑝𝑘 = 0

Subtracting the respective succeeding equation from each of the

first 𝑘 − 1 equations above, we get a new system of equations

𝑝1𝒗1 · (𝒗𝒊 − 𝒗𝒊+1) + . . . + 𝑝𝑘𝒗𝒌 · (𝒗𝒊 − 𝒗𝒊+1) = 𝒉 · (𝒗𝒊 − 𝒗𝒊+1)
for 1 ≤ 𝑖 ≤ 𝑘 − 1, which, along with 𝑝1 + . . . + 𝑝𝑘 = 1, can be

rewritten as (𝑝1, . . . , 𝑝𝑘 ) · 𝑨 = 𝒃 , where 𝑨 and 𝒃 are in the form as

stated in the theorem. This concludes the proof. □

A.2 Proof of Theorem 2

Proof. We first show that the execution follows a Markov chain,

where the state is the ID of the rule that is at the root of the max

heapH . We call each iteration of the loop at line 10 a step. In step 𝑡 ,

let the rule at the root ofH be 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑛), i.e., the Markov chain

is at state 𝑖 . Let 𝜎𝑖,𝑡 denote the sample of rule 𝑟𝑖 in step 𝑡 . Then the

probability that the chain will transition to state 𝑗 (1 ≤ 𝑗 ≤ 𝑛 and

𝑗 ≠ 𝑖) in step 𝑡 + 1, i.e., the root ofH will be 𝑟 𝑗 , is

𝑃𝑖 𝑗 = 𝑃𝑟 [𝑟 𝑗 𝑐ℎ𝑜𝑠𝑒𝑛] · 𝑝1 + 𝑃𝑟 [𝑟𝑖 𝑐ℎ𝑜𝑠𝑒𝑛] · 𝑝2 (2)

where 𝑃𝑟 [𝑟 𝑗 𝑐ℎ𝑜𝑠𝑒𝑛] = 𝑃𝑟 [𝑟𝑖 𝑐ℎ𝑜𝑠𝑒𝑛] = 1

𝑛 is the probability that 𝑟 𝑗
(resp. 𝑟𝑖 ) is chosen in line 11, and

𝑝1 = 𝑃𝑟 [𝜎 𝑗,𝑡+1 > 𝜎𝑖,𝑡 ] | 𝜎𝑖,𝑡 𝑙𝑎𝑟𝑔𝑒𝑠𝑡] (3)

𝑝2 = 𝑃𝑟 [𝜎 𝑗,𝑡 2𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡, 𝜎𝑖,𝑡+1 < 𝜎 𝑗,𝑡 | 𝜎𝑖,𝑡 𝑙𝑎𝑟𝑔𝑒𝑠𝑡] (4)

Moreover, 𝑃𝑖𝑖 = 1 − ∑
𝑗≠𝑖 𝑃𝑖 𝑗 . Given the uniform distributions of

each rule, the probabilities 𝑝1, 𝑝2, and hence 𝑃𝑖 𝑗 are well defined.

Thus, the execution follows a Markov chain. We further observe

that this chain is finite, irreducible, and aperiodic, and thus it is an

ergodic chain [21]. Specifically, there is a finite number of states,

and from any state, there is a positive probability to reach any other

state—making it irreducible. The chain is also aperiodic as from any

state, there is also a non-zero probability to stay in that state in the

next step (i.e., the rule at the root is not replaced). It then follows

that this chain has a unique stationary distribution [21], which is

the sought-after 𝝅★
stated in the theorem as it satisfies 𝝅★

P = 𝝅★
,

where P is the transition matrix based on the 𝑃𝑖 𝑗 ’s above. □

A.3 Proof of Theorem 3

Proof. We use the Markov chain coupling technique [23] to

prove the convergence speed. We run two copies 𝑋𝑡 and 𝑌𝑡 of the

Markov chain in Theorem 2 at the same time, but they may have

different initial states, since the weight𝑤 is chosen randomly from

the range. We let the first chain 𝑋𝑡 run as usual, and let the second

chain 𝑌𝑡 make exactly the same random choices as 𝑋𝑡 in each step

(a step is one iteration of the loop from line 10)—i.e., the same rule

from H is chosen and the same random value 𝑤 is picked from

its distribution. This coupling is valid because 𝑌𝑡 also follows the

same transition probabilities P. Hence, the two copies 𝑋𝑡 and 𝑌𝑡
will surely become coupled when every rule is chosen at least once

in line 11, i.e., 𝑋𝑡 and 𝑌𝑡 will always be in the same states after that.

To analyze the random process above, after𝑋𝑡 and𝑌𝑡 run 𝑛 ln𝑛+
𝑐𝑛 steps (where 𝑐 is a constant), the probability that a specific rule

has not been selected in line 11 at least once is at most(
1 − 1

𝑛

)𝑛 ln𝑛+𝑐𝑛
≤ 𝑒−(ln𝑛+𝑐) =

𝑒−𝑐

𝑛
(5)

Then by the union bound, the probability that any rule has not

been selected at least once is at most 𝑒−𝑐 . Set 𝑐 = ln
1

𝜀 . Thus, after

𝑋𝑡 and 𝑌𝑡 run 𝑛 ln𝑛 + 𝑛 ln 1

𝜀 = 𝑛 ln 𝑛
𝜀 steps, the probability that the

two chains have not coupled is at most 𝑒−𝑐 = 𝑒− ln
1

𝜀 = 𝜀. From the

Coupling Lemma [23], we obtain the result. □

B ADDITIONAL USE CASE OF TCD RULES

B.1 Retrieving Rules to Build DBN

While we are picking the top quality-score rules based on their 𝑞𝑡
values, we must avoid adding a rule that could create a directed

cycle, which is a requirement of the DBN for inference. Hence, we

cannot add a rule into our DBN that entails an edge from attribute

𝑥 to attribute 𝑦, if there is already a directed path from 𝑦 to 𝑥 , as

that would form a cycle. Thus, we maintain a reachability matrix

𝑃 , a two-dimensional bit array as illustrated in Figure B.1(b), to

keep track of reachability—whether there is a directed path from an

attribute to another, subject to the transitions of temporal states due

to the DBN rules as shown in Figure B.1(a). The matrix 𝑃 is 2𝛼 × 2𝛼 ,
where 𝛼 is the number of attributes that may appear in all the

rules. The first 𝛼 rows (resp. columns) are called the 𝑡0 rows (resp.

columns), while the second 𝛼 rows (resp. columns) are called the 𝑡+
rows (resp. columns). 𝑡0 and 𝑡+ represent two successive temporal

states, i.e., either present and future, respectively, in Figure B.1(a),

or past and present, respectively.

Thus, 𝑃 is divided into 4 equal-sized blocks, separated by the

two dashed lines in Figure B.1(b), which are called the (𝑡0, 𝑡0) block,
and so on. Intuitively, before adding a rule that would create a

𝑥 →+ 𝑦 (resp. 𝑥 →− 𝑦) edge, we check the corresponding bit

corresponding to (𝑦, 𝑥) in the (𝑡+, 𝑡0) block (i.e., bottom-left) (resp.

the (𝑡0, 𝑡+) block). If it is set, adding the rule would create a cycle.

If it is a 𝑥 →0 𝑦 edge, we will check both (𝑡0, 𝑡0) and (𝑡+, 𝑡+) blocks.
The precise meaning of each block will be made clear shortly. We

present the algorithm in BuildingDBN, and analyze its correctness.
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