RL?: A Call for Simultaneous Representation Learning and Rule
Learning for Graph Streams

Qu Liu
University of Massachusetts, Lowell
Lowell, Massachusetts, USA
qliu@cs.uml.edu

ABSTRACT

Heterogeneous graph streams are very common in the applica-
tions today. Although representation learning has advantages in
prediction accuracy, it is inherently deficient in the abilities to in-
terpret or to reason well. It has long been realized as far back as in
1990 by Marvin Minsky that connectionist networks and symbolic
rules should co-exist in a system and overcome the deficiencies of
each other. The goal of this paper is to show that it is feasible to
simultaneously and efficiently perform representation learning (for
connectionist networks) and rule learning spontaneously out of the
same online training process for graph streams. We devise such a
system called RL?, and show, both analytically and empirically, that
it is highly efficient and responsive for graph streams, and produces
good results for both representation learning and rule learning in
terms of prediction accuracy and returning top-quality rules for
interpretation and building dynamic Bayesian networks.

CCS CONCEPTS

« Computing methodologies — Machine learning approaches.

KEYWORDS

graph streams, representation learning, rules

ACM Reference Format:

Qu Liu and Tingjian Ge. 2022. RL?: A Call for Simultaneous Representation
Learning and Rule Learning for Graph Streams. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
"22), August 14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539309

1 INTRODUCTION

Graphs are a general and powerful data model, as nearly all data
and information can be directly represented as graphs, but a signif-
icant portion of it is unwieldy and inefficient, if not impossible, to
be represented and manipulated as pure relational tables. Moreover,
their flexible schema makes it very easy for data integration from
heterogeneous sources. Graph streams, where streaming items are
edges [20], are a generalization and flexible representation of re-
lational data streams. In general, such a system may contain both

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3539309

Tingjian Ge
University of Massachusetts, Lowell
Lowell, Massachusetts, USA
ge@cs.uml.edu

static and dynamic (streaming) edges/relations, capturing interac-
tion events in applications such as social networks, communication
networks, traffic, healthcare, among others. Here is an example.

ExaMPLE 1. Medical data for patients in the Intensive Care Units
(ICU) of hospitals is highly dynamic and rich, and is a heterogeneous
graph stream. Specifically, we look into the MIMIC-III (Medical Infor-
mation Mart for Intensive Care IIl) data [14] comprising deidentified
health-related data associated with over forty thousand patients who
stayed in critical care units of the Beth Israel Deaconess Medical Cen-
ter between 2001 and 2012. Figure 1 illustrates a snippet of the data
from this dataset. First of all, there are many types of entities, shown
as vertices in the graph, including patients, diagnosis, procedures,
lab events, input events, and prescription drugs. They are shown as
nodes of different colors. Then there are both static relationships (solid
edges)and dynamic relationships (dashed edges). Static edges are be-
tween patients and diagnosis nodes (e.g., Septic shock) and between
patients and procedures (e.g., Vascular cath irrigation)—indicating the
“properties” of ICU patients without a timestamp. Interaction relations
such as lab measurement events and input events (fluids administered
to a patient) are very dynamic and timestamped. Two patients may
have relations with the same diagnosis, or they may have the same
input events but at different times. Learning from such heterogeneous
data sources is instrumental for inference and reasoning.

. Patient B
Septic shock T
Atrial flutter A}

./ \Platelet count

\

Patient D

«
N
[N
n
i
i

i P
..\ Propofol /.~
P

Tromethamine
Alteplase

@ Diagnosis O Procedure O Lab event @ Input event O Drug

Figure 1: A heterogeneous graph stream system in a hospital.

1.1 Representation Learning & Rule Learning,
Symbolic & Connectionist, in One System
Known as the “father of artificial intelligence”, Marvin Minsky, the
builder of the first neural network simulator (in 1951), wrote a
highly visionary and insightful article even far back in 1990 [22],
which observes that “Our purely numerical connectionist networks

https://doi.org/10.1145/3534678.3539309
https://doi.org/10.1145/3534678.3539309

KDD ’22, August 14-18, 2022, Washington, DC, USA

are inherently deficient in abilities to reason well; our purely sym-
bolic logical systems are inherently deficient in abilities to represent
the all-important "heuristic connections’ between things—the uncer-
tain, approximate, and analogical linkages that we need for making
new hypotheses”.

Here, the connectionist networks refer to neural networks and
representation learning that render the best predictive accuracy in
many tasks today, while symbolic systems refer to symbolic repre-
sentation of knowledge using logic symbols and rules. Minsky [22]
further establishes that “The versatility that we need can be found
only in larger-scale architectures that can exploit and manage the
advantages of several types of representations at the same time. Then,
each can be used to overcome the deficiencies of the others”.

This vision over three decades ago has also been echoed more
recently by some researchers [10, 16]. In particular, recent work
from MIT, IBM, and DeepMind [19] shows the power of combining
the two approaches, by building a neuro-symbolic concept learner
(NS-CL) that has two neural networks for scenes and text-based
question-answer pairs, respectively, and a symbolic rule system to
answer new questions about a different scene—a type of feat that
is far more challenging than can be done using a connectionist ap-
proach alone. It is also observed that while connectionist networks
may get good accuracy, it is inherently hard for them to explain
how they arrive at a solution; for many critical decision-making,
symbolic rule systems can help interpret the prediction results.

In a nutshell, connectionist networks are good at learning weak
and uncertain associations among data entities, while symbolic/rule
systems are strong at interpretation, reasoning, and working with
less data. A system would benefit greatly from having both archi-
tectures seamlessly integrated in an efficient and natural manner.
The goal of this paper is to show that it is feasible to simulta-
neously and efficiently perform representation learning (for
connectionist networks) and rule learning spontaneously
out of the same online training process for graph streams.
Note that we pay special attention to real-time throughput and
efficiency for high-speed streams.

To the best of our knowledge, we are the first to study the above
feasibility problem in the context of graph streams. As such, it is
not our intent to propose a new representation learning scheme
for graph streams; nor is it to improve the predictive accuracy. But
rather, we adapt an efficient graph representation learning method
(TransE [3])—which satisfies our real-time high-throughout require-
ment of graph streams—with three key novelties: (1) treating the
rules that we learn as a new type of relationship; (2) devising aggre-
gated subgraph embeddings using attention [32] for the head/tail
entities of TransE; and (3) calibrating the probabilities of the condi-
tional distribution rules by solving an optimization problem (Sec. 3).

The rules that we learn are temporal conditional distribution
(TCD) rules with respect to the attributes surrounding a graph
stream event/edge, in the form X —; Y, where X is one or more at-
tributes, Y is a single attribute, —, indicates the time delay between
the two sides, and such a rule specifies the conditional distribution
Pr[Y|X] (details are in Sec. 2.1). For instance, a TCD rule that we
discover from Example 1 contains “Warfarin (= yes), Lisinopril
(= yes) —+ Phytonadione (= yes)” with a high probability. Indeed,
Warfarin and Lisinopril treat high blood pressure and prevent blood

Qu Liu and Tingjian Ge

clots in veins, and doctors often use Phytonadione later (—. indi-
cates the time delay) to reduce the side effect of Warfarin (excessive
blood thinning).

Potential TCD rule candidates can be of a large number; it is un-
necessary and impractical to learn all of them. We propose a quality
score function using an information theoretic measure. Then we
devise an efficient online algorithm to continuously and adaptively
train and select top-k quality-score rules at any time. The main
idea of our online training/selection is to treat the problem as a
Multi-Armed Bandit (MAB) [34]. Using Markov chain coupling [23],
we show that our algorithm for solving it is provably fast (Sec. 4).

We perform a systematic experimental evaluation using two
large real-world graph stream datasets in different domains, com-
paring against four baselines. The results show that our RL? can
efficiently and effectively do representation learning and rule learn-
ing together. While prediction accuracy is not our main goal, RL?’s
prediction accuracy is competitive with deep learning methods that
do not learn rules, but has a two or more orders of magnitude higher
throughput, in addition to the obtained TCD rules which can be
used for result interpretation and building dynamic Bayesian net-
works (DBN) (Sec. 5). As a use case of the learned rules, we design
an algorithm to retrieve rules to build a DBN in the Appendix. Our
code and datasets are accessible at [8, 14, 27].

2 PROBLEM STATEMENT & RELATED WORK

2.1 Problem Statement

We consider a graph stream G = (&, R) over entities & = {e1,...,en},
each of which corresponds to a vertex. In general, two entities may
be connected by either a static relationship (between head entity
¢p, and tail entity ¢;) or a dynamic relationship (i.e., an interaction
between ¢), and &; at time t) in R as a directed edge from ¢}, to &;.
There is a set of schemas o7, .. ., oy, each of which has a number
of attributes from the entities and/or relationships. Some schemas
contain attributes specific to one entity, while others across two
entities—for the interaction relations between two entities. In gen-
eral, the attributes A of a schema o consists of three disjoint subsets
A=A, UA; UA,, where Ay, is the attributes at the head entity, A;
is at the tail entity, and A, is from a relationship, e.g., the times-
tamp. The temporal conditional distribution rules (defined below)
will be with respect to such attributes A surrounding a graph stream
event/edge.

For such a graph stream, a relational representation learning
(a.k.a. knowledge graph embedding) method will generate embed-
ding vectors for each ¢; € & and each relationship r; € R, i.e.,
producing a function emb : EUR +— R4, where d is the dimension-
ality of the embedding vectors. A temporal conditional distribution
(TCD) rule is of the form Xy, ..., Xp —; Y, where Xj, Y are attributes,
¢ > 1,and t can be 0, +, or —, indicating the time relationship be-
tween the two sides. The three ¢ values correspond to Y being
“within the same time window” (of size §) as X;’s, “in the next time
window”, and “in the previous time window”, respectively, where §
is application dependent. Each attribute has a finite set of values
(e.g., a numeric attribute is discretized into ranges).

A TCD rule specifies a distribution of Y conditioned on X;’s,
with the corresponding time delay relationship. Each rule describes
Pr[Y|Xy, ... X¢], ie., for every X1 = x1,....Xp = xp, it specifies

RL2: A Call for Simultaneous Representation Learning and Rule Learning for Graph Streams

Pr[Y = y|x1, ..., xp] that sums up to 1 for all y’s. Note that such rules
are clearly different from the association rules in the literature [29],
which do not cover all combinations of X;’s and Y, nor the time
relations. For brevity, we also write a rule as X —; Y, with X
representing one or more attributes. For such a rule p, we will
design a quality score function q(p), and adaptively return the top-
k rules with the highest scores.

Our problem can be summarized as follows: Given a het-
erogeneous graph stream G, we simultaneously (1) perform repre-
sentation learning to produce an embedding function emb, and (2)
perform rule learning and adaptively return top-k rules with the
highest quality scores at any time.

2.2 Related Work and Preliminaries

Some closely related work is presented in Section 1.1; here we
survey others.

Representation Learning on Graphs, ak.a. graph embedding
or graph neural networks [5], maps each node (and/or relationship
type) to a point (i.e., embedding vector) in a multidimensional space.
Each dimension of an embedding vector is a latent feature learned
from data.

Multi-Armed Bandit (MAB) Problem [34] is a problem in
which a fixed limited set of resources must be allocated between
competing (alternative) choices in a way that maximizes their ex-
pected gain, when each choice’s properties are only partially known
at the time of allocation, and may become better understood as
time passes or by allocating resources to the choice. Thompson
sampling [30] is one of the methods to solve the MAB problem.
The basic idea is that in each choice round, the player has a belief
of the posterior distribution of the reward for choosing each of the
arms/actions. Then the player samples from each of those distribu-
tions and chooses the arm/action that gives the maximum reward
sample. This will maximize the expected reward.

Interpretation of graph embedding and prediction has been
studied [17, 18, 33]. For example, Liu et al. [18] perform global-view
interpretation by constructing a taxonomy of the embedding in-
stances based on hierarchical clustering in the latent space, as well
as local-view interpretation by summarizing the unique character-
istics in each cluster. In [17], Liu et al. propose an interpretation
framework to understand and describe how representation vectors
distribute in the latent space, and then a multimodal autoencoder
is built for generating the description of a representation instance.
Wang et al. [33] generate path representations in knowledge graphs
and use paths to infer the underlying rationale of a user-item in-
teraction. The previous work either only tries to make sense of the
embedding space and the locations of instances in the space, or
uses coarse-grained path structures in the original graph. One use
of our TCD rules is to interpret prediction results. In addition, TCD
rules incorporate time delays for symbolic reasoning and can be
used to build dynamic Bayesian networks.

3 SIMULTANEOUS REPRESENTATION
LEARNING AND RULE LEARNING
In this section, we adapt TransE [3] for representation learing and

TCD rule learning. In Section 4, we will study how to judiciously
select rules to train.

KDD ’22, August 14-18, 2022, Washington, DC, USA

We first discuss how we collect a set of rule candidates based
on the stream tuples. For each distinct schema o that appears in
the graph stream G, the left-hand-side (LHS) of a rule can have
between 1 and ¢ attributes (where ¢ is the maximum length of LHS),
while the right-hand-side (RHS) has exactly 1 attribute (a rule with
multiple attributes on the RHS can be decomposed into multiple
rules, each with 1 attribute on the RHS). The timing relationship of
a rule can be one of the three: —¢, —4, and —_. Thus, if there are k
distinct schemas o; (1 < i < k), then the number of rule candidates
is 33K, 26 i(19).

For example, if there are 10 schemas, each of which has 8 at-
tributes, and if the size limit of LHS is 3, then there are 15,120
candidate rules. Moreover, each rule has a number of attribute-
value combinations in its conditional probability distribution to be
learned. Thus, there can be a large number of rule dependencies
to be learned. Since the training data in a stream window is likely
sparse at least for some of the rules, we will use a representation
learning approach that has generalization capacity.

3.1 Basic Embedding Method

We first enhance the dynamic graph G associated with the graph
stream. Recall that each attribute ¢ is associated with a set of values
{v1,02,..., ar }. We create a vertex in G for each attribute-value
combination (¢, v;), for (1 < i < | ¢ |), and connect an entity to its
corresponding attribute-value nodes. In this way, it still follows the
triple data model in knowledge graphs. This also facilitates learning
arule X —; Y, as X and Y each correspond to a subgraph, for which
we can produce an embedding. This is illustrated in Figure 2(a) for
a regular relation in the data and Figure 2(b) for a new relation
associated with a rule.

We devise a primitive mechanism for embedding a subgraph
served as the head/tail of a relation, which is an attention-based
aggregation of the embedding vectors of a set of attribute-value
nodes, as illustrated in Figure 2. In this work, we adapt and build on
top of an efficient knowledge graph embedding method TransE [3].
Alternative embedding methods could be used too, as we treat rules
as relations and the head/tail of a triple as subgraphs/pooling.

att-val node att-val node

att-val node
BN time rel/ O
centroid
O
(O _att-val node
att-val node

static or att-val node

att-val node dynamic rel.

o att-val node
entity-id node

att-val node

entity-id node
(a) (b)

Figure 2: (a) Embedding training of a static or dynamic relationship
edge. Head and tail embedding vectors are the aggregate embeddings
of attribute-value nodes using attention and connection relations.
Head and tail also each contains an entity-id node’s embedding. (b)
Training of a rule. Head is similar but without an entity-id node,
while tail is the centroid of the embedding vectors of possible values
of the RHS of the rule, weighted by the probabilities.

Training Primitive. Figure 2(a) is for training over a static or
dynamic relationship rg, whose head is at entity Ej, and whose tail
is at entity E;. There are a set of attribute-value nodes at Ej, and Ey,

KDD ’22, August 14-18, 2022, Washington, DC, USA

respectively, including a special one “entity-id” node that is unique
for the entity holding its own embedding vector. The training w.r.t.
this relationship rg is to minimize the loss

I aGi+r)+rg— > aly;+r)l (1)

x;i €Ep Yi€E;

where 3. cf, ai(X; +1;) is the attention-based aggregation at Ej,
and x; iterates over each of the attribute-value nodes, as discussed
above. r; is the embedding vector of the connecting relationship r;
between x; and the aggregate node. We use AG(Ey,) to denote this
attention-based aggregation at Ej. The treatment at the tail entity
E; is similar.

Figure 2(b) illustrates the training of a rule’s vectors, where the
relationship is the time relationship r;, which is ry (same time),
r4+ (followed by), or r_ (preceded by). The head-entity side is the
attention-based aggregation of Figure 2(a), except that there is no
“entity-id” node, since this is the aggregation of attribute values for
the LHS of a rule.

We let the tail-entity be the centroid of the vectors of y = v;
(1 £ i < k) nodes, where y is the attribute at the RHS of the
rule, k is the number of values of y, and the mass/weight of each
vector is the corresponding value v;’s probability in the rule. We
denote the centroid as C(dist(Y)), where dist(Y) is the probability
distribution of Y. Intuitively, a value with a greater probability
should be closer to the tail vector (centroid)—in the extreme, if a
particular value y = ¢ has probability 1, the centroid is right at
that node. In Section 3.2, our probability recovery and calibration
algorithm will be based on this mechanism, generalizing to unseen
or less trained values/value combinations.

Note that our loss function in Equation 1 still follows the TransE [3]
algorithm, except that the head or tail entity is a subgraph whose
embedding is an attention-based aggregation or a weighted sum
based on the probabilities (in the case of the tail of Figure 2(b)).
Stochastic gradient descent (SGD) [4] is used to update all the em-
bedding vectors in Equation 1, as well as all the attention parameters
aj.

Algorithm to Train a Chosen Rule. We first present the basic sub-
module for jointly training a specific rule once, as well as a related
dynamic stream edge (relationship), and a randomly chosen static
relationship edge. In Section 4, we will discuss how to iteratively
and judiciously select a rule to train. This basic training module
algorithm is presented in RULETRAININGONCE.

When we parse the stream tuples to identify the rule candidates
in Section ??, we associate with each rule p a set of relevant tuples in
which p appears. Line 1 of the algorithm randomly chooses a tuple
among them. Lines 2-3 use attention-based aggregation for head
and tail entities and run SGD for a number of iterations over the
relationship edge based on Eq. 1. Similarly, line 4 randomly selects
a static relationship edge to train. Lines 5-6 are to sample tuples
relevant to p and incrementally add to the frequency statistics (i.e.,
the frequency of the Y value given the X value), before the rule is
trained in line 8.

3.2 Probability Recovery and Calibration

Probability calibration, i.e., accurately estimating the probabilities
of prediction results, is a much needed but challenging topic for

Qu Liu and Tingjian Ge

Algorithm 1: RULETRAININGONCE (G, p)

Input:G: graph stream;
p: a chosen rule
Output: updated embedding of G and statistics of p
1 tuple 7 « randomly chosen from p’s relevant tuples in G

)

if 7 is graph stream tuple of relationship rg then
L SGD over triple {AG(Ep), AG(E;),rg} based on Eq. 1

randomly pick a static relation r¢ and run SGD over triple

{AG(Ep), AG(Er), rs}

select a random set of tuples T from G relevant to p

@

'S

«

=N

collect X —; Y frequency statistics of p from T and add it
to current frequency statistics ¥ of p

7 for each X —; dist(Y) in ¥ do

8 L SGD over triple {AG(X), C(dist(Y)),r:}

neural networks [24, 26, 28]. Even more intriguing in our problem
is that we need to calibrate the probabilities over relations to several
attribute-value nodes (i.e., the RHS Y), generalizing to untrained
or less trained attribute-values due to the sparsity of training data
with respect to the large number of rules and value combinations.

Recall that we treat the centroid of a number of attribute-value
nodes (weighted by their probabilities) as the tail entity in a rule.
As discussed earlier, the training is based on incomplete data with
respect to all value combinations of all rule candidates. The idea
is that the representation learning has generalization capacity and
generalizes to unseen or rarely seen attribute values (in the RHS
of a rule) or value combinations (in the LHS of a rule). Thus, we
now discuss how we can recover and calibrate the probability dis-
tributions of the rule candidates based on the embedding vectors.
We have the following result. The proofs of all the theorems are in
Appendix A.

THEOREM 1. Consider a rule X —; Y, where Y has k possible val-
uesv; (1 < i < k) with embedding vectors vi(1 < i < k), and a value
combination x of the attributes in X with an aggregate embedding x.
Let the embedding vector for the relationship —; ber. Then setting
the probability vector of the rule for x to be

(pl,...,pk) = b-A71

where

b=((x+r-(vi—v),....(x+1) - (vp_1 —w), 1)
vi - (v —) v (Vo —) 1
A= : : :
Vi (vi — v2) Ve(Vee1—v) 1

minimizes the loss function defined for this rule.

The computational cost for calibrating the probabilities based on
Theorem 1 is O(k3d), where k is the number of values of the RHS
attribute of a rule and d is the dimensionality of embedding vectors.
Typically k is small for rules, based on the desired granularity of
values or value sets and ranges.

RL2: A Call for Simultaneous Representation Learning and Rule Learning for Graph Streams

4 SELECTIVE RULE LEARNING

Now we focus on methods to judiciously and efficiently select top
rules to learn. We first devise a score function that distinguishes the
qualities of different rule candidates. Then we cast this problem as
a Multi-Armed Bandit (MAB) problem [34], for which we propose
a novel solution and prove the correctness and efficiency of our
solution.

4.1 Score Function for Rules

A major challenge in learning the rules in Section 3 is that there are
so many rule candidates, and the quality of them varies significantly—
however, of course, we do not know the quality of a rule until we
sufficiently learn it. Let us first define a metric to quantify the qual-
ity of a rule. We resort to concepts from information theory, namely
entropy, conditional entropy, and mutual information [7].

DEFINITION 1. We define the quality score of a rule p: X —; Y,
denoted as q(p), to be 1- XX _ TXY) o oo H(Y) is the ent
enoted asq(p), to be 1= =7~ = 5y, where is the entropy
of Y, H(Y|X) is the entropy of Y conditioned on X, and I(X;Y) is the
mutual information between X and Y.

The conditional entropy H(Y|X) measures the uncertainty of
the RHS attribute Y conditioned on a given value combination
of the attributes X on the LHS. Intuitively, a rule that is more
informative, and hence of better quality, is more certain on Y given
X, which implies a smaller H(Y|X) (a higher g(p) value). However,
attribute Y might just be very “certain” by itself (i.e., with a skewed
distribution); thus, we need to normalize H(Y|X) with the entropy
of Yitself, i.e., H(Y). Interestingly, it is known in information theory
that H(Y) — H(Y|X) = I(X;Y), which is the mutual information
between X and Y. The intuition is that, the more mutual information
there is between the LHS and the RHS, the more useful it is to know
LHS for the inference of RHS. During training, we will need to
repeatedly evaluate the quality of a rule. By definition,

HOY1X) == 3 pla) log 222
XY
== p®)p(y | x)logp(y | x)

xy
and H(Y) = - 2, p(y) log p(y). We will use Laplace smoothing [29]
to estimate p(x) and p(y) based on incremental frequency (similar
to RULETRAININGONCE in Section 3.1), and use Theorem 1 (proba-
bility calibration) to estimate p(y | x). The range of a quality score
according to our definition is always in [0, 1], with a higher value
indicating a better quality.

4.2 Selecting Rules to Train

4.2.1 Intuition and Approach. We consider the training/learning
of a rule candidate as an accumulative process, and divide it into
epochs, each of which is shown in the RULETRAININGONCE algo-
rithm. Assume that a full training of a rule on average requires
B epochs, where f is a hyperparameter. Our goal is to efficiently
retrieve the top quality rules, as measured by Definition 1, with-
out fully exhausting all § epochs of every rule candidate. We treat
this as a Multi-Armed Bandit (MAB) problem [34] where each rule
candidate is an arm. Indeed, there is clearly an exploitation vs.
exploration tradeoff—one can either keep exploiting a promising

KDD ’22, August 14-18, 2022, Washington, DC, USA

rule candidate to fully train it or try more training on other rule
candidates to discover even better rules.

We model the state of a rule candidate p at epoch ¢ in its training
process as a triple (g, As, qu), where g; is the current quality g(p)
at time ¢, A; is the current gradient of the change of q(p), and gy,
is the (optimistic) upper bound of g(p) following the current A; at
the end of ff epochs, i.e., qu = qr + A (f —t). We use the Thompson
sampling method [30] to solve this MAB problem. For each arm (i.e.,
rule candidate), in general, we set the reward distribution of the
Thompson sampling to be a uniform distribution in [g¢, gy,]. The
intuition is that setting the reward to a sample value in the range of
the final quality scores will make us focus on the top quality rules.

However, one problem is that there is a large number of candidate
rules, and constantly evaluating a rule’s quality range and sampling
from it for each selection of arm is too computationally expensive.
Instead, we devise a very efficient sampling scheme to accomplish
the Thompson sampling.

4.2.2 Selective Learning Algorithm. Our key idea to improve the
efficiency of the Thompson sampling, i.e., sampling from [q;, g]
of each rule candidate, is to only sample the score range of one rule
candidate in each training epoch rule-selection round, instead of
sampling the score ranges of all rules in each round. For other rule
candidates, we simply re-use their sample values from the previous
rounds.

Clearly, this will improve the speed dramatically. A natural ques-
tion is: How does it affect correctness? In other words, are we still
following Thompson sampling for the MAB problem? We show in
Section 4.3 that our iterative algorithm follows a Markov chain that
converges to a stationary distribution that is optimal (i.e., the same
as Thompson sampling). Moreover, we prove that the convergence
speed (called the mixing time) is very fast. Thus, our sampling is
very efficient and effective.

The overall rule candidate selection algorithm for iterative and
incremental learning is presented in SELECTIVERULELEARNING. In
line 1, we initialize a max-heap (priority queue) H, which will be
used to maintain and select a rule with the maximum quality score
sample to perform an epoch of training in each round. Lines 2-9
perform initial training of each rule candidate for two epochs to
get its initial state (g, Az, qu). We then get an initial quality score
sample for each rule in lines 5 and 8 and place them in . Note
that lines 2-9 are only performed once over an initial portion of
the graph stream to initially push the rules into the heap H. By
contrast, the loop starting from line 10 is continuously performed
with the incoming graph stream, so that the top rules are adaptive
to the dynamic graph stream.

Note that here, as well as in the main body of iterative sampling
in lines 13-16, the score ranges where a sample is drawn from are
slightly different between the top-k rules (based on the current
score g;) and those outside top-k, where k is a rough estimate of
the number of top rules that will be retrieved. There is a slight
disadvantage for the current top-k rules, as the lower bound of the
sampling range is 0. The intuition is that we should give higher
priority to rules outside top-k so that we are not stuck at repeatedly
selecting the current top-k and miss the potentially better ones
simply because they are not trained enough yet. Indeed, if a high-
quality rule temporarily falls out of top-k, it can be picked up again

KDD ’22, August 14-18, 2022, Washington, DC, USA

Algorithm 2: SELECTIVERULELEARNING (G, R, k)

Input: G: graph stream;
R: set of rule candidates;
k: number of top rules needed
Output: a sequential list of top rules upon request
1 initialize a max-heap H
2 for rule p € R do

3 invoke RULETRAININGONCE (G, p) twice to get its state
(qt, At qu)

4 if g; is among top k in R then

5 w « pick value in [0, ¢;,] uniformly at random

6 L add p to H with weight w

7 else if g, > k-th ranked q; in R then
8 w « pick value in [qy, g,] uniformly at random
add p to H with weight w

10 while true do

11 p « random node € H

12 re-evaluate p’s state (qy, Ar, qu)

13 if q; is among top k in R then

14 L p.w « pick value in [0, q;,] uniformly at random
15 else

16 L p.w « pick value in [qy, g,] uniformly at random
17 r « root node of H

18 if p.w > r.w //change p to be root

19 then

20 P « list of nodes on the path from r to p in H

21 circularly move each node in P to the one below
22 root of H « p

23 RULETRAININGONCE (G, root of H)

24 if request of top rules then

25 L return rules from H in descending order of g;

and go back to top-k. We call this process “chasing top-k”. When
the process stabilizes, so will the top-k membership.

Each loop starting from line 10 is a round of sampling and train-
ing a selected rule for one epoch. In line 11, we select a rule from
H uniformly at random. We re-evaluate the selected rule’s state be-
cause its embedding (based on attribute-value nodes, relationships,
and attentions) might have changed from the last time its state is
evaluated. In lines 17-22, we compare the new score sample of this
node p with the score sample of the current root node of H (which
has the previously highest score sample). If p’s score sample turns
out to be higher, it will replace the current root node in lines 18-22.
Finally, the rule at the root node of H is selected to be trained for
one epoch in line 23. At any time, upon request, lines 24-25 return
rules in descending order of their quality scores g;. In particular,
the rules will be retrieved in Section B.1 to form a DBN.

4.3 Analysis of Correctness and Efficiency

Let us now analyze the behavior of SELECTIVERULELEARNING. We
show that its state (i.e., which rules get selected for training for

Qu Liu and Tingjian Ge

an epoch) follows a Markov chain, which converges to a station-
ary distribution that is optimal and the same as our intention of
Thompson sampling for the Multi-Armed Bandit. Furthermore, we
prove that this Markov chain has a nice property of converging
very fast. Note that, in practice, most Markov chains do not have
provable bounds of convergence time, even if they converge (i.e.,
they can be converging very slowly).

THEOREM 2. Given a set of n rules in the heap H, let the state
of a continuous execution of SELECTIVERULELEARNING be the ID of
the rule that is at the root of H. Then the execution states follow
a Markov chain that has a unique stationary distribution &* =
(nf, nz*, <oy 7y), where ni* (1 < i < n) is the probability that rule
i’s quality score sample ranks the highest.

Our analysis in Theorem 2 establishes the correctness of SELEC-
TIVERULELEARNING, as it is Thompson sampling for MAB. We now
show that this execution-state Markov chain converges very fast,
and therefore it is efficient and effective.

THEOREM 3. In the Markov chain stated in Theorem 2, starting
from any initial state, the variation distance between the distribu-
. : n .
tion of the state of the chain after nln % steps and the stationary
distribution is at most €, where n is the number of rules in R.

Now that we have shown the correctness and sampling efficiency,
we further point out that, due to the fact that we perform efficient
graph neural embedding, SELECTIVERULELEARNING can be run con-
tinuously with the data stream. Thus, the results, specifically the
top rules, are adaptive to the graph stream G.

5 EXPERIMENTS

We use the following real-world datasets in two different domains,
namely medicine and human mobility and social communication: (1)
MIMIC data (Medical Information Mart for Intensive Care III [14]),
and (2) FF data (the Friends and Family dataset [1]). We compare
against the following baselines: (1) Multivariate LSTM model [11],
(2) State-of-the-art temporal knowledge graph neural network
model RE-Net [13], and (3) A variant of our method, where all the
rule candidates are selected uniformly for training. We describe the
details of the datasets, baselines, and machine setup in Appendix C.

5.1 Experimental Results

For the MIMIC data, we treat the diagnoses and procedures of each
patient as static relationships, and timestamped data such as input
events (fluids administered to the patient), lab events (lab measure-
ments), and prescriptions as dynamic graph streams. The attributes
in the conditional distribution rules are associated with the hetero-
geneous events, outcomes, and prescription drugs.

For the FF data, we treat relationships among subjects such
as the couple (family) relations and the friends relations as static
relationships, and dynamic information and interactions such as
accelerometer readings (sampled up to 4 times per second), proximity
of others by scanning Bluetooth devices, location updates and speed
estimates, phone calls, and text messages as local and graph streams.
Some attributes are derived from an aggregate of the original raw
tuples, such as the “surrounding crowd size”, which is the number
of distinct people (scanned Bluetooth devices) within a period of
time.

RL2: A Call for Simultaneous Representation Learning and Rule Learning for Graph Streams

KDD ’22, August 14-18, 2022, Washington, DC, USA

o —o 108 w 150
6 6

10 Q/a/‘f e E\E\E\E\H 10
o < o
¢ paa m g o8, 2 s
3 310 2 o—o—6 3 100
S10* g Rl s
= Z10° = 3
3 —B— MIMIC 3 6—6—~6—o6—o—¢ 3 S
= =] = -
S —©—FF S = 2
3 3 102 —B— Our method 3) A—A A A A A 3 50
£10° £ —©— Multivariate LSTM 210 3
- = RENet . —HB— Our method

10 A A A A A —O— Multivariate LSTM
a —A— RE-Net
100 10° 10° 0
0 50 100 150 200 250 0 50 100 150 0 50 100 150 0 10 20 30 40 50
Window size (minutes) Embedding dimensionality Embedding dimensionality Number of epochs
Fig 3 Getting rule candidates Fig 4 Training throughput (MIMIC) Fig 5 Training throughput (FF) Fig 6 Loss function (MIMIC)

5.1.1 Representation Learning and Rule Learning. In the first set tuples per second when the dimensionality is 50 (our default) for

of experiments, we examine the step of obtaining a set of TCD
rule candidates from the heterogeneous graph streams, which will
be subsequently used for selection of top rules. A parameter here
is the size of a sliding window within which we consider as the
“same time unit” dependency — (dependencies with the next and
previous windows are —, and —_, respectively). We vary this
sliding window size and measure the stream system throughput
when continuously performing this step. The results are shown in
Figure 3 for both the MIMIC and the FF datasets.

The throughput is measured in the number of raw stream tuples
processed (among all local and graph streams) per second. We can
see that, while the throughputs for both datasets are high (over fifty
thousand tuples per second), it is much faster for the FF data than
the MIMIC data for the same window size that is not too small (e.g.,
above 5 minutes). This is because the FF data contains some very
fast streams, e.g., the accelerometer readings (sampled 4 times per
second), and we perform fast aggregation within the time window
to get stream attribute values that are not too dense; hence the
throughput is much higher with respect to the original raw tuples.
Moreover, as the window size increases, the throughput with the
MIMIC data slightly decreases, as a window contains more events
and hence more correlations need to be examined. This is not the
case with the FF data since we aggregate more raw tuples into
discrete events as window size increases.

It is worth noting that the rule candidate generation step does not
have to be run very often, as the set of rule candidates is relatively
stable—although the conditional distribution rules themselves and
which ones have top quality scores might be more dynamic and
can be continuously learned.

We then proceed to our SELECTIVERULELEARNING algorithm
for simultaneous graph neural embedding and rule training. We
first measure the system throughput as the learning algorithm is
continuously and adaptively executed with the incoming streams.
The results are shown in Figure 4 for the MIMIC dataset and in
Figure 5 for the FF dataset. One parameter here is the dimensionality
of the embedding vectors, which we vary from 30 to 150 dimensions.
We also compare against the training throughput of the two baseline
methods using Multivariate LSTM and RE-Net, respectively.

From Figures 4 and 5, we can see that our simultaneous graph
embedding and selective rule learning algorithm is very efficient,
achieving throughput over 100K tuples per second and 3 million

the MIMIC and FF datasets, respectively. The higher throughput
with the FF data is again due to the aggregation of raw tuples. As
the embedding dimensionality increases, the throughput decreases.
This is because many of the stochastic gradient descent training
steps have a cost proportional to the dimensionality of the embed-
ding vector. In subsequent experiments, we will see the tradeoff
between this dimensionality cost and inference accuracy.

Furthermore, our embedding and rule learning method is about
2 and 4 orders of magnitude faster than the Multivariate LSTM
model and the RE-Net model training, respectively. Those two
baselines are deep and complex neural network models that are
known to be computationally intensive. Especially, RE-Net consists
of multiple layers of graph convolution networks and sequence
models. Moreover, they do not learn the rules as we do.

5.1.2 Learning Effectiveness and Rule Quality. We then examine
the validity and effectiveness of our neural embedding and selective
rule learning. The first aspect of the evaluation is to look at the
stochastic gradient descent training process with the attention-
based aggregation, by checking the change of the loss function
value discussed in Section 3.1 over the training epochs of a top rule.
This is plotted in Figure 6 for the MIMIC data and Figure 7 for the
FF data.

We can see that the training process is very effective. The loss
function value drops precipitously over the initial epochs, and
flattens after 30 to 50 epochs. In addition, it can be observed that
the training is somewhat easier for the MIMIC data than for the FF
data, as the loss function curve levels off and stays low after only
20 or 30 epochs. This is mainly due to the nature and predictability
of the data—arguably, the medical domain is more predictable than
human mobility and social communication. Interestingly, this also
coincides with rule quality scores and prediction accuracy which
we examine subsequently.

As another aspect of training effectiveness evaluation, we now
look at how the average quality score of top 30 rules evolves over
their training epochs. The results are shown in Figure 8 for the
MIMIC data and in Figure 9 for the FF data. We can see that the rule
quality scores increase sharply during the initial epochs. Moreover,
it is easier and faster to get to a level of better quality scores for the
MIMIC data than for the FF data. This is consistent with the result
of loss function value change in Figures 6 and 7 as discussed above.

KDD ’22, August 14-18, 2022, Washington, DC, USA Qu Liu and Tingjian Ge

100 0.7 05 108
806 §045 B\B\BM
80 E E g)|
3 X05 x 04 2
g g o035 g1t S O—e—0—9 o
= 60 Z04 = o
el o o =]
B o) o 03 =
c S o >
2 40 go° 8025 g,
2 802 g 3 10 | [—8— Selective learning
Jax 20 S © 021 = —©~— Uniform learning
[o =
Z 01 Z0.15
0 - 0 0.1 10°
0 20 40 60 80 0 20 40 60 0 20 40 60 0 50 100 150
Number of epochs Number of epochs Number of epochs Embedding dimensionality
Fig 7 Loss function (FF) Fig 8 Rule scores (MIMIC) Fig 9 Rule scores (FF) Fig 10 Throughput (MIMIC)
M — P 1
1 [50 dim
00 di
108 108 [~ | r‘wumv::me LSTM [Multivariate LSTM
— — . [RE-Net 0.9 [RE-Net
g G\H*H S 0o e N —
% > 5 0
8 2 0.8
3 3 —B-MIMIC S 3
=3 —B Selective learning Q e 3 2]
-§> —6— Uniform learning g” * :\:A;MIC' fop-k o7 <o7
£102 L1402 —A—FF, topk
= =
0.6 0.6
10° 10° 05 . el 05 el -
0 50 100 150 0 50 100 150 200 Precision Recall Precision Recall
Embedding dimensionality k value Metric Metric

Fig 11 Throughput comparison (FF) Fig 12 Retrieving DBN rules

5.1.3 More Baseline Comparisons and Interpretable Inference. Re-
call that our SELECTIVERULELEARNING algorithm treats the training
as a Multi-Armed Bandit problem and uses Thompson and Markov
chain sampling to improve the performance. We now compare it
against our second baseline method that does uniform learning
over all rule candidates. The throughput results are shown in Fig-
ure 10 for the MIMIC data and in Figure 11 for the FF data. We
can see that SELECTIVERULELEARNING has between 1 and 2 orders
of magnitude higher throughput than the uniform rule learning,
since it judiciously selects the rules, focusing on learning the most
promising ones for top quality scores, and pruning the low quality
ones early.

We now continue to iterating through the top conditional distri-
bution rules as in BuiLDINGDBN (use case presented in Appendix B).
We first look at the impact of this to system throughput. The result
is shown in Figure 12 with both datasets, for different k parameter
values (the number of top rules retrieved). We can see that it only
slightly decreases the throughput, even for the larger k values.

Last but not least, we proceed to the final aspect of evaluating
the effectiveness of our neural embedding and rule learning by
examining the accuracy of predicting missing attribute values. We
reserve some tuples for testing and remove them from the training
set. As typical for graph embedding, the prediction goes by selecting
the attribute value that would result in a smaller loss function value
compared to the alternative values.

We also compare the accuracy against the Multivariate LSTM
and the RE-Net baseline methods. Of course, a major advantage of
our RL? approach is that we have auxiliary conditional distribution

Fig 13 Accuracy (MIMIC) Fig 14 Accuracy (FF)

rules that provide explanations of the prediction result. The results
are shown in Figure 13 for the MIMIC data and in Figure 14 for the
FF data. We use two standard metrics precision and recall [29] for
accuracy. In addition, we examine the accuracy for three different
dimensionality values of embedding vectors, 25, 50, and 100. We
can see that the prediction accuracy of our method is competitive
with that of the Multivariate LSTM and RE-Net. We also find that
the accuracy performance of RE-Net is not very stable—it is sig-
nificantly worse than Multivariate LSTM and our method for the
MIMIC dataset, but significantly better for the FF dataset. This is
because RE-Net is a very sophisticated model involving multiple
layers of graph convolution networks and sequence models, which
depends heavily on the suitability and amount of stream data used
for training.

Moreover, for our method, as the dimensionality of embedding
vectors increase from 25 to 50, the accuracy gain is much more sig-
nificant than the increase from 50 to 100. Our experiments earlier
indicate that a higher dimensionality implies a higher computa-
tional cost. Thus, there is a tradeoff. For our method, the precision
and recall values are around 0.8 and 0.9. In addition, the accuracy
values for the MIMIC data are slightly higher than those for the
FF data. This is consistent with our observations earlier for loss
function values and rule quality scores during the training.

Case Study of Using Rules to Interpret. An advantage of our
approach is that we also obtain the symbolic TCD rules. We perform
a case study of using the obtained TCD rules to interpret prediction
results based on the connectionist networks (graph embedding).

RL2: A Call for Simultaneous Representation Learning and Rule Learning for Graph Streams

We give some examples of the rules returned by our algorithms
that provide explanations of the prediction results we get. For the
MIMIC data, one prediction of the prescription Ondansetron can be
explained by a conditional distribution rule we have found “Simvas-
tatin, 0.9% Sodium Chloride — Ondansetron”. Indeed, the co-use
of Simvastatin and Ondansetron for certain diseases has been doc-
umented in the literature [6]. Another example is the prediction of
Aspirin explained by the probabilistic rule “Pantoprazole, Ferrous
Sulfate, 0.9% Sodium Chloride — Aspirin”, as also verified in [35].
Yet another example is to explain the prediction result of “Phytona-
dione” usage by the usage of Warfarin and Lisinopril at an earlier
time and the rule “Warfarin, Lisinopril —. Phytonadione”. Specifi-
cally, Warfarin and Lisinopril treat high blood pressure and prevent
blood clots in veins, and doctors often use Phytonadione later to
reduce the side effect of Warfarin (excessive blood thinning).

For the FF dataset, an example is the prediction result of a “long
phone call” (defined as longer than two minutes) is explained by
a conditional distribution rule that we have found “CallFriend —
LongCall”. As another example, the prediction result of “surround-
ing crowd size of 2 to 3 people” is probabilistically explained by
a rule that we find from the data “if someone is next to a friend,
with higher probability the surrounding crowd size is medium (no
more than 3) than large (4 or above)”. These distribution rules make
intuitive sense, at least based on the data from which they are
discovered. By contrast, the prediction results using a model like
Multivariate LSTM or RE-Net lack such interpretability power due
to the deep hidden layers.

6 CONCLUSIONS

In this paper, we propose an approach RL? to provide synergistic
symbiosis of representations and rules in graph streams. We are the
first to demonstrate the feasibility of simultaneous representation
learning and rule learning efficiently and effectively out of the same
online training process. We devise neural embedding and rule learn-
ing with attention-based aggregation, probability calibration, and a
novel Markov chain sampling based Multi-Armed Bandit solution.
Our experimental evaluation shows its efficiency, effectiveness, and
superiority over baselines.

Acknowledgments. This work is supported by NSF grants IIS-
1633271, 11S-2124704, OAC-2106740, and New England Transporta-
tion Consortium project 20-2.

REFERENCES

[1] Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland. 2011. So-
cialfMRI: Investigating and shaping social mechanisms in the real world. Pervasive
and Mobile Computing 7 (2011), 643-659.

[2] KasunBandara, Peibei Shi, Christoph Bergmeir, Hansika Hewamalage, Quoc Tran,
and Brian Seaman. 2019. Sales Demand Forecast in E-commerce Using a Long
Short-Term Memory Neural Network Methodology. In International Conference
on Neural Information Processing.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing Systems 26. Curran Associates,
Inc.

[4] Léon Bottou. 2004. Stochastic Learning. In Advanced Lectures on Machine Learn-
ing: ML Summer Schools. Springer Berlin Heidelberg, 146-168.

[5] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2017. A Com-
prehensive Survey of Graph Embedding: Problems, Techniques and Applications.
CoRR abs/1709.07604 (2017). http://arxiv.org/abs/1709.07604

[6] L B. Chaudhry, N. Husain, M. O. Husain, J. Hallak, R. Drake, A. Kazmi, R. u.
Rahman, M. M. Hamirani, T. Kiran, N. Mehmood, J. Stirling, G. Dunn, and B.

KDD ’22, August 14-18, 2022, Washington, DC, USA

Deakin. 2013. Ondansetron and simvastatin added to treatment as usual in
patients with schizophrenia: study protocol for a randomized controlled trial.
Trials 14 (2013).

[7] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory, 2nd
Edition. Wiley.

[8] Dataset. 2022. Available at http://realitycommons.media.mit.edu/friendsdataset2.
html.

[9] Josef Fagerstrom, Magnus Bang, Daniel Wilhelms, and Michelle S. Chew. 2019.
LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock.
Scientific Reports, Nature Research 9, 15132 (2019).

[10] Ashok K. Goel. 2021. Looking Back, Looking Ahead: Symbolic versus Connec-
tionist AL. AI Magazine 42 (2021), 83-85.

[11] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. Neural
Computation 9, 8 (1997), 1735-1780.

[12] Yadigar N. Imamverdiyev and Fargana J. Abdullayeva. 2020. Condition Monitor-

ing of Equipment in Oil Wells using Deep Learning. Advances in Data Science

and Adaptive Analysis 12, 1 (2020).

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. Recurrent Event

Network: Autoregressive Structure Inference over Temporal Knowledge Graphs.

In EMNLP.

AEW Johnson, TJ Pollard, L Shen, L Lehman, M Feng, M Ghassemi, B Moody, P

Szolovits, LA Celi, and RG Mark. 2016. MIMIC-III, a freely accessible critical care

database. Scientific Data (2016).

[15] D. Kingma and J. Ba. 2015. Adam: A Method for Stochastic Optimization. In

Proceedings of the 3rd International Conference on Learning Representations (ICLR

2015).

Will Knight. 2019. Two rival Al approaches combine to let machines learn about

the world like a child. MIT Technology Review (2019).

Ninghao Liu, Mengnan Du, and Xia Hu. 2019. Representation Interpretation with

Spatial Encoding and Multimodal Analytics. In WSDM.

Ninghao Liu, Xiao Huang, Jundong Li, and Xia Hu. 2018. On Interpretation of

Network Embedding via Taxonomy Induction. In KDD.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun

Wu. 2019. The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words,

and Sentences From Natural Supervision. In ICLR.

Andrew McGregor. 2014. Graph stream algorithms: A survey. ACM SIGMOD

Record 43, 1 (2014), 9-20.

[21] S.P.MeynandR.L. Tweedie. 2012. Markov Chains and Stochastic Stability. Springer
London. https://books.google.com/books?id=LITIBWAAQBA]

[22] Marvin Minsky. 1991. Logical vs. analogical or symbolic vs. connectionist or neat
vs. scruffy. Al Magazine 12, 2 (1991), 34-51.

[23] M. Mitzenmacher and E.Upfal. 2005. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press.

[24] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting Good Probabilities

With Supervised Learning. In Proceedings of the 22nd International Conference on

Machine Learning.

Subendhu Rongali, Adam J Rose, David D McManus, Adarsha S Bajracharya,

Alok Kapoor, Edgard Granillo, and Hong Yu. 2020. Learning Latent Space Rep-

resentations to Predict Patient Outcomes: Model Development and Validation.

Journal of Medical Internet Research 22, 3 (2020).

[26] Tara Safavi, Danai Koutra, and Edgar Meij. 2020. Evaluating the Calibration of

Knowledge Graph Embeddings for Trustworthy Link Prediction. In The 2020

Conference on Empirical Methods in Natural Language Processing.

Source code. 2022. Available at https://drive.google.com/file/d/

113aDHi620yDKgOGKxalZyEqP-MgXFcbC/view?usp=sharing.

Pedro Tabacof and Luca Costabello. 2020. Probability Calibration FOR KNOWL-

EDGE GRAPH EMBEDDING MODELS. In The International Conference on Learn-

ing Representations (ICLR).

[29] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. In-
troduction to Data Mining (2nd ed.). Pearson.

[30] W. Thompson. 1933. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika 25, 3/4 (1933),
285-294.

[31] I B. Vapnyarskii. 2010. Lagrange multipliers. Springer.

[32] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018).

[33] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng
Chua. 2019. Explainable Reasoning over Knowledge Graphs for Recommendation.
In AAAL

[34] R. Weber. 1992. On the Gittins index for multi-armed bandits. Annals of Applied
Probability (1992).

[35] P. Wei, Y. G. Zhang, L. Ling, Z. Q. Tao, L. Y. Ji, J. Bai, B. Zong, C. Y. Jiang, Q.
Zhang, Q. Fu, and X. J. Yang. 2016. Effects of the short-term application of
pantoprazole combined with aspirin and clopidogrel in the treatment of acute
STEML. Experimental and therapeutic medicine 12 (2016), 2861-2864.

[36] J. Xu, R. Rahmatizadeh, L. Boloni, and D. Turgut. 2018. Real-Time Prediction of
Taxi Demand Using Recurrent Neural Networks. IEEE Transactions on Intelligent
Transportation Systems 19, 8 (2018), 2572-2581.

=
&

[14

=
&

(17

[18

[19

[20

~
2

&
=

S
&,

http://arxiv.org/abs/1709.07604
http://realitycommons.media.mit.edu/friendsdataset2.html
http://realitycommons.media.mit.edu/friendsdataset2.html
https://books.google.com/books?id=LlTlBwAAQBAJ
https://drive.google.com/file/d/1l3aDHi620yDKgOGKxalZyEqP-MqXFcbC/view?usp=sharing
https://drive.google.com/file/d/1l3aDHi620yDKgOGKxalZyEqP-MqXFcbC/view?usp=sharing

KDD ’22, August 14-18, 2022, Washington, DC, USA

A PROOFS OF THEOREMS
A.1 Proof of Theorem 1

Proor. For brevity, let h = x + r. Then the loss function for the
training of this rule is £ = Z?zl(hi — P101i — ... — PrUk;)?, where
we use L2 loss function, vj; is the i’th dimension of v, and d is the
dimensionality of embedding vectors. We also have the constraint
p1+ ...+ pr = 1. Applying Lagrange multipliers [31], we get the
Lagrangian function

d k

k
L1, ppA) = Z(hi - ijvji)Z - A(ZP:’ -1)
=

i=1 i=1

Setting the derivatives to 0, we get

oL d
= =23 [(hi = pro1i = .. = pkogi)on] = A =0
o1 i=1

d
oL
— =-2 i — P — Dogi] — A=
oo ;uhl p1o1i = - = Prok)oki] = A =0
oL
ﬁzl—pl—...—pkzo

Subtracting the respective succeeding equation from each of the
first k — 1 equations above, we get a new system of equations

P101 - (9i = Vis1) + ...+ Prog - (Vi = Vir1) =h - (Vi = Vi41)

for 1 < i < k — 1, which, along with p; +... + pr = 1, can be
rewritten as (p1, ..., pg) - A = b, where A and b are in the form as
stated in the theorem. This concludes the proof. O

A.2 Proof of Theorem 2

Proor. We first show that the execution follows a Markov chain,
where the state is the ID of the rule that is at the root of the max
heap H. We call each iteration of the loop at line 10 a step. In step ¢,
let the rule at the root of H be r; (1 < i < n), i.e., the Markov chain
is at state i. Let 0; ; denote the sample of rule r; in step ¢. Then the
probability that the chain will transition to state j (1 < j < nand
j # i)in step t + 1, i.e., the root of H will be rj, is

Pij = Pr(rjchosen] - p1 + Pr[r;j chosen] - p> 2)

where Pr[rj chosen] = Pr[r; chosen] = % is the probability that r;
(resp. r;) is chosen in line 11, and
p1 = Prlojee1 > oir] | 0yt largest] ®)
p2 = Pr(oj; 2,4 largest, i1 < 0j¢ | 0t largest] (4)
Moreover, P;; =1 -, j#i Pij- Given the uniform distributions of
each rule, the probabilities p1, p2, and hence P;; are well defined.
Thus, the execution follows a Markov chain. We further observe
that this chain is finite, irreducible, and aperiodic, and thus it is an
ergodic chain [21]. Specifically, there is a finite number of states,
and from any state, there is a positive probability to reach any other
state—making it irreducible. The chain is also aperiodic as from any
state, there is also a non-zero probability to stay in that state in the

next step (i.e., the rule at the root is not replaced). It then follows
that this chain has a unique stationary distribution [21], which is

Qu Liu and Tingjian Ge

the sought-after * stated in the theorem as it satisfies #*P = z*,
where P is the transition matrix based on the P;;’s above.]

A.3 Proof of Theorem 3

Proor. We use the Markov chain coupling technique [23] to
prove the convergence speed. We run two copies X; and Y; of the
Markov chain in Theorem 2 at the same time, but they may have
different initial states, since the weight w is chosen randomly from
the range. We let the first chain X; run as usual, and let the second
chain Y; make exactly the same random choices as X; in each step
(a step is one iteration of the loop from line 10)—i.e., the same rule
from H is chosen and the same random value w is picked from
its distribution. This coupling is valid because Y; also follows the
same transition probabilities P. Hence, the two copies X; and Y;
will surely become coupled when every rule is chosen at least once
in line 11, i.e., X; and Y; will always be in the same states after that.

To analyze the random process above, after X; and Y; runnlnn+
cn steps (where c is a constant), the probability that a specific rule
has not been selected in line 11 at least once is at most

1 nlnn+cn —c
(1 _ _) < e—(lnn+c) — e_ (5)
n n

Then by the union bound, the probability that any rule has not
been selected at least once is at most e €. Set ¢ = In % Thus, after
Xrand Yy runnlnn+nln % =nln 2 steps, the probability that the

1
two chains have not coupled is at most e~ = e"™% = ¢ From the

Coupling Lemma [23], we obtain the result. o

B ADDITIONAL USE CASE OF TCD RULES
B.1 Retrieving Rules to Build DBN

While we are picking the top quality-score rules based on their ¢;
values, we must avoid adding a rule that could create a directed
cycle, which is a requirement of the DBN for inference. Hence, we
cannot add a rule into our DBN that entails an edge from attribute
x to attribute y, if there is already a directed path from y to x, as
that would form a cycle. Thus, we maintain a reachability matrix
P, a two-dimensional bit array as illustrated in Figure B.1(b), to
keep track of reachability—whether there is a directed path from an
attribute to another, subject to the transitions of temporal states due
to the DBN rules as shown in Figure B.1(a). The matrix P is 2a X 2a,
where « is the number of attributes that may appear in all the
rules. The first @ rows (resp. columns) are called the ty rows (resp.
columns), while the second & rows (resp. columns) are called the ¢,
rows (resp. columns). ty and ¢, represent two successive temporal
states, i.e., either present and future, respectively, in Figure B.1(a),
or past and present, respectively.

Thus, P is divided into 4 equal-sized blocks, separated by the
two dashed lines in Figure B.1(b), which are called the (%o, tp) block,
and so on. Intuitively, before adding a rule that would create a
x —4 y (resp. x —_ y) edge, we check the corresponding bit
corresponding to (y, x) in the (t4, tp) block (i.e., bottom-left) (resp.
the (#o, t+) block). If it is set, adding the rule would create a cycle.
If it is a x —¢ y edge, we will check both (o, tp) and (4, t4) blocks.
The precise meaning of each block will be made clear shortly. We
present the algorithm in BuiLpINGDBN, and analyze its correctness.

RL2: A Call for Simultaneous Representation Learning and Rule Learning for Graph Streams

ty t,
i itay
T
! *
present x 1 1
to ; I :
1 | 1
A R N
1
1
ty 1
jta 1 T T
past future 1

(a) (b)

Figure B.1: (a) Capturing the transition among three time states
when considering acyclic DBN. (b) A reachability binary matrix with
paths of temporal transitions indicated in (a). The matrix has 4 equal-
sized sub-blocks (separated by dashed lines).

Algorithm 3: BUILDINGDBN (H)
Input:H: heap from SELECTIVERULELEARNING to retrieve
rules;
Output: a DBN
1 R « 0 //initialize the set of rules to be returned as DBN

2 initialize a 2a X 2 bit array P //a is number of attributes
3 while stopping_condition(R, H) is not met do

4 pop arule X —; Y from H

5 for attribute x € X do

6 let attribute x and attribute of Y be the i-th and j-th
7 if t = + then

8 | Vi) —j+a

9 else if t = — then

10 |V —ita)

11 else

12 Li’<—i+a;j’<—j+a

13 if P[j’,i’] =1 or(t =0 and P[j,i] = 1) then

14 L rollback any changes to P and continue to next

rule

15 P[i’,j'] <1

16 SuortCIrcurr (P, i/, j’)

17 if t = 0 then

18 Pli,j] « 1

19 L SHORTCIRCUIT (P, i, j)
20 Re—RU{X —;Y}

21 return R
22 Function SHORTCIRCUIT (P, i, j)

23 for cell (x, i) set in column i of P do
24 for cell (j,y) set in row j of P do
25 L Plx,y] « 1

THEOREM 4. Algorithm BUILDINGDBN maintains the following
invariants. (1) A bit P[i, j] in the (to, t+) block (resp. (t4,to) block) is
1 if and only if there is a directed path from the i-th attribute to the
Jj-th attribute in the succeeding (resp. preceding) temporal state. (2) A
bit P[i, j] in the (o, to) block (resp. (t4,ty) block) is 1 if and only if
there is a directed path from the i-th attribute to the j-th attribute in
the same temporal state and the first cross-time edge (if any) must be
to the succeeding (resp. preceding) temporal state.

KDD ’22, August 14-18, 2022, Washington, DC, USA

Proor. We prove by induction on each new edge. Initially the
two invariants must be true as all bits of P are 0 and there are no
directed paths. For the induction, suppose we are to add a new edge
from the i-th to j-th attribute. If it is r4, then the (i’, j’) entry in
line 8 corresponds to a bit in the (fo, £4) block of P to be set, as
0 <i’<aand ¢ < j’ < 2a. Line 13, according to the induction
hypothesis, is equivalent to checking whether there is a directed
path from the j-th to i-th attribute in the preceding temporal state.
If true, we would not add the new edge which would form a cycle.
Otherwise we add it. SHORTCIRCUIT in line 16 ensures that, for each
pair of directed paths from x to i’ and from j’ to y, there must be a
directed path from x to y due to the new edge. For the induction
step, we can verify that both invariants are still true after setting
these bits, in all the four cases of (x,y) based on which of the four
blocks of P (x,y) is in, as well as which block (i, j) is in due to the
t value in the rule. O

C DETAILS OF EXPERIMENT DATASETS,
BASELINES, AND SETUP

(1) MIMIC data. The MIMIC-III (Medical Information Mart for
Intensive Care III) dataset [14] is a large, freely-available database
comprising deidentified health-related data associated with over
forty thousand patients who stayed in critical care units of the Beth
Israel Deaconess Medical Center between 2001 and 2012. It includes
high temporal resolution data such as vital sign measurements,
laboratory test results, procedures, medications, caregiver notes,
imaging reports, demographics, and others. The total size is 27GB.
(2) FF data. The Friends and Family (FF) dataset [1] is from an
experimental study of how people make decisions with emphasis
on the social aspects involved, and how to empower people to make
better decisions using personal and social tools. The subjects were
members of a young-family residential community adjacent to a
major university in North America. Their behavior and interactions
were closely tracked with their personal Android-based mobile
phones, with signals including accelerometer reading, apps running,
bluetooth devices nearby, battery information, call log, GPS, WiFi
access points nearby and SMS log. Their behavior and interactions
were also tracked with surveys. The size is 4.6GB.

We have implemented the algorithms in Java. We have also im-
plemented the following baseline algorithms: (1) The Multivariate
LSTM model [11] with a flat relational tuple at each time step, in
Python 3.6.9, Keras version 2.3.1 with Tensorflow version 1.14.0
backend. The Keras LSTM has a learning rate of 0.001, using the
Adam optimizer [15] with the mean absolute error (MAE) loss
function. LSTM was shown to be the state-of-the-art model for
MIMIC-III data [25]. LSTM was also shown to give the state-of-the-
art prediction results for multi-relational sequence data in different
domains in recent studies such as [2, 9, 12, 36]. (2) State-of-the-
art temporal knowledge graph neural network model RE-Net [13]
based on the source-code provided by the authors. (3) A variant of
our method, where all the rule candidates are selected uniformly
for training. The experiments are performed on a MacBook Pro
machine with OS X version 10.11.4, a 2.5 GHz Intel Core i7 proces-
sor, a 16 GB 1600 MHz DDR3 memory, and a Macintosh hard disk.
The RE-Net baseline is run under Python 3 with Pytorch 1.6, CUDA
10.1, an Nvidia GTX1080Ti GPU (11GB GPU memory).

	Abstract
	1 Introduction
	1.1 Representation Learning & Rule Learning, Symbolic & Connectionist, in One System

	2 Problem Statement & Related Work
	2.1 Problem Statement
	2.2 Related Work and Preliminaries

	3 Simultaneous Representation Learning and Rule Learning
	3.1 Basic Embedding Method
	3.2 Probability Recovery and Calibration

	4 Selective Rule Learning
	4.1 Score Function for Rules
	4.2 Selecting Rules to Train
	4.3 Analysis of Correctness and Efficiency

	5 Experiments
	5.1 Experimental Results

	6 Conclusions
	References
	A Proofs of Theorems
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3

	B Additional Use Case of TCD Rules
	B.1 Retrieving Rules to Build DBN

	C Details of Experiment Datasets, Baselines, and Setup

