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ABSTRACT

We present Trixi.jl, a Julia package for adaptive high-order numer-
ical simulations of hyperbolic partial differential equations. Utiliz-
ing Julia’s strengths, Trixi.jl is extensible, easy to use, and fast.
We describe the main design choices that enable these features
and compare Trixi.jl with a mature open source Fortran code that
uses the same numerical methods. We conclude with an assessment
of Julia for simulation-focused scientific computing, an area that
is still dominated by traditional high-performance computing lan-
guages such as C, C++, and Fortran.
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1. Introduction

We are broadly interested in simulation-focused scientific com-
puting, in particular numerical approximations for hyperbolic par-
tial differential equations (PDEs), computational fluid dynamics
(CFD), and related problems. The focus of our research ranges
from specific applications in CFD to general multi-physics cou-
pling strategies to the development and analysis of the high-order
numerical methods our simulations are built upon. In addition, we
are academics and involved in teaching students in these areas of
science. Thus, we would like to have a code that is

(1) extensible for research and development,
(2) easy to understand and use for students and collaborators,
(3) fast enough for applied 3D problems.

Additionally, we are greedy' and wish to include all these features
within a single code. Roughly one year of collaborative work has
resulted in the current version of Trixi.jl?, providing adaptive high-
order numerical simulations of hyperbolic PDEs in Julia [5]. Start-

ISee https://julialang.org/blog/2012/02/why-we-created-
julia (accessed 2021-08-11)
2https://github.com/trixi-framework/Trixi.jl

ing as an experiment, we have been able to reach more and more of
our goals with Trixi.jl.

In this article, we present an overview of the main features and
design decisions of Trixi.jl in Section 2, laying the ground for an
extensible and easy-to-use framework of high-order methods for
hyperbolic PDEs. Next, we compare the serial performance with a
mature high-performance computing (HPC) Fortran code in Sec-
tion 3, demonstrating that Julia is not generically slower than tra-
ditional HPC languages (and can even be faster in this particular
case). Thereafter, we present an assessment of Julia for simulation-
focused scientific computing based on our experience with Trixi.jl
in Section 4. Finally, we summarize our findings and conclusions
in Section 5.

2. Capabilities and design of Trixi.jl

Trixi.jl is designed as a simulation framework and library of high-
order methods for conservation laws of the form

d
Opult,z) + Y 0 I (u) = s(t,m,u), te(0,T),z€Q, (1)

j=1

ind € {1,2, 3} space dimensions. Here, the independent variables
are time ¢ and space coordinates z € © C R?. The conserved
quantities are denoted as u, e.g., mass, momentum, and energy for
the compressible Euler equations of an ideal gas. The physical sys-
tem is specified by the fluxes f7 and the source term s. In addition,
suitable initial and boundary conditions (ICs, BCs) are required.
Trixi.jl also handles non-conservative PDE terms as in the shallow
water equations or magnetohydrodynamics equations with diver-
gence cleaning, where source terms can depend on derivatives of u.

2.1 Main features of Trixi.jl

As of version v0.3.55 (August 2021), Trixi.jl concentrates mainly
on discontinuous Galerkin (DG) methods [22, 27]. In particular, it
has a focus on entropy-conservative and -dissipative methods [51,
29, 15, 39, 10]. Currently, Trixi.jl offers the following features:

—1D, 2D, and 3D simulations on line/quad/hex/simplex meshes
—~Cartesian and curvilinear meshes
—Conforming and non-conforming meshes
—Structured and unstructured meshes
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—Hierarchical quadtree/octree grid with adaptive refinement
—Forests of quadtrees/octrees with p4est [7] via P4est.jlI?

—High-order matrix-free discontinuous Galerkin methods
—Kinetic energy preserving and entropy-stable methods
—Entropy-stable sub-cell shock capturing
—Sub-cell positivity-preserving limiting

—Multiple governing equations
—Compressible Euler equations (optionally with self-gravity)
—Magnetohydrodynamics (MHD) equations
—Multicomponent compressible Euler and MHD equations
—Acoustic perturbation equations
—Hyperbolic diffusion for elliptic problems
—Lattice-Boltzmann equations (D2Q9 and D3Q27 schemes)
—Several scalar conservation laws (e.g., advection, Burgers)

—Integration with the Julia package ecosystem and external tools
—Time integration methods from OrdinaryDiffEq.jl
—Automatic differentiation with ForwardDiff.jl
—In-situ visualization with Plots.jl
—Postprocessing with ParaView/Visit via Trixi2Vtk jI*

Currently, Trixi.jl provides shared-memory parallelization via mul-
tithreading. Initial parallelization with MPI is available for some
mesh types, but full support for distributed-memory parallelism is
subject to ongoing work.

Some of the main features of Trixi.jl are demonstrated in the fol-
lowing figures. The detailed physical setups and numerical param-
eters as well as all code necessary to reproduce these figures are
available in the reproducibility repository for this article [47].
Figure 1 demonstrates sub-cell entropy-dissipative shock-capturing
methods with sub-cell positivity-preserving limiters and adaptive
mesh refinement applied to an astrophysical supersonic jet with
Mach number 2000 [32].
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Fig. 1: Numerical solutions of a supersonic jet with Mach number 2000
using sub-cell entropy-dissipative shock-capturing methods with sub-cell
positivity-preserving limiters and adaptive mesh refinement for the com-
pressible Euler equations.

Figure 2 demonstrates nonlinear stability obtained with entropy-
stable methods and adaptive mesh refinement applied to a classical
Kelvin-Helmholtz flow instability problem.

Figure 3 shows the approximation of acoustic perturbation equa-
tions [14] wave scattering on a curvilinear and unstructured do-
main. The 2D quadrilateral mesh used in the simulation (Figure 3d)
was generated with HOHQMesh.jI°.

Shttps://github.com/trixi-framework/Pdest.jl
‘https://github.com/trixi-framework/Trixi2Vtk.jl
Shttps://github.com/trixi-framework/HOHQMesh. j1
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(c) Density at time ¢t = 3. (d) Mesh at time t = 3.
Fig. 2: Numerical solutions of a Kelvin-Helmholtz instability using entropy-
stable methods and adaptive mesh refinement for the compressible Euler
equations.
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Fig. 3: Numerical solutions of pressure wave scattering for the acoustic per-
turbation equations at three points in time as well as the unstructured, curvi-
linear quadrilateral mesh.

2.2 High-level overview of the code structure

Trixi.jl is built from the method of lines. Thus, a discretization of
(1) is obtained in two steps. First, a spatial semidiscretization is
created. Next, the resulting ordinary differential equation (ODE)
is solved using a time integration method. Currently, Trixi.jl fo-
cuses on the spatial semidiscretization and uses mostly Runge-
Kutta methods implemented in OrdinaryDiffEq.jl, which is part of
DifferentialEquations.jl [37].
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Fig. 4: Schematic overview of the basic components in Trixi.jl and how they interact.

Figure 4 presents an overview of the basic components of Trixi.jl.
The most important structure is the semidiscretization, which
bundles all information about the spatial approximation. The
mathematical-physical model is determined by the equations,
the initial_condition, boundary_conditions, and possible
source_terms. The solver describes purely numerical param-
eters determining the specific discretization method such as dis-
continuous Galerkin or finite difference methods, kinetic energy
preserving or shock-capturing approaches. Finally, the mesh has a
necessarily hybrid role including information about the spatial do-
main and its discretization.

Once information about the time span [0, 77 is provided, a semidis-
cretization in Trixi.jl can be converted into an ODE problem, which
can be solved by methods from OrdinaryDiffEq.jl. The flexible
callback infrastructure of this ODE library allows us to provide ex-
tended functionality for Trixi.jl without modifying any main loop.
In particular, various tasks such as input/output operations, adaptive
mesh refinement (AMR), and positivity-preserving limiting are im-
plemented using callbacks. In case full control over the time step
loop is required, e.g., to experiment with new features that are not
easily realized with the existing API, Trixi.jl also implements its
own time integration schemes that mimic the interface of Ordinary-
DiffEq.jl and that can be used as drop-in replacements.

2.3 Review of the main design choices

The design of Trixi.jl was guided by extensibility, ease of use, and
efficiency (in this particular order). Thus, it is likely possible to
make some parts even faster at the cost of simplicity and readability.
Nevertheless, Trixi.jl is already quite fast, even compared to mature
high-performance open source software, as described in detail in
Section 3. In this section, we focus mostly on the first two goals.

2.3.1 Trixijl is a library. The most important design decision
was to create Trixi,jl as a library. In the context of simulation-
focused scientific computing, there are many (open or closed
source) codes that are designed as monolithic applications that can
simulate a specific setup. These codes can often be configured to
a limited extent by specifying compile time options or editing pa-
rameter files. In contrast, users of Trixi.jl do not need to compile
anything or learn parameter file syntax. Instead, they can just load

the package and write their simulation setups in Julia. Scripts that
describe a simulation setup for Trixi.jl are referred to as “elixirs”.
As of version v0.3.55 (August 2021), Trixi.jl comes with approxi-
mately 200 example elixirs. A basic elixir looks as follows:

# Load all required libraries
using Trixi, OrdinaryDiffEq, Plots

# Set up a 2D linear advection problem with

# advection velocity “a’

a (1.0, 1.0)

equations = LinearScalarAdvectionEquationQD(a)

# Choose
1@

an initial condition coming with Trixi.
initial_condition_convergence_test

jl

element
surface

# Set up a discontinuous Galerkin spectral

# method with given polynomial degree and

# flux implemented in Trixi.jl

solver DGSEM (polydeg=3,
surface_flux=flux_lax_friedrichs)

# Create a uniformly refined mesh with periodic
# boundary conditions in a square domain
coordinates_min (-1.0, -1.0) # lower left
coordinates_max (1.0, 1.0) # upper right

mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level=4,
n_cells_max=10"5, periodicity=true)
# Create semidiscretization with all spatial

# discretization-related
semi

components
SemidiscretizationHyperbolic (
mesh, equations, ic, solver)

# Create an ODE problem from the semidiscretization
# with time span from 0.0 to 1.0

ode semidiscretize (semi, (0.0,

1.0))

# Evolve the ODE problem in time using “solve ™ from
# OrdinaryDiffEq with adaptive time stepping
sol solve (ode, RDPK3SpFSAL49(), abstol=1.0e-6,

reltol=1.0e-6, save_everystep=false)

# Plot the numerical solution at the final time

plot (sol)
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2.3.2  Functions are pure Julia functions. Since functions are
first-class citizens in Julia, they can be passed around and used ef-
ficiently. Thus, everything that acts like a function can be used in
Trixi.jl, e.g., to define initial/boundary conditions. While the flexi-
bility to change initial/boundary conditions is quite common, two-
point numerical fluxes are also just functions with a specified signa-
ture. Thus, users can implement numerical fluxes in their own code
and they will work and be as efficient as if they were implemented
directly in Trixi.jl.

2.3.3 Ingredients use common interfaces and can be exchanged.
Abstractions such as (variants of) the solver, the mesh, and the
equations use a common interface. Utilizing multiple dispatch
in Julia, internal implementations are specialized accordingly. For
example, changing the volume terms of the DG discretization from
the standard weak form to entropy-stable and/or shock-capturing
methods can be achieved by passing one additional parameter to
the DGSEM constructor in the example above. Moreover, there is no
hidden global state. This means that multiple instances of similar
structures can be instantiated simultaneously. In particular, multiple
semidiscretizations (in possibly different spatial dimensions) can
be created and used in the same code.

2.3.4  New physics can be specified with minimal effort. Instead
of providing only the very basic discretization ingredients, as with
other open source libraries for PDEs, Trixi.jl also includes some
widely used physical systems as well as analysis routines, such as
computation of the integrated kinetic energy for the compressible
Euler equations, to make it easy to use out of the box. Nevertheless,
users are not restricted to the physics models bundled in Trixi.jl.
To set up a new type of equations, it is only necessary to create
an appropriate struct containing all parameters and to implement
pointwise operations such as the calculation of the fluxes f7 in (1)
or two-point numerical fluxes. Due to the Julia language design
with just-ahead-of-time compilation, these fluxes can be inlined
into the library functions of Trixi.jl. Thus, the physics is completely
separated from the solver but remains computationally efficient.
In particular, this allows a user to reuse the same numerical fluxes
for discontinuous Galerkin methods, finite difference methods, and
variants of finite volume methods. Due to favoring simplicity over
excessively generic code, it remains comparatively straightforward
to modify existing Trixi.jl implementations if a new feature requires
modifications to methods.

2.3.5 There is no spooky action at a distance. In monolithic code
bases, it is often necessary to implement a new feature for all com-
binations of possible (compile time) options. This effort can make it
difficult to experiment with new ideas. In contrast, Julia’s dynamic
nature, multiple dispatch, and just-ahead-of-time compilation allow
us to implement only those features that are strictly necessary. For
example, if a user wants to simulate a new physics model only on
Cartesian grids with smooth solutions, there is no need to imple-
ment anything for curvilinear coordinates or shock-capturing ap-
proaches. In addition, it allows a user to extend Trixi.jl step-by-step
with new capabilities. For example, there are ongoing efforts to in-
corporate summation-by-parts finite difference methods via Sum-
mationByPartsOperators.jl [43] and discontinuous Galerkin meth-
ods on simplex elements via StartUpDG.jl® in Trixi.jl. This is feasi-
ble because the modular design of Trixi.jl gives users the flexibility
to pick a subset of the available meshes/methods, selected via mul-
tiple dispatch, to test their newly implemented features.

Shttps://github.com/jlchan/StartUpDG. j1
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3. Performance comparison with Fortran

FLUXOY is an open source Fortran code implementing discontinu-
ous Galerkin methods on unstructured hexahedral meshes in 3D for
advection-diffusion equations. It provides the same kind of modern,
flux differencing DG methods to achieve entropy conservation/dis-
sipation or kinetic energy preservation that are used in Trixi.jl. At
the same time, both codes have capabilities the other does not,
e.g., support for parabolic equations and multi-node parallelism in
FLUXO, or multiple mesh types and more physics setups in Trixi.jl.
Nevertheless, both Trixi.jl and FLUXO share a common set of fea-
tures, i.e., high-order DG methods on 3D curvilinear meshes, which
allows a reasonable comparison of their performance.

3.1 Description of the setup

Here, we compare the serial performance of Trixi.jl and FLUXO
when solving a hyperbolic PDE in three space dimensions on curvi-
linear hexahedral meshes.

For the problem setup we consider a periodic box of the domain
[—1,1]® with four elements in each spatial direction. This results
in 64(polydeg + 1)3 degrees of freedom (DG nodes) per equation
when polynomials of degree polydeg are used. To make the mesh
curvilinear, the interior of the box is heavily warped by a mapping
adapted from [9]. Specifically, we map Cartesian reference coordi-
nates (£,7,¢) € [—1,1]? to physical coordinates (x,y, z) via the
transformation

y =1+ 0.15(cos(1.57¢) cos(0.5mn) cos(0.57¢)),
x = £+ 0.15(cos(0.5m¢) cos(2my) cos(0.57¢)), 2)
z = ( +0.15(cos(0.5mz) cos(my) cos(0.57()).

To integrate up to the final time 7' = 1.0, both codes use the
five-stage, fourth-order low-storage explicit Runge-Kutta method
of Carpenter and Kennedy [26]. A stable explicit time step is
adaptively computed according to the local maximum wave speed,
the relative grid size, and an adjustable Courant-Friedrichs-Lewy
(CFL) coefficient CFL € (0, 1] [19]. For the performance compu-
tations presented herein we fix this coefficient to be CFL = 0.5.
We compare the performance of FLUXO and Trixi.jl for two
smooth nonlinear problems, a manufactured solution for the 3D
compressible Euler equations and Alfvén wave propagation for the
3D ideal magnetohydrodynamics (MHD) equations [18, 1]. These
initial conditions, available in FLUXO and Trixi.jl, are typically
used to demonstrate the high-order accuracy and convergence prop-
erties of the frameworks. The curved mesh and the initial density
for the compressible Euler problem are visualized in Figure 5.

For these comparisons we examine the performance of FLUXO and
Trixi.jl for the weak form as well as flux differencing implementa-
tions of the DG solver. For the weak form simulations we compute
the coupling between elements with a Harten-Lax-van Leer (HLL)
numerical surface flux function [52, 31]. For the flux differencing
solver, which introduces an additional numerical volume flux func-
tion, we use an entropy-conservative flux function in both the vol-
ume and at the surface. For the compressible Euler equations this
flux is also kinetic energy preserving [41, 40] while for the ideal
MHD equations it is kinetic and magnetic energy preserving [23].
We note that both ideal MHD implementations require additional
computational effort due to non-conservative terms necessary for
the numerical approximation to remain entropy consistent [6]. Ad-
ditionally, the weak form DG solver type is recovered if one uses a

"https://gitlab.com/project-fluxo/fluxo
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Fig. 5: Initial density of the compressible Euler problem on a slice of the
periodic, curved mesh used for the performance benchmarks.

central flux in the volume of the flux differencing DG solver, albeit
with additional computational cost [20].

All simulations for the performance comparison were run on the
HPC system Tetralith provided by the Swedish National Infrastruc-
ture for Computing (SNIC). Each node of Tetralith has two sockets,
each with an Intel(R) Xeon(R) Gold 6130 @ 2.10GHz with 96GiB
of memory. FLUXO was compiled using the Intel compiler suite
v18.0.3 and Trixi.jl used Julia v1.6.1. The serial performance re-
sults were obtained on a single core. We ran each configuration of
a particular physical setup, polynomial degree, and solver type for
each code five times, taking the smallest value from each for the
comparison results. We ran the same PID tests in FLUXO com-
piled with GCC v6.4.0 but found that the version compiled using
Intel was between 5 % to 23 % faster. Thus, only results from the
Intel compiler are included.

To assess the performance of the two codes, we vary the polyno-
mial degree (polydeg) from 3 to 15. This corresponds to consider-
ing DG approximations of increasing spatial accuracy, from fourth
up to sixteenth order. The metric we use to analyze and compare
FLUXO and Trixi.jl simulations is a performance index (PID) that
measures the time required to advance a single degree of freedom
(DOF) from one stage of the explicit Runge-Kutta time integration
scheme to the next. It is computed as

. wall-clock time
"~ #time steps - 5 - #elements - (polydeg + 1)3’

PID 3)

where 5 is the number of Runge-Kutta stages per time step for the
selected time-stepping method. In other words, the PID measures
the run time required for the right hand side (RHS) evaluation of
each DOF.

The code and detailed information necessary to reproduce these nu-
merical experiments are available in the accompanying repository
[47].

3.2 Results of the performance comparison

The results of these performance measurements are visualized for
the 3D compressible Euler equations in Figure 6 and for the 3D
ideal MHD equations in Figure 7. We present the absolute PID tim-
ings for both codes in the top portion of these two figures and a rel-
ative comparison using FLUXO as reference in the bottom portion;
smaller values thus are always better.
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Fig. 6: Run time per right-hand side evaluation and degree of freedom
for different DG discretizations of the 3D compressible Euler equations in
FLUXO (Fortran) and Trixi.jl (Julia).

From these results, it is clear that Trixi.jl is more than 2x faster
for the compressible Euler equations and more than 1.5x faster for
the ideal MHD equations than the Fortran code FLUXO. It is also
possible to see the additional computational effort for the entropy-
conservative flux differencing DG methods for both physical sys-
tems. This is because the numerical fluxes are more expensive in
terms of computational cost, and require special care to optimize
their performance [42, 46]. We reiterate that both codes implement
the same numerical nodal DG methods on curvilinear meshes used
in these tests. This demonstrates the suitability of Julia for this kind
of simulation-focused scientific computing.

While our Julia code is faster than the mature HPC Fortran code
FLUXO for this non-trivial example, we do not claim that Julia is
generally faster than Fortran, C, or C++. Instead, we would like
to emphasize that well-written Julia code can be ar least as fast
as code written in these traditional scientific computing languages,
as demonstrated also by several microbenchmarks [5]. Further, we
expect to be able to achieve similar performance with either lan-
guage by spending enough time and effort to optimize the respec-
tive codes. Trixi.jl owes its performance optimizations in part to
the code introspection and profiling tools available in Julia. Similar
tools used to optimize the performance in other languages are often
not as easy to use as their Julia counterparts. Therefore, we de-
veloped some additional performance improvements in Trixi.jl and
ported them to FLUXO later [46]. Moreover, Trixi.jl uses slightly
different implementations of computationally intensive kernels and
stores marginally less information in memory, recomputing some
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Fig. 7: Run time per right-hand side evaluation and degree of freedom for
the flux differencing DG discretization of the 3D ideal MHD equations.
Two configurations are compared using either the central volume flux (al-
gebraically equivalent to the weak form DG solver) and the entropy conser-
vative (EC) volume flux.

terms instead. Additionally, the manufactured solution of the com-
pressible Euler equations uses source terms containing sine and co-
sine terms, which are computed together by sincos in Trixi.jl but
require individual calls to sin and cos in FLUXO.

Finally, the different mesh types available in Trixi.jl allow further
optimizations. For example, if the computational domain is essen-
tially a cube (or square, line) without need for curvilinear coordi-
nates, the Cartesian TreeMesh can be used. Depending on the par-
ticular choice of discretization methods, the Cartesian TreeMesh
can be 10 % to 25 % more efficient than the curvilinear meshes in
Trixi.jl.

4. Assessment of Julia for simulation-focused scientific
computing

Julia was designed from scratch to be suitable for numerical com-
puting [5]. Its usefulness has been demonstrated, e.g., for GPU
programming [4, 34], optimization [13], data science including
big data®, machine learning [25], and scientific machine learning
(SciML) [35]. There are also mature libraries for ODE problems
[37], small scale spectral approximations [33], and classical finite

8Celeste project: https://github.com/jeff-regier/Celeste.jl,
see https://juliacomputing.com/case-studies/celeste (ac-
cessed 2021-08-11)
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element methods [2]. In addition, there are some packages dedi-
cated to solving specific time-dependent PDEs such as [38, 11].
However, there does not seem to be a general framework for high-
order methods for hyperbolic PDEs in Julia. Thus, Trixi.jl is an
ideal candidate for a case study of Julia for simulation-focused sci-
entific computing, an area where codes written in classical pro-
gramming languages such as C and Fortran are still dominant
[28, 36].

4.1 What works well

4.1.1 Julia is fast. As demonstrated in Section 3, Julia is not
generically slower than traditional high-performance programming
languages like C, C++, and Fortran. A minor exception in the con-
text of scientific computing relying on floating point operations is
that Julia does not perform automatic fused multiply-add (FMA)
contraction, which can be remedied by explicitly using the muladd’
function or the more convenient @muladd'® macro (for more details
see the appendix).

4.1.2  Julia encourages good software development practices.
Many scientists implementing numerical methods have no formal
training in software development. Julia and its ecosystem support
these researchers by making it easy to set up unit and regression
tests, since a testing framework is included in the standard library.
This facilitates test-driven development and continuous integration
(CI), which makes code restructuring and optimization straightfor-
ward.

Julia itself and most packages are developed on GitHub. The Julia
community provides several tools to run corresponding CI setups,
prepare and publish documentation'', and other related tasks. This
setup also encourages other good software development practices
that we use in Trixi.jl, such as mandatory code reviews.

In addition, the Julia package manager Pkg fosters a unified form
of semantic versioning across the Julia ecosystem, which lays the
basis for the following three observations.

4.1.3 It is easy to set up reproducible numerical experiments.
The package manager Pkg makes it easy to reproduce the exact run-
time environment, including binary dependencies, used to generate
numerical results. We have used this feature for all of our papers
based on Trixi.jl [49, 45], including the present manuscript [47].
This facilitates code sharing and reproducible research in computa-
tional science, which is arguably important but not yet mainstream
[3, 12, 30].

4.1.4 External libraries can be integrated with relative ease. To
incorporate some of the adaptive mesh capabilities into Trixi.jl we
have created a Julia wrapper'? for the C library p4est [7]. In our
experience, it is relatively easy to do so in Julia, and the package
manager in combination with BinaryBuilder.jl makes it convenient
to distribute the necessary binaries. In particular, users do not have
to compile libraries on their own system and the binaries are avail-
able on all major platforms including Linux, macOS, and Windows.
Similarly, there is no need to compile HDF5 on a user system due
to the availability of HDF5.j1'3. There is still work to be done on
how to improve the experience in combination with MPI on HPC
clusters, but some promising approaches exist (see Section 4.2.2).

9https://docs. julialang.org/en/v1/base/math/#Base.muladd

Onttps://github.com/SciML/MuladdMacro. j1
HUhttps://github.com/JuliaDocs/Documenter. j1
Znttps://github.com/trixi-framework/Pdest.jl
Bhttps://github.com/Julial0/HDF5. j1
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It is also possible to wrap Fortran libraries/tools in Julia. For ex-
ample, we have created the wrappers KROME.jl'* for KROME, a
package to embed chemistry in astrophysical simulations [21], and
HOHQMesh.jl"> for HOHQMesh'®, a high order hex-quad mesh
generator written in Fortran.

4.1.5 Packages can be used together at low (or no) cost. Due to
Julia’s package manager, the cost of using external dependencies
is low enough to not become an issue. Traditionally, many scien-
tific simulation codes tend to reduce the number of external de-
pendencies as much as possible due to the complexity of handling
different versions and making everything work together. Such an
approach often leads to significant code duplication. For example,
many CFD codes implement their own time integration methods,
arguing that the spatial part is much more complex. While this is of-
ten true, it is still more efficient in terms of developer time to reuse
existing implementations. This allows experts on time integration
methods to develop specialized algorithms and implement them in
open source software, while practitioners or researchers focusing
on spatial semidiscretizations can benefit with near-zero effort. In
our case, optimized time integration methods were developed in
[44] and implemented in OrdinaryDiffEq.jl. These methods can be
used with Trixi.jl by changing a single line of code. In contrast,
researchers working without external dependencies would need ex-
tra time to digest a new method’s details before even beginning an
implementation. This additional overhead makes it less likely that
researchers would use these novel schemes in their own codes and
benefit from recent algorithmic developments.

An additional example is given by automatic differentiation. Due to
multiple dispatch, it is possible to conveniently use forward mode
automatic differentiation [48] to compute Jacobians of semidis-
cretizations of nonlinear conservation laws with Trixi.jl or to dif-
ferentiate through a complete simulation, including time integra-
tion methods from OrdinaryDiffEq.jl.

4.1.6  Julia solves the two-language problem. Many libraries for
simulation-focused scientific computing are written in languages
such as C, C++, or Fortran to get decent performance. On top of
these low-level details, high-level wrappers are often provided to
make it easier for users to apply the algorithms for their problems.
In contrast, Trixi.jl is written completely in Julia.

Such a difference between the programming languages used in the
front end and back end leads to a well-known barrier between a user
and the developers of a library. Julia was designed from the begin-
ning to make it possible to write both simple high-level code and
highly efficient compute kernels, thereby solving the two-language
problem — at least to a significant extent. Highly efficient low-
level code will still look different from simple high-level code, but
the barrier between them is much smaller. In particular, this makes
it easier for users to transition to developers and contribute to a
package. This also contributes to the following observation:

4.1.7 The code base is simple enough to be useful for new users.
Due to the package manager, Trixi.jl and all related ODE and vi-
sualization tools can be installed with a single command, reducing
the overhead of exploring the code. In addition, Julia’s expressive-
ness and the ability to work with a restricted subset of all possible
features have enabled already more than 18 students to use Trixi.jl
for their coursework or theses. In our experience, the effort to get
started with traditional monolithic code bases is often so large that

Mhttps://github.com/trixi- framework/KROME. j1
Phttps://github.com/trixi-framework/HOHQMesh. j1
6https://github.com/trixi- framework/HOHQMesh
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due to time restrictions students either choose to build their own
implementations specialized on their tasks or only work on projects
with a limited scope.

Another anecdotal example for the ease of use is the preprint [50].
While the authors utilized Trixi.jl for some numerical experiments,
they did so independently of the development team (who learned
that the authors were using Trixi.jl only after reading the preprint).

4.1.8 Existing features can be extended and combined easily.
Due to Julia’s high-level programming approach, dynamic typing,
and multiple dispatch, it is easy to combine existing functional-
ity efficiently. For example, the single-physics solvers for hyper-
bolic PDEs of Trixi.jl were extended to a multi-physics setup for
the compressible Euler equations with self-gravity with roughly
350 lines of code [49]. In addition, Trixi.jl can be extended from
the outside without modifying the main source code, which makes
it easy to set up new simulation approaches and analyze existing
ones, e.g., by fluctuation simulations [45].

4.1.9  Julia is free. Julia itself is released under the MIT license
and ships some GPL-licensed third-party software (that can option-
ally be disabled for commercial purposes). Many packages in the
Julia ecosystem follow this approach and are freely available un-
der the permissive MIT license, including Trixi.jl. This allows pro-
grammers to use Julia without needing to pay for commercial soft-
ware. In particular, students can work with the software on their
private computers without restrictions.

4.2 What is still difficult or unknown

4.2.1 Compilation times can be annoying. Since Julia uses a se-
rial just-ahead-of-time compiler that currently does not cache code
between different Julia sessions, the initial compilation time can
be annoying. For example, the time to finish a first Trixi.jl simu-
lation in a fresh Julia session and plot the results on a notebook
can take between 30 seconds and a minute. Having compiled the
code, the second simulation and plot take less than 0.05 seconds.
Thus, switching to Julia requires adapting the workflow compared
to other languages such as keeping a REPL session active for a
longer time and using packages such as Revise.jl'’. This is par-
ticularly problematic in HPC environments. There are tools such
as PackageCompiler.jl'® that can help with these tasks but a good
workflow usable for development and deployment still has to be
found.

4.2.2  Simulations with distributed-memory parallelism. While
Julia offers its own approach to distributed computing via the
Distributed package in the standard library, its performance and
scalability are currently limited [8]. As an alternative, the package
MPL,jl utilizes the Message Passing Interface (MPI) for data ex-
change [8]. It provides an API similar to MPI’s C interface and al-
lows one to either wrap MPI binaries installed through Julia’s pack-
age manager or to make use of an existing MPI installation. Most
Julia projects focusing on distributed-memory simulations seem to
be using MPLjl, such as ClimateMachine.jl'® or ImplicitGlobal-
Grid.jI?. In general, the performance of MPI programs written in
Julia is comparable to C programs [24], and parallel simulations
with Julia have been shown to scale to more than 5,000 GPUs with
MPLjl [34].

Thttps://github.com/timholy/Revise.jl
8https://github.com/Julialang/PackageCompiler. j1
https://github.com/CliMA/ClimateMachine. j1
20nttps://github.com/eth-cscs/ImplicitGlobalGrid. j1
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However, some practical challenges associated with running MPI-
based parallel simulations with Julia remain. For starters, the issue
of compilation times, described in the previous section, is exacer-
bated as MPI runs are by default not interactive and compilation
results cannot be cached between MPI sessions. As such, this re-
quires code to recompile for each subsequent execution of an MPI-
parallel Julia program, which is particularly annoying during de-
velopment. Partial relief can be obtained by using tmpi?' that al-
lows the user to simultaneously interact with multiple interactive
Julia REPL sessions via the terminal multiplexer tmux. However,
this approach does not scale beyond a few MPI ranks and is only
available on Unix-like operating systems. The use of PackageCom-
piler.jl to reduce compilation times as much as possible thus be-
comes mandatory. Another issue encountered when running Julia
with many parallel processes is that Julia operates with many small
files during startup and precompilation, putting heavy pressure on
the parallel file system. This can be partially alleviated by doing
precompilation in serial. There are also tools like Spindle? that
help solve similar problems that occur when running Python pro-
grams in parallel [16]. Finally, the ease of using external libraries as
described in Section 4.1.4 is somewhat lost when working with de-
pendencies that themselves are parallelized with MPI. In this case
it is necessary to manually specify the paths to locally compiled
libraries that have been built against the respective system MPI in-
stallation, since there is generally no binary compatibility between
different MPI implementations. There are ongoing efforts in the
Julia HPC community to work around this limitation by using the
WI4MPI* wrapper package or the Spack package manager [17, 8].
Even though the aforementioned difficulties do not prevent mas-
sively parallel simulations with Julia, they raise the entry barrier
for new users and developers. The overarching issue, however, is
that at the time of writing, there is little precedence in terms of
openly available tutorials, citable publications, or highly scalable
example applications that can be used to learn about best practices
for MPI-based parallelism in Julia. Thus, while in general it is jus-
tified to be cautiously optimistic that most issues can be overcome,
it is too early to make a final assessment of the suitability of Julia
for highly parallel simulations.

5. Summary and conclusions

We have presented Trixi.jl, a Julia package for adaptive high-order
numerical simulations of hyperbolic PDEs. As researchers in nu-
merical analysis and scientific computing, our goals were to create
a framework that is extensible, easy to use, and fast (in this particu-
lar order). Making use of Julia’s strengths, we have been successful
based on recent publications making use of Trixi.jl, the number
of students and researchers working with Trixi.jl, and serial perfor-
mance comparisons with a mature Fortran code. Having developed,
from scratch, Trixi.jl for a bit more than one year allows us to give
an assessment of Julia for simulation-focused scientific computing.
Based on our experience, we consider Julia to be suitable for
simulation-focused scientific computing, in particular for hyper-
bolic PDEs, computational fluid dynamics, and related problems
— at least on the scale of shared memory parallelism. The scalabil-
ity of high-order methods for hyperbolic PDEs written in Julia to
high-performance computing applications still needs to be demon-
strated. Yet, we do not consider this an unsolvable problem, since

2Ihttps://github.com/Azrael3000/tmpi
22https://github.com/hpc/Spindle
23https://github.com/cea-hpc/widmpi
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Julia is not generically slower than traditional compiled HPC pro-
gramming languages. Nevertheless, it appears to be more compli-
cated to scale Julia to distributed systems without losing some of
the simplicity and flexibility it offers for serial or shared-memory
parallel computations.

Learning a new programming language naturally requires some
time and effort. In our experience, however, it has paid off and we
do not want to miss the many useful features of Trixi.jl enabled by
Julia and its ecosystem. While there is no need to switch to Julia
if people are satisfied with their existing tools, we encourage re-
searchers to try out Julia for scientific computing and to stay for
a while. The Julia community (on the Julia Discourse forum?* or
Slack/Zulip workspaces) is usually welcoming and helpful, both
for new and experienced users.
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APPENDIX

Julia does not perform automatic fused multiply-add (FMA) con-
traction, i.e., replacing a multiplication followed by an addition
with a single FMA instruction, as it is inconsistent with its strict
floating point semantics. In other compilers, this optimization can
be controlled by a global compiler option (-ffp-contract in
GCC and Clang) and is often enabled at reasonable optimization
levels such as -02 for GCC and Intel compilers®. In Julia, FMA
contraction is controlled more locally: the muladd intrinsic func-
tion allows the compiler to evaluate a multiply-add using the most
efficient method. Relying on Julia’s code manipulation techniques,
the @muladd macro makes it convenient to use the muladd function
by syntactically rewriting expressions to insert muladd in appropri-
ate locations.

25 An interesting coincidence is that not only Julia but most LLVM-based
frontends tend not to enable FMA contraction by default.
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