
Efficient computation of Jacobian matrices for entropy stable

summation-by-parts schemes

Jesse Chan, Christina G. Taylor

aDepartment of Computational and Applied Mathematics, Rice University, 6100 Main St, Houston, TX, 77005

Abstract

Entropy stable schemes replicate an entropy inequality at the semi-discrete level. These schemes rely on
an algebraic summation-by-parts (SBP) structure and a technique referred to as flux differencing. We
provide simple and efficient formulas for Jacobian matrices for the semi-discrete systems of ODEs produced
by entropy stable discretizations. These formulas are derived based on the structure of flux differencing
and derivatives of flux functions, which can be computed using automatic differentiation (AD). Numerical
results demonstrate the efficiency and utility of these Jacobian formulas, which are then used in the context
of two-derivative explicit time-stepping schemes and implicit time-stepping.

1. Introduction

This paper is concerned with the numerical discretization of systems of nonlinear conservation laws. In
particular, we focus on the computation of Jacobian matrices for nonlinear residuals associated with entropy
conservative and entropy stable semi-discretizations. Such matrices are useful in the context of implicit
time-stepping schemes [1], as well as adjoint-based sensitivity computations and optimization [2, 3].

Entropy stable discretizations mimic a continuous dissipation of entropy for nonlinear conservation laws.
Let Ω denote some domain with boundary ∂Ω. Nonlinear conservation laws are expressed as a system of
nonlinear partial differential equations (PDEs)

∂u

∂t
+

d∑

i=1

∂fi(u)

∂xi
= 0, S(u) convex, v(u) =

∂S

∂u
, (1)

where u ∈ R
n are the conservative variables, fi are nonlinear fluxes, and v(u) are the entropy variables with

respect to the entropy S(u). By multiplying (1) by the entropy variables, vanishing viscosity solutions [4] of
many fluid systems [5, 6] can be shown to satisfy the following entropy inequality

∫

Ω

∂S(u)

∂t
+

d∑

i=1

∫

∂Ω

(
vTfi(u)− ψi(u)

)
ni ≤ 0, (2)

where ni denotes the ith component of the outward normal vector and ψi(u) denotes the entropy potential
in the ith coordinate. The entropy inequality (2) is a statement of stability for nonlinear conservation laws
[7, 8].

High order entropy stable schemes (see for example [9, 10, 6, 11, 12, 13, 14]) reproduce this entropy
inequality at the semi-discrete level. The resulting methods display significantly improved robustness while
retaining high order accuracy [15, 16]. These schemes are based on entropy conservative finite volume fluxes
[17], which are extended to high order discretizations through a procedure referred to as flux differencing.

Email address: jesse.chan@rice.edu,cgt@rice.edu (Jesse Chan, Christina G. Taylor)

Preprint submitted to Elsevier December 31, 2020

These methods have mainly been tested in the context of explicit time-stepping. However, recent works have
applied entropy stable methods to both the space-time and implicit settings [18, 19].

Both space-time and implicit time discretizations require the solution of a system of nonlinear equations.
This can be done using Newton’s method, which involves the Jacobian matrix of the nonlinear equations.
While it is possible to compute the solution to the nonlinear system without explicitly computing the
Jacobian matrix using Jacobian-free Newton-Krylov methods [20, 21], the Jacobian matrix is commonly
used to construct preconditioners [1].

In this work, we present efficient formulas for Jacobian matrices of systems resulting from entropy stable
formulations. We also show that computing the Jacobian matrix is not significantly more expensive than
evaluating the residual of the nonlinear system. Finally, we apply the new Jacobian formulas to both explicit
two-derivative and implicit time-stepping schemes.

1.1. On notation

The notation in this paper is motivated by notation in [11, 22]. Unless otherwise specified, vector and
matrices are denoted using lower and upper case bold font, respectively. We denote spatially quantities
related to the spatial discretization (e.g., operators for differentiation, interpolation, or quadrature) using
a bold sans serif font. Finally, continuous functions with vector arguments are interpreted as applying the
continuous function to each entry of the vector.

For example, if x denotes a vector of point locations, i.e., (x)i = xi, then u(x) is interpreted as the vector

(u(x))i = u(xi).

Similarly, if u = u(x), then f(u) corresponds to the vector

(f(u))i = f(u(xi)).

Vector-valued functions are treated similarly. For example, given a vector-valued function f : Rn → R
n and

a vector u with vector-valued entries ui = ui ∈ R
n, (f(u))i = f(ui).

2. Jacobian matrix formulas for entropy conservative schemes

For clarity of presentation, we consider first a scalar nonlinear conservation law in one spatial dimension

∂u

∂t
+
∂f(u)

∂x
= 0. (3)

We assume periodic boundary conditions, which will simplify the presentation of the main results. Non-
periodic boundaries are treated in Section 3.2.1. The generalization to systems of nonlinear conservation
laws is postponed until Section 4.

Let fS(x, y) denote a bivariate scalar flux function which is symmetric and consistent. Suppose u is a

vector of nodal values of the solution. Define the vector r = r(u) approximating the flux derivative ∂f(u)
∂x as

r(u) = 2 (Q ◦ F)1, Fij = fS(ui,uj), (4)

where Q is a discretization matrix to be specified later and ◦ denotes the matrix Hadamard product. The
simplest entropy stable numerical schemes based on flux differencing discretize (3) via the system of ODEs

M
du

dt
+ r(u) = 0.

where M is a diagonal mass (norm) matrix with positive entries. If fS(x, y) is entropy conservative (in the
sense of [17]) and Q is skew-symmetric, then the resulting scheme is also discretely entropy conservative. An
entropy stable scheme can be constructed from an entropy conservative scheme by adding appropriate terms
which dissipate entropy [6, 23, 19].

We are interested in computing the Jacobian matrix ∂r
∂u . Let diag (x) denote the diagonal matrix with

the vector x on the diagonal and let diag (A) denote the vector diagonal of A. We then have the following
theorem:

2

Theorem 2.1. Suppose that Q = ±QT . Then, the Jacobian matrix of the entropy conservative scheme (4)
can be expressed as either

∂r

∂u
= 2 (Q ◦ Fy)± diag

(
1T (2Q ◦ Fy)

)

∂r

∂u
= 2

(
Q ◦ FT

x

)
± diag ((2Q ◦ Fx) 1)

where the matrices Fx,Fy are

(Fx)ij =
∂fS
∂x

∣∣∣∣
ui,uj

, (Fy)ij =
∂fS
∂y

∣∣∣∣
ui,uj

.

Proof. We will prove the first formula involving Fy. The second formula follows via symmetry and similar
steps. By the chain rule,

(
∂r

∂u

)

ij

=
∂ri
∂uj

=
∑

k

2Qik
∂

∂uj
fS (ui,uk) =

∑

k

2Qik

(
∂fS
∂x

∣∣∣∣
ui,uk

∂ui
∂uj

+
∂fS
∂y

∣∣∣∣
ui,uk

∂uk
∂uj

)

If i 6= j, then ∂ui
∂uj

= δij = 0. Moreover, most terms in the sum over k vanish except for k = j. Since ∂uk
∂uj

= 1

for k = j, the formula reduces to

∂ri
∂uj

= 2Qij
∂fS
∂y

∣∣∣∣
ui,uj

.

When i = j, ∂ui
∂uj

= ∂ui
∂ui

= 1, and

∂ri
∂ui

=

(
∑

k

2Qik
∂fS
∂x

∣∣∣∣
ui,uk

)
+ 2Qii

∂fS
∂y

∣∣∣∣
ui,ui

.

The term 2Qii
∂fS
∂y

∣∣∣
ui,ui

is the diagonal of the matrix 2 (Q ◦ Fy), and we can simplify the first summation

term. By the symmetry of fS(x, y), we have that

∂fS
∂y

∣∣∣∣
x,y

=
∂fS
∂x

∣∣∣∣
y,x

Thus, by Q = ±QT ,

∑

k

2Qik
∂fS
∂x

∣∣∣∣
ui,uk

=
∑

k

2Qik
∂fS
∂y

∣∣∣∣
uk,ui

=
((

2Q ◦ FT
y

)
1
)
i
=
(
±1T (2Q ◦ Fy)

)
i
.

While we consider only symmetric and skew-symmetric matrices Q in this work, one can use this theorem
to compute the Jacobian ∂r

∂u for arbitrary matrices Q since any real matrix can be decomposed into symmetric
and skew parts

Q =
1

2

(
Q+QT

)
+

1

2

(
Q−QT

)
.

Two applications of Theorem 2.1 then provide a formula for the Jacobian of (4).

3

2.1. Computing derivatives of bivariate flux functions

The aforementioned proofs require partial derivatives of flux functions fS(uL, uR) with respect to at least
one argument. This can be done by hand for simple fluxes. For example, for the Burgers’ equation, the flux
and its derivative are

fS(uL, uR) =
1

6

(
u2L + uLuR + u2R

)
,

∂fS
∂uR

=
1

6
(uL + 2uR) .

However, this procedure can become cumbersome for complex or piecewise-defined flux functions such as
the logarithmic mean [24, 25]. This can be avoided by using Automatic Differentiation (AD) [26]. AD is
distinct from both symbolic differentiation and finite difference approximations in that it does not return
an explicit expression, but constructs a separate function which evaluates the derivative accurately up to
machine precision.

In this work, we utilize the Julia implementation of forward-mode automatic differentiation provided by
ForwardDiff.jl [27]. The procedure is remarkably simple: given some flux function f(x,y), ForwardDiff.jl
returns the derivative with respect to either x or y as another function. For example, defining the function
∂f
∂y

∣∣∣
x,y

is a one-line operation:

dfdy(x,y) = ForwardDiff.derivative(y->f(x,y),y)

ForwardDiff.jacobian is the analogous routine for computing Jacobians of vector-valued flux functions.
This simple API utilizes the flexible Julia type system [28].1

Automatic differentiation can be directly applied to r(u) to compute the Jacobian matrix. However,
because AD scales with the number of inputs and outputs, the cost of applying AD directly to r(u) increases
as the discretization resolution increases. In contrast, using the approach in this paper, AD is applied only
to the flux function, which has a small fixed number of inputs and outputs which are independent of the
discretization resolution. As a result, the cost of evaluating derivatives of the flux function is roughly the
same as the cost of evaluating the flux function itself and entries of the Jacobian matrix can be computed
for roughly the same cost as a single evaluation of the nonlinear term r(u). Moreover, when computing the
Jacobian matrix, the formula in Theorem 2.1 makes it simpler to directly take advantage of sparsity in Q

without having to perform graph coloring [29].

3. Examples of discretization matrices which appear in entropy conservative numerical schemes

In this section, we give some examples of matrices Q which appear in entropy stable numerical discretiza-
tions. We assume periodicity, which corresponds to a skew-symmetric structure for Q. Non-periodic domains
are treated later.

3.1. Finite volume methods

The spatial discretization for most second order finite volume schemes can be reformulated in terms of
(4) [30]. Suppose that the 1D interval [−1, 1] is decomposed into K non-overlapping elements of size h. An
entropy conservative finite volume scheme is given as

du1
dt

+
fS(u2,u1)− fS(u1,uK)

h
= 0

dui
dt

+
fS(ui+1,ui)− fS(ui,ui−1)

h
= 0, i = 2, . . . ,K − 1,

duK
dt

+
fS(u1,uK)− fS(uK ,uK−1)

h
= 0,

1In practice, derivative and Jacobian functions are initialized with information about the size and data type of the input to
ensure type stability in Julia.

4

where ui denotes the average value of the solution on each element and fS is an entropy conservative flux.
Let M = hI and let Q be the periodic second-order central difference matrix

Q =
1

2




0 1 . . . −1
−1 0 1

−1 0 1
. . .

1 . . . −1 0



.

An entropy conservative finite volume scheme is then equivalent to

du

dt
+ 2 (Q ◦ F) 1 = 0, Fij = fS(ui, uj)

where u = [u1, . . . ,uK]
T
is the vector of solution values.

3.2. Multi-block summation-by-parts finite differences and discontinuous Galerkin spectral element methods

We consider next a multi-element summation-by-parts (SBP) finite element discretization [31, 32]. Sup-
pose again that a one-dimensional domain Ω is decomposed into K non-overlapping elements Dk of size h.
Let M and Q ∈ R

Np×Np denote diagonal mass (norm) and nodal differentiation matrices such that M−1Q

approximates the first derivative on a reference interval and is exact for polynomials up to degree N . The
operators M,Q satisfy an SBP property if

Q+QT = B, B =




−1
0

. . .

1


 . (5)

We note that nodal discontinuous Galerkin spectral element (DG-SEM) discretizations [33] also fall into a
SBP framework [34] and are thus also included in this framework. Since the finite volume methods described
in the previous section can be interpreted as DG methods with polynomial degree p = 0, they also fall into
this framework.

These matrices can be used to construct entropy conservative high order discretizations. Let J = h/2
be the Jacobian of the mapping from the reference element [−1, 1] to a physical interval of size h and let
Fk
ij = fS(ui,k,uj,k) denote the matrix of flux interactions between different nodes on the element Dk. A

local formulation on the element Dk is given by

JkM
duk
dt

+ 2
(
Q ◦ Fk

)
1+ B (f∗ − f(uk)) = 0,

f∗ =




fS(u
+
1,k,u1,k)

0
...
0

fS(u
+
Np,k

,uNp,k)



. (6)

where u+1,k,u
+
Np,k

denote the exterior values of u1,k,uNp,k on neighboring elements. Assuming that the
elements are ordered from left to right in ascending order, for interior element indices 1 < k < K, these are
given by

u+1,k = uNp,k−1, u+Np,k
= u1,k+1.

In other words, the first node on Dk is connected to the last node on the previous element, and the last node
on Dk is connected to the first node on the next element.

5

For periodic boundary conditions this local formulation can be understood as inducing a global skew-
symmetric matrix. To show this, we first use the SBP property to rewrite (6) in a skew-symmetric form
[35]

JkM
duk
dt

+
((

Q−QT
)
◦ Fk

)
1+ Bf∗ = 0.

We now define a global vector uΩ = [u1,u2, . . . ,uK]
T
. Let the global flux matrix be defined as

F =



F11 . . . F1K

...
. . .

...
FK1 . . . FKK


 , (Fk1,k2)ij = fS(ui,k1 ,uj,k2).

The blocks of the matrix F capture flux interactions between solution values at different nodes and elements.
The local formulations can now be concatenated into a single skew-symmetric matrix

MΩ
duΩ
dt

+ 2 (QΩ ◦ F) 1 = 0, (7)

where MΩ is the block-diagonal matrix with blocks JkM, and

QΩ =
1

2




S BR −BL

−BL S BR

−BL
. . . BR

BR −BL S


 , S =

(
Q−QT

)
, (8)

where the matrices BL,BR are zeros except for a single entry

BL =




1

. .
.

0


 , BR = BT

L =




0

. .
.

1


 (9)

The matrix QΩ can be considered a high order generalization of the finite volume matrix (5). Similar “global
SBP operator” approaches were used to construct simultaneous approximation (SBP-SAT) interface coupling
terms in [11, 36, 22].

3.2.1. Non-periodic boundary conditions

For non-periodic domains, the structure of the global differentiation matrixQΩ changes. For finite volume,
DG, and multi-block SBP methods, boundary conditions are typically imposed by specifying appropriate
“exterior” values u+i,k in flux expressions such as (6). The resulting formulation is a small modification of (7)

MΩ
duΩ
dt

+ 2 (QΩ ◦ F) 1+ BΩf
∗

Ω = 0,

where QΩ, BΩ, and f∗Ω are now given by

QΩ =
1

2




S BR

−BL S BR

−BL
. . . BR

−BL S


 , BΩ =




−BL

0

. . .

BR


 , f∗Ω =




fS(u1,1,u
+
1,1)

0
...

fS(uNp,K ,u
+
Np,K

)


 .

Here, u+1,1 and u+Np,K
denote the exterior values at the left and right endpoints, respectively. Since QΩ is

still skew-symmetric, we can reuse the formulas from Theorem 2.1. The term BΩf
∗

Ω can be differentiated
efficiently using AD, since BΩ is a sparse diagonal matrix and BΩf

∗

Ω is a vector whose few nonzero terms are
straightforward scalings of flux evaluations.

6

4. Systems of conservation laws

In this section, we extend the Jacobian formulas of Theorem 2.1 from scalar nonlinear conservation laws
to an n × n system of conservation laws. Let fS(uL,uR) : R

n × R
n → R

n denote an entropy conservative
flux function for a 1D system of conservation laws. We first formulate a system of ODEs by modifying the
definition of the arrays and matrices in (8).

Let uΩ denote a vector of vectors

uΩ =




u1
u2
...
un


 , ui =




ui,1
ui,2
...

ui,K


 , ui,k =




ui,k,1
ui,k,2
...

ui,k,Np


 (10)

Here, u`,k,j denotes the jth degree of freedom for the `th component of the solution on the kth element (for
` = 1, . . . , n, k = 1, . . . ,K and j = 1, . . . , Np). Let (k1, j1) and (k2, j2) be multi-indices which correspond to
row and columns indices of a matrix, respectively. We define the block-diagonal flux matrix F consisting of
n diagonal blocks Fi ∈ R

NpK×NpK as

F =



F1

. . .

Fn


 , (F`)(k1,j1),(k2,j2)

= (fS (u:,k1,j1 ,u:,k2,j2))` . (11)

where u:,k,j denotes the vector containing all solution components at the kth element and jth node, and each
entry of the block F` for ` = 1, . . . , n corresponds to the `th component of the vector-valued flux evaluated
at solution states u:,k1,j1 ,u:,k2,j2 .

Let MΩ,QΩ denote the global mass and differentiation matrices in (8). Then, an entropy conservative
scheme is given by

(In ⊗MΩ)
duΩ
dt

+ 2 ((In ⊗QΩ) ◦ F) 1 = 0.

where In ∈ R
n is the n× n identity matrix.

We now provide Jacobian matrix formulas for systems of nonlinear conservation laws. The proofs are
straightforward extensions of the proof of Theorem 2.1 to the vector-valued case, and we omit them for
conciseness. The right hand side function r(u) for systems can be rewritten as

r(u) = 2 ((In ⊗QΩ) ◦ F) 1 = 2



(QΩ ◦ F1)

...
(QΩ ◦ Fn)


 1.

Then, the Jacobian matrix is

∂r

∂u
=



∂F1,u1 . . . ∂F1,un
...

. . .
...

∂Fn,u1 . . . ∂Fn,un


 (12)

where each Jacobian block ∂Fi,uj is evaluated as in Theorem 2.1

∂Fi,uj = 2
(
QΩ ◦ Fi,uj

)
± diag

(
1T
(
2QΩ ◦ Fi,uj

))

∂Fi,uj = 2
(
QΩ ◦ FT

ui,j

)
± diag ((2QΩ ◦ Fui,j) 1) .

7

for QΩ = ±QT
Ω. Here, the flux matrix Fi,uj is evaluated via one of two formulas

(
Fi,uj

)
(j1,k1),(j2,k2)

=
∂ (fS)i
∂uR,j

∣∣∣∣
u:,k1,j1

,u:,k2,j2

(Fui,j)(j1,k1),(j2,k2)
=
∂ (fS)i
∂uL,j

∣∣∣∣
u:,k1,j1

,u:,k2,j2

,

where
∂(fS)i
∂uL,j

,
∂(fS)i
∂uR,j

denote the derivatives of the ith component of the flux fS (uL,uR) with respect to the

jth solution component of uL,uR. Thus, each entry of the block Fi,uj corresponds to an entry of the Jacobian
(with respect to uL or uR) of fS(uL,uR) and an entry of the global differentiation matrix QΩ.

Remark 1. The ordering in this paper is chosen for notational convenience. In practice, other orderings
typically yield more efficient solution procedures. For example, ordering the degrees of freedom by variable
fields (as in [11]) yields a Jacobian matrix with a more compact bandwidth, while also making it easier to
use a block compressed storage format for sparse matrices and block-based preconditioners.

5. Extension to entropy stable (dissipative) schemes

We now consider entropy stable schemes, which include entropy dissipation terms to produce a semi-
discrete dissipation (rather than conservation) of entropy. These can correspond either to physical or artificial
viscosity mechanisms [37, 23] or numerical interface dissipation [38]. Because Jacobian matrices for artificial
viscosity mechanisms have been discussed in more detail in the time-implicit literature [39] we focus instead
on numerical interface dissipation.

Let dS (uL,uR) be an entropy dissipative anti-symmetric flux such that

dS (uL,uR) = −dS (uR,uL) , (vL − vR)
T
dS (uL,uR) ≥ 0.

Note that the anti-symmetry of dS implies that dS(u,u) = 0. Fluxes which fall into this category include
the Lax-Friedrichs flux

dS(uL,uR) =
|λ|
2
(uL − uR), λ = estimate of maximum wavespeed,

as well as HLLC fluxes [6] and matrix dissipation fluxes [38].

5.1. Scalar dissipative fluxes

We will begin by considering scalar dissipative fluxes dS(uL, uR) and dissipation terms of the form

d(u) = (B ◦D) 1

where B is a symmetric non-negative matrix and the entries of Dij = dS(ui,uj) correspond to evaluations
of the dissipative flux. For the high order DG-SBP discretizations of periodic domains described in (7), BΩ

is the matrix

B =
1

2




BR BL

BL BR

BL
. . . BR

BR BL


 (13)

where BL,BR are defined as in (9).
To compute the Jacobian of this term, we can note that Theorem 2.1 assumes that the discretization

matrix is skew-symmetric (or symmetric), while the flux matrix is symmetric. Here, the orders are reversed
— the flux matrix D is now skew-symmetric, while the discretization matrix BΩ is symmetric. Thus,
repeating the steps of the proof of Theorem 2.1, one can show that the Jacobians of the dissipative term can
be computed using one of two formulas.

8

Theorem 5.1. Let d(u) = (B ◦D) 1, where B is a symmetric matrix, Dij = dS(ui,uj), and dS is an
anti-symmetric bivariate function. Then,

∂d

∂u
= −(B ◦DT

x) + diag
((

B ◦DT
x

)
1
)
, (14)

∂d

∂u
= (B ◦Dy)− diag

(
1T (B ◦Dy)

)

where the matrices Dx,Dy are

(Dx)ij =
∂dS
∂uL

∣∣∣∣
ui,uj

, (Dy)ij =
∂dS
∂uR

∣∣∣∣
ui,uj

.

Proof. We will prove the second formula in (14) involving Dy using the same approach as the proof of

Theorem 2.1. The proof of the first formula results from the fact that Dy = −DT
x by the anti-symmetry of

dS(uL, uR). Applying the chain rule yields

∂di
∂uj

=
∑

k

Bik

(
∂dS
∂x

∣∣∣∣
ui,uk

∂ui
∂uj

+
∂dS
∂y

∣∣∣∣
ui,uk

∂uk
∂uj

)

If i 6= j, then ∂ui
∂uj

= 0 and the sum reduces to the single term k = j

∂di
∂uj

= Bij
∂dS
∂y

∣∣∣∣
ui,uj

.

For i = j, ∂ui
∂uj

= 1. Using the symmetry of B and anti-symmetry of dS yields

∂di
∂ui

=

(
∑

k

Bik
∂dS
∂x

∣∣∣∣
ui,uk

)
+ Bii

∂dS
∂y

∣∣∣∣
ui,ui

=

(
−
∑

k

Bik
∂dS
∂y

∣∣∣∣
uk,ui

)
+ Bii

∂dS
∂y

∣∣∣∣
ui,ui

.

5.2. Vector-valued dissipative fluxes

For a vector-valued dissipative flux, the dissipative contribution is

d(u) =



(B ◦D1)

...
(B ◦Dn)


 1

where each matrix block (D`)(j1,k1),(j2,k2)
= (dS (u:,k1,j1 ,u:,k2,j2))` corresponds to the ith component of the

dissipative flux, where u is ordered as in (10). Then, the Jacobian of d(u) yields the following block matrix

∂d

∂u
=



∂D1,u1 . . . ∂D1,un

...
. . .

...
∂Dn,u1 . . . ∂Dn,un


 (15)

where each Jacobian block ∂Di,uj is evaluated as in (14) using one of two formulas

∂Di,uj =
(
B ◦Di,uj

)
− diag

(
1T
(
B ◦Di,uj

))

∂Di,uj = − (B ◦Dui,j) + diag ((B ◦Dui,j) 1) ,

9

where the dissipative flux matrices Di,uj ,Dui,j are defined in terms of entries of the Jacobian of dS

(
Di,uj

)
(j1,k1),(j2,k2)

=
∂ (dS)i
∂uR,j

∣∣∣∣
u:,k1,j1

,u:,k2,j2

(Dui,j)(j1,k1),(j2,k2)
=
∂ (dS)i
∂uL,j

∣∣∣∣
u:,k1,j1

,u:,k2,j2

,

Remark 2. If the derivative of dS with respect to its second argument uR is used to compute the dissipative
flux matrices, then the structure of the dissipative Jacobian is identical to the structure of the entropy conser-
vative Jacobian (12). Thus, given discretization matrices QΩ,BΩ and functions which evaluate derivatives
of flux functions fS ,dS with respect to their second arguments, the same routine can be used to compute both
the entropy conservative and dissipative Jacobians.

6. Non-collocated schemes: hybridized SBP operators, entropy projection, over-integration

Most entropy stable schemes rely on “collocated” SBP operators (where the mass matrix MΩ is diagonal)
constructed using nodal sets which include boundary nodes [6, 11]. However, in certain cases energy and
entropy stable SBP schemes constructed using non-diagonal mass matrices [12, 30] and more general nodal
sets [40, 41, 42, 36] achieve higher accuracy than SBP schemes built on nodal sets which include boundary
nodes. We discuss how to extend Jacobian formulas to “modal” formulations for entropy conservative
schemes (the extension to entropy stable schemes is similar).

6.1. “Modal” entropy conservative schemes

We now assume that the solution is represented using a “modal” expansion

u(x, t) ≈
Np∑

i=1

ûk,i(t)φi(x),

where ûk,i denotes the coefficients of the solution on an element Dk. We assume two sets of quadrature

points: volume quadrature points and weights, {wi, xq,i}Nq

i=1, and surface quadrature points, {wf,i, xf,i}Nf

i=1.
We assume both quadrature rules are exact for certain classes of integrands as detailed in [35, 30].

Evaluating u(x, t) at quadrature points requires multiplication by an interpolation matrix V

Vij = φj(xi), i = 1, . . . , Nq, j = 1, . . . , Np

(Vf)ij = φj(xf,i), i = 1, . . . , Nf , j = 1, . . . , Np.

We can similarly define mass and projection matrices M,P

M = VTWV, P = M−1VTW,

whereW is a diagonal matrix whose entries are the quadrature weights wi. We also define a face interpolation
matrix

E = VfP

which evaluates the solution at face quadrature points given values at volume quadrature points. Finally,
we define the matrix Vh as the mapping between local coefficients ûk and the combined vector of volume
and surface quadrature points

Vh =

[
V

Vf

]
.

These matrices are involved in the application of hybridized SBP operators (originally referred to as decoupled
SBP operators) [12, 43]. We present the main ideas in a 1D setting and refer the reader to [11, 12, 35] for
details on multi-dimensional settings.

10

Given some modal weak differentiation matrix Q̂ which acts on the basis coefficients ûk, we define a nodal
differentiation matrix Q = PT Q̂P. Then we can define a hybridized SBP operator as

Qh =
1

2

[
Q−QT ETB

−BE B

]
, B =

[
−1

1

]
.

The operator Qh can be used to approximate coefficients of the derivative in the basis φi(x). Let f(u) denote
some function of u(x), and let û denote the basis coefficients of u(x). Then,

∂f(u)

∂x
≈
∑

j

f̂jφj(x), f̂ = M−1VT
hQhf (Vhû)

We now construct global matrices for the multi-element (periodic) case. We begin by concatenating the
local coefficients ûk,i into a global coefficient vector ûΩ. We also introduce boundary matrices B,BL, and
BR which enforce coupling between different elements and are defined as

BL =

[
1

0

]
, BR =

[
0

1

]
, B =

[
−1

1

]
.

In the multi-dimensional case, the entries of BL,BR correspond instead to outward normals scaled by sur-
face quadrature weights and surface Jacobians (e.g., the area ratios between reference and physical surface
elements) [11, 12].

We can also adapt Qh to construct a globally skew-symmetric differentiation matrix (see also [36]). Define
the matrix S = Q−QT and define QΩ as the global block matrix

QΩ =
1

2




S ETB

−BE BR −BL

S ETB

−BL −BE BR

. . .
. . .

−BL
. . .

. . .
. . . BR

. . . S ETB

BR −BL −BE




,

We abuse notation and redefine V,E,P and Vh as global interpolation, projection, and extrapolation matrices

V −→ IK ⊗ V, P −→ IK ⊗ P

E −→ IK ⊗ E, Vh −→ IK ⊗ Vh

Finally, we assume that the global solution u(x, t) ∈ R
n is vector-valued, and order the solution coefficients

as in Section 4.
It was shown in [13, 12] that when either the mass matrix is non-diagonal or the nodal set does not contain

appropriate boundary points, it is necessary to perform an entropy projection (or extrapolation [43]) step
to ensure discrete entropy stability. Let v(u) denote the entropy variables as a function of the conservative
variables, and let u(v) denote the inverse mapping. We define the entropy projected variables ũΩ as

ũΩ = u (VhPv (VûΩ)) . (16)

Let F again denote the block-diagonal flux matrix in (11). We evaluate each flux block F` using the entropy
projected variables

(F`)(k1,j1),(k2,j2)
= (fS (ũ:,k1,j1 , ũ:,k2,j2))` . (17)

11

Then, an entropy conservative method is given by

(In ⊗MΩ)
duΩ
dt

+ 2 (In ⊗ Vh)
T
((

1n1
T
n ⊗QΩ

)
◦ F
)
1 = 0.

where In is the n× n identity matrix and 1n denotes the length n vector of all ones.

6.2. Jacobian matrices for modal entropy stable schemes

We redefine the nonlinear term as

r(û) = 2 (In ⊗ Vh)
T
((

1n1
T
n ⊗QΩ

)
◦ F
)
1.

where the flux matrix F is computed using the entropy projected conservative variables (16) via (17). Let ∂u
∂v

and ∂v
∂u denote Jacobians of the conservative variables with respect to the entropy variables and vice versa.

These have been explicitly derived for several equations (for example, the Jacobians for the compressible
Navier-Stokes equations are given in [5]).

We can compute the Jacobian of r(û) via the chain rule. We assume a scalar equation n = 1 for simplicity,
and motivate our approach by considering an entry i 6= j of the Jacobian

(
∂r

∂ûΩ

)

ij

= 2VT
h

∂

∂ (ûΩ)j
((QΩ ◦ F) 1)i .

We focus on the latter term ∂
∂ûΩ

(QΩ ◦ F) 1
(

∂

∂ûΩ
(QΩ ◦ F) 1

)

ij

=
∂

∂ûΩ,j

∑

k

(QΩ)ik fS (ũi, ũk) =
∑

k

(QΩ)ik
∂fS

∂y

∣∣∣∣
ũi,ũk

∂ũi
∂ûΩ,j

We observe that the term ∂ũi
∂ûΩ,j

does not disappear as it did in the proof of Theorem 2.1. We thus treat the

Jacobian matrix in two parts. First, we define the “unassembled” Jacobian matrix ∂ r̃
∂ũ as

(
∂ r̃

∂ũ

)

ij

= (QΩ)ij
∂fS

∂y

∣∣∣∣
ũi,ũj

= (QΩ ◦ Fy)ij . (18)

The construction of ∂ r̃
∂ũ for systems (n > 1) is carried out using the procedure described in Section 4. Let ṽ

denote the projected entropy variables evaluated at volume quadrature points

ṽ = VhPv (VûΩ) .

The vector ∂ũ
∂ûΩ

can be further expanded as

∂ũ

∂ûΩ
=
∂u

∂v

∣∣∣∣
ṽ

VhP
∂v

∂u

∣∣∣∣
VûΩ

V .

where the Jacobian matrices for the maps between conservative and entropy variables are block diagonal
matrices given by

∂u

∂v

∣∣∣∣
ṽ

=




∂u
∂v

∣∣
ṽ1

. . .
∂u
∂v

∣∣
ṽK


 ,

∂u

∂v

∣∣∣∣
ũk

=




∂u
∂v

∣∣
ũ1,k

. . .
∂u
∂v

∣∣
ũNp,k


 , (19)

where the local block ∂u
∂v

∣∣
ũj,k

is the Jacobian matrix ∂u
∂v evaluated at the jth nodal solution value ũj,k on

the kth element.

12

(a) “Unassembled” Jacobian matrix (18) (b) “Assembled” Jacobian matrix (20)

Figure 1: Spy plots of assembled and unassembled Jacobian matrices for Burgers’ equation for N = 2 on a 2 × 2 uniform
triangular mesh of [−1, 1]2.

Let Np, Nq, and Nf denote the number of total basis functions, quadrature points, and face quadrature
points respectively, and define Ntotal = Nq + Nf . The structure and dimensions of matrices involved in
constructing the “assembled” Jacobian matrix are illustrated as follows:

∂r

∂ûΩ
=

VT
h

(Np×Ntotal) QΩ ◦ ∂ r̃
∂ũ

(Ntotal×Ntotal)

∂u
∂v

∣∣
ṽ

(Ntotal×Ntotal)

VhP

(Ntotal×Nq)

∂v
∂u

∣∣
VûΩ

(Nq×Nq)

V

(Nq×Np)

(20)

“Unassembled” and “assembled” Jacobian matrices (18) and (20) for an entropy conservative discretiza-
tion of a 2D Burgers’ equation [12] are shown in Figure 1. We note that the structure of these matrices
becomes simplified under common assumptions for entropy stable discretizations. The most common assump-
tions are either “collocated volume nodes” or “collocated volume and surface nodes” [44]. When volume
nodes are collocated, the solution is represented using a nodal Lagrange basis constructed using Nq = Np

volume quadrature nodes.2 When surface nodes are collocated, the surface quadrature points are also a
subset of the volume quadrature nodes [34, 6].

If only volume nodes are collocated [36], then V = I. If both volume and surface nodes are collocated,

the system reduces to the simplified system described in Section 4 using the fact that ∂u
∂v =

(
∂v
∂u

)−1
.

7. Numerical experiments

In this section, we verify our theoretical results and compare the computational efficiency of the formulas
derived in this paper with other methods for computing the Jacobian. Additional numerical experiments
are included within Supplementary Material.

7.1. Verification of Jacobian formulas

2This definition refers to discretizations which utilize an explicit basis. For entropy stable SBP discretizations, volume nodes
are typically collocated by construction. This is possible because nodal degrees of freedom for SBP discretizations do not
necessarily correspond to a nodal basis.

13

We begin by verifying the correctness of Theorem 2.1 and its extension to systems of nonlinear con-
servation laws. We do so by comparing these formulas to Jacobians computed directly using automatic
differentiation for r(u) = (Q ◦ F)1, where Q is a randomly generated symmetric or skew-symmetric matrix
and F is the flux matrix defined in (4) for scalar fluxes and (11) for systems.

We compute Jacobians for three different fluxes. The first is the entropy conservative flux for Burgers’
equation

fS(uL, uR) =
1

6

(
u2L + uLuR + u2R

)
.

The second set of fluxes are entropy conservative fluxes for the two-dimensional shallow water equations
with solution fields h, hu, hv corresponding to water height and x, y momentum [45, 46]. Let the average
be defined as {{u}} = uL+uR

2 . The two-dimensional shallow water fluxes fi,S for each coordinate direction
i = 1, . . . , d are given by

f1,S =




{{hu}}
{{hu}} {{u}}+ g

2hLhR
{{hu}} {{v}}


 , f2,S =




{{hv}}
{{hv}} {{u}}

{{hv}} {{v}}+ g
2hLhR


 .

The third set of fluxes are kinetic energy preserving and entropy conservative fluxes for the 3D compress-
ible Euler equations [47]. The solution fields are ρ, ρu, ρv, ρw,E, corresponding to density, x/y/z momentum,

and total energy. Let {{·}}log denote the logarithmic mean

{{u}}log =
uR − uL

log (uR)− log (uL)
,

which we compute using the numerically stable expansion of [25] with γ = 1.4. The fluxes fi,S for each
coordinate direction i = 1, . . . , d are then given by

f1,S =




{{ρ}}log {{u}}
{{ρ}}log {{u}}2 + pavg
{{ρ}}log {{u}} {{v}}
{{ρ}}log {{u}} {{w}}
(Eavg + pavg) {{u}}



, f2,S =




{{ρ}}log {{v}}
{{ρ}}log {{u}} {{v}}

{{ρ}}log {{v}}2 + pavg
{{ρ}}log {{v}} {{w}}
(Eavg + pavg) {{v}}



,

f3,S =




{{ρ}}log {{w}}
{{ρ}}log {{u}} {{w}}
{{ρ}}log {{v}} {{w}}

{{ρ}}log {{w}}2 + pavg
(Eavg + pavg) {{u3}}



,

where the auxiliary quantities are defined as

β =
ρ

2p
, pavg =

{{ρ}}
2 {{β}} , Eavg =

{{ρ}}log

2(γ − 1) {{β}}log
+

1

2
{{ρ}}log u2avg,

u2avg = uLuR + vLvR + wLwR.

We also verify Theorem 5.1 for each system by computing the Jacobian matrix for the dissipative Lax-
Friedrichs flux

dS(uL,uR) =
λmax

2
(uL − uR)

where λmax is an estimate of the maximum 1D wavespeed between uL,uR along some unit vector n (e.g.,
the outward normal). In all cases, we take λmax = max (λ(uL), λ(uR)), where λ(u) is an upper bound on
the wavespeed. For both shallow water and Euler, λ(u) = |un| + c, where un is the normal component of
velocity and c is the speed of sound. For shallow water, c =

√
gh, while for Euler, c =

√
γp/ρ.

14

Table 1 shows differences between Jacobian matrices computed using automatic differentiation and using
formulas in Theorems 2.1 and 5.1. Discretization matrices of size 25× 25 and corresponding solution vectors
were generated randomly from a normal distribution. For the shallow water and Euler equations, positive
solution values (e.g., water height for shallow water, density and pressure for Euler) were generated from
a uniform distribution over (0, 1). For Jacobians of dissipative fluxes, the normal vector is taken to be a
random unit vector. In all cases, the difference close to machine precision.

Burgers’ Shallow water Euler LF (Burgers) LF (SWE) LF (Euler)
1.56616230e-15 9.17858305e-13 2.62285783e-14 2.03313333e-14 3.05403043e-12 5.04444613e-14

Table 1: Computed differences between Jacobian matrices of r(u) (measured in the Frobenius norm) when computed using AD
and formulas from Theorems 2.1 and 5.1. LF refers to the “Lax-Friedrichs” flux.

A Julia code which reproduces these results is included in the Supplementary Materials.

7.2. Comparisons of computational cost

We first compare the cost of computing the Jacobian matrix using the formulas in this paper to other
approaches. All computations are performed on a 2019 Macbook Pro with a 2.3 GHz 8-Core Intel Core i9
processor using Julia version 1.4 and all timings are computed using the BenchmarkTools.jl package [48].

The cost of forward-mode automatic differentiation is known to be minimal for functions with low-
dimensional inputs and outputs [26]. To give a sense for the efficiency of AD in Julia, we compare the cost of
evaluating a flux function fS(uL, uR) to the cost of computing its derivative using ForwardDiff.jl for 10000
random values of uL, uR. The evaluation of the entropy conservative Burgers’ flux takes 7.087 microseconds,
while the derivative takes 7.063 microseconds to evaluate. The logarithmic mean takes 129.254 microseconds
to evaluate, while its derivative takes 161.322 microseconds to evaluate. The cost of computing Jacobians
using ForwardDiff.jl scales similarly.

Next, we compare the cost of computing both the full Jacobian and a Jacobian-vector product using the
formulas in Theorem 2.1 and competing approaches. Let fS(uL, uR) denote the scalar flux Burgers’ flux,
and define

r(u) = (Q ◦ F) 1, Fij = fS(ui,uj), (21)

where Q ∈ R
N,N is a dense randomly generated skew-symmetric matrix. We compute the Jacobian matrix

using the formula from Theorem 2.1 (referred to as “Formula from Theorem 2.1” in Table 2), with ∂fS
∂uR

com-
puted using both the analytical formula and automatic differentiation, which are tagged as “(analytic)” and
“(AD)” in Table 2. We also compute the full Jacobian matrix directly using ForwardDiff.jl (referred to
as “Automatic differentiation” in Table 2). We also compute the Jacobian matrix using the FiniteDiff.jl
toolkit within the DifferentialEquations.jl framework [49], which computes the Jacobian matrix effi-
ciently using cached in-place function evaluations and finite difference approximations (referred to as “finite
differences” in Table 2). Finally, we provide timings for evaluating r(u) for reference. Implementations of
both r(u) and its Jacobian are optimized for performance in Julia.3 We have included code to compute
timings in the Supplementary Materials.

We observe that the cost of evaluating the full Jacobian matrix using the formula of Theorem 2.1 is 1-2
orders of magnitude less expensive than automatic differentiation or finite differences applied directly to the
nonlinear term r(u). These results highlight the fact that Theorem 2.1 allows one to take advantage of the
Hadamard product and symmetry/skew-symmetry, which is difficult to do when directly applying automatic
differentiation.

3In our implementations of the evaluation of r(u) and the Jacobian ∂r
∂u

(computed using Theorem 2.1), we pre-allocate

all output vectors and matrices for efficiency. For the implementation of ∂r
∂u

, we compute the sum (Q ◦ F) 1 by looping over

rows of Q and accumulating contributions from Q ◦ F column-by-column. We access entries of QT to take advantage of the
column-major storage of matrices in Julia.

15

N = 10 N = 25 N = 50

Automatic differentiation 3.160 26.386 166.689
Finite differences 1.536 17.397 129.510

Formula from Theorem 2.1 (analytic) .125 .628 2.357
Formula from Theorem 2.1 (AD) .128 .628 2.530
Evaluation of r(u) (for reference) .129 .623 2.517

Table 2: Timings for the computation of r(u) in (21) and various methods of computing the full Jacobian dr
du

using the scalar

Burgers’ flux fS(uL, uR) = (u2

L
+ uLuR + u2

R
)/6 (times in microseconds).

Because the number of flux evaluations required to evaluate r(u) is comparable to the number of AD
function evaluations required to evaluate the Jacobian matrix, the cost of evaluating the full Jacobian matrix
is proportional to the cost of directly evaluating r(u). Here, the constant of proportionality is roughly equal to
the ratio of the cost of evaluating the flux function derivative (or Jacobian) and the cost of directly evaluating
the flux function. This ratio of this cost will vary depending on the specific flux and the implementation.
For the entropy conservative fluxes for the two-dimensional compressible Euler equations [47], the cost of
evaluating the flux Jacobian matrix is only 1.625 times more expensive than directly evaluating the flux
(both the Jacobian matrix and the flux were evaluated only for a single coordinate direction).

Finally, we note that if the Jacobian matrix is not explicitly required, Jacobian-vector products can be
evaluated in a matrix-free fashion using either forward mode AD [26] or finite difference approximations [20]
at much lower computational cost. The formulas in Theorem 2.1 can still be applied in a matrix-free fashion,
but it is unclear if there are computational advantages over AD for computing Jacobian-vector products.

8. Conclusion

In this work, we derive efficient formulas for Jacobian matrices resulting from entropy conservative and
entropy stable schemes based on flux differencing and summation-by-parts operators. These formulas are
given in terms of summation-by-parts matrices and derivatives of flux functions, the latter of which can be
computed efficiently using automatic differentiation. The computation of Jacobians using these formulas is
significantly faster than directly computing Jacobian matrices using automatic differentiation, especially for
dense operators. Future work will investigate the application of such formulas towards preconditioners and
sensitivity analysis.

9. Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation under award DMS-
CAREER-1943186. Christina Taylor also acknowledges support from the Ken Kennedy Institute 2019-2020
BP Graduate Fellowship.

References

[1] P-O Persson and Jaime Peraire. Newton-GMRES preconditioning for discontinuous Galerkin discretiza-
tions of the Navier–Stokes equations. SIAM Journal on Scientific Computing, 30(6):2709–2733, 2008.

[2] Stefan Ulbrich. A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation
laws with source terms. SIAM journal on control and optimization, 41(3):740–797, 2002.

[3] Max D Gunzburger. Perspectives in flow control and optimization, volume 5. Siam, 2003.

[4] Stanislav N Kružkov. First order quasilinear equations in several independent variables. Mathematics
of the USSR-Sbornik, 10(2):217, 1970.

16

[5] Thomas JR Hughes, LP Franca, and M Mallet. A new finite element formulation for computational fluid
dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law
of thermodynamics. Computer Methods in Applied Mechanics and Engineering, 54(2):223–234, 1986.

[6] Tianheng Chen and Chi-Wang Shu. Entropy stable high order discontinuous Galerkin methods with
suitable quadrature rules for hyperbolic conservation laws. Journal of Computational Physics, 345:427–
461, 2017.

[7] Michael S Mock. Systems of conservation laws of mixed type. Journal of Differential equations, 37(1):70–
88, 1980.

[8] Amiram Harten. On the symmetric form of systems of conservation laws with entropy. Journal of
computational physics, 49(1):151–164, 1983.

[9] Mark H Carpenter, Travis C Fisher, Eric J Nielsen, and Steven H Frankel. Entropy Stable Spectral
Collocation Schemes for the Navier–Stokes Equations: Discontinuous Interfaces. SIAM Journal on
Scientific Computing, 36(5):B835–B867, 2014.

[10] Gregor J Gassner, Andrew R Winters, and David A Kopriva. Split form nodal discontinuous Galerkin
schemes with summation-by-parts property for the compressible Euler equations. Journal of Computa-
tional Physics, 327:39–66, 2016.

[11] Jared Crean, Jason E Hicken, David C Del Rey Fernández, David W Zingg, and Mark H Carpenter.
Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements.
Journal of Computational Physics, 356:410–438, 2018.

[12] Jesse Chan. On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
Journal of Computational Physics, 362:346 – 374, 2018.

[13] Matteo Parsani, Mark H Carpenter, Travis C Fisher, and Eric J Nielsen. Entropy Stable Staggered
Grid Discontinuous Spectral Collocation Methods of any Order for the Compressible Navier–Stokes
Equations. SIAM Journal on Scientific Computing, 38(5):A3129–A3162, 2016.

[14] David C Del Rey Fernández, Jared Crean, Mark H Carpenter, and Jason E Hicken. Staggered-grid
entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates. Journal
of Computational Physics, 392:161–186, 2019.

[15] Andrew R Winters, Rodrigo C Moura, Gianmarco Mengaldo, Gregor J Gassner, Stefanie Walch,
Joaquim Peiro, and Spencer J Sherwin. A comparative study on polynomial dealiasing and split form
discontinuous Galerkin schemes for under-resolved turbulence computations. Journal of Computational
Physics, 372:1–21, 2018.

[16] Diego Rojas, Radouan Boukharfane, Lisandro Dalcin, David C Fernandez, Hendrik Ranocha, David E
Keyes, and Matteo Parsani. On the robustness and performance of entropy stable discontinuous collo-
cation methods for the compressible Navier-Stokes equations. arXiv preprint arXiv:1911.10966, 2019.

[17] Eitan Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws. I.
Mathematics of Computation, 49(179):91–103, 1987.

[18] Lucas Friedrich, Gero Schnücke, Andrew R Winters, David C Del Rey Fernández, Gregor J Gassner,
and Mark H Carpenter. Entropy stable space–time discontinuous Galerkin schemes with summation-
by-parts property for hyperbolic conservation laws. Journal of Scientific Computing, 80(1):175–222,
2019.

[19] Jason E Hicken. Entropy-stable, high-order summation-by-parts discretizations without interface penal-
ties. Journal of Scientific Computing, 82(2):50, 2020.

17

[20] Dana A Knoll and David E Keyes. Jacobian-free Newton–Krylov methods: a survey of approaches and
applications. Journal of Computational Physics, 193(2):357–397, 2004.

[21] Philipp Birken, Gregor J Gassner, and Lea M Versbach. Subcell finite volume multigrid preconditioning
for high-order discontinuous Galerkin methods. International Journal of Computational Fluid Dynamics,
pages 1–9, 2019.

[22] David C Fernandez, Mark H Carpenter, Lisandro Dalcin, Stefano Zampini, and Matteo Parsani. Entropy
Stable h/p-Nonconforming Discretization with the Summation-by-Parts Property for the Compressible
Euler and Navier-Stokes Equations. arXiv preprint arXiv:1910.02110, 2019.

[23] Johnathon Upperman and Nail K Yamaleev. Entropy stable artificial dissipation based on Brenner
regularization of the Navier-Stokes equations. Journal of Computational Physics, 393:74–91, 2019.

[24] Farzad Ismail and Philip L Roe. Affordable, entropy-consistent Euler flux functions II: Entropy pro-
duction at shocks. Journal of Computational Physics, 228(15):5410–5436, 2009.

[25] Andrew R Winters, Christof Czernik, Moritz B Schily, and Gregor J Gassner. Entropy stable numerical
approximations for the isothermal and polytropic Euler equations. BIT Numerical Mathematics, pages
1–34, 2019.

[26] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic
differentiation, volume 105. SIAM, 2008.

[27] J. Revels, M. Lubin, and T. Papamarkou. Forward-Mode Automatic Differentiation in Julia.
arXiv:1607.07892 [cs.MS], 2016.

[28] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical
computing. SIAM review, 59(1):65–98, 2017.

[29] Thomas F Coleman and Arun Verma. The efficient computation of sparse Jacobian matrices using
automatic differentiation. SIAM Journal on Scientific Computing, 19(4):1210–1233, 1998.

[30] Jesse Chan. Entropy stable reduced order modeling of nonlinear conservation laws. arXiv preprint
arXiv:1909.09103, 2019.

[31] H-O Kreiss and Godela Scherer. Finite element and finite difference methods for hyperbolic partial
differential equations. In Mathematical aspects of finite elements in partial differential equations, pages
195–212. Elsevier, 1974.

[32] Mark H Carpenter, Jan Nordström, and David Gottlieb. A stable and conservative interface treatment
of arbitrary spatial accuracy. Journal of Computational Physics, 148(2):341–365, 1999.

[33] David A Kopriva. Implementing spectral methods for partial differential equations: Algorithms for
scientists and engineers. Springer Science & Business Media, 2009.

[34] Gregor J Gassner. A skew-symmetric discontinuous Galerkin spectral element discretization and its
relation to SBP-SAT finite difference methods. SIAM Journal on Scientific Computing, 35(3):A1233–
A1253, 2013.

[35] Jesse Chan. Skew-Symmetric Entropy Stable Modal Discontinuous Galerkin Formulations. Journal of
Scientific Computing, 81(1):459–485, Oct 2019.

[36] Jesse Chan, David C Del Rey Fernández, and Mark H Carpenter. Efficient entropy stable Gauss
collocation methods. SIAM Journal on Scientific Computing, 41(5):A2938–A2966, 2019.

18

[37] Gregor J Gassner, Andrew R Winters, Florian J Hindenlang, and David A Kopriva. The BR1 scheme
is stable for the compressible Navier–Stokes equations. Journal of Scientific Computing, pages 1–47,
2017.

[38] Andrew R Winters, Dominik Derigs, Gregor J Gassner, and Stefanie Walch. A uniquely defined entropy
stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations.
Journal of Computational Physics, 332:274–289, 2017.

[39] Per-Olof Persson and Jaime Peraire. Sub-cell shock capturing for discontinuous Galerkin methods.
AIAA, 112, 2006.

[40] David C Del Rey Fernández, Jason E Hicken, and David W Zingg. Review of summation-by-parts oper-
ators with simultaneous approximation terms for the numerical solution of partial differential equations.
Computers & Fluids, 95:171–196, 2014.

[41] Hendrik Ranocha. Generalised summation-by-parts operators and variable coefficients. Journal of
Computational Physics, 362:20 – 48, 2018.

[42] Jared Crean, Jason E Hicken, David C Del Rey Fernández, David W Zingg, and Mark H Carpenter.
High-Order, Entropy-Stable Discretizations of the Euler Equations for Complex Geometries. In 23rd
AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics,
2017.

[43] Tianheng Chen and Chi-Wang Shu. Review of entropy stable discontinuous Galerkin methods for
systems of conservation laws on unstructured simplex meshes, 2019. Accessed July 25, 2019.

[44] Siavosh Shadpey and David W Zingg. Energy-and Entropy-Stable Multidimensional Summation-by-
Parts Discretizations on Non-Conforming Grids. In AIAA Aviation 2019 Forum, page 3204, 2019.

[45] Ulrik S Fjordholm, Siddhartha Mishra, and Eitan Tadmor. Well-balanced and energy stable schemes
for the shallow water equations with discontinuous topography. Journal of Computational Physics,
230(14):5587–5609, 2011.

[46] Niklas Wintermeyer, Andrew R Winters, Gregor J Gassner, and David A Kopriva. An entropy stable
nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured
curvilinear meshes with discontinuous bathymetry. Journal of Computational Physics, 340:200–242,
2017.

[47] Praveen Chandrashekar. Kinetic energy preserving and entropy stable finite volume schemes for com-
pressible Euler and Navier-Stokes equations. Communications in Computational Physics, 14(5):1252–
1286, 2013.

[48] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environments. arXiv e-prints, Aug
2016.

[49] Christopher Rackauckas and Qing Nie. Differentialequations.jl–a performant and feature-rich ecosystem
for solving differential equations in Julia. Journal of Open Research Software, 5(1), 2017.

[50] Jesse Chan and Lucas C Wilcox. Discretely entropy stable weight-adjusted discontinuous Galerkin
methods on curvilinear meshes. Journal of Computational Physics, 378:366 – 393, 2019.

[51] Jason E Hicken, David C Del Rey Fernández, and David W Zingg. Multidimensional summation-
by-parts operators: general theory and application to simplex elements. SIAM Journal on Scientific
Computing, 38(4):A1935–A1958, 2016.

[52] PD Thomas and CK Lombard. Geometric conservation law and its application to flow computations
on moving grids. AIAA journal, 17(10):1030–1037, 1979.

19

[53] Robert PK Chan and Angela YJ Tsai. On explicit two-derivative Runge-Kutta methods. Numerical
Algorithms, 53(2-3):171–194, 2010.

[54] Andrew J Christlieb, Sigal Gottlieb, Zachary Grant, and David C Seal. Explicit strong stability preserv-
ing multistage two-derivative time-stepping schemes. Journal of Scientific Computing, 68(3):914–942,
2016.

[55] T Warburton and Jan S Hesthaven. On the constants in hp-finite element trace inverse inequalities.
Computer methods in applied mechanics and engineering, 192(25):2765–2773, 2003.

[56] Jesse Chan, Zheng Wang, Axel Modave, Jean-Francois Remacle, and T Warburton. GPU-accelerated
discontinuous Galerkin methods on hybrid meshes. Journal of Computational Physics, 318:142–168,
2016.

[57] H Xiao and Zydrunas Gimbutas. A numerical algorithm for the construction of efficient quadrature
rules in two and higher dimensions. Comput. Math. Appl., 59:663–676, 2010.

[58] Timothy J Barth. Numerical methods for gasdynamic systems on unstructured meshes. In An intro-
duction to recent developments in theory and numerics for conservation laws, pages 195–285. Springer,
1999.

[59] Hendrik Ranocha. Comparison of some entropy conservative numerical fluxes for the Euler equations.
Journal of Scientific Computing, 76(1):216–242, 2018.

Appendix A. Higher-dimensional domains and curved elements

The generalization to higher dimensional domains and curved geometric mappings is straightforward,
but notationally more complicated. The construction of skew-symmetric SBP matrices on curved meshes
follows from approaches detailed in [9, 11, 12, 50, 36, 35, 19], which are summarized here.

Let x, x̂ ∈ R
d denote d-dimensional physical and reference coordinates, respectively. Let Q̂j denote the

reference SBP operator corresponding to differentiation with respect to x̂j which satisfies the SBP property
(5). This operator can be constructed any number of ways: using the tensor product of 1D SBP operators
[9], multi-dimensional SBP operators [51], or hybridized SBP operators [12, 35]. Consider now a curved
element Dk which is the image of a reference element under some differentiable mapping such that for
x ∈ Dk, x = Φ(x̂). Then, derivatives with respect to physical coordinates can be computed via the chain

rule ∂u
∂xi

=
∑d

j=1
∂u
∂x̂j

∂x̂j

∂xi
. For geometric terms which satisfy a discrete geometric conservation law (GCL)

[52, 11, 50], we can further manipulate the chain rule to show that

∂u

∂xi
=

1

2

d∑

j=1

(
∂u

∂x̂j

∂x̂j
∂xi

+
∂

∂x̂j

(
u
∂x̂j
∂xi

))
.

We will construct a physical SBP operator by mimicking this form of the chain rule. Let J denote the

determinant of the Jacobian of Φ. Define the scaled geometric terms gij = J
∂x̂j

∂xi
, and let gij denote the

vector containing values of gij evaluated at nodal points. Define the physical SBP operator Qi as

Qi =
1

2

d∑

j=1

(
diag

(
gij

)
Q̂j + Q̂jdiag

(
gij

))
.

Then, one can show (using relationships between geometric terms gij and reference/physical normals) that

Qi satisfies a physical SBP property Qi + QT
i = Bi, where Bi is a diagonal matrix whose entries consist

of values (at face nodes) of the ith component of the outward normal scaled by the surface Jacobian and
surface quadrature weights [11, 50]. Given connectivity maps between face nodes on different elements, the
physical SBP operators Qi and Bi can then be used to construct global SBP operators analogous to (8) in
two and three dimensions.

20

10−3.5 10−3
10−21

10−16

10−11

10−6

10−1

Time-step dt

L
2
er
ro
rs

TDRK-1

TDRK-2

TDRK-3

RK-45

(a) Burgers’ equation

10−4.5 10−4 10−3.5
10−21

10−16

10−11

10−6

10−1

Time-step dt

L
2
er
ro
rs

TDRK-1

TDRK-2

TDRK-3

RK-45

(b) Shallow water equations

Figure B.2: L2 errors for manufactured solutions of the Burgers and shallow water equations for three TDRK schemes under
various time-step sizes. Errors for RK-45 are also included for reference.

Appendix B. Two-derivative time-stepping methods

Consider a general system of ODEs
du

dt
= f(u).

Two-derivative explicit time-stepping methods are constructed based on the assumption that second deriva-
tives of u in time are available [53, 54]. The resulting schemes can achieve higher order accuracy with fewer
stages and function evaluations compared to standard Runge-Kutta methods.

Let g(u) denote the second derivative of u in time

g(u) =
d2u

dt2
=

d

dt
f(u) =

∂f

∂u

du

dt
=
∂f

∂u
f(u),

where we have used the chain rule in the final step. The simplest two-derivative Runge-Kutta method is the
one-stage second order scheme [53]

uk+1 = uk +∆tf(uk) +
∆t2

2
g(uk),

where uk denotes the solution at the kth time-step. We examine the one-stage, two-stage, and three-stage
two-derivative Runge Kutta given in [53], which we refer to as TDRK-1, TDRK-2, TDRK-3.4 These schemes
are second, fourth, and fifth order accurate, respectively. We also provide reference results using a low-storage
4th order 5-stage Runge-Kutta method (RK-45).

We examine the performance of two-derivative time-stepping methods for the one-dimensional Burgers’
and shallow water equations using an entropy conservative and entropy stable spectral (Lobatto) collocation
method of degree N = 40 on a single periodic domain [−1, 1]. For the entropy stable scheme, we apply a
local Lax-Friedrichs penalty at the boundaries to produce entropy dissipation. We compute L2 errors for a

4Five different three-stage schemes are presented in [53]. We use the scheme corresponding to free parameter c3 = 2/3,
which the authors report as the best performing three-stage scheme.

21

dt/dt0 1/2 1/4 1/8 1/16
TDRK-1 1.997 1.999 2.000 2.000
TDRK-2 3.999 4.000 4.000 4.000
TDRK-3 6.006 5.993 5.916 4.842

(a) Burgers equation

dt/dt0 1/2 1/4 1/8 1/16
TDRK-1 2.620 2.003 2.001 2.001
TDRK-2 4.002 4.001 4.001 4.000
TDRK-3 4.998 3.757 -2.193

(b) Shallow water equation

Table B.3: Computed rates of convergence with respect to dt for different TDRK schemes (dt0 denotes the initial time-step).
Italicized numbers denote rates which are likely affected by numerical roundoff.

0 1 2 3 4 5
−1.5

−1

−0.5

0

·10−2

Time

S
(t
)
−
S
(0
)

TDRK-2 (EC)

RK-45 (EC)

TDRK-2 (ES)

RK-45 (ES)

(a) Burgers’ equation

0 1 2 3 4 5
−1.5

−1

−0.5

0

·10−2

Time

S
(t
)
−
S
(0
)

TDRK-2 (EC)

RK-45 (EC)

TDRK-2 (ES)

RK-45 (ES)

(b) Shallow water equations

Figure B.3: Evolution of entropy over time for TDRK-2 and RK-45 schemes using both entropy conservative (EC) and entropy
stable (ES) spectral collocation formulations of the Burgers’ and shallow water equations.

manufactured solution where all solution components have the form sin(kt) sin(πx) with k = 100. TDRK
methods also require derivatives of source terms f(x, t) associated with manufactured solutions, which we
compute analytically.

Figure B.2 plots L2 errors (computed using a higher accuracy Gaussian quadrature rule at final time
T = 5) against the time-step size, while Table B.3 shows computed rates of convergence for each TDRK
scheme. We observe that all except one TDRK scheme achieves the expected rate of convergence up until
the point at which errors are affected by numerical roundoff. The outlier is the TDRK-3 scheme, which
converges at the expected rate of O(dt5) for the shallow water equations, but achieves a higher O(dt6) rate
of convergence for the Burgers’ equation. We also observe that the 4th order RK-45 scheme is slightly more
accurate than the 4th order TDRK-2 scheme. As noted in [53], the 2-stage TDRK-2 scheme requires only
one evaluation of f(u) and two evaluations of g(u). However, when g(u) is computed using a Jacobian-vector
product, this corresponds to two evaluations of f(u) and two Jacobian-vector products. Because evaluating
Jacobian-vector products are at least as expensive as evaluating f(u), it is not clear that the TDRK-2 scheme
would be more efficient than either RK-45 or the standard 4-stage 4th order Runge-Kutta method in practice.

Finally, we plot the integrated entropy S(t) =
∫
Ω
S(u) dx over time in Figure B.3. For Burgers’ equation,

we do not observe significant differences in the entropy dissipation for TDRK-2 and RK-45 schemes. For
the entropy conservative formulation of the shallow water equations, the TDRK-2 scheme produces slightly
more entropy dissipation than RK-45; however, both two schemes produce similar entropy dissipation for
the entropy stable formulation.

22

Appendix C. Time-implicit discretizations on triangular meshes

Jacobian matrices also appear in time-implicit discretizations of nonlinear ODEs. Consider the implicit
midpoint rule

uk+1 = uk −∆tr

(
uk+1 + uk

2

)
.

This can be rewritten in the following form where uk+1/2 = uk+1+uk

2

uk+1/2 = uk − ∆t

2
r
(
uk+1/2

)

uk+1 = 2uk+1/2 − uk.

Solving for uk+1/2 is a nonlinear equation and can be done via Newton’s method

uk+1/2,`+1 = uk+1/2,` −
(
I+

∆t

2

∂r

∂u

∣∣∣∣
uk+1/2,`

)
−1(

uk+1/2,` +
∆t

2
r
(
uk+1/2,`

)
− uk

)
.

where ` denotes the Newton iteration index.
All linear systems are solved using Julia’s sparse direct solver. We utilize a relative tolerance of 1e− 11

for the Newton iteration, and determine the time-step ∆t using the following estimate

∆t = CFL× hmin

CN
, CN =

(N + 1)(N + 2)

2
,

where CFL is the CFL constant, hmin is the size of the smallest element in the mesh, and CN is the N -
dependent trace constant for a degree N polynomial space on the reference triangle [55].5

Appendix C.0.1. 2D Burgers’ equation

We consider energy conservative and energy stable discretizations of 2D Burgers’ equation

∂u

∂t
+

1

2

∂u2

∂x
= 0

with periodic boundary conditions on the domain [−1, 1]2. For the initial condition u(x, 0) = − sin(πx), the
solution forms a shock around T = 1/2.

We discretize the Burgers’ equation using an energy conservative (or stable) scheme in space [12, 35] and
an implicit midpoint discretization in time. The spatial discretization utilizes a degree N polynomial space,
degree 2N volume quadrature, and an (N + 1)-point Gauss quadrature for faces. An energy stable scheme
is constructed by adding a local Lax-Friedrichs penalization term, −λ

2 JuK, to the energy conservative flux
contribution, where λ = max (|u+| , |u|) is the maximum wavespeed at an interface. We utilize both uniform
and “squeezed” triangular meshes with very small elements (see Figure C.4). This mesh is constructed by
taking the x-coordinate xi of vertices in a uniform triangular mesh (constructed by bisecting each element
in a uniform mesh quadrilateral mesh) and transforming them via xi − .3 sin(πxi) to produce a new mesh.

Since the implicit midpoint rule is a symplectic integrator, we expect energy to be conserved up to
machine precision for an energy conservative scheme. We set the initial condition randomly, remove the
Lax-Friedrichs penalization, and run until time T = 1 using a CFL of 10 on both uniform and squeezed 8×8
meshes with N = 2. For the uniform mesh, the total change in energy was −2.665e − 15. The squeezed
mesh behaved similarly, with a total change in energy of 3.553e− 15.

Next, we add local Lax-Friedrichs dissipation and run with the initial condition − sin(πx) until time
T = 1 using a CFL of 250. Figure C.4 shows solutions for both cases. In each case, oscillations appear in a

5Trace constants CN for other element types are derived in [56].

23

(a) Uniform mesh (b) Solution on a uniform mesh

(c) Anisotropic mesh (d) Solution on an anisotropic mesh

Figure C.4: N = 2 solutions of Burgers’ equation at T = 1 on uniform and anisotropic “squeezed” 16× 16 meshes.

24

one-element vicinity around the shock. For both meshes, the Newton iteration converges in between 4 and
7 iterations. We note that for an entropy conservative scheme with a randomly generated initial condition,
increasing the CFL further resulted in non-convergence of the Newton iteration. However, either switching
to the initial condition u(x, y, 0) = − sin(πx) or adding local Lax-Friedrichs dissipation avoids stalling of the
Newton iteration.

Appendix C.0.2. 2D compressible Euler equations

Finally, we consider a time-implicit discretization of the 2D compressible Euler equations

∂ρ

∂t
+
∂ (ρu)

∂x1
+
∂ (ρv)

∂x2
= 0,

∂ρu

∂t
+
∂
(
ρu2 + p

)

∂x1
+
∂ (ρuv)

∂x2
= 0,

∂ρv

∂t
+
∂ (ρuv)

∂x1
+
∂
(
ρv2 + p

)

∂x2
= 0,

∂E

∂t
+
∂ (u(E + p))

∂x1
+
∂ (v(E + p))

∂x2
= 0,

Here, γ = 1.4, and p = (γ − 1)ρe is the pressure, where ρe = E − 1
2ρ(u

2 + v2) is the specific internal energy.
We construct a scheme which is stable with respect to the unique entropy for the compressible Navier-Stokes
equations [5]

S(u) = − ρs

γ − 1
, u = [ρ, ρu, ρv, E]

T
,

where s = log
(

p
ργ

)
denotes the specific entropy. Mappings between conservative variables u and entropy

variables v = {v1, v2, v3, v4} in two dimensions are given by

v1 =
ρe(γ + 1− s)− E

ρe
, v2 =

ρu

ρe
, v3 =

ρv

ρe
, v4 = − ρ

ρe

ρ = −(ρe)v4, ρu = (ρe)v2, ρv = (ρe)v3, E = (ρe)

(
1− v22 + v23

2v4

)
,

where ρe and s can be expressed in terms of the entropy variables as

ρe =

(
(γ − 1)

(−v4)γ
)1/(γ−1)

e
−s
γ−1 , s = γ − v1 +

v22 + v23
2v4

.

We utilize the entropy conservative and kinetic energy preserving finite volume fluxes derived in [47], and
apply entropy dissipation by adding a local Lax-Friedrichs penalization term, −λ

2 JuK [6, 50]. We compute

at each point on an interface the local wavespeed a = |u · n|+ c, where c =
√
γρ/p is the sound speed and

u ·n is the normal velocity. The local Lax-Friedrichs parameter is then computed via λ =
√

(a+)2+a2

2 , where

a+, a are computed using the interior and exterior solution states, respectively.
We employ an entropy stable modal DG formulation from [50] on triangles using total degree N poly-

nomials. The surface quadrature is constructed using 1D (N + 1) point Gauss quadrature rules on each
face and we use a volume quadrature [57] which is exact for degree 2N polynomials. Since this is a non-
collocated formulation, we need the change of variables matrices ∂u

∂v ,
∂v
∂u to evaluate (19). These matrices

25

can be computed using automatic differentiation or using the explicit formulas [58]

∂u

∂v
=




ρ ρu ρv E
ρu ρu2 + p ρuv ρuH
ρv ρuv ρv2 + p ρvH
E ρuH ρvH ρH2 − c2 p

γ−1


 ,

∂v

∂u
= − 1

ρev4




γ + k2 kv2 kv3 (k + 1)v4
kv2 v22 − v4 v2v3 v2v4
kv3 v2v3 v23 − v4 v3v4

(k + 1)v4 v2v4 v3v4 v24




where c is the sound speed, H = c2/(γ − 1) + 1
2 (u

2 + v2) is the enthalpy, and k = 1
2 (v

2
2 + v23)/v4.

There exist several choices for entropy conservative fluxes [24, 59, 47]. We utilize the the entropy conser-
vative numerical fluxes given by Chandrashekar in [47]

f11,S(uL,uR) = {{ρ}}log {{u}} , f12,S(uL,uR) = {{ρ}}log {{v}} ,
f21,S(uL,uR) = f11,S {{u}}+ pavg, f22,S(uL,uR) = f12,S {{u}} ,
f31,S(uL,uR) = f22,S , f32,S(uL,uR) = f12,S {{v}}+ pavg,

f41,S(uL,uR) = (Eavg + pavg) {{u}} , f42,S(uL,uR) = (Eavg + pavg) {{v}} ,

where the quantities pavg, Eavg, ‖u‖2avg are defined as

pavg =
{{ρ}}
2 {{β}} , Eavg =

{{ρ}}log

2 {{β}}log (γ − 1)
+

‖u‖2avg
2

, β =
ρ

2p
,

‖u‖2avg = 2({{u}}2 + {{v}}2)−
({{

u2
}}

+
{{
v2
}})

= u+u+ v+v,

where {{u}} = 1
2 (u

+ + u), where u+, u denotes the exterior and interior states across the interface of an
element Dk.

Let S(t) =
∫
Ω
S(u(x, t)) denote the total entropy in the domain Ω, where the integral is approximated

using the same quadrature rule used to construct the DG mass matrix over each element. We begin by
checking the change in entropy S(t)−S(0) for an entropy conservative formulation. We utilize a discontinuous
initial condition

ρ =

{
1.1 −.5 ≤ x, y ≤ .5

1 otherwise
, u, v = 0, E = ργ .

A triangular mesh is constructed by bisecting each element in a uniform mesh of 8×8 quadrilaterals, and the
solution is evolved until final time T = 10. Figure C.5 shows the results for N = 2 and N = 3 for CFL = 1

4
and CFL = 1

8 . We observe that halving the CFL reduces the change in entropy by a factor of 4, which
corresponds to the second order time accuracy of the implicit midpoint rule. We also check the entropy
dissipation for different CFL numbers in Figure C.6. Both N = 2 and N = 3 display similar results, with
dissipation decreasing as the CFL increases. We also note that the number of Newton iterations remains
relatively constant for different time-step sizes: for CFL = .1, Newton converged in 3 − 4 iterations, for
CFL = 1, Newton converged in 4 − 5 iterations, and for CFL = 10, Newton converged in 5 − 6 iterations.
We also tried CFL = 100 over a longer time period, for which Newton also converged in 5 − 6 iterations.
However, for initial conditions with sufficiently large variations, Newton did not converge for CFL = 100.

Finally, we examine the behavior of the implicit midpoint method with respect to variations in element
size. We use the isentropic vortex analytic solution (centered at x = 0, y = 5) on the domain [−5, 5]× [0, 20].
We compute the L2 error at time T = 5 for a uniform and “squeezed” anisotropic triangular mesh, both of
which are constructed by bisecting each element of a uniform 24× 16 quadrilateral mesh. Both cases use a
degree N = 3 approximation and time-step of dt = .1, and Figure C.7 shows both DG solutions with the

26

0 2 4 6 8 10

−1

−0.5

0

0.5

1

·10−7

Time

S
(t
)
−
S
(0
)

CFL = 1
4

CFL = 1
8

(a) N = 2

0 2 4 6 8 10

−1

−0.5

0

0.5

1

·10−7

Time

S
(t
)
−
S
(0
)

CFL = 1
4

CFL = 1
8

(b) N = 3

Figure C.5: Change in entropy over time for entropy conservative formulations of the compressible Euler equations and the
implicit midpoint method.

0 1 2 3 4 5

−3

−2

−1

0

·10−4

Time

S
(t
)
−
S
(0
)

CFL = 1
10

CFL = 1

CFL = 10

(a) N = 2

0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

·10−4

Time

S
(t
)
−
S
(0
)

CFL = 1
10

CFL = 1

CFL = 10

(b) N = 3

Figure C.6: Change in entropy over time for entropy stable formulations of the compressible Euler equations and the implicit
midpoint method.

27

(a) Uniform mesh (b) Anisotropic mesh

Figure C.7: Isentropic vortex solutions at time T = 5 for N = 3 and dt = .1 on both uniform and “squeezed” anisotropic
triangular meshes.

mesh overlaid. The L2 errors for the isentropic vortex are 0.0901 and 0.0935 on the uniform and “squeezed”
meshes, respectively, suggesting that implicit entropy stable formulations robustly handle settings where the
maximum stable time-step for explicit methods is restricted by minimum element size.

28

	Introduction
	On notation

	Jacobian matrix formulas for entropy conservative schemes
	Computing derivatives of bivariate flux functions

	Examples of discretization matrices which appear in entropy conservative numerical schemes
	Finite volume methods
	Multi-block summation-by-parts finite differences and discontinuous Galerkin spectral element methods
	redNon-periodic boundary conditions

	Systems of conservation laws
	Extension to entropy stable (dissipative) schemes
	Scalar dissipative fluxes
	Vector-valued dissipative fluxes

	Non-collocated schemes: hybridized SBP operators, entropy projection, over-integration
	``Modal'' entropy conservative schemes
	Jacobian matrices for modal entropy stable schemes

	Numerical experiments
	blueVerification of Jacobian formulas
	Comparisons of computational cost

	Conclusion
	Acknowledgments
	redHigher-dimensional domains and curved elements
	Two-derivative time-stepping methods
	Time-implicit discretizations on triangular meshes
	2D Burgers' equation
	2D compressible Euler equations

