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ABSTRACT

High order entropy stable schemes provide improved robustness for computational simulations

of fluid flows. However, additional stabilization and positivity preserving limiting can still be

required for variable-density flows with under-resolved features. We demonstrate numerically that

entropy stable DG methods which incorporate an “entropy projection” are less likely to require

additional limiting to retain positivity for certain types of flows. We conclude by investigating

potential explanations for this observed improvement in robustness.
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1 INTRODUCTION

Discontinuous Galerkin (DG) schemes have received interest within computational fluid dynamics (CFD)

due to their high order accuracy and ability to handle unstructured curved meshes. In particular, there has

been interest in DG methods for simulations of under-resolved flows [1, 2, 3, 4, 5]. Among such schemes,

“entropy stable” DG methods based on a “flux differencing” formulation have received interest due to their

robustness with respect to shocks and turbulence [6, 7, 8, 9].

Entropy conservative and entropy stable flux differencing schemes were originally formulated for finite

difference methods in [10, 11]. They were extended to tensor product grids using discontinuous spectral

collocation schemes (also known as discontinuous Galerkin spectral element methods, or DGSEM)

[12, 13]. Entropy stable collocation schemes were extended to simplicial meshes in [14, 15] using multi-

dimensional summation-by-parts (SBP) operators [16]. Non-collocation entropy stable schemes have also

been developed. These schemes began with staggered grid schemes on tensor product grids in [17], which

were later extended to simplicial elements in [18]. “Modal” entropy stable DG formulations [19, 20, 21]

have been utilized to construct a variety of new entropy stable schemes, including Gauss DG methods

[22, 23] and reduced order models [24]. We note that under appropriate choices of quadrature, these

“modal” formulations reduce to collocation-type entropy stable schemes. Entropy stable schemes have since
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been extended to an even wider array of discretizations, such as line DG methods, discontinuous Galerkin

difference methods, and C0 continuous discretizations [25, 26, 27].

The main difference between non-collocation and collocation-type entropy stable schemes is the use

of transformations between conservative variables and entropy variables together with projection or

prolongation operators to facilitate a discrete proof of entropy stability. This is referred to as the “entropy

projection” in [19, 25] and as the interpolation or prolongation of entropy variables in [17, 27]. This

approach is also equivalent to the mixed formulation of [28]. We will refer to this transformation as the

“entropy projection” for the remainder of the paper.

The motivation for introducing the entropy projection has been to enable the use of more accurate

quadrature rules or novel basis functions. This has been at the cost of additional complexity and issues

related to the sensitivity of the entropy variables for near-vacuum states [19, 27]. To the best of the authors’

knowledge, no inherent advantages in using the entropy projection have been observed in the literature.

This paper focuses on the following observation: high order entropy stable schemes based on the entropy

projection appear to be more robust than entropy stable collocation schemes for two and three dimensional

simulations of under-resolved variable-density fluid flows with small-scale features.

The structure of the paper is as follows: Section 2 reviews mathematical formulations of entropy stable

schemes which involve the entropy projection. Section 3 documents the observed difference in robustness

for a variety of problems in two and three dimensions, and provides analysis and numerical experiments

which support that the primary difference between unstable and stable schemes is the entropy projection.

Section 4 conjectures potential explanations for why the entropy projection might improve robustness. We

conclude with Section 5, which explores potential applications towards under-resolved flow simulations.

2 FORMULATION OF HIGH ORDER ENTROPY STABLE DG SCHEMES

In this section, we provide a brief description of high order entropy stable schemes in 1D. More detailed

derivations, multi-dimensional formulations, and extensions to curved grids can be found in [14, 19, 22,

15, 24, 21].

The notation in this paper is motivated by notation in [15, 29]. Unless otherwise specified, vector and

matrix quantities are denoted using lower and upper case bold font, respectively. Spatially discrete quantities

are denoted using a bold sans serif font. Finally, the output of continuous functions evaluated over discrete

vectors is interpreted as a discrete vector.

For example, if x denotes a vector of point locations, i.e., (x)i = xi, then u(x) is interpreted as the vector

(u(x))i = u(xi).

Similarly, if u = u(x), then f(u) corresponds to the vector

(f(u))i = f(u(xi)).

Vector-valued functions are treated similarly. For example, given a vector-valued function f : Rn → R
n

and a vector of coordinates x, we adopt the convention that (f(x))i = f(xi).
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2.1 Conservation laws with entropy

In this section, we review the construction of entropy conservative and entropy stable schemes for a

one-dimensional system of nonlinear conservation laws

∂u

∂t
+
∂f(u)

∂x
= s(u),

where s(u) is a source term. We assume the domain is exactly represented by a uniform mesh consisting

of non-overlapping intervals Dk, and that the solution u(x) is approximated by degree N polynomials

over each element. We also introduce entropy conservative numerical fluxes fS(uL,uR) [30], which are

bivariate functions of “left” and “right” states uL,uR. In addition to being symmetric and consistent,

entropy conservative numerical fluxes satisfy an “entropy conservation” property

(vL − vR)
T
fS(uL,uR) = ψ(uL)− ψ(uR). (1)

Here, vL,vR are entropy variables evaluated at the left and right states, and ψ(u) denotes the “entropy

potential”. Examples of expressions for entropy variables and entropy potentials can be found in [14].

2.2 Collocation formulations

Degree N entropy stable collocation schemes are typically built from Legendre-Gauss-Lobatto (LGL)

quadrature rules with (N + 1) points. Let x,w denote vectors of quadrature points and weights on the

reference interval [−1, 1]. Let `i(x) denote Lagrange polynomials at LGL nodes, and let u denote the

vector of solution nodal values u(xi). Define the matrices

M = diag (w) , Qij =

∫ 1

−1

∂`j
∂x

`i dx,

B =

[
−1

1

]
, Vf =

[
1 . . . 0

0 . . . 1

]
.

Here Vf is a face interpolation or extraction matrix which maps from volume nodes to face nodes. Flux

derivatives are discretized using a “flux differencing” approach involving summation-by-parts (SBP)

operators and entropy conservative fluxes [30]. An entropy stable collocation formulation can now be

defined on an element Dk as follows:

hM
du

dt
+
((

Q−Q
T
)
◦ F

)
1+ V

T
f Bf

∗ = s(u), Fij = fS (ui,uj) , (2)

where h is the size of the element Dk and ◦ denotes the matrix Hadamard product [10, 11, 12].1 Here, f∗ is

a vector which contains numerical fluxes at the left and right endpoints of the interval

f
∗ =

[
f∗(u+1 ,u1)

f∗(uN+1,u
+
N+1)

]
,

1 Since the entries of F are vector-valued, the Hadamard product
(

Q−QT
)

◦ F should be understood as each scalar entry of
(

Q−QT
)

multiplying each

vector-valued entry of F.
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where u
+
1 ,u

+
N+1 denote exterior nodal values on neighboring elements. If f∗ is an entropy conservative

flux, then the resulting numerical method is semi-discretely entropy conservative. If f∗ is an entropy stable

flux (for example, Lax-Friedrichs flux, HLLC, and certain matrix penalizations [14, 31]) then the resulting

scheme also dissipates entropy.

2.3 “Modal” formulations

Degree N entropy stable “modal” DG schemes generalize collocation schemes to arbitrary choices of

quadrature. In one dimension, this allow for the use of higher accuracy volume quadratures. In higher

dimensions, modal formulations also enable more general choices of surface quadrature. These schemes

introduce an additional “entropy projection” step to facilitate the semi-discrete proof of entropy stability or

conservation.

We now assume the solution is represented using some arbitrary basis over each element, such that

u(x) =
∑

j ujφj(x). Let x,w now denote a general quadrature rule with positive quadrature weights. We

define quadrature-based interpolation matrices Vq,Vf , the mass matrix M, and the modal differentiation

matrix Q̂

(Vq)ij = φj(xi),
(
Vf

)
1j

= φj (−1) ,
(
Vf

)
2j

= φj (1) ,

M = V
T
q diag (w)Vq, Q̂ij =

∫ 1

−1

∂φj
∂x

φi dx.

We introduce the quadrature-based projection matrix Pq = M
−1

V
T
q diag (w). Using Pq and Q̂, we can

construct quadrature-based differentiation and extrapolation matrices Q, E

Q = P
T
q Q̂Pq, E = VfPq.

To accommodate general quadrature rules which may not include boundary points, we introduce hybridized

SBP operators Qh on the reference interval [−1, 1]

Qh =
1

2

[
Q− (Q)T E

T
B

−BE B

]
.

The use of such operators simplifies the implementation for general quadrature rules and nodal sets which

do not include boundary nodes [19, 32]. Next, we define Vh as the interpolation matrix to both volume and

surface quadrature points

Vh =

[
Vq

Vf

]
.

We also introduce the L2 projection of the entropy variables and the “entropy projected” conservative

variables ũ

v = Pqv (Vqu) , ũ = u (Vhv) ,

which are defined by evaluating the mapping from entropy to conservative variables using the projected

entropy variables. Note that the projected entropy variables v is a vector corresponding to modal coefficients,

while ũ corresponds to point values at volume and face quadrature points.
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An entropy stable modal DG discretization over a single element Dk is then

hM
du

dt
+ V

T
h

((
Qh −Q

T
h

)
◦ F

)
1+ V

T
f Bf

∗ = s(u), (3)

Fij = fS (ũi, ũj) , f
∗ =


 f

∗

(
ũ
+
1 , ũ1

)

f
∗

(
ũN+1, ũ

+
N+1

)

 .

Note that the right hand side formulation is evaluated not using the conservative variables u, but the

“entropy projected” conservative variables ũ.

While we have presented entropy stable DG schemes using a general “modal” DG framework, the

formulation reduces to existing methods under appropriate choices of quadrature and basis. For example,

specifying LGL quadrature on a tensor product element recovers entropy stable spectral collocation schemes

[22]. SBP discretizations without an underlying basis on simplices [16, 14, 15] can also be recovered for

appropriate quadrature rules by redefining the interpolation and projection matrices Vq,Pq [33].

3 NUMERICAL COMPARISONS OF COLLOCATION AND ENTROPY PROJECTION

SCHEMES

In this section, we will demonstrate numerically that a significant difference in robustness is observed

between collocation and entropy projection-based discretizations of the Euler and ideal MHD equations.

For the Euler equations, we study the Kelvin-Helmholtz, Rayleigh-Taylor, and Richtmeyer-Meshkov

instabilities, and for the MHD equations we study a magnetized Kelvin-Helmholtz instability. All of these

examples exhibit small-scale turbulent-like features. Moreover, we observe a difference in robustness

between entropy stable collocation and entropy projection-based methods independently of the polynomial

degrees, mesh resolutions, and type of mesh (e.g., quadrilateral or triangular). We focus on the following

entropy stable DG methods:

• On quadrilateral meshes:

1. DGSEM: collocation scheme based on the tensor product of one-dimensional (N + 1) point LGL

quadrature,

2. Gauss DG: a “collocation” scheme based on the tensor product of one-dimensional (N + 1) point

Gauss quadrature. The entropy projection is used to evaluate interface fluxes [22],

• On triangular meshes:

1. SBP: a collocation scheme based on multi-dimensional summation-by-parts finite difference

operators [16, 14],

2. Modal: a modal formulation utilizing quadrature rules which exactly integrate entries of the

volume and face mass matrices [19].

REMARK 1. It is known that the Kelvin-Helmholtz, Rayleigh-Taylor, and Richtmeyer-Meshkov

instabilities are notoriously sensitive to initial conditions and discretization parameters, and that numerical

schemes may not converge to a unique solution [34, 35]. Instead, this paper focuses on these problems as

stress tests of robustness.

Unless specified otherwise, all numerical experiments utilize a Lax-Friedrichs interface flux with Davis

wavespeed estimate [36]. We also experimented with HLL and HLLC surface fluxes, but did not notice a
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significant difference. We also note that instead of discontinuous initial conditions, we utilize smoothed

approximations for each problem considered here.

All experiments are also performed on uniform meshes. For triangular meshes, this mesh is constructed by

bisecting each element of a uniform quadrilateral mesh along the diagonal. Unless specified otherwise, all

results are produced using the Julia [37] simulation framework Trixi.jl [38, 39]. For most experiments, we

utilize an optimized adaptive 4th order 9-stage Runge-Kutta method [40] implemented in OrdinaryDiffEq.jl

[41]. The absolute and relative tolerances are set to 10−7 unless specified otherwise. Scripts generating

main results are included in a companion repository for reproducibility [42].

We note that the robustness, efficiency, and high order accuracy of both entropy stable DGSEM and

entropy stable Gauss DG schemes have been verified in previous works [7, 22, 8, 23, 9], and will not be

addressed in detail in this paper. However, the difference in robustness between the two methods has not

been previously observed in the literature, and will be the focus of this work.

3.1 Euler Equations of Gas Dynamics

We consider first the two and three-dimensional problems for the Euler equations of gas dynamics. The

conservative variables for the three-dimensional Euler equations are density, momentum, and total energy,

u = (ρ, ρv, E), where the vector v = (u, v, w) contains the velocities in x, y and z, respectively. The flux

reads

f(u) =




ρv

ρvvT + Ip

v

(
1
2ρ‖v‖2 +

γp
γ−1

)


 ,

where I is the 3× 3 identity matrix, γ is the heat capacity ratio, and p = (γ − 1)
(
E − ρ‖v‖2/2

)
is the gas

pressure. For two-dimensional problems, we neglect the third component of the velocity, w, and I becomes

the 2× 2 identity matrix.

All the following experiments use the entropy conservative and kinetic energy preserving flux of Ranocha

[43, 44]; however, similar results were observed when experimenting with the entropy conservative flux of

Chandrashekar [45].

3.1.1 Two dimensional Kelvin-Helmholtz instability

We perform additional experiments analyzing the robustness of entropy stable DGSEM and Gauss DG

for the Kelvin-Helmholtz instability. The domain is [−1, 1]2 with initial condition from [46]:

ρ =
1

2
+

3

4
B, p = 1,

u =
1

2
(B − 1), v =

1

10
sin (2πx) , (4)

where B(x, y) is a smoothed approximation to a discontinuous step function

B(x, y) = tanh(15y + 7.5)− tanh(15y − 7.5). (5)

Each solver is run until final time Tfinal = 15. As can be observed in Figure 1, the solution differs

significantly between the N = 3 and N = 7 simulations. This is likely a consequence of the well-known

sensitivity of the Kelvin-Helmholtz instability to small perturbations and numerical resolutions [34, 35].

6





Chan et al. On the entropy projection and robustness of entropy stable DG

Solver

Degree
1 2 3 4 5 6 7

Collocation 15 4.807 3.769 4.433 3.737 3.369 3.642

Entropy projection 15 15 15 15 15 15 15

KHI, quadrilateral mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6 7

Collocation 15 4.116 3.652 4.266 3.54 3.663 3.556

Entropy projection 15 15 15 15 15 15 15

KHI, quadrilateral mesh, Ncells = 32

Solver

Degree
1 2 3 4 5 6

Collocation 15 3.984 3.441 2.993 2.943 3.128

Entropy projection 15 15 15 15 15 15

KHI, triangular mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6

Collocation 3.919 3.452 3.191 2.958 3.063 3.269

Entropy projection 15 15 15 15 15 15

KHI, triangular mesh, Ncells = 32

Table 1. End time for simulations of the Kelvin-Helmholtz instability on quadrilateral and triangular
meshes. On quadrilateral meshes, “collocation” refers to a nodal DGSEM discretization, while “entropy
projection” refers to a method based on Gauss nodes. On triangular meshes, “collocation” refers to nodal
SBP discretization, while “entropy projection” refers to a modal entropy stable DG method. Times colored
blue correspond to simulations which did not crash and ran to completion, while times colored red denote
simulations which did crash.

3.1.3 Two dimensional Richtmeyer-Meshkov instability

The Richtmeyer-Meshkov instability generates small-scale flow features by passing a shock over a

stratified fluid [47, 51]. The domain for this setup is [0, 40/3]× [0, 40], and the initial density and pressure

are given by

ρ = d1, 1
4

(
y −

(
18 + 2 cos

(
6πx

L

)))
+ d3.22,0 (|y − 4| − 2) ,

p = d4.9,1 (|y − 4| − 2) ,

where we again set the slope s = 15. The initial velocities are both set to zero, i.e., u, v = 0. We

approximate the discontinuous initial condition using smoothed Heaviside functions with a slope of s = 2
due to the size of the domain. Reflective wall boundary conditions are imposed everywhere. Figure 3 shows

pseudocolor plots of the density using a degree N = 3 entropy stable Gauss DG on a uniform mesh of

32× 96 quadrilateral elements.
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Solver

Degree
1 2 3 4 5 6 7

Collocation 3.674 3.44 3.332 3.257 3.106 3.034 3.044

Entropy projection 15 15 15 15 15 15 15

RTI, quadrilateral mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6 7

Collocation 3.996 3.144 3.44 3.155 3.031 2.972 2.976

Entropy projection 15 15 15 15 15 15 15

RTI, quadrilateral mesh, Ncells = 32

Solver

Degree
1 2 3 4 5 6

Collocation 4.297 2.87 3.238 3.229 2.927 2.881

Entropy projection 15 15 15 15 15 15

RTI, triangular mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6

Collocation 3.6 2.896 3.197 3.227 3.032 2.778

Entropy projection 15 15 15 15 15 15

RTI, triangular mesh, Ncells = 32

Table 2. End time for simulations of the Rayleigh-Taylor instability on quadrilateral and triangular meshes.
On quadrilateral meshes, “collocation” refers to a nodal DGSEM discretization, while “entropy projection”
refers to a method based on Gauss nodes. On triangular meshes, “collocation” refers to nodal SBP
discretization, while “entropy projection” refers to a modal entropy stable DG method. Times colored
blue correspond to simulations which did not crash and ran to completion, while times colored red denote
simulations which did crash.

3.2 Ideal GLM-MHD Equations

Next, we consider the ideal GLM-MHD equations. These equations use generalized Lagrange multiplier

(GLM) technique to evolve towards a solution that bounds the magnetic field divergence. When the

magnetic field divergence is non-zero, the GLM-MHD system requires the use of non-conservative terms

to achieve entropy stability and to ensure Galilean invariance in the divergence cleaning technique.

The non-conservative GLM-MHD system without source terms reads

∂u

∂t
+∇ · f(u) +Υ = 0, (6)

where the state variables are density, momentum, total energy, magnetic field, and the the so-called

divergence-correcting field, u = (ρ, ρv, E,B, ψ), and the vectors v = (u, v, w) and B = (B1, B2, B3)

10
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Solver

Degree
1 2 3 4 5 6 7

Collocation 30 30 27.96 24.94 8.851 8.853 8.85

Entropy projection 30 30 30 30 30 30 30

RMI, quadrilateral mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6 7

Collocation 30 25.52 23.34 8.759 7.808 7.014 7.01

Entropy projection 30 30 30 30 30 30 30

RMI, quadrilateral mesh, Ncells = 32

Solver

Degree
1 2 3 4 5 6

Collocation 30 22.8 21.52 15.13 8.841 7.239

Entropy projection 30 30 30 30 30 30

RMI, triangular mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6

Collocation 30 23.84 23.63 8.752 7.582 3.946

Entropy projection 30 30 30 30 30 30

RMI, triangular mesh, Ncells = 32

Table 3. End time for simulations of the Richtmeyer-Meshkov instability on quadrilateral and triangular
meshes. On quadrilateral meshes, “collocation” refers to a nodal DGSEM discretization, while “entropy
projection” refers to a method based on Gauss nodes. On triangular meshes, “collocation” refers to nodal
SBP discretization, while “entropy projection” refers to a modal entropy stable DG method. Times colored
blue correspond to simulations which did not crash and ran to completion, while times colored red denote
simulations which did crash.

Solver

Degree
1 2 3 4 5 6 7

Collocation 10 2.73 2.111 1.978 2.059 1.797 1.893

Entropy projection 10 10 10 10 10 10 10

3D KHI, Ncells = 16

Solver

Degree
1 2 3 4 5 6 7

Collocation 4.049 2.451 2.061 1.721 2.071 1.973 1.952

Entropy projection 10 10 10 10 10 10 10

3D KHI, Ncells = 32

Table 4. End time for simulations of the 3D Kelvin-Helmholtz instability on hexahedral meshes.
“Collocation” refers to a nodal DGSEM discretization, while “entropy projection” refers to a method
based on Gauss nodes. Times colored blue correspond to simulations which did not crash and ran to
completion, while times colored red denote simulations which did crash.
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the new terms read

Fij = fS (ui,uj) +Φ
� (ui,uj) , f

∗ =

[
f
∗
(
u
+
1 ,u1

)
+Φ

�
(
u
+
1 ,u1

)

f
∗
(
uN+1,u

+
N+1

)
+Φ

�
(
uN+1,u

+
N+1

)
]
. (8)

and in the modal formulation they read

Fij = fS (ũi, ũj) +Φ
� (ũi, ũj) , f

∗ =


 f

∗

(
ũ
+
1 , ũ1

)
+Φ

�

(
ũ
+
1 , ũ1

)

f
∗

(
ũN+1, ũ

+
N+1

)
+Φ

�

(
ũN+1, ũ

+
N+1

)

 . (9)

In addition to the symmetric two-point flux fS , we use a non-symmetric two-point term Φ
� to account

for the non-conservative term in the equation. The following experiment uses the non-conservative term

presented by Rueda-Ramı́rez et al. [53] and the entropy conservative flux of Hindenlang and Gassner

[54], which is a natural extension of the entropy conservative, kinetic energy preserving, and pressure

equilibrium preserving Euler flux of Ranocha [43, 44] to the GLM-MHD system.

3.2.1 Two dimensional magnetized Kelvin-Helmholtz instability

To test the robustness of entropy projection schemes for the GLM-MHD system, we propose a

modification of the Euler two-dimensional Kelvin-Helmholtz instability of Section 3.1.1. The domain is

[−1, 1]2 with the initial condition:

ρ =
1

2
+

3

4
B, p = 1, ψ = 0,

u =
1

2
(B − 1), v =

1

10
sin (2πx) , w = 0,

B1 = 0, B2 = 0.125, B3 = 0, (10)

where B(x, y) is as defined in (5). Each solver is run until final time Tfinal = 15.

For this example, we set ch as the maximum wave speed in the domain for the initial condition (10) and

keep it constant throughout the simulation. This standard way of selecting ch has been shown to control the

divergence error efficiently without affecting the time-step size [52, 55]. We observed that smaller values

of ch affect the robustness of the schemes for this problem, and higher values of ch increase the stiffness of

the problem which can also lead to a crash if the tolerance for the adaptive time-stepping method is set too

loosely.

Figure 4 shows pseudocolor plots of the density at T = 10 for the magnetized Kelvin-Helmholtz

instability problem obtained with the entropy stable Gauss DG using polynomial degrees N = 3 and

N = 7 on uniform meshes of 64× 64 and 32× 32 quadrilateral elements, respectively. A comparison with

Figure 1 shows that the addition of a vertical magnetic field extends the flow features in the y direction and

suppresses many of the vortical structures at T = 10. MHD turbulence eventually develops in the domain

after T = 10, which leads to later crash times for this example.

3.3 Overview of results

Tables 1, 2, 3 and 5 show what time the solver ran until for each solver on both quadrilateral and triangular

meshes. We observe the pattern that, for degree N > 1, entropy stable methods which utilize the entropy

13
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Density for entropy stable Gauss DG at time T = 10
(degree N = 3 and a 64× 64 mesh).

Density for entropy stable Gauss DG at time T = 10
(degree N = 7 and a 32× 32 mesh).

1

Figure 4. Snapshots of density for the magnetized Kelvin-Helmholtz instability using an entropy stable
Gauss DG scheme on uniform quadrilateral meshes.

projection appear be more robust than collocation-type schemes. Moreover, this pattern appears to hold

independently of the polynomial degree and mesh size.

3.4 Dependence of robustness on Atwood number

While the numerical results in the previous section indicate a difference between different entropy stable

schemes, they do not provide insight into why and when this difference in robustness manifests. The goal

of this section is to establish a relationship between robustness, the Atwood number (a measure of the

density contrast), and the use of the “entropy projection” in an entropy stable scheme. We restrict our focus

to the Kelvin-Helmholtz instability for this section.

The results presented so far are somewhat unexpected, as the robustness of high order entropy stable

DG schemes has been documented for a variety of flows where shocks and turbulent features are present

[13, 7, 8, 9]. In this section, we conjecture that the documented differences in robustness are due to the

presence of both small-scale under-resolved features and significant variations in the density. For example,

entropy stable DGSEM methods are known to be very robust for the Taylor-Green vortex, where the density

is near-constant throughout the duration of the simulation.

We examine the connection between density contrast and robustness by parametrizing the initial condition

by the Atwood number. Given a stratified fluid with two densities ρ1, ρ2, the Atwood number is defined as

A =
ρ2 − ρ1
ρ1 + ρ2

∈ [0, 1),

where it is assumed that ρ2 ≥ ρ1. For a constant-density flow, A = 0, while A→ 1 indicates a flow with

very large density contrasts. We investigate the behavior of different entropy stable methods for a version

14
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Solver

Degree
1 2 3 4 5 6 7

Collocation 15 15 11.503 10.988 10.315 10.230 10.270

Entropy projection 15 15 15 15 15 15 15

MHD KHI, quadrilateral mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6 7

Collocation 15 11.639 11.048 11.111 11.483 10.169 10.919

Entropy projection 15 15 15 15 15 15 15

MHD KHI, quadrilateral mesh, Ncells = 32

Solver

Degree
1 2 3 4 5 6

Collocation 12.846 13.797 10.626 10.212 10.990 9.973

Entropy projection 15 15 15 15 15 15

MHD KHI, triangular mesh, Ncells = 16

Solver

Degree
1 2 3 4 5 6

Collocation 14.875 11.121 9.748 10.081 10.307 10.219

Entropy projection 15 15 15 15 15 15

MHD KHI, triangular mesh, Ncells = 32

Table 5. End time for simulations of the magnetized Kelvin-Helmholtz instability on quadrilateral and
triangular meshes. On quadrilateral meshes, “collocation” refers to a nodal DGSEM discretization, while
“entropy projection” refers to a method based on Gauss nodes. On triangular meshes, “collocation” refers
to nodal SBP discretization, while “entropy projection” refers to a modal entropy stable DG method. Times
colored blue correspond to simulations which did not crash and ran to completion, while times colored red
denote simulations which did crash.

of the Kelvin-Helmholtz instability parametrized by the Atwood number A:

ρ1 = 1 ρ2 = ρ1
1 + A

1− A

ρ = ρ1 +B(ρ2 − ρ1) p = 1

u = B − 1

2
v =

1

10
sin(2πx)

Figure 5 shows the crash times for the Kelvin-Helmholtz instability using various entropy stable solvers

at polynomial degrees 3 and 7. For quadrilateral meshes, we utilize entropy stable DGSEM solvers and

entropy stable Gauss DG solvers. For triangular meshes, we utilize entropy stable multi-dimensional SBP

solvers and entropy stable modal DG solvers. The DGSEM and SBP solvers are collocation-type schemes,

while Gauss and modal DG solvers introduce the entropy projection.
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times for entropy projection schemes also tend to depend on the adaptive time-stepping tolerance. For

example, for N = 3 and a 322 mesh, Gauss collocation runs stably to Tfinal = 10 if the absolute and

relative tolerances are reduced to 10−9. The same is not true of entropy stable collocation-type schemes.

To provide another point of comparison, we ran simulations using an entropy stable DGSEM solver

with sub-cell finite volume shock capturing [56] with Zhang-Shu positivity-preserving limiting for the

density and pressure [57, 58], which we refer to as DGSEM-SC-PP for shock capturing and positivity

preservation.2 The entropy stable sub-cell finite volume-based shock capturing scheme utilizes a blending

coefficient parameter α ≤ αmax [56]. For these experiments, we set αmax = 0.005, which implies that

the low order finite volume solution constitutes at most 0.5% of the final blended solution. Despite the

fact that this shock capturing is very weak, the resulting solver greatly improves robustness and enables

long simulation times: for N = 3 and a 32× 32 mesh, DGSEM-SC-PP runs stably to time Tfinal = 10 for

Atwood numbers up to 0.99. However, we have also observed that the minimum value of αmax necessary

to avoid solver failure depends on the mesh resolution. For example, for N = 3 and a 64× 64 mesh, we

observe that DGSEM-SC-PP with αmax = 0.005 crashes around t = 6.4871.

REMARK 2. We note that DGSEM with αmax = 0.005 shock capturing but no positivity preservation

is not robust for the Kelvin-Helmholtz instability. For the initial condition (4), N = 3, and a 64 × 64
mesh, DGSEM with shock capturing crashes around time t = 4.8891. For N = 7 and a 32 × 32 mesh,

DGSEM with shock capturing crashes around time t = 5.0569. In contrast, DGSEM with only positivity

preservation results in the simulation stalling due to a very small time-step.

4 THE ROLE OF THE ENTROPY PROJECTION

4.1 Is robustness due only to the entropy projection?

While the numerical results up to this point indicate that there is a significant difference in robustness

for different entropy stable schemes, it is not yet clear that the increased robustness is due to the entropy

projection. For example, the numerical experiments in Section 3 compare entropy stable Gauss DG

schemes to DGSEM on tensor product meshes and entropy stable “modal” DG methods to SBP schemes

on triangular meshes. In both cases, a collocation scheme is compared to a scheme with higher accuracy

numerical integration. Thus, it is not immediately clear whether the difference in robustness is due to the

entropy projection or other factors such as the quadrature accuracy. We investigate whether the quadrature

accuracy has a significant effect on stability by testing two additional variants of entropy stable DGSEM

schemes on quadrilateral meshes. These schemes are purposefully constructed to be “bad” methods (in the

sense that they introduce additional work without improving the expected accuracy), and are intended only

to introduce the entropy projection. Both have quadrature accuracy similar to or lower than entropy stable

DGSEM methods.

The first scheme utilizes LGL points for volume quadrature, but utilizes (N + 1) point Clenshaw-Curtis

quadrature at the faces. This scheme can be directly derived from a modal formulation and (despite the

lower polynomial exactness of Clenshaw-Curtis quadrature) can be shown to be entropy stable on affine

quadrilateral meshes using the analysis in [21]. In order to retain entropy stability, the solution must be

evaluated using the entropy projection at face nodes. We argue that the use of Clenshaw-Curtis quadrature

does not result in a significant increase in quadrature accuracy over LGL quadrature: while Clenshaw-Curtis

quadrature has been shown to be similar to Gauss quadrature for integration of analytic functions [61], for

2 For DGSEM-SC-PP, we utilize a 4-stage 3rd order adaptive strong stability preserving (SSP) Runge-Kutta time-stepping method [59, 60] with stepsize

controller and efficient implementation of [40], which is necessary to ensure fully discrete positivity.
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Figure 8. Illustration of the effect of larger k (under-resolution) and smaller pmin (near-vacuum state) on
the entropy projection. A degree N = 2 approximation and mesh of 8 elements were used.

3. re-evaluate the conservative variables in terms of the projected entropy variables.

These re-evaluated conservative variables are then used to compute contributions from an entropy stable

DG formulation.

It was demonstrated numerically in [19] that the entropy projection is high order accurate for sufficiently

regular solutions. However, the behavior of the entropy projection was not explored for under-resolved or

near-vacuum solution states. We illustrate this behavior using the following solution state:

ρ = 1 + e2 sin(1+kπx), u =
1

10
cos(1 + kπx),

p = pmin +
1

2

(
1− cos

(
kπx− 1

4

))
, (11)

where pmin > 0 is the minimum pressure, and k is a parameter which controls the frequency of oscillation.

As k increases, the solution states in (11) become more and more difficult to resolve, and as pmin → 0, the

solution approaches vacuum and the entropy approaches non-convexity.

Figure 8 illustrates the effect of increasing k and decreasing pmin on the entropy projected conservative

variables for a degree N = 2 approximation on a coarse mesh of 8 elements. As k increases and the

solution becomes under-resolved, the entropy projection develops large jumps at the interface. Similarly, as

pmin decreases from 1 to 1/10, the entropy projection develops large jumps at the interface. We note that

for both increased k and decreased pmin, spikes do not appear in the interior of the element.

This indicates that the error in the entropy projection is influenced by both the numerical resolution

and how close the entropy is to becoming non-convex. We denote the continuous entropy projection

by ũ = u (ΠNv(uh)). Then, by the mean value theorem, we can bound the difference between the

conservative and entropy-projected variables

‖uh − ũ‖L∞ = ‖uh − u (ΠNv(uh))‖L∞ ≤
∥∥∥∥
∂u

∂v

∥∥∥∥
L∞

‖v(uh)− ΠNv(uh)‖L∞ ,

where ∂u
∂v is evaluated at some intermediate state between uh and ũ. The latter term in the bound

‖v(uh)− ΠNv(uh)‖ is small when the entropy variables are well-resolved, which we expect to be true
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Figure 9. Evolution of entropy over time for the Kelvin-Helmholtz instability.

when the solution is well-resolved and the mapping between conservative and entropy variables is well-

conditioned. Conversely, high frequency components of the solution are often amplified when v(u) is

highly nonlinear or the solution is under-resolved (this is the motivation behind filtering for stabilization

[63, 64, 65]), and we expect ‖v(uh)− ΠNv(uh)‖ to be large for such settings. The former term
∥∥∂u
∂v

∥∥ is

large when the mapping between conservative and entropy variables is nearly singular, which occurs when

the entropy is nearly non-convex (for example, near-vacuum states).

4.2.1 What role does entropy dissipation play?

The previous section illustrates that entropy projection schemes are likely to differ from collocation

schemes most when the solution is under-resolved or has near-zero density or pressure. Moreover, since the

entropy projected variables in Figure 8 display spikes at the interfaces, it seems possible that the entropy

projection would change the manner in which entropy dissipative interface dissipation terms are triggered.

To test this hypothesis, we compute the evolution of entropy over time for the Kelvin-Helmholtz instability

using both entropy stable Gauss DG and DGSEM-SC-PP, which is an entropy stable DGSEM with a shock

capturing technique that consists in blending a sub-cell finite volume scheme with the DGSEM in an

element-wise manner [56] and Zhang-Shu’s positivity preserving limiter [57, 58]. The blending of the finite

volume scheme is capped at 0.5% in order to avoid unnecessary numerical dissipation. We also compare

entropy evolution for a scheme that blends a sub-cell finite volume scheme with the DGSEM in a subcell-

wise manner [66], which we refer to as DGSEM-subcell. The blending factors are chosen for each node (or

subcell) to enforce lower bounds on density and pressure based on the low order solution, ρ ≥ 0.1 ρFV,

p ≥ 0.1 pFV. For this choice of lower bound, we observe high order accuracy for a two-dimensional

sinusoidal entropy wave [67]. While this scheme is not provably entropy stable, it was demonstrated

numerically in [66] that the use of subcell blending factors requires significantly lower levels of limiting

compared with an element-wise limiting factor.

Figure 9 shows the evolution of the integrated entropy over the entire domain (which we have shifted

to be positive) for the Kelvin-Helmholtz instability. Since periodic boundary conditions are used, the

integrated entropy for the semi-discrete formulation can be proven to decrease over time. We observe that

all four methods display similar entropy dissipation behavior until time t ≈ 1.2, after which DGSEM shows

less entropy dissipation than either Gauss or DGSEM-SC-PP. However, while DGSEM-SC-PP initially
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dissipates more entropy than Gauss DG, the entropy dissipation for Gauss DG increases and overtakes that

of DGSEM-SC-PP around time t ≈ 4. Since entropy dissipation in both Gauss DG and DGSEM-SC-PP

schemes is triggered by under-resolved flows (either through a modal indicator or through jump penalization

terms) and since the Kelvin-Helmholtz instability generates increasingly small scales at larger times, this

suggests that entropy dissipation for Gauss DG may be activated more strongly but at smaller scales than

DGSEM-SC-PP. In contrast, Gauss DG dissipates more global entropy than DGSEM-subcell, though

DGSEM-subcell eventually catches up to Gauss DG for N = 3.

Our initial hypothesis was that the entropy projection in Gauss DG schemes results in larger interface

jumps, which would trigger more entropy dissipation through jump penalization terms. However, this does

not appear to be consistent with numerical results for entropy conservative schemes. To test these schemes,

we focus on the three-dimensional Taylor-Green vortex. We note that the observed loss of robustness stands

in stark contrast to the observed robustness of high order entropy stable and split-form DGSEM for the

Taylor-Green vortex [13, 22, 8]. This can be explained by the fact that the density remains near-constant

over time for the Taylor-Green vortex; for a Kelvin-Helmholtz initial condition with a constant density,

DGSEM runs stably up to final time T = 25 for each of the previous numerical settings. Thus, while the

Taylor-Green vortex generates small-scale flow features, it is a more benign test case when evaluating the

robustness of high order entropy stable DG schemes.

However, when using a purely entropy conservative scheme (which can be constructed by utilizing entropy

conservative interface fluxes), DGSEM methods can display non-robust behavior for the Taylor-Green

vortex. We run the Taylor-Green vortex to final time Tfinal = 20 using a variety of entropy conservative

schemes: DGSEM, Gauss DG, as well as an entropy stableC0 continuous Galerkin spectral element method

(CGSEM) and a periodic finite difference method. We note that, because an entropy conservative scheme

can be constructed given any summation-by-parts or skew-symmetric operator [12, 14, 26], we are able to

implement an entropy conservative C0 continuous spectral element method and periodic finite difference

method by constructing global difference operators from the tensor product of one-dimensional operators.

These one-dimensional operators are provided by the Julia library SummationByPartsOperators.jl [68].

Table 6 shows the end simulation time for each solver. We observe that again, despite the absence of

any entropy dissipation, the Gauss DG solver is more robust than the DGSEM solver. The continuous

spectral element solver CGSEM is also significantly more robust than the DGSEM solver, though it does

lose robustness at higher orders and finer grid resolutions. We also ran periodic finite difference operators

for grids with 4, 6, 8, 10, 12 nodes in each dimension with orders of accuracy 2, 4, 6, 8, 10. We observe that

the periodic finite difference operator is as robust as the Gauss DG solver: for every grid resolution and

order specified, the finite difference solver ran up to the final time Tfinal = 20.

These experiments indicate that robustness for schemes involving the entropy projection is not solely due

to the entropy dissipative terms. These experiments also show that robustness is improved for CGSEM

and periodic finite difference solvers, neither of which contains interface terms. Since these results are on

relatively coarse resolutions and utilize an entropy conservative scheme (when most practical schemes are

entropy stable), further numerical experiments are necessary to carefully analyze the effect that different

discretizations have on robustness.
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Solver

Degree
1 2 3 4 5 6 7

DGSEM 20 20 20 20 16.4 7.704 7.482

Gauss 20 20 20 20 20 20 20

CGSEM 20 20 20 20 20 20 20

Ncells = 2
3

Solver

Degree
1 2 3 4 5 6 7

DGSEM 20 20 20 20 10.31 5.792 5.46

Gauss 20 20 20 20 20 20 20

CGSEM 20 20 20 20 20 20 20

Ncells = 4
3

Solver

Degree
1 2 3 4 5 6 7

DGSEM 20 20 20 20 6.035 5.29 5.02

Gauss 20 20 20 20 20 20 20

CGSEM 20 20 20 20 20 20 17.5

Ncells = 8
3

Table 6. End time for entropy conservative simulations of the Taylor-Green vortex on hexahedral meshes.
Times colored blue correspond to simulations which did not crash and ran to completion, while times
colored red denote simulations which did crash.

5 APPLICATIONS TOWARD UNDER-RESOLVED SIMULATIONS

We conclude the paper with a discussion on a comparison between three schemes which include dissipative

terms (entropy stable Gauss DG, entropy stable DGSEM-SC-PP, and DGSEM-subcell) for an under-

resolved simulation. We run the Kelvin-Helmholtz instability using the initial condition (4), but modify the

y-velocity perturbation to break symmetry of the resulting flow

v =
1

10
sin (2πx)

(
1 +

1

100
sin (πx) sin (πy)

)
.

We run the simulation up to final time Tfinal = 25. We use both a degree N = 3 mesh of 64× 64 elements

and a degree N = 7 mesh of 32 × 32 elements, each of which contains the same number of degrees of

freedom. Due to the sensitivity of the Kelvin-Helmholtz instability problem and the long time window of

the simulation, the results for each scheme are qualitatively very different.

Figures 10 and 11 show snapshots of density and pressure for the entropy stable DGSEM-SC-PP and

Gauss DG schemes. We observe that in both cases, the flow scales present in the DGSEM-SC-PP scheme

are noticeably larger than those observed in the Gauss scheme. This is notable because the DGSEM-SC-PP

scheme applies a very small amount of shock capturing: dissipation is added by blending the high order

scheme with a low order finite volume scheme, and the amount of the blended low order solution is capped

at 0.5%. However, even a small amount of dissipation produces a noticeable change on small-scale features
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Figure 10. Density and pressure for the Kelvin-Helmholtz instability at Tfinal = 25 on a N = 3 mesh of

642 elements.

in the resulting flow. We also observe the presence of shocklets or compression waves in the pressure,

which mirror observations made in [69].4

For N = 3, the scales observed in DGSEM-subcell scheme are noticeably smaller than those of DGSEM-

SC-PP but similar to those of the Gauss DG scheme. ForN = 7, the scales observed in the DGSEM-subcell

scheme are again smaller than those of DGSEM-SC-PP, but appear to be slightly larger than those of the

Gauss DG scheme. To avoid qualitative speculation, we compare these flows by computing the angle-

averaged power spectra of the velocity weighted by
√
ρ at final time Tfinal = 25 [70, 71]. We follow [3, 7]

and generate a grid of uniformly spaced points by evaluating the degree N polynomial solution at (N + 1)
equally spaced points along each dimension in the interior of each element of a uniform Cartesian mesh.

The power spectra can then be computed from a fast Fourier transform of the resulting data. Figure 12

shows the power spectra, which appear consistent with a k−7/3 rate of decay from two-dimensional

turbulence theory [71]. Moreover, we observe that the entropy stable Gauss DG scheme retains more

energetic information than both DGSEM-SC-PP and DGSEM-subcell, though a spurious spike in the

energy for Gauss DG schemes is observed near the higher wavenumbers for N = 3.

4 We note that these “shocklets” are not strictly shock waves, as the flow is not supersonic.
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Figure 11. Density and pressure for the Kelvin-Helmholtz instability at Tfinal = 25 on a N = 7 mesh of

322 elements.

Figure 12. Weighted power spectra for DGSEM-Subcell, entropy stable DGSEM-SC-PP, and entropy
stable Gauss DG schemes.
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6 CONCLUSION

This paper shows that for variable density flows which generate small-scale features, there are differences

in robustness between entropy stable schemes which incorporate the entropy projection and those which do

not. These differences in robustness are observed to depend on the Atwood number (measuring the density

contrast) and persist across a range of polynomial degrees, mesh resolutions, and types of discretization.

However, the mechanisms behind improved robustness for entropy projection schemes are currently

unknown.

We note that any conclusions drawn concerning the robustness of DGSEM and Gauss DG should be

restricted to the instability-type problems studied here. These results do not imply that Gauss is uniformly

more robust than DGSEM. Moreover, Gauss schemes are more computationally expensive than DGSEM

schemes and result in smaller maximum stable timesteps [72, 73, 22, 74], so the appropriate scheme will

depend on the use case.
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