
An Open-Source Framework for Rapid Development of Interactive

Soft-Body Simulations for Real-Time Training

Adnan Munawar, Nishan Srishankar, and Gregory S. Fischer

Abstract— We present an open-source framework that pro-
vides a low barrier to entry for real-time simulation, visual-
ization, and interactive manipulation of user-specifiable soft-
bodies, environments, and robots (using a human-readable
front-end interface). The simulated soft-bodies can be interacted
by a variety of input interface devices including commercially
available haptic devices, game controllers, and the Master Tele-
Manipulators (MTMs) of the da Vinci Research Kit (dVRK)
with real-time haptic feedback. We propose this framework for
carrying out multi-user training, user-studies, and improving
the control strategies for manipulation problems. In this paper,
we present the associated challenges to the development of such
a framework and our proposed solutions. We also demonstrate
the performance of this framework with examples of soft-body
manipulation and interaction with various input devices.

I. INTRODUCTION

Simulators targeted for Robot-Assisted Surgery are em-

ployed for training surgeons to get acclimated to the telema-

nipulation interface of the robots as well as to enhance the

surgical skills. While some applications may focus on the

intricate dynamics involved in specific surgical procedures,

the majority of training applications involve relatively sim-

pler environments. For example, the peg and hole task [1]

is a popular puzzle used in training simulations. The basic

building blocks of maneuvering and manipulation required in

this task (and similar training tasks), when combined, can be

used to generate complex trajectories employed for surgical

procedures.

The use of soft-body simulation is of particular interest

in surgical training. In this regard, significant research has

focused on areas such as dynamics of tissue deformation,

rendering visual realism and achieving real-time simulations

for specific procedures. However, to the best of our knowl-

edge, surprisingly little work has been done towards the

development of a generic framework for integrating cus-

tom soft-body simulations with real-time manipulation using

input interfaces of surgical robots. Although not initially

catering to soft-body dynamics, the Asynchronous Multi-

Body Framework (AMBF) [2] was a step in this direction.

The AMBF utilized input devices (commercially available

haptic devices, gaming controllers and the Master Tele-

Manipulators (MTMs) of the da Vinci Research Kit (dVRK)

Adnan Munawar is with the Computer Science Department at the Johns
Hopkins University, Baltimore, MD, USA. Nishan Srishankar & Gregory
S. Fischer are with the Department of Robotics Engineering, Worces-
ter Polytechnic Institute, MA, 01609, USA amunawar@jhu.edu,
[nsrishankar, gfischer]@wpi.edu

This work is supported by the National Science Foundation (NSF)
through National Robotics Initiative (NRI) grant: IIS-1637759 and NSF
AccelNet grant: 1927275

[3]) to interact with user-specifiable dynamic environments.

These dynamic environments included not only the train-

ing puzzles but also the accurate (both kinematically and

dynamically) models of surgical robots. The novel contri-

bution of AMBF over other similar works was the ability

to define these environments and robots using a front-

end human-readable format [4]. This format, among other

things, allowed the easy definition of robots and mechanisms

involving parallel linkages, a trait commonly employed in

surgical robots.

In this paper, we present an extension to the AMBF

simulator (and its specification format) for simulating and

interacting with soft-bodies in real-time. We outline the

challenges faced in developing such a generic framework

and the steps undertaken to solve some of these problems.

We also show examples of generating soft-bodies using sim-

ple interfaces, reinforcing them internally (for density) and

ultimately manipulating them using input interface devices.

II. PROBLEM FORMULATION

The physical dynamics of deformation and visual realism

are important and often focused areas of research for soft-

body simulation. This, however, is not the focus of this

paper, instead, we discuss some overlooked yet important

challenges pertaining to a generic soft-body simulation

framework. These challenges include (1) Representation,

(2) Visualization, (3) Interaction and Manipulation, and (4)

Real-time dynamic update. Representation in this context

refers to the description of the soft-body shape and dynamic

parameters such as softness, stiffness, bending, and weight

distribution. In addition to the geometric shape, the required

number of controllable parameters for a simulated soft-body

pose a challenge for description purposes. Simulators such

as Gazebo [5] and V-REP [6] utilize physics computation

libraries that support soft-body simulation, however, they do

not support soft-body representations or their visualizations.

Visualization is more challenging as compared to represen-

tation. Unlike rigid bodies that do not require a constant

update to the mesh geometry, soft-body meshes require

computationally expensive updates at each simulation step.

Thus the algorithm for updating the visual representation

of the soft-body adds additional overhead to the simulation

step. High-density meshes are preferred for visual realism,

however, they are problematic for soft-body simulation. For

this reason, a pair of meshes may be utilized: (1) a high-

quality mesh for visualization and (2) a lower resolution

mesh to represent the soft-body. The meshes can then be

fused together such that the lower resolution mesh can

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 6544

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 20,2022 at 17:16:49 UTC from IEEE Xplore. Restrictions apply.

be used to update the vertices of the high-quality mesh.

Finally, the interactions and manipulation of the soft-body

are complex tasks that are usually specialized for specific

soft-bodies. Realistic grasping is a challenging problem in

rigid body dynamics and holds true even for soft-body

simulations.

III. RELATED WORK

While the implementations of soft-body simulations in

surgical/real-time scenarios are limited, we referenced papers

that looked at other applications such as gaming. Maciel

et al. [7] used the NVIDIA’s PhysX library to provide

bimanual interactivity in simulated surgical operations with

implicit integration-based physics processing (between 10 to

20 Hz). However, at the time of the paper (2009), the PhysX

source code was closed and only recently became open-

source. Danevičius et al. [8] worked on the gamification of a

soft-body simulator that simulated soft-body physics (based

on particles interconnected with constant-length, flexible

springs) and performed computational offloading on a cloud

to obtain high-quality graphics (rendering in frames-per-

second, and number of particles representing a body) in real-

time, however, lacked collision modeling and was limited to

simplistic soft objects. Tan et al.[9] manipulated soft-body

characters using Finite-Element methods to simulate the de-

formation and muscle fibers to control the shape/motion. To

move these objects, the authors created controllers to obtain

an objective function that was passed to an optimization

solver. The optimization solver, in turn, determined new

muscle fiber lengths and whether points of contact should be

static or sliding. This resulted in a combination of muscle

contractions that enabled the soft-body to perform various

locomotions. Mesit et. al [10], [11] modeled soft bodies with

pressure based forces and proposed using implicit integration

methods and externally limiting the forces to solve failure

cases when large constraints in stiffness or time were applied.

IV. METHODS

The Asynchronous Multi-Body Framework offers a real-

time dynamic simulation that can be manipulated with mul-

tiple input interface devices. It utilizes external libraries

such as Computer Haptics and Interface (CHAI-3D) [12]

and Bullet Physics [13]. This paper extends the prior rigid

body simulation framework to incorporate the specification,

simulation, and manipulation of soft-bodies. The inclusion

of the soft-body support to existing specification interfaces

of AMBF is shown in Fig. 1. In the rest of this section,

we discuss the methodology used to address the problems

described in Section II.

A. Real-Time Simulation of Soft-Body Dynamics

Soft-bodies can be represented using a collection of nodes

with inertial properties interconnected directly or indirectly

to other nodes. Each node is subject to the laws of dynamics

and can collide with other objects in the environment. The

interconnections between two nodes can be generalized with

a constraint formed by a three-dimensional spring which

Fig. 1: Anatomy of the AMBF format. The blue tile forms

the header and consists of global parameters and header lists

which are highlighted with the purple dotted border. The

red tile represents a constraint, green represents rigid bodies

and yellow represents soft-bodies. The tunable parameters

for soft-body dynamics can be set using the config parameter

highlighted in red. The defined parameters include kLST =

Linear Stiffness Coefficient, kDP = Node Damping Coeffi-

cient, kPR = Internal Pressure Coefficient. The location is

defined in global coordinates, while inertial offsets, pivots

and axis are in local (body) coordinates.

consists of tension, torsion, and flexion. The combination of

constraints due to motion, collision, and contact dynamics

can be modeled using different methods which can be cate-

gorized into direct force computation, velocity-based meth-

ods (Sequential Impulse Constraints [14], position-based

methods (PBD) [15], and indirect representation as Linear

Complimentary Problems (LCPs) [16]. The position of each

node is updated at every step of the dynamics simulation

based on the explicit or symplectic Euler method (implicit

method is used less often). The time-step dt between each

update is an important factor affecting the accuracy of the

solution. In real-time dynamic simulations, where collision

computation is a factor of the number of bodies in contact,

it is impractical to fix the step-time dt to a preset value.

Mixed soft-body and rigid-body simulations with real-

time dynamic updates pose challenges to implementation as

stability and convergence are not guaranteed. In our previous

work [2], we simulated rigid-body dynamics with the implicit

variation of time step dt to keep in sync with the real-

world (Wall) clock and explicitly varying the number of sub-

iterations N according to Equation 1:

dt < δti ×N ; N ∈ Z+ & N ≤ Nmax (1)

We employ a similar method in this paper, while main-

taining bounds on the number of sub-iterations N < Nmax

and the actual integration sub-step size δti := 1/(Hzfixed).
Nmax is tunable parameter and is set to 10.

6545

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 20,2022 at 17:16:49 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 2: Two meshes with similar surface geometry but dif-

ferent internal structure defined using the OBJ mesh format.

B. Representation of a Soft-Body

As discussed in Section IV-A, soft-bodies can be rep-

resented by inertial nodes that are interconnected to other

nodes. Meshes used in computer simulations also employ

a similar form of interconnection of vertices defining the

surface. However, meshes for soft-body representation (de-

fined by nodes) also comprise of an internal lattice forming

the skeletal structure of the soft-body. An example is shown

in Fig. 2 showing two similar bodies with equivalent sub-

divisions along the surface, however one body (on the left)

has an internal skeletal structure while the other (on the right)

does not.

Rather than developing a new specification for a mesh,

we have utilized existing standards of mesh representations

for defining the basic geometry of a soft-body. The following

mesh formats, along with their advantages and disadvantages

for soft-body representation, have been utilized.

• The StereoLithography (STL) Mesh: STL is an older

and widely used format. It supports the definition of

triangular faces by specifying three vertices as floating

point numbers. A normal is specified for each triangle.

Since each triangle defines its vertices explicitly, the

shared vertices are repeated for each triangle.

• The Autodesk (3DS) Mesh: 3DS is proprietary and a

binary format. Similar to STL, 3DS defines the mesh

geometry as triangles containing a maximum of three

vertices. 3DS can also define scene objects such as

camera, lighting and textures.

• The Wavefront (OBJ) Mesh: The OBJ format has

more features compared to STL and 3DS represen-

tations and is a non-proprietary format. The biggest

advantage for soft-body representation is that each face

can comprise of more than 3 vertices. Similarly, edges

without faces can be defined as polylines. All the ver-

tices are specified as separate lists, and therefore, vertex

repetition can be avoided although is not mandated in

the format. The format also supports face normals and

per-vertex texture data.

For representation purposes, all three formats have been

supported. However, Wavefront’s OBJ is the preferred mesh

format since it has features to define both the surface as well

as the internal structures using polylines. For visual realism,

a pair consisting of a visual (high-density) mesh and a low

resolution collision mesh is used. As shown in the AMBF

format in Fig. 1, soft-body properties are specified alongside

the mesh definition.

Fig. 3: Reference image for Alg. 1. The soft-body fits in

the boundary box that is sub-divided into p, q and r blocks

along x,y and z axes respectively. Each block in then parsed

individually by creating 5 sub-blocks (CHK, IDX and 3

Vertex Triplet sub-blocks).

Fig. 4: (a) The original vertex indices that do not account

for repeated vertices. (b) The reduced vertex list with the

duplicate vertices unified together into a new list.

C. Visualization

As discussed in Section IV-B, a pair comprising of a visual

and a collision mesh is used to represent the soft-body. The

collision mesh can be defined by using any of the three

supported mesh formats. The array of vertices retrieved using

these formats may include repeated vertices that need to be

unified for proper soft-body representation. The brute force

approach to counting repeated vertices is computationally

exponential and undesirable. Instead, hashing techniques are

employed that turn the vertex unification into an almost linear

problem. These techniques are more or less modification of

the “vertex weld” [17] algorithm in which the spatial vertices

are discretized into smaller bins (sub-blocks). The resulting

welded mesh has a reduced vertex count. An extra step is

required to modify the triangle indices forming the faces of

the mesh to map (“rewire”) to the reduced set of vertices.

This extra step is not directly related to the vertex welding

algorithm.

The unification of repeated vertices is necessary for soft-

body dynamics but such a reduced mesh might not be

desirable for a generic rendering application (which uses

the original mesh with repeated vertices for visualization).

Therefore, a different approach, which is in part based

on vertex welding, is proposed which unifies the repeated

vertices and stores them in a data structure. This algorithm

6546

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 20,2022 at 17:16:49 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Vertex Triplet Generation

1: sb = No. of Vertices Per Block

2: nb = nvtx/sb � nvtx = No. of Vertices

3: r[x,y,z] = nvtx/dim[x,y,z] � dim[x,y,z] = x, y, z Dim.

4: vC[nvtx] ← False � vC = Vtx Checked

5: vT [nvtx][3] ← −1 � vT = Vtx Triplet

6: CHK[sb][sb][sb] ← False
7: IDX[sb][sb][sb] ← −1
8: for bx = 0 to nb do

9: for by = 0 to nb do

10: for bz = 0 to nb do

11: l[x,y,z] = b[x,y,z] × sb
12: h[x,y,z] = l[x,y,z] + sb
13: CHK[sb][sb][sb] ← False
14: IDX[sb][sb][sb] ← −1
15: for i = 0 to nvtx do

16: if vC[i] == False then

17: p ← vtx.position � kx,y,z = Key

18: k[x,y,z] = r[x,y,z] ∗ (p−min[x,y,z])
19: if k[x,y,z] ∈ [l[x,y,z], h[x,y,z]] then

20: k[x,y,z] = k[x,y,z] − dim[x,y,z]

21: vC[i] = True
22: vT [i][0] = i
23: if CHK[kx][ky][kz] == False

then

24: CHK[kx][ky][kz] = True
25: IDX[kx][ky][kz] = i
26: vT [i][1] = i
27: else

28: vT [i][1] = IDX[kx][ky][kz]
29: end if

30: end if

31: end if

32: end for

33: end for

34: end for

35: end for

also stores the relation between unified vertices and their

original non-unified copies.

The algorithm discussed above can be divided into two

sub-algorithms which include (1) the Vertex Triplet Gener-

ation (Alg. 1) and (2) Generating Unique Triangle Indices

(Alg. 2). The first algorithm fills a data structure consisting of

three arrays (3 dimensional sub-blocks). This data-structure

is called the Vertex Triplets and its three associated arrays

are described as follows:

• Original Vertex Indices vtxTriplet[0] The first array

contains the indices to original vertices that form the

mesh.

• Unified Vertex Indices vtxTriplet[1] The second array

contains the vertex indices referring to the first index at

which the vertex occurred in the original vertex list.

• New Vertex Indices vtxTriplet[2] Finally the third

array contains indices from a newly formed array con-

TABLE I: Population of Vertex Triplets

vT[0] 1 2 3 4 5 6 7 8 9 10 11 12

vT[1] 1 2 3 2 5 3 2 8 5 8 11 5

vT[2] 1 2 3 2 4 3 2 5 4 5 6 4

taining only the distinct vertices.

Fig. 3 visualizes the data structures mentioned in Alg. 1.

The Vertex Triplets for the mesh triangles shown in Fig.

4 are presented in Table. I. Afterward, Alg. 2 is used to

compute rewired triangle indices corresponding to the newly

sorted vertices and edges. The Alg. 1 is used instead of

external “vertex welding” libraries due to the requirement of

preserving the interconnection between the duplicate vertices

on the high-resolution visual mesh with the unified vertices

on the lower-resolution collision mesh. Both the algorithms

have been tested on several meshes with known unique

and duplicate vertex counts and work as expected. That

being said, there may be areas where the algorithms can

be optimized.

Algorithm 2 Generating Unique Triangle Indices

1: Cu = 0, Ib = 0, Ic = 0 � Cu = Unique Vtx Counter

2: vtxtree = [nuvtx][] � nuvtx = No. Unique Vertices

3: for i = 0 to nvtx do

4: if vT [i][1] == vT [i][0] and vT [i][2] == −1 then

5: vT [i][2] = Cu � vT = Vertex Triplet

6: vtxtree[Cu] ← i
7: Cu ++
8: else if vT [i][1] < vT [i][0] then

9: Ib = vT [i][1]
10: Ic = vT [Ib][2]
11: vT [i][2] = Ic
12: vtxtree[Ic] ← i
13: else if vT [i][1] > vT [i][0] then

14: Ib = vT [i][1]
15: if vT [Ib][2] == −1 then

16: Cu ++
17: vT [Ib][2] = Cu

18: end if

19: vT [i][2] = vT [Ib][2]
20: end if

21: end for

D. Manipulation of Soft-Body

Soft-body grasping and manipulation involve a sequence

of steps. To develop a generic implementation to grasp any

soft-body, we have used simulated sensors (based on ray-

tracing elements) that are placed on the simulated graspers

to detect proximity to collision objects. The ray-tracing

algorithm is used in computer simulations to trace out the

path of light rays as they repeatedly collide with objects

in the simulation. Become of the geometric implementation,

ray-tracing can be used to detect the nearest points between

two surfaces. In a trivial ray-tracing implementation, the

starting point of the ray originates at the light source, which

6547

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 20,2022 at 17:16:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Proximity sensors can be defined using the same

method as bodies, joints, and scene objects in Fig. 1. The

proximity sensor is parented to the desired body with the

relative location offset, direction, and range.

is usually fixed. However, for the nearest point calculation in

dynamic objects, the rays can be parented to a dynamic body.

Therefore each proximity sensor has the attributes shown in

Fig. 5.

If a proximity sensor “triggers” and the grasping closure

angle is less than a user-specifiable threshold, the contact face

in the ray’s path is computed. Then, the nodes forming the

face are anchored using Alg. 3. An anchor is a simulated

constraint that attaches the vertices forming the nearest

soft-body face to the parent body on which the sensor is

mounted. To prevent jerk on newly anchored vertices, the

offset between the parent body and the vertices is stored and

then used as the desired offset until the anchor remains intact.

This anchor produces a weak force according to Alg. 4 that

guides the connected vertices along the parent body.

Algorithm 3 Anchor Vertices to Parent

1: G := Sensor’s Parent

2: Face ∈ Get Nearest Face to Contact Point

3: Vertices ∈ Face

4: TW
G ∈ G.Transform

5: for v ∈ Vertices do

6: PW
v ∈ v.Pos

7: PG
v = (TW

G)−1PW
v

8: a ← Anchor(v, PG
v)

9: G.Anchors.append(a)

10: end for

V. RESULTS

As discussed in Section I, soft-body simulation for surgical

training is a multi-fold problem, four of which have been

identified in this paper. We discuss the results relating to

these four challenges in the following section.

Many free software can be used for creating meshes that

represent the geometry of soft-bodies. We have selected

Blender [18] which already has an existing plugin for

generating rigid bodies, robots, and scenes for the AMBF

Simulator [19]. Blender is also supported across all major

operating systems and offers a highly customizable interface.

Algorithm 4 Update Anchored Vertices

1: for G ∈ Rigid Bodies do

2: TW
G ∈ G.Transform

3: Ha, Da := Param. Anchor Hardness and Damping

4: for a ∈ G.Anchors do

5: PG′

v ∈ a.Offset

6: v ∈ a.Vertex

7: PW
v ∈ a.Offset

8: PG
v = (TW

G)−1PW
v

9: δPn = PG′

v − PG
v

10: Fa = HaδPn +Da
δPn−δPn−1

dt

11: a.ApplyForce(Fa)

12: end for

13: end for

(a) (b)

(c)

Fig. 6: Similar to convex hulls used for rigid body dynamics,

a complex soft-body shape can be generated using a com-

pound of simpler shapes. These simple shapes can be fused

together using mesh boolean (add or subtract) operations (a)

→ (b). Finally, (c) shows the simulation and interaction of

this mesh in AMBF.

We begin by either creating primitives or importing existing

meshes in Blender. These meshes can be sub-divided, mor-

phed, and cut using the existing tools provided in Blender.

The detailed discussion on mesh manipulation and features

in Blender is beyond the scope of this paper and many

tutorials are available for this purpose. Fig. 6 (a) and (b)

shows the operations of converting a primitive mesh into a

compound shape using simple Boolean operations. Similarly,

Fig. 7 shows the conversion of simple cylindrical shape into

a body resembling a meatloaf with textured surface.

It is challenging to impart volumetric constraints to soft-

body meshes and thus depending on the simulation context

different approached may be used. These approaches include

1) constraints based on the volume of a convex mesh [20]

and constraint based on the estimated pressure [21]. Another

approach is to model a skeletal structure/lattice inside the

original mesh. Tetgen [22] is a useful library which allows

such mesh skeletalizations. However, for this discussion, we

6548

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 20,2022 at 17:16:49 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c)

Fig. 7: Sequential process of converting a cylindrical prim-

itive to a mesh with coarse surface, creating internal edges

for structural stability and finally applying texture for visual

realism.

explicitly model the internal structure of the mesh by con-

necting the desired vertices. Vertex interconnection interior

to the mesh surface only requires the creation of edges

and not faces. As discussed in Section IV-B, most mesh

representation formats only support faces and not edges

explicitly. Fig. 2 shows the original visual mesh with an

interconnected lattice which was created using generic tools

in Blender.

The front-end specification format described in SectionIV-

B conveniently separates the soft-body geometry from its

properties. These properties specify attributes such as flexion,

torsion and elongation and specified in the config field

displayed in red in Fig. 1. The description file can be loaded

in the AMBF simulator to generically support soft bodies

that are manipulable with multiple input devices in a real-

time simulation.

We show the manipulation of various soft-bodies with

teleoperated grippers controlled by dVRK MTMs in Fig. 8.

The methodology used for grasping is not modeled based on

natural interaction as it does not rely on friction for pinching

and manipulation. That being said, grasping soft-bodies

using the methodology presented in Section IV-D provides a

simplistic, yet useful, approach to interactive manipulation. It

should be noted that this methodology leverages the closest

pinched faces of soft-bodies as described in Alg. 3. The

adhering force can be scaled by changing the value of Ha &
Da in Alg. 4. Fig. 9 illustrates the Real Time Factor (RTF)

during the example of soft-cloth manipulation shown in Fig.

8.

VI. DISCUSSION

In this paper we have shown the design methodology

of a framework targeted for real-time simulation and ma-

nipulation of user-specified soft-bodies using existing mesh

representation formats. While this framework can potentially

provide a convenient research platform for the research

Fig. 8: Examples of Soft-body manipulation using the dVRK

MTMs

Fig. 9: Real Time Factor for tasks shown in Fig. 8 (a), (b).

community working towards surgical robotics, several ad-

ditional features need to be added. These missing features

include collision detection for faces in addition to vertices,

specification of heterogeneous properties, simulating visco-

elastic friction, emulating breathing meshes (i.e. intermittent

compression/decompression via dynamic volumetric / pres-

sure constraints) and simpler interface to fixing some soft-

body nodes in the world.

Other necessary features catering to surgical robotics in-

clude the support for cutting, stitching and shearing. We

propose the extension of AMBF’s sensor interface to include

cutting sensors. Similar to proximity sensors (Fig. 5), cutting

sensors can potentially be mounted to a rigid-body and can

be used the sub-divide and dissect the connecting links at

the contact point. This is also a future goal. Stitching is a

more challenging problem to address using generic methods

that can be implemented at a framework level and therefore

needs further exploration.

Lastly, there is a need for developing soft-body environ-

ments that can replicate actual surgical sub-tasks while using

our proposed framework. Although this task mostly entails

the speciality required to design such environments rather

than the validity of the proposed framework, it is imperative

in demonstrating the actual use-case of the AMBF soft-body

framework. In that sense, we consider this is as an immediate

future goal.

6549

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 20,2022 at 17:16:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Ghasemloonia, Y. Maddahi, K. Zareinia, S. Lama, J. C. Dort, and
G. R. Sutherland, “Surgical skill assessment using motion quality and
smoothness,” Journal of surgical education, vol. 74, no. 2, pp. 295–
305, 2017.

[2] A. Munawar and G. S. Fischer, “An asynchronous multi-body sim-
ulation framework for real-time dynamics, haptics and learning
with application to surgical robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6268–6275,
Nov 2019.

[3] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and
S. P. DiMaio, “An open-source research kit for the da vinci surgical
system,” in IEEE Intl. Conf. on Robotics and Auto. (ICRA), (Hong
Kong, China), pp. 6434–6439, 2014.

[4] A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A real-
time dynamic simulator and an associated front-end representation
format for simulating complex robots and environments,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1875–1882, Nov 2019.

[5] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3, pp. 2149–2154, IEEE, 2004.

[6] M. F. E. Rohmer, S. P. N. Singh, “V-rep: a versatile and scalable robot
simulation framework,” in Proc. of The International Conference on
Intelligent Robots and Systems (IROS), 2013.

[7] A. Maciel, T. Halic, Z. Lu, L. P. Nedel, and S. De, “Using the
physx engine for physics-based virtual surgery with force feedback,”
The International Journal of Medical Robotics and Computer Assisted
Surgery, vol. 5, no. 3, p. 341353, 2009.

[8] E. Daneviius, R. Maskelinas, R. Damaeviius, D. Poap, and M. Woniak,
“A soft body physics simulator with computational offloading to the
cloud,” Information, vol. 9, p. 318, Nov 2018.

[9] J. Tan, G. Turk, and C. K. Liu, “Soft body locomotion,” ACM
Transactions on Graphics, vol. 31, p. 111, Jan 2012.

[10] J. Mesit and R. K. Guha, “Simulation of soft bodies with pressure
force and the implicit method,” First Asia International Conference
on Modelling and Simulation (AMS07), 2007.

[11] J. Mesit. PhD thesis, Department of Electrical Engineering and Com-
puter Science in the College of Engineering and Computer Science at
the University of Central Florida, 2010.

[12] F. Conti, F. Barbagli, R. Balaniuk, M. Halg, C. Lu, D. Morris,
L. Sentis, J. Warren, O. Khatib, and K. Salisbury, “The chai libraries,”
in Proceedings of Eurohaptics 2003, (Dublin, Ireland), pp. 496–500,
2003.

[13] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015
Courses, SIGGRAPH ’15, (New York, NY, USA), ACM, 2015.

[14] B. Mirtich and J. Canny, “Impulse-based simulation of rigid bodies,”
in Proceedings of the 1995 symposium on Interactive 3D graphics,
pp. 181–ff, ACM, 1995.

[15] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Posi-
tion based dynamics,” Journal of Visual Communication and Image
Representation, vol. 18, no. 2, pp. 109–118, 2007.

[16] R. Tonge, L. Zhang, and D. Sequeira, “Method and program solving
lcps for rigid body dynamics,” July 18 2006. US Patent 7,079,145.

[17] L. Velho, “A dynamic adaptive mesh library based on stellar opera-
tors,” Journal of Graphics Tools, vol. 9, no. 2, pp. 21–47, 2004.

[18] B. O. Community, Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[19] A. Munawar, “AMBF.” https://github.com/WPI-AIM/ambf, Sep 2019.
Github.

[20] Y. Duan, W. Huang, H. Chang, W. Chen, J. Zhou, S. K. Teo, Y. Su,
C. K. Chui, and S. Chang, “Volume preserved mass–spring model
with novel constraints for soft tissue deformation,” IEEE journal of
biomedical and health informatics, vol. 20, no. 1, pp. 268–280, 2014.

[21] M. Matyka and M. Ollila, “Pressure model of soft body simula-
tion,” in The Annual SIGRAD Conference. Special Theme-Real-Time
Simulations. Conference Proceedings from SIGRAD2003, no. 010,
pp. 29–33, Linköping University Electronic Press, 2003.

[22] H. Si, “Tetgen, a delaunay-based quality tetrahedral mesh generator,”
ACM Trans. Math. Softw., vol. 41, pp. 11:1–11:36, Feb. 2015.

6550

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 20,2022 at 17:16:49 UTC from IEEE Xplore. Restrictions apply.

