
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 11, NOVEMBER 2021 7363

Erasure Broadcast Channels With
Intermittent Feedback

Alireza Vahid , Senior Member, IEEE, Shih-Chun Lin , Senior Member, IEEE,
and I-Hsiang Wang , Senior Member, IEEE

Abstract— Achievable data rates in wireless systems rely heav-
ily on the available channel state information (CSI) through-
out the network. However, feedback links, which provide this
information, are scarce, unreliable, and subject to security
threats. In this work, we study the impact of having intermittent
feedback links on the capacity region of the canonical two-user
erasure broadcast channels. In our model, at any time instant,
each receiver broadcasts its CSI, and at any other node, this
information either becomes available with unit delay or gets
erased. For this setting, we develop a new set of outer bounds
to capture the intermittent nature of the feedback links. These
outer bounds depend on the probability that the CSI from both
receivers are erased at the transmitter. In particular, if at any
time, the CSI from at least one of the two receivers is available
at the other two nodes, then the outer-bounds match the capacity
with global delayed CSI. We also provide capacity-achieving
transmission strategies under certain scenarios, and we establish
a connection between this problem and Blind Index Coding with
feedback.

Index Terms— Erasure broadcast channel, intermittent feed-
back, Shannon feedback, capacity region, delayed CSI.

I. INTRODUCTION

DATA rates, reliability, and stability of wireless sys-
tems rely heavily on the availability of channel state

information (CSI) throughout the network. This information
could be as simple as ACK/NACK packets sent back via
the feedback links. However, there are challenges in con-
stantly providing CSI to all nodes. For instance, in large-scale
systems and massive multiple-input multiple-output (MIMO)
networks, feedback locality is the reality [2]–[4]. One could
also use a side-channel such as best-effort WiFi for feedback in
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which CSI packets may sometimes get dropped [5]. Moreover,
feedback channels are typically low bandwidth and thus,
unprotected against security threats, which has enabled a class
of security attacks to target the CSI signals in order to disrupt
communications [6]. Motivated by these challenges, in this
paper, we investigate how to exploit intermittent CSI feedback
to improve network capacity.

In this work, we consider the canonical two-user erasure
broadcast channels (BCs) with intermittent channel state feed-
back to provide a fundamental understanding of communi-
cations in such scenarios. In a packet-based communication
network, each hop can be modeled as a packet erasure chan-
nel [7], and thus, studying the erasure BCs provides a good
understanding of multi-session unicasting in small wireless
networks [8]–[10]. We consider an erasure BC with a transmit-
ter and two receivers. The channel model from the transmitter
to the two receivers follows the standard erasure BC model.
For the feedback model, at any time instant, each receiver i,
i = 1, 2, broadcasts its CSI to the other two nodes, that is,
whether or not the symbol sent by the transmitter successfully
arrives. Then, with some probability, this broadcast of CSI
is successful at each of the other nodes, and the transmitter
and/or the other receiver will learn the CSI of receiver i
with unit delay; otherwise, the feedback signal is erased.
We refer to this model as the two-user erasure BC with inter-
mittent feedback. This model generalizes those in prior works
which either assume all receivers can provide delayed state
feedback [8]–[10], only a single user provides its CSI [11]–
[15], or assume partial feedback is available [16]–[18]. In the
context of erasure BCs, in [14], [15], we showed that the
capacity region of the two-user erasure BC with global delayed
CSI can be achieved with single-user delayed CSI only. This
is result is in sharp contrast to the continuous channel model
where (asymptotic) capacity collapses to that of no CSI when
a single feedback link is missing.

The initial steps if this work were taken in [1] where a more
restrictive model for intermittent feedback where the delayed
CSI of each receiver would either be available to all other
nodes with delay or it would get erased at all other nodes.
This could correspond to a faulty feedback mechanism at the
receiver where the signal either goes out or gets dropped.
We improve upon the results of [1], both in terms of the
outer-bounds and the achievable region. More precisely, for the
outer-bounds, we allow for the erasure feedback links initiating
at each receiver to have a general distribution. Moreover,
we provide a broader set of conditions under which these
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outer-bounds can be achieved, thus, characterizing the capacity
region in those cases.

Our contributions in this work are two-fold. First, we derive
a new set of outer bounds the two-user erasure BC with
intermittent feedback. The derivation has two stages. In the
first stage, we create a modified BC in which forward links
are fully correlated across users when the CSI from each
receiver is erased at least one other node. We show that the
capacity region of this modified problem is the same as that
of the original problem. In the second stage, we derive the
outer bounds for this modified problem using an extremal
entropy inequality for erasure links with delayed CSI. These
outer bounds are governed by the probability of missing at
least one feedback link from each receiver. In other words,
as long as one receiver’s CSI is available at any given time,
the outer-bound region does not degrade compared to the one
with global delayed CSI. This observation matches our earlier
findings in [14] where the capacity region of two-user erasure
BC with global delayed CSI could be achieved with single-user
delayed CSI.

We also show that under certain conditions these outer
bounds can be achieved. One such scenario is when the
feedback links from the two receivers are fully correlated, that
is, they are either both available or both erased. We propose
a recursive transmission strategy where the first iteration
has three phases resembling the three phase communication
protocol of the global feedback case [8]. After these three
phases, we create recycled bits that we feed to the same
transmission protocol as the recursive step. When all for-
ward and feedback links have the same erasure probability,
we provide an achievable rate region that comes close to the
outer-bounds. However, as we discuss in Sections VI and VII,
improving the rates requires solving Blind Index Coding (BIC)
with (intermittent) feedback. The BIC problem was introduced
in [19] with any feedback, but even in that case, the problem
is complicated and the capacity remains unknown.

It is worth comparing our results to another line of work
in which the availability of CSI alternates between various
states [20]–[22]. However, these results assume at each time
the CSI availability structure is known to the transmitter,
whereas in our work, the transmitter does not know whether or
not the CSI of the current transmission will be available since
the feedback links are erased randomly at each time. Finally,
although in single-user binary erasure channels with noiseless
feedback, the posterior matching scheme will reduce to the
optimal Automatic Repeat reQuest (ARQ) protocol [23], [24],
it is unclear how this result would extend to the intermittent
feedback model with multiple users assumed in this work.

The rest of the paper is organized as follows. We describe
the problem formulation in Section II. We state our main
contributions in Section III. The proofs are presented in
Sections IV and V. Section VIII concludes the paper.

II. PROBLEM FORMULATION

We consider the two-user erasure broadcast channel of
Fig. 1(a) in which a single-antenna transmitter, Tx, wishes
to transmit two independent messages, W1 and W2, to two
single-antenna receiving terminals Rx1 and Rx2, respectively,

over n channel uses. Each message, Wi, is uniformly dis-
tributed over

{
1, 2, . . . , 2nRi

}
, for i = 1, 2. At time instant

t, the messages are mapped to channel input X [t] ∈ F2,
the binary field, and the corresponding received signals at Rx1

and Rx2 are

Y1[t] = S1[t]X [t] and Y2[t] = S2[t]X [t], (1)

respectively, where {Si[t]} denotes the Bernoulli (1 − δi)
process that governs the erasure at Rxi, and it is distributed
i.i.d. over time. We define Y t

i to be (Yi["])
t
!=1, i = 1, 2.

We also note that in this network, only the transmitter has
messages to communicate at the beginning of the communi-
cation block. In other words, we do not consider a two-way
channel.

We assume that each receiver is aware of its CSI at time t.
When Si[t] = 1, Rxi receives X [t] noiselessly; when Si[t] =
0, it receives an erasure. More precisely, since receiver Rxi

knows the value of Si[t], it can map the received signal for
Si[t] = 0 to an erasure. While forward channels are distributed
independently over time, we assume a general distribution
across users, and in particular, we assume

δ12
!= P{S1[t] = 0, S2[t] = 0}. (2)

From basic probability, we have

max{δ1 + δ2 − 1, 0} ≤ δ12 ≤ min{δ1, δ2}. (3)

We further assume that at time instant t, Rxi broadcasts
its channel state as depicted in Fig. 1(a), i.e., Si[t], and the
successful delivery of this information is governed by the
Bernoulli (1 − δFiT ) process, {SFiT [t]}, to the transmitter
and the Bernoulli (1 − δF īi) process, {SF īi[t]}, to the other
receiver, i = 1, 2. 1 The feedback processes are independently
and identically distributed over time, and are independent of
the forward channel processes. We assume a general joint
distribution for {SF1T [t], SF12[t], SF2T [t], SF21[t]}, and we
define

δF1→
!= P{SF1T [t]SF12[t] = 0},

δF2→
!= P{SF2T [t]SF21[t] = 0},

δFF
!= P{SF1T [t] = SF2T [t] = 0}. (4)

In essence, δFi→ is the probability that at any time instant
at least one outgoing feedback link from Rxi is erased, i =
1, 2. Then, δFF is the probability that at any time instant both
feedback links to the transmitter are erased.

Remark 2.1 (Comparison to [1]): In our initial results for
this work [1], the feedback links from each receiver were on
or off together, meaning that the delayed CSI of each receiver
would either be available to all other nodes with delay or it
would get erased at all other nodes. The model assumed in
this work generalizes that of [1] to the scenario in which the

1Similar to [5], we assume the receivers are passive and they simply
feedback CSI without any processing through a unit-delay erasure channel.
This model is motivated by the fact that that receivers do not have a-priori
information about the time-varying feedback channel statistics to perform
active coding. Moreover, active coding will result in longer delays. If active
coding is used, the intermittent feedback model reduces to the rate-limited
model of [25], which is beyond the scope of this paper.
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Fig. 1. (a) Two-user erasure broadcast channel with intermittent feedback;
(b) Available CSI at Rx1 as discussed in Remark 2.2.

erasure feedback links initiating at each receiver to have a
more general distribution.

The constraint imposed at the encoding function ft(.) at
time index t is

X [t]

= ft

(
W1, W2, S

t−1
F1T , St−1

F2T , {SF1T S1}t−1 , {SF2T S2}t−1
)

,

(5)

where

St−1
FiT = (SFiT [1], . . . , SFiT [t − 1]), (6)

{SFiT Si}t−1 = (SFiT [1]Si[1], . . . , SFiT [t − 1]Si[t − 1]). (7)

We set

S[t] != (S1[t], S2[t]) ,

SF1[t]
!= (SF1T [t], SF21[t]) ,

SF2[t]
!= (SF2T [t], SF12[t]) ,

SF [t] != (SF1T [t], SF12[t], SF21[t], SF2T [t]) . (8)

We also define St = (S["])t
!=1, St

F i = (SFi["])
t
!=1, i = 1, 2,

and St
F = (SF ["])t

!=1. Basically, at time instant t: S[t] is
the forward channel state information; SFi[t] is the feedback
state known to receiver i as in Figure 1(b), which includes its
own feedback state to the transmitter, as well as the incoming
feedback state from receiver ī; and SF [t] is the entire feedback
state information.

Each receiver Rxi, i = 1, 2, uses a decoding2 function

Ŵi
!= ϕi,n (Y n

i , Sn
i , Sn

Fi, {SF īiSī}
n) , (9)

to get the estimate Ŵi of Wi. An error occurs whenever Ŵi $=
Wi. The average probability of error is given by

λi,n = E[P (Ŵi $= Wi)], (10)

where the expectation is taken with respect to the random
choice of the transmitted messages.

We say that a rate pair (R1, R2) is achievable if there exists
an (R1, R2)-code and a block encoder at the transmitter, and
a block decoder at each receiver, such that λi,n goes to zero

2In the initial results of this work [1] there is typo in the available
information at each receiver. This typo does not affect the overall results
and the edited version is available online at link provided with reference [1].

as the block length n goes to infinity. The capacity region, C,
is the closure of the set of achievable rate pairs.

Remark 2.2 (A Note on Available CSIR): In this paper,
we make certain assumptions on the available channel
state information at the receiver(s) (CSIR). Consider Rx1,
then, the CSIR as noted in (9) and depicted in Fig. 1(b),
includes its corresponding channel state information S1[t],
the feedback state from receiver 2 to receiver 1, i.e., SF īi[t]
and SF īi[t]Sī[t], and the feedback state from receiver 1 to the
transmitter SF1T [t]. The first two assumptions are justified as
Rx1 is at the receiver end of those links. However, SF1T [t] is
the link from receiver 1 to the transmitter and the availability
of this knowledge at Rx1 needs further justification. Erasure
BCs typically capture packet networks where in the forward
channel, packets containing thousands of bits are transmitted,
yet feedback signals are individual bits. Extending our results
to packet erasure BCs is straightforward, and thus, it is
reasonable to assume the transmitter can provide SF1T [t] to
Rx1 with negligible overhead. Note that the transmitter is the
receiving terminal of the feedback signals and can thus, learn
the feedback channel states and later provide this information
to the receivers. On the other hand, if we truly focus on a
BC in which forward and feedback signals are all individual
bits, then, this overhead is not negligible and the problem
becomes more complicated.

III. STATEMENT OF THE MAIN RESULTS

The following theorem establishes an outer bound on the
capacity region of the two-user erasure BC with intermittent
feedback.

Theorem 3.1: The capacity region, C, of the two-user era-
sure BC with intermittent feedback as described in Section II
is included in:

Cout =
{
(R1, R2)

∣∣∣∣
R1 + β2 R2 ≤ β2 (1 − δ2)
β1 R1 + R2 ≤ β1 (1 − δ1)

}
(11)

where for i = 1, 2,

βi =
δFF (1 − minj δj) + (1 − δFF ) (1 − δ12)

(1 − δi)
, (12)

and δFF is defined in (4).
We derive the outer-bounds in two steps. First, we create

a modified BC in which forward links are correlated across
users when both feedback links to the transmitter are erased,
i.e.,

SF1T [t] = 0 and SF2T [t] = 0, t = 1, 2, . . . , n. (13)

We show that the capacity region of this modified problem
includes that of the original problem we are interested in. Next,
we derive the outer-bounds for this modified problem which
in turn serve as outer-bounds on C. The details are provided
in Section IV.

Remark 3.1 (Entropy Leakage Constant): The constant
described in (12), βi, can be interpreted as the “Entropy
Leakage Constant” for the modified channel, i.e., independent
of the encoding strategy, βi captures what fraction of the
entropy that “leaks” to the unintended receiver. Two parts can
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be identified in βi, where the second part, i.e.,

(1 − δFF ) (1 − δ12)
(1 − δi)

,

corresponds to the channel with non-intermittent (noiseless)
feedback similar to the results of [9], [26]–[28]. The first part,
i.e.,

δFF (1 − minj δj)
(1 − δi)

,

captures those times the transmitter had no CSI and correlation
was introduced among the forward channel links as described
above.

An interesting observation is that individual feedback era-
sure probabilities do not appear in these outer bounds, but
rather these bounds are governed by the probability of missing
both feedback links at the transmitter, that is, δFF . In other
words, as long as one receiver is successful in delivering its
CSI to the transmitter, the outer-bound region in Theorem 3.1
matches the one with global delayed CSI. This observation is
in agreement with our earlier result [14] where we showed that
the capacity region of the two-user erasure broadcast channel
with global delayed CSI can be achieved with single-user
delayed CSI only.

Remark 3.2 (Comparison to the Early Work of Sato [29]):
In the information theory literature, it is known that the
capacity of multi-terminal channels remains intact as long
as the marginal distributions at the receivers remain the
same [29]. To apply this result, one must first show the multi-
letter marginal distributions remain intact under the induced
correlation and the assumptions of the problem and then,
find “the worst-case” correlation to obtain the tightest
outer-bounds. Unfortunately, existing results in this direction
do not immediately extend to the current work. The reason
is the presence of feedback (unlike the no-feedback model
of [29]) creates dependency on the CSI for the transmit
signal across time, affecting the marginal distributions at
the receivers. In other words, even satisfying the first step
becomes a daunting task, not to mention finding the worst-case
correlation. We were able to use the results of [29] in [1] where
the intermittent feedback had a particular structure under
which delayed CSI is either shared with both or neither of the
other nodes. For the more general feedback structure assumed
in this work, we present an alternative argument to demonstrate
how and under what conditions, correlation among forward
channel may be induced without shrinking the capacity region.

Next, we show that under certain conditions, the
outer-bound region Cout can be achieved. These conditions
were reported in [1] with shortened proofs, and in Section V,
we present the detailed proof of the results. We then state
a new theorem that provides an inner-bound for a new case
compared to our earlier work.

Theorem 3.2: The outer-bound region, Cout, on the capacity
region of the two-user erasure BC with intermittent feedback
as given in Theorem 3.1, equals the capacity region, C, when:

1) δF1→δF2→ = 0, or
2) ∀t ∈ {1, 2, . . . , n}: SFiT [t] = SF īi[t], i = 1, 2, δ1 = δ2,

δF1→ = δF2→, and Pr (SF1T [t] $= SF2T [t]) = 0.

Fig. 2. The maximum achievable sum-rate of the erasure BC with intermittent
feedback for parameters given in (14) is 5/9 which is greater than the average
of the no feedback and the global feedback scenarios.

To prove the achievability, we propose a transmission strat-
egy that has a recursive form. The first iteration has three
phases which resemble the three phase communication of
two-user BC with global feedback [8]–[10]. After these three
phases, we create recycled bits that we feed to the same
transmission protocol as the recursive step. We show that the
achievable rate matches the outer bounds of Theorem 3.1. The
details are provided in Section V.

The above two theorems demonstrate how the capacity
region degrades as the quality of feedback channel diminishes.
However, an interesting observation is that the capacity region
of the two-user erasure BC with intermittent feedback is larger
than the average of the one with no feedback and the one
with global feedback. To clarify this, consider an example
in which feedback links from each receiver have the same
erasure probability and are fully correlated (i.e., are on and
off together), and we have

δ1 = δ2 = 0.5, δ12 = 0.25,

δF1→ = δF2→ = δFF = 0.5. (14)

Note that this example falls under Case 2 of Theo-
rem 3.2, and hence, the capacity region is characterized by
the outer-bound region in Theorem 3.1. For these parameters,
the maximum achievable sum-rate without feedback is 0.5,
while that with global delayed CSIT is 0.6 as depicted
in Fig. 2. Moreover, half of the times at least one feedback link
is active, that is, δFF = 0.5. Averaging the maximum achiev-
able sum-rates of the no feedback and the global feedback
scenarios gives us 0.55. Interestingly, the maximum achievable
sum-rate of this problem with intermittent feedback is 5/9
which is greater than 0.55, the sum-rate achieved by time
sharing (see Fig. 2 for illustration).

Remark 3.3: The intuition for the above observation is as
follows. For the no feedback case with δ1 = δ2, each receiver
can decode both messages since the two receivers are stochas-
tically equivalent. However, as we will show in Section V,
our recursive transmission protocol efficiently exploits the
available feedback, and prevents the suboptimal decoding of
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both messages by each receiver in the naive time-sharing
scheme.

Finally, we present an inner-bound when channel conditions
are more relaxed compared to those in Theorem 3.2 and we
quantify the gap to the outer-bounds. The significance of this
case is two-fold: (1) feedback links from the two receivers
are not fully correlated and can act arbitrarily with respect
to each other; (2) it provides an interesting connection to a
well-known problem, namely Blind Index Coding (BIC) [19]
as we discuss below and further in Sections VI and VII.

Theorem 3.3: For the two-user erasure BC with intermittent
feedback, if ∀t ∈ {1, 2, . . . , n}:

SFiT [t] = SF īi[t], i = 1, 2; δ1 = δ2 = δF1→ = δF2→ = δ;
and δFF = δ12 = δ2, (15)

we can achieve the following corner point:

R1 = R2 =
(
1 − δ2

)

2 + δ + δ3
. (16)

First, we discuss the gap between the inner-bound of
Theorem 3.3 and the outer-bound of Theorem 3.1. Note
that corner points, (R1, R2) = (1 − δ, 0) and (R1, R2) =
(0, 1 − δ) are trivially achievable. The maximum sum-rate,
i.e.,

max
R1,R2∈Cout

R1 + R2, (17)

from Theorem 3.1 under the conditions of Theorem 3.3 in (15)
is

R1 = R2 =
(
1 + δ − δ3

)
(1 − δ)

2 + δ − δ3
. (18)

Figure 3 depicts these inner and outer bounds as well as
the sum-capacity of this problem with no channel feedback as
a reference. The proof of Theorem 3.3 is based on an initial
three-phase communication followed by a simple step where
we sub-optimally ignore the feedback. This seemingly strange
decision is rooted in the fact that, as we will discuss in further
detail in Section VI, finding the optimal solution requires
solving the Blind Index Coding problem with intermittent
feedback. However, Blind Index Coding in erasure BCs is a
complicated problem even without including feedback [19],
let alone intermittent feedback. We believe our recursive
strategies introduced in this paper help shed light on BIC
problems.

IV. PROOF OF THEOREM 3.1: OUTER BOUNDS

We derive the outer bounds in two steps. First, we introduce
a modified BC in which channels are distributed as in the
original BC of Section II except for when both feedback
signals to the transmitter are erased, i.e.,

SF1T [t] = 0 and SF2T [t] = 0, t ∈ {1, 2, . . . , n}. (19)

We show that any outer bound on the capacity region of
this modified channel will serve as an outer bound on C,
the capacity region of the BC introduced in Section II. Then,
we obtain the outer bounds for this modified BC.

Fig. 3. Comparing the sum-rate inner-bound of Theorem 3.3 to the
outer-bounds of Theorem 3.1 when the channel is described by (15). The
red dashed line is the sum-capacity with no feedback and is included as a
baseline.

Fig. 4. (a) When both feedback links to the transmitter are erased,
we introduce correlation in the forward channel; (b) In our earlier work [1],
correlation was introduced when all feedback links were erased.

Step 1: Without loss of generality, we assume δ1 ≥ δ2,
i.e., Rx2 has a stronger channel.3 Consider a two-user erasure
BC as defined in Section II with the following modification.
When both feedback signals to the transmitter are erased for
some t ∈ {1, 2, . . . , n}, i.e., the condition in (19) is satisfied,
we have

S̃1[t] = G[t]S2[t],
S̃2[t] = S2[t], (20)

where we use ·̃ to distinguish the modified BC from the orig-
inal one, {G[t]} denotes a Bernoulli (1− δ1)/(1− δ2) process
that is distributed i.i.d. over time and is independent of all
other channel parameters. All other channel parameters remain
unchanged. The idea behind choosing {G[t]} as described
above is to create S̃1[t] with the same erasure probability as
S1[t], but fully correlated with S2[t].

Since here we focus on deriving outer-bounds, we further
enhance the channels by ensuring SF12[t] = SF21[t] = 1 as
well as S̃F12[t] = S̃F21[t] = 1. We note that in our earlier
work [1], we required S12[t] = S21[t] = 0 on top of SF1T [t] =
SF2T [t] = 0 as depicted in Fig. 4(b).

Claim 4.1: The capacity region of the modified two-user
erasure BC with intermittent feedback as described above

3Receiver 2 having a stronger channel does not imply that receiver 1 is
degraded.
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includes that of the two-user erasure BC with intermittent
feedback described in Section II.

Remark 4.1: The converse proof in [1] for the feedback
structure of Fig. 4(b) is based on proving the equivalence of
marginal distributions at the receivers in the original and the
modified BCs. In other words, for the specific intermittent
feedback model of [1] where delayed CSI is either shared with
both or neither of the other nodes, we could use the results
of [29]. However, in our more general setting, we take a direct
approach by showing the mutual information outer-bounds
on individual rates remain unchanged under the modification
of (20).

Proof of Claim 4.1: If at time t, the condition in (19) is
satisfied, i.e., SF1T [t] = 0 and SF2T [t] = 0 as in Fig. 4(a),
then the transmitter will never learn the values of S1[t]
and S2[t].

Now, suppose in the original problem, rate-tuple (R1, R2)
is achievable, and W1 and W2 are encoded as Xn. Moreover,
suppose the condition in (19) is satisfied for the first time at
time instant t > 0 (the condition is irrelevant for t = 0).
In other words, up until time instant t − 1, the modified and
the original channels are identical. To simplify the notation,
we define

A1[t]
!= (Y1[t], S1[t], SF1[t], SF21[t]S2[t]) . (21)

Also, for consistency, we set A1[0] deterministically to zero
values.4 Then, we have

n(R1 − εn)
Fano
≤ I (W1; An

1 )

=
n∑

!=1

I
(
W1; A1["]|A!−1

1

)

=
t−1∑

!=1

I
(
W1; A1["]|A!−1

1

)

+ I



W1; Y1[t], S1[t], SF1[t], SF21[t]S2[t]︸ ︷︷ ︸
= A1[t]

|At−1
1





+
n∑

!=t+1

I
(
W1; A1["]|A!−1

1

)
. (22)

We divide the remainder of the proof into three parts. First
in Part a, we show that we can remove S2[t] from A1[t] but
still keep (22) the same. Next in Part b, we show that after
removing S2[t], we can use the modified channel parameters in
the mutual information terms. Finally, in Part c, we put these
arguments together in (29) to show that R1 is also achievable
in the modified channel.

Part a: As mentioned earlier, suppose the condition in (19)
is satisfied for the first time at time instant t > 0, meaning that
SF1T [t] = SF2T [t] = 0 and no feedback is provided to the
transmitter. Then, since we enhanced the channel by setting

4The subscript in A1[t] indicates the signals correspond to receiver 1.

SF12[t] = SF21[t] = 1, for receiver Rx1, we have

I
(
W1; A1[t]|At−1

1

)

= I
(
W1; Y1[t], S1[t], SF1[t], SF21[t]S2[t]|At−1

1

)

(a)
= I

(
W1; Y1[t], S1[t], S2[t]|At−1

1

)

= I
(
W1; S1[t], S2[t]|At−1

1

)
︸ ︷︷ ︸

= 0

+I
(
W1; Y1[t]|S1[t], S2[t], At−1

1

)

(b)
= I

(
W1; Y1[t]|S1[t], S2[t], At−1

1

)

(c)
= I

(
W1; Y1[t]|S1[t], At−1

1

)

= I
(
W1; Y1[t]|S1[t], At−1

1

)
+ I

(
W1; S1[t]|At−1

1

)
︸ ︷︷ ︸

= 0

= I
(
W1; Y1[t], S1[t]|At−1

1

)
, (23)

where (a) holds since at time t as discussed above, SF1T [t] =
SF2T [t] = 0 and SF12[t] = SF21[t] = 1; (b) holds since
channels at time t are independent of the messages and
previous channel realizations; (c) follows from the fact the
X [t] is independent of S2[t], and thus, so is Y1[t]. Moreover,

I
(
W1; A1[t + 1]|At

1

)

= I
(
W1; A1[t + 1]|Y1[t], S1[t], SF1[t], SF21[t]S2[t], At−1

1

)

(a)
= I

(
W1; A1[t + 1]|Y1[t], S1[t], S2[t], At−1

1

)

(b)
= I

(
W1; A1[t + 1]|Y1[t], S1[t], At−1

1

)
, (24)

where (a) holds since at time t as discussed above, SF1T [t] =
SF2T [t] = 0 and SF12[t] = SF21[t] = 1; (b) holds since
X [t] and Y1[t] are independent of S2[t], and since SF1T [t] =
SF2T [t] = 0, X [t + 1] is also independent of S2[t].

Comparing (23) and (24), we conclude that when condition
(19) is met, we can remove S2[t] from A1[t] but still keep
(22) the same.

Part b: Going back to the outer-bound on individual rates in
(22), since we assumed up until time instant t−1, the modified
and the original channels are identical, we have

t−1∑

!=1

I
(
W1; A1["]|A!−1

1

)
=

t−1∑

!=1

I
(
W1; Ã1["]|Ã!−1

1

)
, (25)

where ·̃ denotes the signals in the modified channel, and note
that here we used

Ỹ1[t] = S̃1[t]X [t]. (26)

Moreover, at time t, when (19) is satisfied for the first time,
we have

I
(
W1; A1[t]|At−1

1

)

(23)= I
(
W1; Y1[t]|S1[t], At−1

1

)

(a)
= I

(
W1; Ỹ1[t]|S̃1[t], Ãt−1

1

)

(b)
= I

(
W1; Ỹ1[t], S̃1[t]|Ãt−1

1

)
, (27)

where (a) holds since at time t, X [t] is independent of S1[t],
while Ỹ1[t], S̃1[t] and Ãt−1

1 are statistically the same as Y1[t],
S1[t], and At−1

1 , respectively; (b) holds since channels at
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time t are independent of the messages and previous channel
realizations.

Finally, since the transmitter never learns the values of S1[t]
and S2[t] in the original channel, we have

I
(
W1; A1[t + 1]|At

1

)

(24)= I
(
W1; A1[t + 1]|Y1[t], S1[t], At−1

1

)

(a)
= I

(
W1; Ã1[t + 1]|Ỹ1[t], S̃1[t], Ãt−1

1

)
(28)

where (a) holds since X [t + 1] is independent of channel
realizations at time S1[t] and S2[t], and further, Ỹ1[t], S̃1[t]
and Ãt−1

1 are statistically the same as Y1[t], S1[t], and
At−1

1 , respectively.
We note that the only difference between the modified

channel and the original channel is the correlation between
the forward links in the modified channel, described in (20),
and all other parameters are the same for both channels.

Part c: Now, we have

n(R1 − εn)
(22)
≤

t−1∑

!=1

I
(
W1; A1["]|A!−1

1

)

+ I
(
W1; Y1[t], S1[t], SF1[t], SF21[t]S2[t]|At−1

1

)

+
n∑

!=t+1

I
(
W1; A1["]|A!−1

1

)

(23),(24)=
t−1∑

!=1

I
(
W1; A1["]|A!−1

1

)
+I

(
W1; Y1[t], S1[t]|At−1

1

)

+
n∑

!=t+1

I
(
W1; A1["]|Y !−1

1 , S!−1
1 , S!−1

F1 ,

{SF21S2}(!−1)\C)

(25),(26),(28)=
t−1∑

!=1

I
(
W1; Ã1["]|Ã!−1

1

)

+ I
(
W1; Ỹ1[t], S̃1[t]|Ãt−1

1

)

+
n∑

!=t+1

I
(
W1; Ã1["]|Ỹ !−1

1 , S̃!−1
1 , S̃!−1

F1 ,

{S̃F21S̃2}(!−1)\C)

= I
(
W1; Ỹ n

1 , S̃n
1 , S̃n

F1, {S̃F21S̃2}n\C
)

, (29)

where ·(!−1)\C represents the length-(" − 1) vector with ele-
ments removed when SF1T [t] = 0 and SF2T [t] = 0. In other
words, {SF21S2}(!−1)\C = {(SF1T ∨ SF2T )SF21S2}(!−1),
and as mentioned earlier, we used

Ỹ1[t] = S̃1[t]X [t]. (30)

We have a similar result for Rx2:

n(R2 − εn)
Fano
≤ I

(
W2; Ỹ n

2 , S̃n
2 , S̃n

F2, {S̃F12S̃1}n\C
)

. (31)

From (29) and (31), we conclude that if rate-tuple (R1, R2)
is achievable in the original network, then, it is also achiev-
able in the modified channel. This in turn implies that the

capacity region of the modified two-user erasure BC with
intermittent feedback as described above includes that of the
two-user erasure BC with intermittent feedback described in
Section II. !

Claim 4.1 implies that any outer bound on the capacity
region of the modified BC serves as an outer bound on that
of the problem described in Section II. In Step 2, we derive
the outer bounds on the capacity region of the modified BC.

Step 2: The arguments below are presented for the modified
BC, but for simplicity of notation and with a slight abuse of
notation, we drop the ·̃ for deriving the outer-bounds. Suppose
rate-tuple (R1, R2) is achievable in the modified BC. To obtain
the first outer-bound in (11), let

β2 =
δFF (1 − minj δj) + (1 − δFF ) (1 − δ12)

(1 − δ2)
, (32)

where as given in (4),

δFF
!= P{SF1T [t] = SF2T [t] = 0}. (33)

By further giving Sn
F īT to Rxi and additional W2 to Rx1 in

the modified BC, we have

n (R1 + β2 R2)
= H (W1) + β2 H (W2)
= H (W1|W2, S

n, Sn
F ) + β2 H (W2|Sn, Sn

F )
Fano
≤ I (W1; Y n

1 |W2, S
n, Sn

F )
+ β2I (W2; Y n

2 |Sn, Sn
F ) + nεn

= H (Y n
1 |W2, S

n, Sn
F ) − H (Y n

1 |W1, W2, S
n, Sn

F )︸ ︷︷ ︸
= 0

+ β2H (Y n
2 |Sn, Sn

F ) − β2H (Y n
2 |W2, S

n, Sn
F ) + nεn

(a)
≤ β2H (Y n

2 |Sn, Sn
F ) + nεn

(b)
≤ nβ2(1 − δ2) + nεn, (34)

where εn → 0 when n → ∞; Sn and Sn
F , as defined in (8),

encompass the forward and the feedback channels; (a) follows
from Claim 4.2 below, and (b) holds since S2[t] is Bernoulli
(1 − δ2). The other outer-bound can be obtained similarly.

Claim 4.2: For the two-user erasure BC with intermittent
feedback as described in Section II, and for any input distri-
bution, we have

H (Y n
1 |W2, S

n, Sn
F ) − β2H (Y n

2 |W2, S
n, Sn

F ) ≤ 0. (35)

Proof of Claim 4.2:

H (Y n
2 |W2, S

n, Sn
F )

(a)
=

n∑

t=1

H
(
Y2[t]|Y t−1

2 , W2, S
t, St

F

)

(b)
=

n∑

t=1

(1−δ2)H
(
X [t]|Y t−1

2 , W2, S1[t], S2[t] = 1, St−1, St
F

)

(c)
=

n∑

t=1

(1 − δ2)H
(
X [t]|Y t−1

2 , W2, S
t, St

F

)

(d)
≥

n∑

t=1

(1 − δ2)H
(
X [t]|Y t−1

1 , Y t−1
2 , W2, S

t, St
F

)

(e)
=

n∑

t=1

(1 − δ2)H
(
Y1[t], Y2[t]|Y t−1

1 , Y t−1
2 , W2, St, St

F

)

δFF (1 − minj δj) + (1 − δFF ) (1 − δ12)
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Fig. 5. A summary of the transmission protocol of [14], [15] with one-sided delayed channel state information (“DN” assumption) for the achievability of
Case 1 in Theorem 3.2.

(32)
=

n∑

t=1

1
β2

H
(
Y1[t], Y2[t]|Y t−1

1 , Y t−1
2 , W2, S

t, St
F

)

(f)
=

n∑

t=1

1
β2

H
(
Y1[t], Y2[t]|Y t−1

1 , Y t−1
2 , W2, S

n, Sn
F

)

=
1
β2

H (Y n
1 , Y n

2 |W2, S
n, Sn

F )

(g)
≥ 1

β2
H (Y n

1 |W2, S
n, Sn

F ), (36)

where (a) follows since X [t] is independent of future channel
realizations and the channel gains are distributed as i.i.d.
random variables over time, (b) holds since Pr (S2[t] = 1) =
(1−δ2), (c) follows from the same logic as step (a), (d) holds
since conditioning reduces entropy, (e) follows from the fact
that X [t] is independent from S[t] and SF [t], and applying
the total probability law as below

Pr ({S1[t] = S2[t] = 0}c) = 1 − Pr (S1[t] = S2[t] = 0)
= 1 − δFF

× Pr (S1[t] = S2[t] = 0|{SF1T [t] = SF2T [t] = 0})
− (1 − δFF )
× Pr (S1[t] = S2[t] = 0|{SF1T [t] = SF2T [t] = 0}c)

= 1 − δFF min
j

δj − (1 − δFF )δ12

= (1 − δ12) − δFF min
j

δj + δFF δ12 + δFF − δFF

= δFF (1 − min
j

δj) + (1 − δFF ) (1 − δ12) , (37)

where (20) is used in the last equality; (f) follows from the
same logic as step (a), and (g) follows from the non-negativity
of differential entropy. !

V. PROOF OF THEOREM 3.2: TRANSMISSION PROTOCOL

We start from the achievability of Case 1, which is a
review of our previous work [14], and then present the new
achievability for the other case.

Case 1: If δF1→ = 0 and δF2→ = 0, then the capacity
region of the two-user BC with intermittent FB is equivalent
to that of global delayed CSI assumption (or “DD” assump-
tion) [8]. Note that based on (4), δFi→ = 0, i = 1, 2, means

feedback links originating at Rxi are always active and no
erasure happens to the feedback signal of that receiver.

On the other hand, if one of the δFi→’s is non-zero, then the
capacity includes that of a two-user erasure BC with one-sided
feedback (“DN” assumption) for which we recently proved the
capacity region coincides with that of DD assumption [14].

Here, we include a very brief overview of the achiev-
ability strategy under the DN assumption, both to facilitate
understanding the upcoming new achievability and for our
discussion later in Section VII. In the DN scenario, suppose
only receiver 1 provides its feedback and receiver 2 is always
silent. Furthermore, there is no erasure possibility for the feed-
back links originating from receiver 1, and its CSI is always
available to the other nodes with unit delay. The transmission
strategy includes three phases as illustrated in Fig. 5. During
the first phase, the transmitter communicates the bits intended
for Rx1 and through the one-sided feedback learns vnoFB

1|2 ,
bits missing at Rx1. A fraction (1 − δ2) of these latter bits
are available at Rx2. Note that vnoFB

1|2 is of interest to Rx1

and partially known at Rx2, where the “noFB” superscript
indicates lack of feedback from Rx2. During the second phase,
the transmitter communicates the bits intended for Rx2 and
through the one-sided feedback learns vFB

2|1 , those bits delivered
to Rx1 (the unintended receiver). Note that vFB

2|1 is of interest
to Rx2 and fully known at Rx1. During the third phase,
the transmitter sends out the XOR of a bit in vnoFB

1|2 and
a random linear combination of vFB

2|1 . The bit in vnoFB
1|2 is

repeated as ARQ. That is, based on feedback, a new bit
joins the XOR process only when the previous bit in vnoFB

1|2 is
delivered to Rx1 (the intended receiver). Remember that vFB

2|1 is
fully known at Rx1 and its contribution can be removed from
the delivered XOR combinations. We point out that unlike
prior results, feedback is utilized during all three phases of
communications in order to achieve the DD capacity. Details
of the rate analysis are presented in [14], [15].

Case 2: δF1→ = δF2→
!= δF and Pr(SF1T [t] $=

SF2T [t]) = 0. This also implies that δFF = δF since we
also have SFiT [t] = SFiī

[t], i = 1, 2. Moreover, we have

δ1 = δ2
!= δ.
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In this case, we can simplify some expressions as follows.

βi =
(1 − δ12) − δF (δ − δ12)

1 − δ
!=

B

1 − δ
, (38)

where we defined

B
!= (1 − δ12) − δF (δ − δ12). (39)

Then, from Theorem 3.1, we obtain the maximum sum-rate
corner point:

R1 = R2 =
B

1 + B
(1−δ)

. (40)

Transmission Protocol: The transmission strategy has
a recursive format. We start with m bits for each
receiver. We start by sending the bits for each receiver and
based on the available feedback, we create two sets of recycled
equations. For the first set, feedback bits were available
whereas for the second set, no feedback was available. We then
send the XOR of the bits in first set. Whatever is left will be
fed as the input to the transmission protocol again.

Phase 1: The transmitter creates
m

1 − δ12
(41)

linearly independent equations of the m bits for receiver 1 and
sends them out. For (1− δF ) fraction of the time, feedback is
available and

(1 − δF )
δ − δ12

1 − δ12
m (42)

bits are available at Rx2 and needed at Rx1. Denote these bits
by v1|2. Moreover, for δF fraction of the time, no feedback is
available. But due to the statistics of the channel, we know

δF
δ − δ12

1 − δ12
m =

δF

1 − δF

∣∣v1|2
∣∣ (43)

bits are available at Rx2 and needed at Rx1. The transmitter
creates the same number of linearly independent equations
as (61) from the transmitted bits X [t] when feedback links
were not available. Denote these equations by vnoFB

1|2 .
Remark 5.1: To keep the description of the protocol simple,

we use the expected value of the number of bits in different
states, e.g., (60) and (61). A more precise statement would use
a concentration theorem result such as the Bernstein inequality
to show the omitted terms do not affect the overall result and
the achievable rates. A detailed example of such calculations
can be found in Section V.B of [30]. Moreover, when talking
about the number of bits or equations, we are limited to integer
numbers. If a ratio is not an integer number, we can use +·,,
the ceiling function, and since at the end we take the limit for
m → ∞, the results remain unchanged.

Phase 2: This phase is similar to the previous one. The
transmitter creates

m

1 − δ12
(44)

linearly independent equations of the m bits for receiver 2 and
sends them out. For (1− δF ) fraction of the time, feedback is
available and

(1 − δF )
δ − δ12

1 − δ12
m (45)

bits are available at Rx1 and needed at Rx2. Denote these bits
by v2|1. Moreover, for δF fraction of the time, no feedback is
available. But due to the statistics of the channel, we know

δF
δ − δ12

1 − δ12
m =

δF

1 − δF

∣∣v2|1
∣∣ (46)

bits are available at Rx1 and needed at Rx2. The transmitter
creates the same number of linearly independent equations
as (46) from the transmitted signal when feedback links were
not available. Denote these equations by vnoFB

2|1 .
Phase 3: In this phase, the transmitter encodes v1|2 and v2|1

using erasure codes of rate (1 − δ). Note that
∣∣v1|2

∣∣ =
∣∣v2|1

∣∣.
The transmitter creates the XOR of the encoded bits for Rx1

and Rx2 and sends them out. This phase takes
∣∣v1|2

∣∣
(1 − δ)

=
(1 − δF )(δ − δ12)
(1 − δ)(1 − δ12)

m (47)

time instants.
Recursive Step: Consider vnoFB

1|2 and vnoFB
2|1 as the input

messages in new Phase 1 and Phase 2, respectively, and repeat
the communication strategy.

Termination: To simplify the protocol, when the remaining
bits in vnoFB

1|2 and vnoFB
2|1 is o

(
m1/3

)
we stop the recursion,

and send the remaining bits using time sharing between the
two erasure codes.5 Note that while we used o

(
m1/3

)
as

our termination threshold, any threshold with vanishing (as
m → ∞) impact would work.

Decoding: Our transmission protocol is built upon that of
global feedback [8]–[10] with the addition of the recursive
step. Decoding starts with the last recursive step and goes
backwards to the first iteration. A subtle point worth noting is
that in each iteration the transmitter creates linearly indepen-
dent equations similar to vnoFB

1|2 and vnoFB
2|1 , and we need to

guarantee that this task is feasible as we have many iterations.
It is easy to verify that the geometric sum of the number of
linearly independent equations created for each receiver during
all iterations is smaller than the total number of unknown bits
we start with, i.e., m. Thus, the transmitter is able to carry
out its task as needed.

Achievable Rates: Achievable rates are calculated as the
ratio of the number of transmitted bits divided by the total
communication time for m → ∞ as below:

RSUM
m→∞=

2m

2 m
1−δ12

+ (1−δF )(δ−δ12)
(1−δ)(1−δ12) m +

2 v̄noFB
2|1

RSUM

. (48)

where
∣∣∣v̄noFB

2|1

∣∣∣ = δF
δ − δ12

1 − δ12
m. (49)

From (48) and (49), we have

RSUM

(
2

1 − δ12
+

(1 − δF )(δ − δ12)
(1 − δ)(1 − δ12)

)
= 2 − 2δF

δ − δ12

1 − δ12

⇒ RSUM =
2B(1 − δ)

2(1 − δ) + (1 − δF )(δ − δ12)
, (50)

5Here, the Landau (little-o) notation is used in its standard form: f(x) =
o(g(x)) is equivalent to limx→∞ f(x)/g(x) = 0.
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where for the last equality, we used the definition of B as
given in (39).

We can further rearrange the denominator of this equality
as

2(1 − δ) + (1 − δF )(δ − δ12)

= (1 − δ) + (1 − δ12) − δF (δ − δ12)
(39)= 1 − δ + B, (51)

to obtain

RSUM = R1 + R2 =
2B(1 − δ)

(1 − δ + B)
, (52)

where R1 and R2 are given in (40). This completes the achiev-
ability proof of Case 2, and thus, the proof of Theorem 3.2

VI. PROOF OF THEOREM 3.3

In this section, we provide the proof of Theorem 3.3
which establishes a connection to the Blind Index Coding
problem [19].

Recall that in Case 2 of Theorem 3.2, feedback links are
fully correlated, i.e.

Pr (SF1T [t] $= SF2T [t]) = 0, ∀t. (53)

In Theorem 3.3, on the other hand, we allow for a more
general distribution of feedback links originating from dif-
ferent receivers. More specifically, feedback links from each
receiver are still fully correlated, i.e., SF1T [t] = SF12[t]
for Rx1 and vice versa, but feedback links originating from
different receivers can have a more general distribution (unlike
Case 2). In other words, feedback scenarios in Case 2 are
always homogenous, while they can be heterogeneous now.
Thus, we need new ideas inspired by those reviewed in
the heterogeneous Case 1 of Theorem 3.2 to design the
transmission protocol. We also assume all erasure links are
governed by Bernoulli (1 − δ) random variables and δFF =
δ12 = δ2. Fig. 6 depicts all possible feedback realizations and
the corresponding probabilities. The non-trivial corner point
based on Theorem 3.1 is given by

R1 = R2 =
β(1 − δ)
1 + β

, (54)

where

δi = δFi→ = δ, δ12 = δFF = δ2

⇒ βi = β =
δ12(1 − δ) + (1 − δ12)2

(1 − δ)
δ<1= 1 + δ − δ3. (55)

In this section, we show we can achieve

R1 = R2 =
(
1 − δ2

)

2 + δ + δ3
. (56)

Specific Assumptions of Theorem 3.3: Before describing the
protocol, we would like to highlight the specific channel setup
in this case. First, we note that all channel links (forward
and feedback) are Bernoulli (1 − δ), and SFiT [t] = SF īi[t],
i = 1, 2. In particular, the latter assumption means that each
receiver has access to (at least) what the transmitter knows
about the channel state information. Finally, we assume δFF =
δ12 = δ2. We note the transmission protocol in this case is

Fig. 6. (a) All feedback links are available (1−2δ+δ12); (b) feedback only
from Rx1 (δ − δ12); (c) feedback only from Rx2 (δ − δ12); (d) all feedback
signals are erased (δ12).

highly tailored to these assumptions and generalization to other
setting is not a straightforward task.

Transmission Protocol (Overview): We start with m bits
for each user. The protocol includes an initial round that
utilizes feedback to recycle bits and a BIC step which ignores
feedback. The initial round includes two phases each dedicated
to one user, and an XOR phase where bits that are available as
side-information to unintended receivers are sent. The protocol
is then followed by a BIC step where remaining bits are
sent using erasure codes where we capitalize on the fact that
statistically some bits for Rxi are available at Rxī, i = 1, 2.
In Case 2 of Theorem 3.2, only two feedback realizations
could happen captured in Fig. 6(a) and Fig. 6(d), and in the
recursive step, we send random linear combination of the bits
for which no feedback was received. In this case, we take
advantage of the feedback structure and send individual equa-
tions that we know the intended receiver is missing and rely on
the statistics of the channel to make some of these equations
available to the other receiver.

Phase 1: The transmitter creates
m

1 − δ12
(57)

linearly independent combinations of the m bits for receiver
1 and sends them out. We refer to these combinations as
the coded bits for receiver i. When feedback channel real-
ization (a) of Fig. 6 occurs, which happens with frequency
(1 − 2δ + δ12),

(1 − 2δ + δ12)︸ ︷︷ ︸
realization a

δ − δ12

1 − δ12
m (58)

coded bits are available at Rx2 and needed at Rx1. Denote
these coded bits by v(a)

1|2 . When feedback channel realization
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(c) of Fig. 6 occurs, which happens with frequency (δ − δ12),
statistically

(δ − δ12)︸ ︷︷ ︸
realization c

δ − δ12

1 − δ12
m (59)

coded bits are available at Rx2 and needed at Rx1. Similar
to the re-transmission of coded bits identified in Phase 2 of
Case 1, the transmitter creates the same number random linear
combinations of the coded bits that delivered to Rx2 under
realization c of Fig. 6. Denote these random combinations by
v(c)
1|2. Note that both v(a)

1|2 and v(c)
1|2 are known to receiver 2

due to the available CSIR in (9) (recalling SF12[t] = SF1T [t]
in our setting), and further the transmitter and receivers can
share the matrices that are used to create random combi-
nation prior to the beginning of the communication block.
Since v(a)

1|2 and v(c)
1|2 are similar in nature, for simplicity,

we combine/concatenate them into v1|2 of size

(1 − δ)︸ ︷︷ ︸
realizations a & c

δ − δ12

1 − δ12
m (60)

Moreover, during the Phase 1, for δ − δ12 fraction of the
time, feedback realization (b) of Fig. 6 occurs and due to the
statistics of the channel, we know

δ
δ − δ12

1 − δ12
m =

δ

1 − δ

∣∣v1|2
∣∣ (61)

coded bits are missing at Rx1. Note that a fraction (1 − δ) of
these combinations is available at Rx2. The transmitter selects
the coded bits missing at Rx1 as Phase 1 of Case 1 when
feedback realization (b) of Fig. 6 occurs, and denote them by
vnoFB
1|2 . Thus, we have

∣∣∣vnoFB
1|2

∣∣∣ = δ
δ − δ12

1 − δ12
m =

δ

1 − δ

∣∣v1|2
∣∣ . (62)

Remark 6.1: Here, we would like to point out a subtle but
important distinction between combinations in v1|2 and in
vnoFB
1|2 . In the former, we effectively create random combi-

nations of previously transmitted coded bits in Phase 1 that
are known to Rx2. In the latter, for vnoFB

1|2 , the transmitter
selects missing individual coded bits in Phase 1 according
to the feedback, and a fraction (1 − δ) of these are already
known to Rx2. We will use the structure of vnoFB

1|2 to reduce
the communication length of the initial phase in the following
iterations as discussed below.

Phase 2: The transmission is same as that in Phase 1 by
swapping user index 1 with index 2, and the transmitter creates
v2|1 and vnoFB

2|1 for re-transmission.
XOR Phase: In this phase, the transmitter encodes v1|2 and

v2|1 using erasure codes of rate (1 − δ). Note that
∣∣v1|2

∣∣ =∣∣v2|1
∣∣. The transmitter creates the XOR of the encoded bits

for Rx1 and Rx2 and sends them out. This Phase takes
∣∣v1|2

∣∣
(1 − δ)

=
(1 − δF )(δ − δ12)
(1 − δ)(1 − δ12)

m
δF =δ=

(δ − δ12)
(1 − δ12)

m. (63)

time instants.
Blind Index Coding Phase: The main difference between the

achievability strategies of Case 2 of Theorem 3.2 and this case

lies in this re-transmission phase, and the protocol is no longer
recursive. In this case, vnoFB

1|2 and vnoFB
2|1 , unlike in Case 2,

are not random linear combinations of previously transmitted
coded bits, but rather are individual coded bits that we know
the intended receiver is missing and the unintended receiver
knows a fraction of them. We note that |vnoFB

1|2 | = |vnoFB
2|1 |

is given in (61), and due to the specific choice of channel
parameters of Theorem 3.3, we do not need to recycle bits
from realization (d) of Fig. 6. Further, due to the statistics of
the channel, a fraction (1− δ) of these missing coded bits are
already available to the unintended receiver. Thus, this step
falls under the broad definition of the Blind Index Coding,
which we will further discuss in the next section.

The available side information means that if the transmitter
provides each receiver a total of

(2 − (1 − δ)) × δ
δ − δ12

1 − δ12
m

︸ ︷︷ ︸
= |vnoFB

1|2 |

(64)

random linear combination of vnoFB
1|2 and vnoFB

2|1 , then, each
receiver will have enough equations to recover both vnoFB

1|2 and
vnoFB
2|1 . The transmitter creates these random combinations and

encodes them at an erasure code of rate (1 − δ) and multicast
them out. We note that the transmitter does not utilize the
feedback in this step. In the next section, we discuss why this
decision results in sub-optimal rates. This step takes

δ (1 + δ) (δ − δ12)
(1 − δ) (1 − δ12)

m (65)

time instants, and at the end of it, vnoFB
1|2 and vnoFB

2|1 becomes
available to both receivers.

Decoding: We use receiver 1 as an example. After the BIC
phase, Rx1 decodes both vnoFB

1|2 and vnoFB
2|1 . Then, using the

available vnoFB
1|2̄ it completes the recovery of all

δ − δ12

1 − δ12
m (66)

coded bits intended for Rx1 and transmitted in Case (b) of
Figure 6. Next, using v(a)

1|2 obtained from the XOR phase, Rx1

completes the recovery of

(1 − 2δ + δ12)
1 − δ12

1 − δ12
m (67)

coded bits transmitted in Case (a) of Figure 6; also, using
linear combinations v(c)

1|2, Rx1 can decode all coded bits when
Rx2 is on in Case (c) of Figure 6, thus obtaining

(δ − δ12)
1 − δ12

1 − δ12
m (68)

code bits in this case. Finally, Rx1 receives

(1 − δ)
δ12

1 − δ12
m (69)

coded bits in Case (d) of Figure 6. Adding up (67)–(69), Rx1

gathers a total of m coded bits, and thus, the decodability at
Rx1 is ensured.
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Achievable Rates: The total communication time (ignoring
the approximate terms discussed in Remark 5.1) can be then
calculated as

T =
2m

(1 − δ12)︸ ︷︷ ︸
ph. 1 and ph. 2

+
(δ − δ12)m
(1 − δ12)︸ ︷︷ ︸
XOR ph

+
δ (1 + δ) (δ − δ12)
(1 − δ) (1 − δ12)

m

︸ ︷︷ ︸
BIC ph

=
2 + δ + δ3

(1 − δ2)
m. (70)

The achievable rates are then calculated as Ri = m/T
which coincide with the expression given in (56). This com-
pletes the proof of Theorem 3.3. We compared these achiev-
able rates to the outer-bounds of Theorem 3.1 in Section III,
Figure 3.

VII. DISCUSSION ON OTHER REGIMES AND CONNECTION

TO BLIND INDEX CODING

The authors conjecture that the outer-bound region of
Theorem 3.1 is in fact the capacity region of the two-user
erasure broadcast channel with intermittent feedback consid-
ered in Theorem 3.3. We believe the transmission strategy
needs to be improved to provide a smooth transition between
global delayed CSI scenario and the one-sided scenario. As we
discussed briefly in Section V, the transmission strategy under
the one-sided feedback assumption [14] requires careful uti-
lization of the available feedback in all phases of communi-
cation. However, in Case 2 of Theorem 3.2 and in the proof
of Theorem 3.3, we do not utilize feedback during certain
phases of communications. The reason why the achievable
rates do not degrade by ignoring feedback during Phase 3 of
each iteration of Case 2 lies in the specific assumptions on
channel parameters: we assume fully correlated feedback links
and thus, transmitter wither has delayed feedback from both
receivers or from no one.

The story is more complicated for Theorem 3.3. In the
BIC phase, we have a BC in which a fraction of the bits for
each receiver is available to the other one but the transmitter
does not know which ones as assumed in [19], [31], [32].
However, different to the BIC problem in [19], [31], now
we have additional (intermittent) feedback. To simplify the
scheme, we provide signals intended for each receiver to both.
However, using feedback one can indeed improve upon this
scheme and improve the rates. Unfortunately, we face the
following challenges: (1) the scheme becomes rather complex
even if we assume after the BIC step feedback links are no
longer intermittent; (2) even for erasure BIC without feedback,
the capacity is not provided in [19]. Not to mention our
more complicated setting. Thus, the BIC with feedback is an
interesting yet challenging problem that needs to be solved
before we can fully address the capacity region of the two-user
erasure broadcast channel with intermittent feedback. Ideally,
the transmission strategy should cover both extreme cases of
DD and DN, and this is an ongoing part of our research.

VIII. CONCLUSION

We developed new outer bounds on the capacity region
of two-user erasure BCs with intermittent feedback. We also

showed that these outer bounds are achievable under certain
assumptions on channel parameters. The next step is to
characterize the capacity region for all channel parameters.
We conjecture the outer bounds are tight, and the region
given in Theorem 3.1 is in fact the capacity region. However,
we need to solve BIC with (intermittent) feedback as an
intermediate step before settling this conjecture. An interesting
future direction is to consider the scenario in which receivers
can encode the feedback messages, and find the minimum
required feedback bandwidth to achieve the global feedback
performance with only intermittent feedback.

Finally, in [30], [33], [34], two-user erasure interference
channels [27] with local delayed feedback were studied. There,
it was shown that each transmitter must at least know the
delayed CSI of the links connected to it in order to achieve the
global delayed CSI performance. For distributed transmitters,
understanding the capacity region of the two-user erasure
interference channel with intermittent feedback would be the
starting point.
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