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Content Delivery Over Broadcast Erasure Channels
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Abstract—We study the content delivery problem between a
transmitter and two receivers through erasure links, when each
receiver has access to some random side-information about the
files requested by the other user. The random side-information is
cached at the receiver via the decentralized content placement.
The distributed nature of the receiving terminals may also make
it harder for the transmitter to learn the erasure state of the
two links and indices of the cached files. We thus investigate the
capacity gain due to various levels of availability of channel state
and cache index information at the transmitter. More precisely,
we cover a wide range of settings from global delayed chan-
nel state knowledge and a non-blind transmitter (i.e., one that
knows the exact cache index information at each receiver) all
the way to no channel state information and a blind transmitter
(i.e., one that only statistically knows cache index information
at the receivers). We derive new inner and outer bounds for
the problem under various settings and provide the conditions
under which the two match and the capacity region is character-
ized. Surprisingly, for some interesting cases, the capacity region
remains unchanged even with only single-user channel state or
single-user cache index information at the transmitter.

Index Terms—Random cache, broadcast erasure channels,
intermittent connectivity, Shannon feedback, channel state
information.

I. INTRODUCTION

AVAILABLE receiver-end side-information can greatly
enhance content delivery and increase the attainable data

rates in wireless systems. In particular, in various applica-
tions such as caching [1], [2], coded computing [3], private
information retrieval [4], [5], and index coding [6]–[8], side-
information is intentionally and strategically placed at each
receiver’s cache during some placement phase in order to
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lighten future communication loads. However, in a more real-
istic setting, there is no centralized mechanism to populate the
local caches. On the other hand, receivers may obtain some
side-information by simply over-hearing the signals intended
for other nodes over the shared wireless medium. The trans-
mitter(s) may or may not be aware of the exact content of this
side-information, and if the transmitter is not aware of the exact
content, the problem is referred to as Blind Index Coding [9].
Further, the transmitter(s) may be enhanced by receiving chan-
nel state feedback. This paper focuses on content delivery in
wireless networks with potential channel state feedback and/or
random available side-information at the receivers.

In a packet-based communication network, instead of
the classic Gaussian channel, the network-coding-based
approaches generally model each communication hop as a
packet erasure channel. In this work, as [10], we focus
on broadcast erasure channels with random receiver side-
information. More specifically, we consider a single transmit-
ter communicating with two receiving terminals through era-
sure links. Through decentralized content placement [9], [10],
each receiver randomly caches some side-information about
the message bits (file) of the other user. In [10], the indices
of the cached bits at each receiver during the placement
and (delayed) channel erasure state during the delivery are
globally known at the transmitter. However, as pointed out
in [11]–[13], in distributed networks, acquiring such global
information at the transmitter(s) is prohibitive due to the
extensive date exchange and the heterogenous capabilities for
receiving terminals to feed back. Thus, we consider three sce-
narios about the transmitter’s knowledge of the receiver-end
side-information: (1) the blind-transmitter case where only the
statistics of the random cache index information is known to
the transmitter, (2) the non-blind-transmitter case where the
transmitter knows exactly what each receiver has access to, and
(3) the semi-blind-transmitter case that knows the exact cache
index information at only one of the receivers. Meanwhile,
a range of assumptions on the availability of channel state
information at the transmitter (CSIT) are also considered: (1)
when both receivers provide delayed CSI to the transmitter
(DD); (2) when only one receiver provides delayed CSI to the
transmitter (DN); and (3) when receivers do not provide any
CSI to the transmitter (NN).

The blind-transmitter case under scenario NN in [9] corre-
sponds to the setting in which during the content placement
and delivery, neither receiver has the capability to feed back
through the control channel or shared wireless medium. Then,
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TABLE I
SUMMARY OF CONTRIBUTIONS CATEGORIZED BY TRANSMITTER’S INFORMATION

the transmitter has neither cache index information nor CSI.
On the other hand, for each receiver, if the feedback resource
is available for some period of time and then becomes unavail-
able or intermittent [13]–[17], then we have other scenarios.
For example, although during the placement phase, both
receivers may feed back cache indices, during the delivery
phase, one of the receiver may not be able to feed back its fast
varying channel state, which results in a non-blind transmitter
under scenario DN.

Related Work and Literature Review: To better place
our work within the literature for cached network or index
coding, we summarize some of the main results. The classic
index coding problem [6], [18], [19] assumes the transmitter is
aware of the exact side-information at each node [7], [20], and
the network does not have wireless links directly. This problem
has been a powerful tool in studying the data communication
network with receiver caching [8], [21], [22].

For index coding over wireless links, as aforementioned,
two extreme cases have been studied [9], [10]. In [10], the
capacity regions for two and three-user broadcast erasure chan-
nels, when the transmitter has access to global delayed CSI
and cached index information, are characterized. This setting
assumes rather strong and stable feedback channels from all
receivers. On the other hand, blind wireless index coding is
introduced in [9] where the transmitter only knows the statis-
tics of the CSI and cached index information since there is no
feed back at all from the two users. However, a limitation is
added in [9] such that only the user with weaker link (higher
erasure probability) has cache. Even under this limitation, the
capacity region is not fully known In conclusion, there remains
a gap in the index coding literature between these two extreme
points when it comes to wireless setting, which is the target
of our paper. More comparisons with [9], [10] can be found
in Section III.

Contributions: In this work, we consider the two-user era-
sure broadcast channel with the erasure states of the two links
being independent of each other. We first present the capacity
for the two-user broadcast erasure channel with a non-blind
transmitter under scenario NN, that is, no CSI feedback. For
scenario NN, we observe that the stronger receiver, i.e., the one
whose channel has a smaller erasure probability, will eventu-
ally be able to decode messages intended for both receivers.
Note that this observation does not imply that the broadcast
channel is degraded due to the cache. Interestingly, the achiev-
ability derived from this observation indicates that our optimal
protocol works even when the transmitter does not know the
exact cache index information at the stronger receiver, i.e.,

with a “semi-blind” transmitter. To derive the outer-bounds,
besides using the aforementioned observations, we also show
an extremal entropy inequality between the two receivers that
captures the availability of receiver-end side-information. With
a blind transmitter, these outer-bounds can be automatically
applied since the transmitter has more knowledge in the non-
blind case, and we show that the outer bounds can be achieved
when the channel is symmetric. When some delayed CSI is
available, we also demonstrate the capacity with a non-blind
transmitter and global CSI (scenario DD) [10] can be achieved
when the transmitter has less information. In particular, for
the blind-transmitter case under scenario DD, we provide an
optimal protocol for the symmetric channel. For the non-blind-
transmitter case or semi-blind-transmitter case, we also extend
our earlier non-cached capacity result for scenario DN [13],
and show that even with cache the capacity region with only
single-user CSI feed back can match that with global CSI in [10].

Table I summarizes our contributions, which we will fur-
ther elaborate upon in Section III. In this table, “W” stands
for the weak user (the one with higher erasure probability)
and “S” stands for the strong user. Further, “State” columns
are for the CSIT, and “Cache” columns are for the transmitter’s
knowledge of bit indices cached at the receiver: “!” indicates
availability and “"” indicates missing information. For exam-
ple, “""!"” is the no CSI case (NN) with semi-blind Tx that
knows the cache index information at the weaker receiver. For
the three cases marked with “*”, the capacity regions are fully
identified without additional limitations on system parameters.

Paper Organization: The rest of the paper is organized
as follows. In Section II, we present the problem setting and
the assumptions we xmake in this work. Section III presents
the main contributions and provides further insights and inter-
pretations of the results. The proof of the main results will
be presented in the following sections. Finally, Section VIII
concludes the paper.

II. PROBLEM FORMULATION

We consider the canonical two-user broadcast erasure chan-
nel in Figure 1 to understand how transmitters can exploit
the available side-information at the receivers to improve the
capacity region. In this network, a transmitter, Tx, wishes to
transmit two independent messages (files), W1 and W2, to two
receiving terminals Rx1 and Rx2, respectively, over n chan-
nel uses. Each message, Wi, contains |Wi| = mi = nRi data
packets (or bits) where Ri is the rate for user i, i = 1, 2.
For simplicity and when convenient, we also denote message

Authorized licensed use limited to: Auraria Library. Downloaded on August 09,2022 at 15:43:03 UTC from IEEE Xplore.  Restrictions apply. 



VAHID et al.: CONTENT DELIVERY OVER BROADCAST ERASURE CHANNELS WITH DISTRIBUTED RANDOM CACHE 1193

Fig. 1. Two-user broadcast erasure channels with channel state feedback and
random side-information at each receiver.

W1 and W2 as bit vectors "a = (a1, a2, . . . , am1) and "b =
(b1, b2, . . . , bm2), respectively. Here, we note that each packet
is a collection of encoded bits, however, for simplicity and
without loss of generality, we assume each packet is in the
binary field, and we refer to them as bits. Extensions to broad-
cast packet erasure channels where packets are in large finite
fields are straightforward as in [10], [23].

Channel model: At time instant t, the messages are mapped
to channel input X[t] ∈ F2, and the corresponding received
signals at Rx1 and Rx2 are

Y1[t] = S1[t]X[t] and Y2[t] = S2[t]X[t], (1)

respectively, where {Si[t]} denotes the Bernoulli (1 − δi) pro-
cess that governs the erasure at Rxi, and is independently and
identically distributed (i.i.d.) over time and across users. When
Si[t] = 1, Rxi receives X[t] noiselessly; and when Si[t] = 0, it
receives an erasure. In other words, as we assume receivers are
aware of their local channel state information, each receiver
can map the received signal when Si[t] = 0 to an erasure.

CSI assumptions: We assume the receivers are aware of
the channel state information (i.e., global CSIR). For the
transmitter, on the other hand, we assume the following
scenarios:

1) NN or No CSIT model: The transmitter knows only
the erasure probabilities and not the actual channel
realizations;

2) DN model: The transmitter knows the erasure probabil-
ities and the actual channel realizations of one receiver
with unit delay;

3) DD or delayed CSIT model: The transmitter knows the
erasure probabilities and the actual channel realizations
of both receivers with unit delay.

Available receiver side-information: Decentralized content
placement [9], [10] is adopted, where each user independently
caches a subset of the message bits (file). In particular, we
assume a random fraction (1 − εi) of the bits intended for
receiver Rxī is cached at Rxi, ī

%= 3 − i, and we denote this
side information with Wī|i as in Figure 1. This assumption
on the available side-information at each receiver could also
be represented using an erasure side channel. More precisely,
we can assume the available side-information to receiver 1 is
created through:

E1[#] · b#, # = 1, 2, . . . , m2, (2)

where b# is the #th bit of message W2. While the cache
index information E1[#] is an i.i.d. Bernoulli (1 − ε1) process
independent of all other channel parameters and known to
receiver 1. The side-information for receiver 2 can be simi-
larly defined. To concisely present our result, in our placement
model each user does not cache its own message but only
the interference. Our results can be easily extended to the
case when both the own message and interference bits are
cached.

The Transmitter’s knowledge of the cache index:
Following the convention which presents the length nRī

sequence Ei[1], . . . Ei[nRī] as E
nRī
i , we consider three scenarios

for the blindness of the cache index at the transmitter
1) Blind Transmitter: In this scenario, the transmitter’s

knowledge of the receiver side-information is limited
to the values of ε1 and ε2, while the cache index
information EnR2

1 and EnR1
2 in (2) is unknown.

2) Semi-Blind Transmitter: In this scenario, the transmit-
ter’s knowledge of the side-information at Rxi is limited
to the value of εi, while the transmitter knows Wi|ī
through EnRi

ī
(either i = 1 or i = 2).

3) Non-Blind Transmitter: In this scenario, the transmitter
knows exactly what fraction of each message is available
to the unintended receiver. In other words, the trans-
mitter knows W2|1 and W1|2 through the cache index
information EnR2

1 and EnR1
2 .

Encoding: We start with the NN model where the constraint
imposed at time index t on the encoding function ft(.) under
the blind transmitter assumption is

X[t] = ft(W1, W2, PI), (3)

for the non-blind transmitter is

X[t] = ft
(
W1|2, W̄1|2, W2|1, W̄2|1, PI

)
, (4)

and for the semi-blind transmitter is

X[t] = ft
(

Wi|ī, W̄i|ī, Wī, PI
)
, (5)

where PI represents the knowledge of statistical parameters
δ1, δ2, ε1, and ε2, and W̄i|ī is the complement of Wi|ī with
respect to Wi, i = 1, 2. Although not ideal, this notation
is adopted to highlight the transmitter’s knowledge of the
available side-information at the receivers.

For the DD model, St−1 is added to the input set of ft(.),
while under the DN model, the delayed CSI of only one link,
for example St−1

1 , is revealed to the transmitter. Rather than
enumerating all possibilities, we present an example to clarify
the encoding constraint. Suppose the transmitter knows the
side-information available to Rx2 (semi-blind), and has access
to the delayed CSI from Rx1 (DN model), then, we have

X[t] = ft
(

W1|2, W̄1|2, W2, St−1
1 , PI

)
. (6)

Decoding: Each receiver Rxi, i = 1, 2 knows its own CSI
across entire transmission block Sn

i , and the CSI Sn
ī

if the
other receiver ī provides feedback. Under scenario NN it uses
a decoding function ϕi,n(Yn

i , Sn
i , Wī|i) to get an estimate Ŵi of

Wi, while under scenario DD the decoding function becomes

Authorized licensed use limited to: Auraria Library. Downloaded on August 09,2022 at 15:43:03 UTC from IEEE Xplore.  Restrictions apply. 



1194 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 4, DECEMBER 2021

ϕi,n(Yn
i , Sn, Wī|i) where Sn = (Sn

1, Sn
2). Note that under sce-

nario DN, only the no-feedback receiver has global Sn. An
error occurs whenever Ŵi &= Wi. The average probability of
error is given by

λi,n = E
[
P
(
Ŵi &= Wi

)]
, (7)

where the expectation is taken with respect to the random
choice of the transmitted messages.

Capacity region: We say that a rate pair (R1, R2) is achiev-
able, if there exists a block encoder at the transmitter, and a
block decoder at each receiver, such that λi,n goes to zero
as the block length n goes to infinity. The capacity region,
C, is the closure of the set of the achievable rate pairs.
Throughout the paper, we will distinguish the capacity region
under different assumptions. For example, Cblind

NN is the capac-
ity region of the two-user broadcast erasure channels with a
blind transmitter and no CSIT.

III. MAIN RESULTS

In this section, we present the main contributions of this
paper and provide some insights and intuitions about the
findings.

A. Statement of the Main Results

We start with scenarios in which we characterize the capac-
ity region, and then, we present cases for which we derive
new inner-bounds. In Theorem 1, for the no CSIT scenario,
we establish the capacity region with a non-blind transmitter.
We will highlight the importance of side-information at the
weaker receiver and how a semi-blind transmitter may achieve
the same region in Remarks 1 and 2. Next, we present new
capacity results when (some) delayed CSI is available to the
transmitter in Theorem 2. Next, for the no CSIT assumption
and a blind transmitter, in Theorem 3 we present new condi-
tions beyond [9] under which the capacity region is achievable,
and a new achievable region is presented in Theorem 4.

Theorem 1: For the two-user broadcast erasure channel
with a non-blind transmitter and no CSIT as described in
Section II, we have

Cnon−blind
NN ≡

{
0 ≤ βno

1 R1 + R2 ≤ (1 − δ2),

0 ≤ R1 + βno
2 R2 ≤ (1 − δ1).

(8)

where

βno
i = εī min

{
1 − δī

1 − δi
, 1

}
. (9)

The converse and achievability proofs are presented in
Section IV and Section V, respectively. The derivation of the
outer-bounds has two main ingredients. First, as detailed in
upcoming Remark 1, even the channel is not degraded, the
stronger receiver can decode both messages regardless of the
values of ε1 and ε2 for receiver cache. Second, as detailed in
upcoming Lemma 2, we derive an extremal entropy inequal-
ity between the two receivers that captures the availability of
receiver-end side-information, including the channel state and
cache index information. The outer-bound region holds for the
non-blind setting and thus, includes the capacity region with a

blind transmitter as well. The following two remarks provide
further insights.

Remark 1 [Simplified expressions and degradedness]:
Without loss of generality, assume δ2 ≥ δ1, meaning that
receiver 1 has a stronger channel. Then, the region of
Theorem 1 can be written as

{
0 ≤ ε2

1−δ2
1−δ1

R1 + R2 ≤ (1 − δ2),

0 ≤ R1 + ε1R2 ≤ (1 − δ1).
(10)

Unlike the scenario with no side-information at the receivers,
this assumption does not mean the channel is degraded.
However, the stronger receiver, Rx1 in this case, will be able
to decode both W1 and W2 by end of the communication
block regardless of the values of ε1 and ε2. The reason is
as follows. After decoding W1, receiver Rx1 has access to the
side-information of receiver Rx2, i.e., W1|2, and can emulate
the channel of Rx2 as it has a stronger channel (δ2 ≥ δ1).
Finally, we note that although the stronger receiver is able to
decode both messages, this does not imply that the stronger
receiver will have a higher rate. As an example, suppose
δ1 = 1/3, δ2 = 1/2, ε1 = 2/3, and ε2 = 1/6. Then, from
Theorem 1, the maximum sum-rate point is:

(R1, R2) =
(

4
11

,
5

11

)
. (11)

Remark 2 [Importance of side-information at the weaker
receiver]: Under the same assumption of the previous remark,
δ2 ≥ δ1, from the outer-bounds of Theorem 1, we conclude that
if the weaker receiver has no side-information, i.e., ε2 = 1, then,
the capacity region is the same as having no side-information at
either receivers. In other words, as long as the weaker receiver
has no side-information, additional information at the stronger
receiver does not enlarge the region. On other hand, any side-
information at the weaker receiver results in an outer-bound
region that is strictly larger than the capacity region with no
side-information at either receivers.

Based on these remarks, we can provide more details on
the achievability protocol. Under the no-CSIT assumption, the
stronger receiver will eventually be able to decode both mes-
sages. Thus, the first step is to deliver the message intended
for the weaker receiver. The stronger receiver will be able to
decode this message faster than the intended receiver and thus,
in the second step, we include the part of the message for the
stronger user that is available at the weaker receiver. In other
words, this second step is beneficial to both receivers. We note
that to accomplish this task, the transmitter at least needs to
know the side-information of the weaker receiver. This latter
fact is further explained in the Corollary below. During the
final step, the remaining part of the message intended for the
stronger receiver is delivered.

As will be detailed in Section V, to achieve the outer-
bounds, indeed the transmitter only needs to know the
side-information available to the weaker receiver. Thus, we
have.

Corollary 1: The capacity region with a semi-blind trans-
mitter Csemi−blind

NN equals to Cnon−blind
NN in Theorem 1 if the cache

index information (2) of the weaker receiver (link with larger
erasure probability) is known at the transmitter.
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The following lemma from [10] establishes the outer-bounds
on the capacity region of the two-user broadcast erasure chan-
nel with a non-blind transmitter and delayed CSIT, Cnon−blind

DD .
We provide several new achievability strategies to achieve
these bounds when the transmitter has less knowledge com-
pared to what these bounds assume, and establish interesting
capacity results.

Lemma 1 [10]: For the two-user broadcast erasure channel
with a non-blind transmitter and delayed CSIT as described
in Section II, we have outer-bound region

Cnon−blind
DD ⊆

{
0 ≤ Ri ≤ (1 − δi), i = 1, 2,

β
delayed
i Ri + Rī ≤

(
1 − δī

)
, i = 1, 2.

(12)

where

β
delayed
i = εī

1 − δī

1 − δ1δ2
. (13)

Now, we show that this outer-bound region is achievable
under the following scenarios.

Theorem 2: For the two-user broadcast erasure channel, the
capacity region is achieved when:

Case A: With a blind transmitter and global delayed CSIT,
the capacity region Cblind

DD equals to (12) when the channel is
symmetric (i.e., δ1 = δ2 = δ and ε1 = ε2 = ε);

Case B: With the transmitter knowing full side-information
from one receiver and only the delayed CSI of the other
receiver (e.g., the semi-blind-transmitter case with ε1 = 0
for Rx1), the capacity region Csemi−blind

DN (and thus Csemi−blind
DD )

equals to (12)
Case C: With a non-blind transmitter having access to only

the delayed CSI of one receiver, the capacity region Cnon−blind
DN

equals to (12).
The proof of Case A is given in Section VI, while those

for the other cases are presented in Section VII. Note that
having full side-information at a receiver (as in Case B above)
immediately implies the transmitter is not blind with respect
to that receiver. For the blind-transmitter case, if εi = 0 then
the transmitter knows Rxi has full side-information, and thus
Cblind

DN is also partially known from Case B.
Without the global channel state and/or cache index

information from both receivers, our new achievability results
of Theorem 2 differ significantly from the those in [10]. In par-
ticular in [10], overheard bits and cached bits are both known
at the transmitter to create network coding opportunities simul-
taneously benefit for both receivers. In our achievability,
network coding opportunities can only be opportunistically
created. Rather interestingly, in three cases identified by our
Theorem, transmitter blindness or one-sided feedback may not
result in any capacity loss compared with [10].

To achieve capacity Cblind
DD in Case A, we present an oppor-

tunistic protocol where the transmitter first sends out linear
combinations of the packets for both receivers. Then, using the
feedback signals and the fact that some of the packets for one
receiver are available at the other, the transmitter sends bits for
intended for one receiver in such as way to help one receiver
remove interference and the other to obtain new information
about its bits. Depending on channel parameters, this may fol-
low with a multicast phase. This idea could be interpreted

as an opportunistic reverse network coding for erasure chan-
nels. Both Cases B and C focus on cached capacity with only
single-user delayed CSI. Interestingly, our four-phase oppor-
tunistic network coding for Case C will also create blind
side-information at the “N” user for the recycled bits. Indeed,
the last two phases in Case C is modified form the achiev-
ability for Case B. Compared with [13], the new ingredient
for Case C is the non-blind cache, and we propose to gener-
alize [13] by carefully mixing the fresh cached bits with the
recycled un-cached bits. Specifically, the recycling in [13] is
done by mixing two pre-encoded bit sequences. On the con-
trary to [13] where the input sequence of each pre-encoder is
always recycled, it may contain fresh bits in our Case C as
detailed in Section VII.

The following two theorems focus on the no-CSIT blind-
transmitter assumption. The first one identifies conditions
under which the outer-bound region of Theorem 1 can be
achieved even when the transmitter does not know what side-
information is available to each receiver. The second theorem
presents an achievable region when the stronger receiver has
full side-information, but this achievable region does not match
the outer-bounds.

Theorem 3: For the two-user broadcast erasure channel
with no channel feedback, a blind transmitter, and avail-
able receiver side-information as described in Section II, the
capacity Cblind

NN equals to Cnon−blind
NN in Theorem 1 when:

1) When δ2 ≥ δ1 and ε2 ∈ {0, 1};
2) Symmetric setting: when δ1 = δ2 = δ, and ε1 = ε2 = ε.
Theorem 4: For the two-user broadcast erasure channel

with no channel feedback and a blind transmitter as described
in Section II, when δ2 ≥ δ1 and ε1 = 0, the following region
is achievable:

Rin ≡
{

0 ≤ (ε2 + δ1(1 − ε2))
1−δ2
1−δ1

R1 + R2 ≤ (1 − δ2),

0 ≤ R1 ≤ (1 − δ1).

(14)

The proofs of Theorem 3 and Theorem 4 are given in
Appendices B and C, respectively. We note that for δ1 = 0
(no erasure at the stronger receiver), the inner-bound region
of Theorem 4 matches the outer-bounds of Theorem 1, i.e.,
Rin ≡ Cblind

NN .
Note that the blind-transmitter case under no-CSIT was

also considered in [9] but only the weaker receiver has side-
information. In that setting, outer and inner bounds were
presented that match only when erasure probabilities are equal
to zero, which is no longer an erasure setting. In contrast, in
this work, we have the capacity region Cnon−blind

NN in Theorem 1
for the non-blind-transmitter case, which recovers the outer-
bounds of [9] as a special case. The capacity region Cblind

NN of
blind index coding over no-CSIT broadcast erasure channel
remains open in general.

B. Illustration of the Results

In this subsection, we briefly illustrate the results through
a few examples to further clarify and discuss some of the
insights and intuitions provided above.
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Fig. 2. Capacity region Cblind
DD = Cnon−blind

DN for δ1 = δ2 = δ = 0.5 and
ε1 = ε2 = ε ∈ {0, 0.5, 1}.

We start with Theorem 2 where the transmitter has access
to (some) delayed CSI. Figure 2 illustrates the capacity region
Cblind

DD = Cnon−blind
DN from Theorem 2 when δ1 = δ2 = δ = 0.5

and ε1 = ε2 = ε ∈ {0, 0.5, 1}. In particular, ε = 1 is the
case in which no side-information is available and our results
recover [24]. The other extreme is ε = 0 where the entire
message of one user is available to the other and maximum
individual point-to-point rates can be achieved. Finally, ε =
0.5 is an intermediate case and the capacity is strictly larger
than that of no side-information.

We then consider the no-CSIT scenario. For the first exam-
ple in this case, we consider δ1 = 1

2 and δ2 = 3
4 . The capacity

region of the broadcast erasure channel with these parameters
and no side-information at either receiver is described by all
non-negative rates satisfying:

1
2

R1 + R2 ≤ 1
4
. (15)

Note that with no side-information, the channel is degraded.
Further, as discussed earlier, as long as the weaker receiver
(Rx2 in this case) has no side-information, i.e., ε2 = 1, the
capacity region remains identical to the one described in (15)
with no side-information at either receivers. This region is
included in Figure 3(a) and (b) as benchmark. Note that sig-
nificant caching or index coding gains are obtained for all
settings presented in Figure 3(a) and (b).

Next, we examine the region Cnon−blind
NN when one receiver

has full side-information. Figure 3(a) includes both these cases
and depicts how the capacity region enlarges as more side-
information is available to the receivers. We note that with
full side-information at both receivers (ε1 = ε2 = 0), max-
imum individual rates given by Ri = (1 − δi), i = 1, 2,
are achievable simultaneously. Figure 3(b) depicts the grad-
ual increase in achievable rates when ε2 = 1

2 and ε1 goes
from 1 (no side information) to 0 (full side-information). Note
that receiver Rx1 has a stronger channel so the illustrated
region also equals to the capacity region Csemi−blind

NN when the
transmitter has no cache index information of Rx1.

As the second example, we consider δ1 = 1
3 and δ2 = 1

2 .
Similar to the previous case for capacity region Cnon−blind

NN ,
receiver Rx1 has a stronger channel. However, as illustrated
in Figure 4(a), with ε1 = 2

3 and ε2 = 1
6 , the weaker receiver

has a higher rate as given in (11). Finally, Figure 4(b) depicts

Fig. 3. (a) Illustration of the capacity region Cnon−blind
NN when Rxi has full

side-information (εi = 0); (b) increase in the achievable rates as ε1 goes from
1 to 0 for ε2 = 0.5.

Fig. 4. (a) Although the stronger receiver will always be able to decode
both messages, the weaker receiver may have a higher rate. In this example
for Cnon−blind

NN , we have δ1 = 1
3 , δ2 = 1

2 , ε1 = 2
3 , and ε2 = 1

6 ; (b) Capacity
region with symmetric parameters δ1 = δ2 = δ and ε1 = ε2 = ε. The maxi-
mum sum-rate point is given by 2(1−δ)

(1+ε) . The capacity region with symmetric
parameters can be achieved under the blind-transmitter scenario as well. See
Theorem 3.

the capacity region Cnon−blind
NN = Cblind

NN with symmetric channel
parameters (δ1 = δ2 = δ and ε1 = ε2 = ε): with no side-
information, the maximum achievable sum-rate is (1−δ); and
with side-information (even blind), the maximum sum-rate is
given by:

2(1 − δ)

(1 + ε)
. (16)

Finally, Figure 5 illustrates the outer-bounds of Theorem 1
and the inner-bounds of Theorem 4 for δ2 ≥ δ1 and ε1 =
0. In other words, in this case, the stronger receiver has full
side-information. We note that the inner-bounds of Theorem 4
for the blind-transmitter case match the outer-bounds when
δ1 = 0.

Authorized licensed use limited to: Auraria Library. Downloaded on August 09,2022 at 15:43:03 UTC from IEEE Xplore.  Restrictions apply. 



VAHID et al.: CONTENT DELIVERY OVER BROADCAST ERASURE CHANNELS WITH DISTRIBUTED RANDOM CACHE 1197

Fig. 5. Comparing the inner-bounds of Theorem 4 for Cblind
NN to the outer-

bounds of Theorem 1 for δ2 ≥ δ1 and ε1 = 0. Black dashed lines define
the outer-bound region, while the solid green lines are the inner-bounds. The
shaded area is the gap between the two.

C. Organization of the Proofs

In the following sections, we provide the proof of our main
contributions. We prove the capacity region of Theorem 1 in
Sections IV and V. We then move to the achievability part of
Theorem 2 as they are capacity-achieving and include several
interesting new ingredients, as in Sections VI and VII. The
proofs of other results are deferred to the Appendix.

IV. CONVERSE PROOF OF Cnon−blind
NN IN THEOREM 1

In this section, we derive the outer-bounds of Theorem 1.
We note that as the capacity region of the non-blind setting
includes that of the blind assumption, the derivation in this
section is for the non-blind transmitter case and the bounds
apply to the blind-transmitter case as well.

The point-to-point outer-bounds, i.e., Ri ≤ (1−δi), are those
of erasure channels, and thus, omitted. Without loss of general-
ity, we assume δ2 ≥ δ1, meaning that receiver 1 has a stronger
channel. As discussed in Remark 1, unlike the scenario with
no side-information at the receivers, this assumption does not
mean the channel is degraded. In what follows, we derive the
following outer-bounds:

B1:
ε2(1 − δ2)

(1 − δ1)
R1 + R2 ≤ (1 − δ2),

B2: R1 + ε1R2 ≤ (1 − δ1). (17)

Suppose rate-tupe (R1, R2) is achievable. We first derive B2
to get some insights.

Derivation of B2: As discussed in Remark 1, the stronger
receiver, Rx1 in this case, is able to decode both messages by
the end of the communication block using its available side
information. Thus, from Fano’s inequality, we have

H
(
W1|Gn) + H

(
W̄2|1|Gn)

≤ I
(
W1, W̄2|1; Yn

1 |W2|1, Gn) + nξn

≤ H
(
Yn

1 |W2|1, Gn) + nξn ≤ n(1 − δ1) + nξn. (18)

We also note that

nH
(
W̄2|1|Gn) =

m2∑

#=1

H
(
(1 − E1[#])W2[#]

∣∣E1[#]
)

= nε1H(W2) = nε1R2. (19)

Thus, from (18) and (19), we get

n(R1 + ε1R2) ≤ n(1 − δ1) + nξn. (20)

Dividing both sides by n and let n → ∞, we get the second
outer-bound in (17).

Derivation of B1: We enhance receiver Rx1 by providing
the entire W2 to it, as opposed to the already available W2|1,
and we note that this cannot reduce the rates. Moreover, moti-
vated from the Derivation of B2, this enhancement should only
have limited rate increase. From the decentralized placement
model (2), we define the global channel state and cache index
information as

Gn :=
{

Sn
1, Sn

2, EnR2
1 , EnR1

2

}
:=

{
Sn, En} (21)

then, using

βno
1 = ε2(1 − δ2)

(1 − δ1)
, (22)

we have

n
(
βno

1 R1 + R2
)

= βno
1 H(W1) + H(W2)

(a)= βno
1 H

(
W1|W2, Gn) + H

(
W2|W1|2, Gn)

(Fano)
≤ βno

1 I
(
W1; Yn

1 |W2, Gn) + I
(
W2; Yn

2 |W1|2, Gn) + nξn

= βno
1 H

(
Yn

1 |W2, Gn) − βno
1 H

(
Yn

1 |W1, W2, Gn)
︸ ︷︷ ︸

= 0

+ H
(
Yn

2 |W1|2, Gn) − H
(
Yn

2 |W1|2, W2, Gn) + nξn

(b)
≤ H

(
Yn

2 |W1|2, Gn) + 2nξn

(c)
≤ n(1 − δ2) + 2ξn, (23)

where ξn → 0 as n → ∞; (a) follows from the independence
of messages and captures the enhancement of receiver Rx1;
(b) follows from Lemma 2 below; (c) is true since the entropy
of a binary random variable is at most one and the channel
to the second receiver is only on a fraction (1 − δ2) of the
communication time. Dividing both sides by n and let n → ∞,
we get the first outer-bound in (17).

Lemma 2: For the two-user broadcast erasure channel with
no channel feedback but with non-blind side information at
the receivers as described in Section II, whether blind or not,
and βno

1 given in (9), we have

H
(
Yn

2 |W1|2, W2, Gn) + nξn ≥ βno
1 H

(
Yn

1 |W2, Gn), (24)

where ξn → 0 as n → ∞, where Gn is the global channel
state and cache index information in (21).

Proof: We first have the following fact

H
(
Yn

2 |W1|2, W2, Gn) ≥ 1 − δ2

1 − δ1
H

(
Yn

1 |W1|2, W2, Gn), (25)

which is modified from our previous result [25]. For complete-
ness, we still present the details in Appendix A. Now, to prove
this Lemma with (25), we note that

0 = H
(
Yn

1 |W1, W2, Gn) = H
(
Yn

1 |W1|2, W̄1|2, W2, Gn), (26)

where W̄1|2 is the complement of W1|2 in W1, and then

H
(
Yn

1 |W1|2, W2, Gn) = I
(
W̄1|2; Yn

1 |W1|2, W2, Gn) (27)

= H
(
W̄1|2|W1|2, W2, Gn) − H

(
W̄1|2|Yn

1 , W1|2, W2, Gn).
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Since H(W1|Yn
1 , W2, Gn) ≤ nξn, the second term in the RHS

of (27) will also be less than nξn due to the W1 = (W1|2, W̄1|2)
and the chain rule. For the first term in the RHS, as (19), it
equals to H(W̄1|2|En

2) = ε2H(W1). Then, we get

H
(
Yn

1 |W1|2, W2, Gn) ≥ ε2H(W1) − nξn

(a)
≥ ε2H

(
Yn

1 |W2, Gn) − nξn, (28)

and (a) is obtained from (26) as

H
(
Yn

1 |W1, W2, Gn) = 0 ⇒ H(W1) ≥ H
(
Yn

1 |W2, Gn).

Finally, from (25) and (28), we obtain

H
(
Yn

2 |W1|2, W2, Gn) (25)
≥ 1 − δ2

1 − δ1
H

(
Yn

1 |W1|2, W2, Gn)

(28)
≥ ε2(1 − δ2)

(1 − δ1)
H

(
Yn

1 |W2, Gn) − nξn

(9)= βno
1 H

(
Yn

1 |W2, Gn) − nξn. (29)

This completes the proof of Lemma 2.

V. ACHIEVABILITY PROOF OF Cnon−blind
NN IN THEOREM 1

In this section, we provide an achievability protocol for
the non-blind transmitter case, and we show that the achiev-
able regions matches the outer-bounds of Theorem 1. Thus,
we characterize the capacity region of the problem when the
transmitter is aware of the available side-information at the
receivers. For the proof, without loss of generality, we assume
δ2 ≥ δ1, meaning that Rx1 has a stronger channel than Rx2.

Our achievability proof reveals a surprising result, only the
cache index information EnR1

2 of the weaker receiver 2 in (2)
is needed at the transmitter. Thus the transmitter can be semi-
blind as Corollary 1 to achieve the outer-bounds. As a warm-
up, we first focus on an example where ε2 = 0. In this case,
receiver Rx2 (the weaker receiver) has full side-information
of the message for Rx1, i.e., W1|2 = W1, and receiver Rx1
has access to (1 − ε1) of the bits intended for Rx2. The outer-
bounds of Theorem 1 in this case become:

{
0 ≤ R2 ≤ (1 − δ2),

0 ≤ R1 + ε1R2 ≤ (1 − δ1).
(30)

Thus, the non-trivial corner point is given by:

R1 = (1 − δ1) − ε1(1 − δ2),

R2 = (1 − δ2). (31)

In this case, we set

η = R1

R2
= (1 − δ1)

(1 − δ2)
− ε1 > 0. (32)

Achievability protocol for ε2 = 0 : Recall that η = m1/m2.
We start with m bits for Rx2 and ηm bits for Rx1. The
achievability protocol is carried over a single phase with two
segments (another phase will be added later for general ε2).
The total communication time is set to m

(1−δ2)
.

Segment a: This segment has a total length of

ta = ε1m
(1 − δ1)

<
m

(1 − δ2)
, (33)

where the last inequality is from R1 > 0 in (31). During this
segment, the transmitter sends ta of the random combinations
of the m bits intended for Rx2. During this segment, stronger
Rx1 obtains

(1 − δ1)ta = ε1m (34)

random equations of the m bits for Rx2 and in combina-
tion with the available side-information W2|1 with |W2|1| =
(1 − ε1)m, Rx1 has sufficient linearly independent equations
to decode W2 when the code length is large enough.

Segment b: This segment has a total length of

tb = (1 − δ1) − ε1(1 − δ2)

(1 − δ1)(1 − δ2)
m = m

(1 − δ2)
− ta > 0. (35)

During this segment, the transmitter creates tb random lin-
ear combinations of the ηm bits in W1, and creates the XOR
of these combinations with tb random combinations of the
m-bit W2 for Rx2. The transmitter sends the resulting XORed
sequence during Segment b.

The decodability comes as follows. In segment b, Rx1 can
remove the interference since W2 is known from Segment a,
and gets tb(1 − δ1) = ηm linearly independent equations for
decoding W1 correctly. Also in this segment, Rx2 can remove
the interference from W1 using the side-information W1|2 =
W1, then the total linearly independent equations it has will be
(tb + ta)(1 − δ2) = m. Thus, by the end of the communication
block, Rx2 can decode W2, and Rx1 can decode both W1
and W2.

Achievable rates: Since the total communication time is
m

(1 − δ2)
, (36)

we immediately conclude the achievability of rates in (31).
Note that in the toy example aforementioned, only cache

index information EnR1
2 for W1|2 = W1 is used at the transmit-

ter in Segment b, but not the other EnR2
1 (W2|1). Now we present

the proof for the general case ε2 &= 0 and show that the achiev-
ability also needs a “semi-blind” transmitter. From (10), the
non-trivial corner point of the region defined in (8) is given by:

R1 = (1 − δ1) − ε1(1 − δ2)

1 − ε1ε2(1−δ2)
(1−δ1)

, R2 = (1 − ε2)(1 − δ2)

1 − ε1ε2(1−δ2)
(1−δ1)

. (37)

We define

η
%= R1

R2
= (1 − δ1) − ε1(1 − δ2)

(1 − ε2)(1 − δ2)
. (38)

We note that η < 1 if

(1 − ε2 + ε1) >
(1 − δ1)

(1 − δ2)
. (39)

Achievability protocol for general ε2: We start with m
bits for Rx2 and ηm bits for Rx1. The achievability protocol
is carried over two phases with the first phase having two seg-
ments as those for ε2 = 0. As revealed by the decodability in
toy example, the idea that after the first phase, receiver Rx2
(the weaker receiver) decodes its message W2. Since the first
receiver has a stronger channel, it can recover interference W2
in a shorter time horizon after the first segment of Phase I.
Then, during the second segment of Phase I, the transmitter
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Fig. 6. Semi-blind two-phase protocol to achieve outer-bounds Cnon−blind
NN

in Theorem 1.

starts delivering cached W1|2 to Rx1, while it continues deliv-
ering W2 to Rx2. Note that since Rx2 knows W1|2 and Rx1 has
recovered W2 in the first segment, the second segment benefits
both receivers. Finally, during the newly-added second phase,
W̄1|2 (the non-cached part of W1 outside W1|2) is delivered to
Rx1. The whole process is summarized in Figure 6.

Phase I: The transmitter creates
m

(1 − δ2)
+ O

(
m2/3

)
(40)

random linear combinations of the m bits intended for Rx2
such that any randomly chosen m combinations are ran-
domly independent. This can be accomplished by a random
linear codebook where each element is generated a i.i.d.
Bernoulli(1/2). In practice, Fountain codes can be used.

Remark 3 (Expected values of concentration results): The
O(m2/3) is to ensure sufficient number of equations will be
received given the stochastic nature of the channel. At the
end we let m → ∞, such terms do not affect the achievability
of the overall rates. Thus, for simplicity of expressions, we
omit these terms and only work with the expected value of
the number of equations in what follows, since the actual
number will converge to this expection.

Segment a of Phase I: This segment has a total (on average)
length of ta as in (33). During this segment, the transmitter
sends ta of the random combinations it created for Rx2 as
described above and illustrated in Figure 6.

Segment b of Phase I: This segment has a total (on aver-
age) length of tb as (35). During this segment, the transmitter
creates tb random linear combinations of the (1 − ε2)ηm bits
in W1|2, and XORs these combinations with the another tb
random combinations it created for W2. The transmitter sends
the XORed sequence during Segment b of Phase I.

Phase II: This phase has a total (on average) length of

t2 = ε2((1 − δ1) − ε1(1 − δ2))

(1 − ε2)(1 − δ1)(1 − δ2)
m = ε2ηm

(1 − δ1)
. (41)

During this phase, the transmitter creates t2 random linear
combinations of the bits in W̄1|2 and sends these combinations.

The decodability for Rx1 comes as follows. At the end of
the second phase, Rx1 gathers ε2ηm linearly independent equa-
tions of non-cached W̄1|2, and as |W̄1|2| = ε2ηm, Rx1 can
decode W̄1|2. For cached W1|2, as in toy example, during seg-
ment b of Phase I, Rx1 can remove the interference (W2 is
known in segment a) and decode W1|2. Thus, Rx1 can decode
W1|2 and W̄1|2, meaning that it can recover W1. The decod-
ability for Rx2 after Phase I directly follows from that in the
toy example.

Achievable rates: Recall the total length ta + tb of Phase I
is m

(1−δ2)
from (35), then with (41), the total communication

time is given by:

ta + tb + t2 = (1 − δ1) − ε1ε2(1 − δ2)

(1 − ε2)(1 − δ1)(1 − δ2)
m, (42)

which immediately implies the achievability of rates in (37).

VI. ACHIEVABILITY PROOF FOR Cblind
DD IN CASE A OF

THEOREM 2

First, we remind the reader of the conditions in Case A
of Theorem 2: global delayed CSIT and symmetric channel
where δ1 = δ2 = δ and ε1 = ε2 = ε. For this setup, we
present an opportunistic communication protocol that enables
the transmitter to use the available delayed CSI and the sta-
tistical knowledge of the available side-information at the
receivers. This protocol starts by sending the summation (i.e.,
XOR in the binary field) of individual bits intended for the two
receivers, and then, based on the available channel feedback
and the statistics of receiver side-information, the transmitter
is able to efficiently create recycled bits for retransmission. In
this regard, the protocol has some similarities to the reverse
Maddah-Ali-Tse scheme [26], which was originally designed
for multiple-input fading broadcast channels [27]. As dis-
cussed in [28], the channel setting is fundamentally different:
discrete erasure channel vs. continuous Rayleigh channel, sin-
gle antenna vs. multiple-input transmitter. Together with the
blind receiver side-information in our case; thus, our protocols
end up sharing little ingredients with [26].

We skip the protocol for achieving Ri = (1 − δ), as it is a
well-established result. Instead, we provide the achievability
protocol for the maximum symmetric sum-rate point given by

R1 = R2 = 1 − δ2

1 + δ + ε
. (43)

We break the scheme based on the relationship between ε

and δ. We note that since we focus on the homogeneous setting
in this section, the transmitter has m bits for each receiver: aj’s
for receiver Rx1 and bj’s for receiver Rx2, j = 1, 2, . . . , m.

Scenario 1 (ε ≤ δ): This case assumes the side channel
that provides each receiver its side-information is stronger than
the channel from the transmitter. The transmitter first creates
"c = (c1, c2, . . . , cm) according to

cj = aj ⊕ bj, j = 1, 2, . . . , m. (44)

The protocol is divided into four phases as described below
and depicted in Figure 7.

Phase I: During this phase, the transmitter sends out indi-
vidual bits from "c until at least one receiver obtains this bit,
and then, moves on to the next bit. Due to the statistics of the
channel, this phase takes on average

t1 = m
1 − δ2 (45)

time instants.
Remark 4: To keep the description of the protocol simple,

we use the expected value of different random variable (e.g.,
length of phase, number of bits received by each user, etc).
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Fig. 7. The proposed four-phase protocol when ε ≤ δ: Phase I delivers combinations of "a and "b; Phases II and III deliver interfering bits to unintended
receivers alongside useful information to the intended receivers; Phase IV multicasts XOR of available bits at each receiver needed at the other.

A more precise statement would use a concentration theorem
result such as the Bernstein inequality to show the omitted
terms do not affect the overall result and the achievable rates as
done in [25], [29]. Moreover, when talking about the number
of bits or time instants, we are limited to integer numbers. If
a ratio is not an integer number, we can use /·0, the ceiling
function, and since at the end we take the limit for m → ∞,
the results remain unchanged.

After Phase I is completed, receiver Rx1 obtains on average
m/(1 + δ) bits from "c. The transmitter, using channel feed-
back during Phase I, knows which bits out of "b where among
those received by Rx1 as part of "c, denoted by "̃b in Figure 7.
Furthermore, Rx1 statistically knows a fraction (1 − ε) of the
interfering "̃b from its side-information. Thus, if Rx1 obtains
an additional fraction ε of "̃b, it can resolve interference in
Phase I to get m/(1+ δ) pure bits from "a. A similar statement
holds for Rx2.

Phase II: The transmitter creates εm/(1 + δ) linearly inde-
pendent combinations of "̃b, and encodes them using an erasure
code of rate (1 − δ) and sends them out. This phase takes

t2 = εm
1 − δ2 , (46)

time instant, and upon its completion, Rx1 gets the additional
equations to remove interference during Phase I and recover
m/(1 + δ) bits from "a, while Rx2 obtains further εm/(1 + δ)

equations of its intended bits.
Phase III: This phase is similar to Phase II, but the trans-

mitter sends out "̃a, those bits out of "a that were received by
Rx2 as part of "c. This phase takes

t3 = εm
1 − δ2 , (47)

time instants, and upon its completion, Rx2 gets the additional
equations to remove interference during Phase I and recover
m/(1 + δ) bits from "b, while Rx1 obtains further εm/(1 + δ)

equations of its intended bits.
Number of equations at each receiver: After the first three

phases, each receiver has a total of
m

1 + δ
+ εm

1 + δ
(48)

linearly independent equations of its bits, and thus, needs an
additional

δ − ε

1 + δ
m (49)

new equations to complete recovery of its bits. Note that if
ε = δ, the protocol ends here.

Phase IV: The transmitter creates

δ − ε

1 + δ
m (50)

further linearly independent random combinations of the bits
intended for Rxi but received at Rxī as part of "c during

Phase I, denoted by "̃a and "̃b in Figure 7. Note that at this
point, each receiver has full knowledge of the interfering bits
during Phase I and retransmission of such bits will no longer
create any interference. Thus, the transmitter encodes these
two sets of bits (one for each receiver) using an erasure code
of rate (1 − δ) and send the XOR of these encoded bits. This
phase takes

t4 = δ − ε

1 − δ2 m (51)

time instants.
We note that in Phases II, III, and IV, the transmitter needs

to create linearly independent combinations of the bits. Thus,
we need to guarantee the feasibility of these operations. In
Phase I, as part of "c, a total of

δ

1 + δ
m (52)

bits intended for one receiver arrive at the unintended receiver
and effectively, during the next phases, we deliver these bits to
the intended receiver. In fact, (52) equals the summation of the
number of linearly equations needed for Rx1 during Phases III
and IV, and for Rx2 during Phases II and IV. Thus, the fea-
sibility of creating sufficient number of linearly independent
combinations is guaranteed.

Upon completion of Phase IV, each receiver first removes
the contribution of the bits intended for the other user, and
then, recovers the additional equations needed as indicated
in (49), and thus, is able to complete recovery of its message.

Achievable rates: The total communication time is

4∑

j=1

tj = 1 + δ + ε

1 − δ2 m, (53)

which immediately results in target rates of (43).
Scenario 2 (ε > δ): This scenario corresponds to the case

in which the side channel that provides each receiver with its
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side-information is weaker than the channel from the trans-
mitter. The protocol has four phases as before with some
modifications. Phase I remains identical to the previous sce-
nario; during Phases II and III, instead of εm/(1 + δ), the
transmitter creates δm/(1 + δ) linearly independent equations
of "̃b and "̃a, respectively, and sends them out as done in the
previous scenario. With these modifications, after the first three
phases, Rx1, still has

ε − δ

1 + δ
m (54)

equations interfered by "̃b. Thus, for Rx1 to successfully
recover "a, the transmitter has two options: (i) to deliver the
same number as in (54), new combinations of "̃b to Rx1, and
(ii) to provide Rx1 with additional combinations, same as in
(54) , of its own bits "̃a. With the first choice, receiver Rx1
fully resolves the interference and recovers its bits; while with
the second choice, it simply obtains m linearly independent
equations of "a. Interestingly, either choice is also good for
Rx2: with the first choice, Rx2 obtains m linearly independent
equations of "b; while with the first choice, Rx2 fully resolves
the interference and recovers its bits. In other words, in this
scenario, during Phase IV, no XOR operation is needed and
only bits intended for one user would enable both receivers to
decode their bits.

Based on the discussion above, during Phase IV, the trans-
mitter creates (ε − δ)/(1 + δ)m linearly independent combi-
nations, same as (54), of the bits in "̃a intended for Rx1
but received as part of "c at Rx2 during Phase I. Then, the
transmitter encodes these equations using an erasure code of
rate (1 − δ) and sends them to both receivers. Similar to the
previous scenario, we can guarantee the feasibility of creating
these linearly independent equations.

After Phase IV, as discussed above, Rx1 will have sufficient
number of equations to recover "a; while Rx2 first needs to
resolve the interference using the equations it obtains during
this phase, and then, recover "b. We note that, the transmit-
ter could send combinations of "b instead of "a during the last
phase, and the decoding strategy of the receivers would get
swapped.

VII. ACHIEVABILITY PROOFS FOR Csemi−blind
DN IN CASE B

AND Cnon−blind
DN IN CASE C OF THEOREM 2

Case B : Achievability for Csemi−blind
DN when ε1 = 0 :

Now ε1 = 0 and thus W2|1 = W2. Recall message W2 is also
represented by a bit vector "b. The encoding process come
as follows. At time index t, the j-th bit aj in message "a for
Rx1 is repeated according to the state feedback S1, and after
XORing a random linear combination ("gt)

ᵀ"b, the resulting
superposition is sent. Each entry of "gt is generated from i.i.d.

Ber(1/2). Each aj is repeated until the corresponding state
feedback is S1 = 1. In other words, prior to the superposition
via XORing, "a is pre-encoded and repeated as in standard
ARQ, while "b is pre-encoded by a fountain-like random linear
code. the termination of this fountain code is determined by
the state feedback of Rx1, that is whether or not all bits in "a
are successfully delivered to Rx1.

The decoding at Rx1 follows from the standard ARQ, since
full side-information "b is known. By setting total transmission
length as

m1

1 − δ1
, (55)

the achievable rate is

R1 = 1 − δ1 (56)

For user Rx2, it has side-information W1|2 for (1 − ε2) bits
of the interference "a and each reception of the corresponding
XOR transmitted will result in a linear equation of "b. To see
this, consider the j-th bit aj of interference "a. Suppose it is
repeated Li times until its mixture with "b is successfully arrived
at Rx1. Within this span, Rx2 gets

Ki !
Lj∑

#=1

S2,j[#] (57)

linear equations mixing aj and "b, where S2,j[#] is the erasure
state at Rx2 for the #-th transmission of aj. Then Rx2 gets
Ki pure equations of "b. In total, the number of pure linear
equations of message "b is

m1(1 − ε2)E[Ki] = m1(1 − ε2)
1 − δ2

1 − δ1
, (58)

For interference bits without side-information, by using
interference alignment in [13], the number of pure linear
equations is

m1ε2E
[
(Ki − 1)+

]
= m1ε2

(
δ1 − δ2

1 − δ1
+ δ2 − δ1δ2

1 − δ1δ2

)
(59)

Thus the total number of pure equations from (58) and (59) is

m1(1 − δ2)

(
1

1 − δ1
− ε2

1 − δ1δ2

)
,

which results in achievable rate

R2 = (1 − δ2)

(
1 − ε2

1 − δ1

1 − δ1δ2

)
(60)

where (55) is applied. It can be checked that (R1, R2)

in (56), (60) is the corner point of outer-bound region (12)
when ε1 = 0

ε2
1 − δ2

1 − δ1δ2
R1 + R2 ≤ (1 − δ2) (61)

0 ≤ Ri ≤ (1 − δi), i = 1, 2, (62)

Other corner point can be trivially achieved by time-sharing.
Case C : Achievability for Cnon−blind

DN : As in Fig. 8, we
now introduce the four-phase scheme for this achievability, of
which the third and fourth phases are similar to that in Case B.
We first represent W2|1 and W1|2 using bit vectors "b1 and "a2
respectively, then the encoding process is

Phase I: The transmitter sends bits from "a which are not
cached at Rx2 and not in "a2. The total length t1 of Phase I
is ε2m1. After Phase I, the transmitter knows length t1δ1
sequence ¯̃a2, which is formed by bits erased at Rx1 in Phase I
where S1[t] = 0.

Phase II: The transmitter selects ε1m2 bits from "b which
are not cached at Rx1 and not in "b1, and send then random
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Fig. 8. Proposed four-phase protocol for achieving Cnon−blind
DN .

linear combinations of them. The total length t2 of Phase II is
ε1m2/(1 − δ1δ2). After Phase II, the transmitter knows length
t2(1 − δ1) sequence ¯̃b1, which is formed by bits received at
Rx1 in Phase I where S1[t] = 1.

Phase III: The transmission is similar to that in semi-blind
Case B, the differences are as follows. Now the transmitter is
non-blind to "a so it pre-encodes cached "a2 instead of the whole
"a using ARQ. Also the transmitter is only sure that (

¯̃b1, "b1) is
known at Rx1, it pre-encodes (

¯̃b1, "b1) instead of full "b using
the random linear code. More specifically, the output of the
second pre-encoder at time t becomes the XOR of random
linear combinations ("gt)

ᵀ ¯̃b1 ⊕ ( "g′
t)
ᵀ"b1, where each entry of

"gt or "g′
t is generated from i.i.d. Ber(1/2). For the first pre-

encoder, each bit in "a2 cached at user 2 is repeated according
to the delayed S1 as described in Case B. Finally the XOR of
outputs of these two pre-encoders is sent.

Phase IV: The transmission in phase is same as that in
Phase III, by replacing the input of the first ARQ pre-encoder
by the recycled ¯̃a2. Though (1 − δ2) of sequence ¯̃a2 will be
known at Rx2 in Phase IV, the transmitter is blind to these
bits. On the contrary, in Phase III the transmitter knows that
the input "a2 of the ARQ pre-encoder is totally cached at Rx2.

Note that without receiver side-information ε1 = ε2 = 1,
there will be no Phase III and our scheme reduces to the three-
phase scheme in [13].

We focus on the decodability for receiver Rx1 first. In
Phase III and IV, since (

¯̃b1, "b1) is already known at Rx1, "a2 and
¯̃a2 can be recovered, if the lengths of the phases are chosen as

t3(1 − δ1) = (1 − ε2)m1, t4(1 − δ1) = δ1t1 = δ1ε2m1 (63)

Together with bits received in Phase I, receiver Rx1 gets all
m1 bits. Now, we turn to the decodability at Rx2. Receiver
Rx2 will first decode super-( ¯̃b1, "b1) from its received bits
during the entire three phases. With the ¯̃b1 and the received
equations during Phase II, it will have t2(1 − δ1δ2) = ε1m2
equations to decode uncached bits in "b. Together with "b1, the
whole message for user 2 is decoded. To ensure successful
decoding of the super-( ¯̃b1, "b1), we calculate the corresponding
expected number of linearly independent equations as fol-
lows. In Phase III, every reception at Rx2 will result in a
new equation since "a2 is cached, and we have

(1 − ε2)m1E[Ki]

equations after Phase III. In Phase IV, as (58) and (59), we
will have additional

t1δ1(1 − δ2)E[Ki] + t1δ1δ2E
[
(Ki − 1)+

]

equations since (1− δ2) of ¯̃a2 will be received during Phase I.
By using equations of ¯̃b1 received at Rx2 in Phase II as
additional cache, we need

t2(1 − δ1) + (1 − ε1)m2

≤ t2(1 − δ1 − δ2 + δ1δ2) + (1 − ε2)m1
1 − δ2

1 − δ1

+ t1δ1(1 − δ2)

(
1

1 − δ1
− δ2

1 − δ1δ2

)
(64)

for successful decoding the length t2(1 − δ1) + (1 − ε1)m2

super-( ¯̃b1, "b1). Note that by collecting ¯̃b1 received in Phase II
(with standard basis for ¯̃b1) and the linear equations produced
in Phase III and IV, one can form a set of linear equations
of (

¯̃b1, "b1) described by a full (column) rank matrix, when
codelengths are long enough.

For (R1, R2) satisfying outer-bound R1/(1−δ1)+ε1R2/(1−
δ1δ2) = 1 in (12), the total communication time must meet

4∑

j=1

tj = m1

1 − δ1
+ ε1m2

1 − δ1δ2
.

From selected lengths of Phase I and II, m1 = t1/ε2 and m2 =
t2(1−δ1δ2)/ε1, together with (63), this constraint is meet since

4∑

j=1

tj = t1

(
1 + (1 − ε2)/ε2 + δ1

1 − δ1

)
+ t2 = t1

ε2(1 − δ1)
+ t2

For the corner point (R1, R2) which also satisfies outer-bound
R2/(1 − δ2) + ε2R1/(1 − δ1δ2) = 1 in (12), we further show
that the decodability (64) will also be met. From (12),

t1
1 − δ1δ2

+ 1 − δ1δ2

ε1(1 − δ2)
t2 =

4∑

j=1

tj = t1
ε2(1 − δ1)

+ t2,

which implies

t2

(
1 − δ1δ2

ε1
− (1 − δ2)

)

= t1(1 − δ2)

(
1

ε2(1 − δ1)
− 1

1 − δ1δ2

)
,
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or equivalently

t2

(
δ2 − δ1δ2 + 1 − ε1

ε1
(1 − δ1δ2)

)
= t1(1 − δ2)

×
(

(1 − ε2)/ε2

1 − δ1
+

(
1

1 − δ1
− 1

)
−

(
1

1 − δ1δ2
− 1

))
.

Then, (64) is met since m1 = t1/ε2 and m2 = t2(1 − δ1δ2)/ε1.

VIII. CONCLUSION

We studied the problem of communications over two-
user broadcast erasure channels with random receiver side-
information. We assumed the transmitter may not have access
to global channel state information and global cache index
information for both receivers. For the non-blind-transmitter
case, we characterized the capacity region, while with a blind
transmitter we showed the outer-bounds can be achieved under
certain conditions. Thus, in general with a blind transmitter,
the capacity region of the problem, also known as blind index
coding over the broadcast erasure channel, remains open.

APPENDIX A
PROOF OF (25) IN LEMMA 2

For time instant t where 2 ≤ t ≤ n, we have

H
(

Y2[t]|Yt−1
2 , W1|2, W2, St

2, En
)

= (1 − δ2)H
(

X[t]|Yt−1
2 , W1|2, W2, S2[t] = 1, St−1

2 , En
)

(a)= (1 − δ2)H
(

X[t]|Yt−1
2 , W1|2, W2, St

2, En
)

(b)
≥ (1 − δ2)H

(
X[t]|Yt−1

1 , W1|2, W2, St
1, En

)

(c)= 1 − δ2

1 − δ1
H

(
Y1[t]|Yt−1

1 , W1|2, W2, St
1, En

)
, (65)

where (a) holds since X[t] is independent of the channel
realization at time instant t; (b) follows from the follow-
ing arguments. Consider a virtual channel state S̃[t] is an
i.i.d. Bernoulli (δ2 − δ1)/δ2 process independent of S2[t] and
transmitted signal, then, we have

H
(

X[t]|Yt−1
2 , W1|2, W2, St

2, En
)

= H
(

X[t]|Yt−1
2 , W1|2, W2, St

2, S̃t−1, En
)

≥ H
(

X[t]|
{
(1 − S2[#])S̃[#]X[#]

}#=t−1

#=1
, Yt−1

2 , W1|2,

W2, St
2, S̃t−1, En

)

= H
(

X[t]|Yt−1
1 , W1|2, W2, St

1, En
)
, (66)

where the third equality holds since receiving both virtual (1−
S2[#])S̃[#]X[#] and Y2[#] = S2[#]X[#] is statistically the same
as receiving S1[#]X[#] = Y1[#] (note if S2[#] = 0 there is (δ2−
δ1)/δ2 probability (1−S2[#])S̃[#] = 1), and X[t] is independent
of the channel states and virtual S̃t−1; (c) comes from the fact
that Pr(S1[t] = 0) = δ1. Next, taking the summation over t
from 1 to n, and using the fact that the transmit signal at time
instant t is independent of future channel realizations, we get

H
(
Yn

2 |W1|2, W2, Sn
2, En)

≥ 1 − δ2

1 − δ1
H

(
Yn

1 |W1|2, W2, Sn
1, En)

and also (25).

APPENDIX B
PROOF OF Cblind

NN IN THEOREM 3: OPPORTUNISTIC

TRANSMISSION

Case 1 : δ2 ≥ δ1 and ε2 ∈ {0, 1}: First, we note that as
stated in Remark 2, when the weaker receiver has no side-
information, i.e., ε2 = 1, then, the capacity region is the same
as having no side-information at either receivers. The case
with ε2 = 0 is already given in Section V

Case 2 : δ1 = δ2 = δ, and ε1 = ε2 = ε (symmetric
setting): Now we focus on the blind-transmitter assumption
where the transmitter no longer has the luxury of knowing
W1|2 to send bits in such a way to benefit both receivers (as
was done in Segment b of Phase I in the previous Section V).
We note that if both ε1 and ε2 are equal to zero, the problem
becomes trivial as each receiver has full side-information of
the other user’s message and Ri = (1 − δi) is achievable for
i = 1, 2. For case ε1 = ε2 = ε > 0, if each receiver obtains
a total of (1 + ε)m linearly independent observation of both
W1 and W2, then, it can recover both messages. It turns out
that this protocol is capacity-achieving. The non-trivial corner
point in this case is given by:

R1 = R2 = (1 − δ)

(1 + ε)
. (67)

The protocol is straightforward. The transmitter starts with m
bits for each receiver and creates (1+ε)m linearly independent
combinations of the total 2m bits for the two receivers. Then,
the transmitter encodes these combinations using an erasure
code of rate (1 − δ) and communicates the encoded message.
Each receiver by the end of the communication block will
have 2m linearly independent observations of the 2m unknown
variables and can decode both messages. This immediately
implies the achievability of the corner point described in (67).

APPENDIX C
PROOF OF THEOREM 4

In this case, receiver Rx1 (the stronger receiver) has full
side-information of the message for Rx2, i.e., W2|1 = W2, and
receiver Rx2 has access to (1 − ε2) of the bits intended for
Rx1. The outer-bounds of Theorem 1 in this case become:

{
0 ≤ ε2

1−δ2
1−δ1

R1 + R2 ≤ (1 − δ2),

0 ≤ R1 ≤ (1 − δ1).
(68)

Thus, the non-trivial corner point is given by:

R1 = (1 − δ1), R2 = (1 − ε2)(1 − δ2). (69)

In this case. we cannot achieve the corner point given
in (69). To achieve the region described in Theorem 4, we
need to prove the achievability of the following corner point:

R1 = (1 − δ1), R2 = (1 − ε2)(1 − δ1)(1 − δ2). (70)

Achievability protocol: We start with m bits for Rx2 and
ηm bits for Rx1, where

η = R1

R2
= 1

(1 − ε2)(1 − δ2)
> 1. (71)
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The achievability protocol is carried over two phases.
During the first phase, the transmitter creates ηm random lin-
ear combinations of the m bits for Rx2 such that each subset of
m combinations are linearly independent. The transmitter then
sends out the XOR of these combinations with the uncoded
ηm bits of Rx1. Thus, this phase has a length of t1 = ηm.

During this phase, Rx1 obtains (1 − δ1)ηm of its bits as it
has access to W2 as side-information and can cancel out the
interference. Moreover, Rx2 obtains (1 − δ2)ηm XORed com-
binations, and since Rx2 statistically knows (1 − ε2) of the
bits for Rx1, we conclude that Rx2 gathers

(1 − ε2)(1 − δ2)ηm = m (72)

linearly independent combinations of its m bits and is able to
decode its message W2.

The second phase has a total length of

t2 = δ1

(1 − δ1)
ηm. (73)

During this second phase, the transmitter creates t2 random
linear combinations of the ηm bits intended for Rx1 and sends
them out. At the end of this phase, the first receiver gathers
additional (1 − δ1)ηm random equations of its intended bits
and combined with the (1 − δ1)ηm bits it already knows from
the first phase, Rx1 is able to decode W1.

Achievable rates: The total communication time is

t1 + t2 = ηm
(1 − δ1)

. (74)

This immediately implies the achievability of the rates given
in (70).
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