The Hidden Cost of the Edge: A Performance Comparison of
Edge and Cloud Latencies

Ahmed Ali-Fldin

Chalmers University of Technology
ahmed.hassan@chalmers.se

ABSTRACT

Edge computing has emerged as a popular paradigm for running
latency-sensitive applications due to its ability to offer lower net-
work latencies to end-users. In this paper, we argue that despite its
lower network latency, the resource-constrained nature of the edge
can result in higher end-to-end latency, especially at higher utiliza-
tions, when compared to cloud data centers. We study this edge
performance inversion problem through an analytic comparison
of edge and cloud latencies and analyze conditions under which
the edge can yield worse performance than the cloud. To verify our
analytic results, we conduct a detailed experimental comparison of
the edge and the cloud latencies using a realistic application and
real cloud workloads. Both our analytical and experimental results
show that even at moderate utilizations, the edge queuing delays
can offset the benefits of lower network latencies, and even result in
performance inversion where running in the cloud would provide
superior latencies. We finally discuss practical implications of our
results and provide insights into how application designers and
service providers should design edge applications and systems to
avoid these pitfalls.

ACM Reference Format:

Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy. 2021. The Hidden Cost
of the Edge: A Performance Comparison of Edge and Cloud Latencies . In
The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC "21), November 14-19, 2021, St. Louis, MO, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3458817.3476142

1 INTRODUCTION

Over the past decade, cloud computing has emerged as a popular
paradigm for running a variety of distributed systems applications
ranging from web applications to Al and high performance comput-
ing workloads. In recent years, edge computing has emerged as a
complement to cloud computing, particularly for running latency-
sensitive workloads. Edge computing involves using computational
and storage resources deployed at the edge of the network to run
applications that can benefit from low network latency. Emerging
edge applications include mobile augmented reality, Internet of
Things (IoT) analytics, and edge Al involving real-time inference
over machine learning models. With the emergence of these edge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC °21, November 14-19, 2021, St. Louis, MO, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8442-1/21/11...$15.00
https://doi.org/10.1145/3458817.3476142

Bin Wang
University of Massachusetts Amherst
binwang@cs.umass.edu

Prashant Shenoy
University of Massachusetts Amherst
shenoy@cs.umass.edu

workloads, many cloud providers have begun to offer edge cloud
services by deploying edge servers clusters close to end users (akin
to cloudlets [27]) and offering cloud-like service from the edge.

Since edge resources are deployed at the edge of the network,
conventional wisdom holds that the edge is “better” than the cloud
from a latency perspective, and thus well suited for any workload
that has tight latency requirements. In this paper, we show that
this conventional wisdom does not always hold. In particular, edge
applications typically require low end-to-end latency, which con-
sists of both the network and the server latency. While the edge
provides a significantly lower network latency than the cloud, edge
resources tend to be more constrained than those in cloud data
centers. Consequently, workload dynamics can cause edge server
latency to exceed the cloud server latency due to higher queuing
delays at edge sites. In such cases, the total end-to end latency of
the edge can exceed the end-to-end cloud latency, since the lower
network latency of the edge is offset by a higher server latency
at higher utilization levels. This "hidden" cost of the edge has not
been studied previously. Our paper quantifies this cost through ana-
lytic and experimental comparisons of edge and cloud performance.
Specifically, we use analytic queuing results and real world experi-
mentation to characterize scenarios under which such performance
inversion occurs.

In doing so, our performance comparison study makes the fol-
lowing contributions.

(1) We introduce and formulate the edge performance inversion
problem, which causes the end-to-end latency of the edge
to become higher than that of the cloud. We conduct an
analytic performance comparison by using queuing models
to to quantify the end-to-end latency of the edge and the
cloud under different workload scenarios. We present closed-
form analytic equations that specify conditions under which
the total edge latency can exceed the cloud latency, causing
a performance inversion.

(2) We conduct an experimental performance comparison of the

edge and cloud performance using realistic applications and

Azure trace workloads on real cloud and edge platforms. Our

experiments show that for geo-distributed applications the

mean and tail latencies of the edge can indeed be worse than

the cloud even at moderate utilization levels of 40 to 60%

and that such performance inversion is more likely in the

presence of workload skews or as the latency to traditional
clouds reduces due to increasing cloud deployments.

Since the potential for performance inversion at the edge

has important consequences for both application designers

and cloud providers, we discuss the key implications for our
results in practice. Specifically, we discuss resource alloca-
tion techniques and extra capacity needed at the edge to

3

=

SC ’21, November 14-19, 2021, St. Louis, MO, USA

avoid performance inversion with the cloud under different
scenarios.

2 BACKGROUND

This section presents background on cloud and edge computing
discussing the motivation for the edge performance inversion prob-
lem.

2.1 Cloud and Edge Computing

Traditional cloud computing involves deploying large-scale data
centers that house tens of thousands of servers to run remote third-
party applications. Customers can request these servers to run their
applications and pay based on their resource usage on a pay-as-you-
go basis. Cloud data centers are typically virtualized and allocate
server resources to applications in the form of virtual machines.
Today, cloud platforms are popular for running diverse applications
ranging from online web services to scientific computing.

Edge computing and edge clouds are a natural evolution of tra-
ditional cloud computing [25, 34].They involve deploying server
resources at the edge of the network to host workloads that are
latency-sensitive in nature. While there are many forms of edge
computing, in this work, we focus on edge clouds that involve de-
ploying small server clusters, also known as micro data centers,
at the geographically distributed sites to offer a cloud-like service
from the network edge. The notion of edge clouds was originally
proposed as an extension to the work on pervasive and mobile
computing in the form of Cloudlets, which were nearby cluster that
mobile devices could use to offload of their computations at low
latency [26, 27]. Major cloud providers are now beginning to offer
edge cloud services (e.g., Google’s Stadia [10] and Azure IoT Edge
service [1]). Edge clouds are especially useful for applications that
demand low-latency access to cloud resources which can not be
satisfied using more distant traditional cloud servers.

The benefits of the lower network latency offered by edge com-
puting are well known, with recent studies showing the advantages
of offloading to a local edge versus a remote cloud [11]. Others have
taken a modeling approach to analyzing cloud and edge computing
[4-6, 14, 15]. This has led to recent work on analytically studying
edge clouds, e.g., to decide where and when services should be
migrated in response to user mobility and demand variation [33],
analytical models to compare the performance and utilization be-
tween single level and hierarchical designs of the edge clouds [30],
and models to capture the energy consumption trade-offs when
offloading the computations or running them locally [21].

Cloud workloads exhibit significant temporal and spatial dy-
namics [13, 20], and we expect edge workloads to exhibit a similar
behavior. Temporal workload dynamics include diurnal time-of-day
and seasonal effects as well as short-term burstiness and workload
spikes in the form of flash crowds. Since the end-users accessing a
cloud or edge application may be geographically distributed, the
workload also exhibits spatial dynamics. If users are more concen-
trated at certain locations than others, the incoming workload will
exhibit a skew in its spatial distribution. Moreover if the popularity
of the application decreases in certain regions and rises in others,
the spatial workload distribution will change over time. From the
perspective of a traditional cloud applications, all requests arrive at

i Edge Server 1 | i Cloud Server1 |
Ak : :
/ = !
o Medie L iting time > < i
edge latenc) ><i¥aitingtime><] Server 2
—A i

Mk i Nt | A
Q:D]]—@—H <cloud lntencyi~-> < Waiting time >

Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy

Server k

Service

(a) Edge queuing model.

(b) Cloud queuing model.

Figure 1: End-to-end latency of an edge and cloud deploy-
ment of an application.

a centralized data center and these temporal and spatial dynamics
are handled at a single location via techniques such as dynamic
resource allocation or elastic scaling [37]. However, in the case
of a distributed edge cloud, different edge sites will see different
spatial and temporal dynamics since an edge application such as an
online game may be distributed across geographic sites and thus
the overall workload will be partitioned across sites. We assume
that applications have tight end-to-end latency requirements that
need be satisfied by the remote server, whether at the edge or the
cloud.

2.2 Edge Performance Inversion: Motivation

Next, we motivate the potential for edge performance inversion
using several intuitive observations. Consider an application that
can either be deployed in the cloud or at the edge. Suppose that
the round-trip network latency to the cloud server is n.j,,4 and
that to the edge server is nqy,. Since edge resources are closer to
end-users than cloud resources, we have negge < nejouq- This lower
network latency of edge servers has been the primary reason as
to why edge computing has been assumed to be better than cloud
computing for latency-sensitive applications.

From an application perspective, however, the performance is
governed not just by network latency but by the total end-to-end
latency. Let r,q4, denote the response time of the edge server and
Teloud denote the response time of the cloud server for each appli-
cation request. Thus, the end-to-end latency offered by the edge is
(nedge + Tedge) While that of the cloud is (n¢1ouq + reloud)- As shown
in Figure 1, the server response time itself consists two components;
queuing delays at the server and the request execution time.
Bank teller analogy: Suppose that the application runs on a clus-
ter of k servers on the cloud. It is common for many cloud-based
applications to run on a cluster of servers. Let the cloud request
rate seen by the application be A req/s. If this application were to
be deployed at the edge instead of the cloud, we assume that it still
uses k servers, but that these servers are distributed across multiple
edge sites. In the limit, the application can use k edge sites, each
hosting one server for the application. Suppose that the incoming
workload of A req/s is uniformly (equally) distributed across these
k edge sites. As shown in Figure 1, each edge site sees a workload
A/k req/s with a service rate of yi. The response time of this queuing
system can be proved to be [17]:

1

edge = Tk (1)

The Hidden Cost of the Edge

In this case, the server latencies at the edge and the cloud can be
viewed from the perspective of the well-known bank teller problem
that compares a separate queue per teller versus a single queue for
all tellers, a problem well studied in the queuing theory literature
since the seventies [16, 24, 35].

The main insight of the bank teller problem is that customers
will always see lower waiting times when using a single queue
for all tellers versus a separate queue per teller. Since the time
needed to service each customer varies from customer to customer,
in the latter case, some queues see longer waiting times when some
customers from those queues make long transactions. A central-
ized queue avoids such problems since there is a single queue and
all queued customers see the same impact. In line with this intu-
ition, queuing theory shows that a centralized queue always yields
lower wait time with a few known exceptions (e.g., when jockeying
between queues is permitted [24]).

In our case, the centralized queue with k tellers is analogous
to the cloud deployment of the application with k servers and a
single arrival queue with a total service rate of kyu. A separate queue
per teller is analogous to each edge site with a single server that
services its own queue. Similar to Equation 1, we can calculate
Teloud to be:

r

Teloud = k,u;—)t = ezge (2
This result shows us that at high utilization levels, the queuing
delays at the edge can be factor of k times higher than the cloud.
Thus, even when the workload is equally distributed across edge
sites, queuing theory from the bank teller problem tells us that
Tedge > Tcloud> Since waiting times at individual queues at the edge
will be higher than that of the cloud.

Thus the edge has lower network latency than the cloud negge <
Nelouds but has higher server latency than the cloud regge > reloud-
If the higher queuing delays at the edge offset the lower network
latency, the total end-to-end latency of the edge can actually be-
come higher than that of the cloud. That is (negge + redge) >
(Neloud *+ Teloud) We refer to this problem as the performance Inver-
sion problem of the edge. Such performance inversion only occurs
at higher utilization levels, where edge queuing delays are signifi-
cantly higher than the cloud. Thus, it is important to analyze and
quantify the utilization levels above which performance inversion
will occur.

This problem can be posed as a variant of the bank teller problem
with driving times. A customer can drive to a nearby local bank
branch that has a single teller, or they can drive to the main bank
branch, which is further away but has k tellers and a single queue.
The total time now includes driving time (i.e., network latency) and
the time spent at the branch (server latency), which also includes
waiting times in the queue. This variant of the bank teller problem
with driving times has not been studied previously.

The bank teller problem has been extensively studied in many
contexts over the years. Recently, the trade-offs of using centralized
versus distributed processing for multi-server applications was
studied in [31, 32]. The work showed that the average queue length
in steady state scales as a function of the degree of the fraction
of centralized servers p and the traffic intensity, A. However, the
potential for edge performance inversion has not been considered
by prior research in edge or cloud computing.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

(=3
s |
N
-
- B
g o
8
Eo
e 8- :
i 8
= §H‘
w : Q
nett -
Tectige o 855
- SR e L

1 4 7 10 14 18 22 26
EDC id

Figure 2: Non-uniform geographic distribution of the total
load, measured as the number of vehicles in a cell across
time, seen by edge data centers for a vehicular edge appli-
cation [18].

Impact of workload skews. Our bank teller analogy assumed
that the aggregate workload A is equally partitioned across the k
edge sites, yielding a workload of 1/k per edge site. Such balanced
workload is the ideal case for the edge. In practice, edge and cloud
workloads will exhibit spatial and temporal dynamics that cause
load skews. In particular some edge sites may see higher request
rates than others due to spatial dynamics, causing the total workload
to be split unequally across sites. Spatial and temporal dynamics
will mean that these imbalances will change over time and also
cause the set of edge sites that see higher arrivals to change over
time.

These workload skews exacerbate the performance inversion
problem, since some edge sites will now see higher waiting times
due to higher arrival rates at those sites. Workload skews can result
in performance inversion even at lower utilization levels. Note
that skews have little impact on the cloud since the cloud still sees
the same workload of A. Workload skews have been observed in
empirical studies. For example, Le Tan et al. [18] have shown that
load on edge clouds is non-uniformly spatially distributed, using
GPS traces of taxis in San-Francisco [23], and assuming each edge
cloud serves a hexagonal area of radius 1 km. Figure 2 shows a
box-plot of the load seen on each cell based on the data from [23],
with some cells having significantly larger loads than others [18].
In other words, while some edge cloud sites will be highly utilized,
others will experience low utilization as seen in Figure 2. The load
will shift between day and night based on humans’ diurnal mobility
patterns [7].

The above observations motivates the two principal research
questions addressed in this paper

(1) Under what scenarios and utilization levels does the lower
network latency of the edge get offset by higher queuing
delays, causing a performance inversion where total edge
latency becomes worse than the cloud latency?

(2) How do workload skews impact the queuing delays and
utilization levels across edge sites and what is its impact on
performance inversion at the edge?

These consequences of these questions for application developers
and cloud platforms is addressed through a third research question:

SC ’21, November 14-19, 2021, St. Louis, MO, USA

(3) How can an application designer reduce the chances of perfor-
mance inversion for their edge application, and how should a cloud
provider ensure its edge cloud customers do not see performance
inversion problems?

3 ANALYTIC PERFORMANCE COMPARISON

As discussed above, the edge offers lower network latency than
the cloud but can impose higher queuing delays, and thus higher
server latency, in some scenarios. In this section, we analytically
model the edge and the cloud queuing delays to understand when
performance inversion can occur at the edge due to these two
opposing factors.

3.1 Queuing Models of Edge and Cloud

Our analytic models of edge and cloud performance are based
on queuing theory, a well-known mathematical tool for modeling
the waiting time (queuing delays) seen by requests in computing
systems. Queuing theory has been extensively used to model cloud
performance of web applications [8] in steady-state. and here we
use it to compare edge and cloud behavior.

Briefly, queuing theory enables us to model each application as a
queuing system. As noted in our bank teller example, we are mainly
concerned with multi-server (or clustered) applications that run on
a cluster of k servers. In the cloud case, this application is modeled
as a queuing system shown in Figure 1b. Incoming requests arrive
into a single queue and are scheduled onto one of the k servers
based on a certain server scheduling discipline. The model captures
an application where requests arrive at a dispatcher node and are
scheduled onto one of k cloud servers.

To model the same application when it is deployed at the edge, we
assume that the application is distributed across several geographic
edge sites and we model each edge site as a separate queuing system
as shown in in Figure 1a. The figure shows an example where there
are k edge sites, each hosting one server, such that the application
still runs on a total of k servers like in the cloud. In this case, the
incoming requests get partitioned across edge sites and requests
are assumed to be sent to the nearest edge location. Each edge
site has a queue for incoming requests and gets scheduled onto
the edge servers based on a scheduling discipline. The overall edge
performance is then the mean of the performance of the k edge sites.
For a fair comparison, we assume that the hardware configuration
of the server used in the cloud and the edge is identical.

Formally, application is assumed to run on k cloud servers, k > 1,
and collectively services a mean workload of A requests/s. When
the same application is deployed at the edge, the k servers are dis-
tributed across up to k geographic edge site locations and incoming
requests are sent to the closest edge site for service. For the ease of
analytic modeling, we assume that the application uses k edge lo-
cations, each hosting one server. All our results are easily extended
to the general case where each site hosts more than one server.

Initially, we assume that the workload is balanced across all edge
sites (we relax this assumption and consider the impact of workload
skews in §3.3.) Thus, each edge site receives A/k request/s. Let negge
and nj,,q denote the network round trip latency to the edge and
the cloud, respectively. Since edge servers are more proximal to
end-users, Negge < Neloud- The server latency at the edge and the

Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy

cloud consists of two components: the queuing delay experienced
by a request and the service time to execute the request. Let wegge
and w¢jo,q denote the queuing delay (i.e., waiting time) incurred by
arequest upon arrival at the edge and the cloud server, respectively.
Also, let s,q4, and s;jo,q denote the service time of the request at
the edge and cloud, respectively. The end-to-end latency seen by
a request is the sum of the network latency, server queuing delay,
and the request service time. That is,

Tedge = Nedge + Wedge + Sedge ®3)
and

Tetoud = Ncloud + Weloud + Scloud (4)

where T,q4e and Tjo,,q denote the total end-to-end latency of the
edge and the cloud, respectively.

In any queuing system, the utilization p is given by the ratio of
the request arrival rate and the request service rate (i.e., departure
rate or system throughput). For example, if a single server has a
maximum capacity to service u requests/s and sees an arrival rate
of A requests/s, then its utilization is given as p = 4 1n our case
of the edge, each edge site sees an arrival rate of 1/k. The request
execution time is s.q4e, which means that the server can process
H = 1/Seqge requests/s. Hence pegge = (A/k)/p = A/kp. In case of
the cloud, the arrival rate is A. The execution time of a request is
same as that of the edge server since the hardware configurations
are assumed to be the same. Hence the service rate of a server is y,
same as the edge server. Since there are k cloud servers, the total
service rate is k. Hence, pcjoua = Akp.

3.2 Modeling Edge and Cloud Latency

Given the above queuing systems, we next analyze the latency seen
by the application in the edge and the cloud.

3.2.1 Edge and Cloud Latency Bound. Queuing theory provides
well-known closed-form results for waiting times under different
workload arrival distributions and different server scheduling dis-
ciplines [8]. We can use these well-known results to compare the
queuing delays at the edge and the cloud at different utilization
levels and derive closed-form equations to determine when higher
queuing delays at the edge will cause a performance inversion. Such
equations provide easy “rules of thumb” for a system designer or an
application developer to analyze whether their edge applications
are vulnerable to a performance inversion.

The simplest type of queuing model assumes that the server sees
Poisson arrival of requests, and that request service times follow an
exponential distribution. In this case, the single server at each edge
site is modeled as a M/M/1 queuing system, while the k servers
at the cloud are collectively modeled as a M/M/k queuing system
with FCFS scheduling. M/M/x queuing models have been widely
used in computer systems modeling, where the first M denotes that
the request arrival rate at the server is assumed to follow a Poisson
process, and the second M denotes that the job service times have
an exponential distribution. In this formulation, the x is the number
of servers in the system. These queuing models yield our first key
result.

LEmMA 3.1. The end-to-end latency of the edge is higher than the
cloud whenever the network round trip latency difference between the

The Hidden Cost of the Edge

edge and the cloud An is less than

1 1
1- Pedge \/E(l - pcloud)

®)

Proof: The edge will offers worse end to end latency than the cloud
when Tegge > Tepoud- That is

Nedge + Wedge + Sedge > Mcloud + Weloud + Scloud (6)

Assuming that both the edge and cloud employ the same hardware
configuration for their servers and incoming requests are serviced
using the FCFS service discipline, the execution time of a request
on an edge server and the cloud server will be identical. That is,
Sedge = Scloud- The above inequality then reduces to

Nedge * Wedge > Ncloud + Weloud (7

Let An denote the difference in network round trip times between
the edge and cloud data centers. That is An = n¢jouq — Nedge- Sub-
stituting An in the above inequality yields

An < Wedge — Weloud (8)

This inequality formally states our intuition—that the edge will
worse than the cloud when the reduction in network latency at the
edge if offset by higher queuing delay at the edge than the cloud.

Our bank teller analogy intuitively tells us that the single queue
for k servers at the cloud should yield an overall lower queuing
delay at the cloud than that at the edge. We now formally analyze
the queuing delays offered by the edge and the cloud. To do so,
we use a well-known queuing theory result by Whitt [35], which
shows that for the same probability of delay, a system using a multi-
server queue requires less resources than one using multiple single
server queues. The analysis in [35] also states that the expected
waiting time for a request in a system of k servers is

V2

E[wlw>0] = ———.)
(1-p)Vk
Applying this result to Equation 8, we have
An < E[Wedgelw > 0] = E[wcioualw > 0] (10)

where E[wegge|w > 0] and E[wrem|w > 0] are the expected queu-
ing delays for the edge and the cloud system, given that the queuing
delay is non-zero. We note that the accuracy of Whitt’s approxi-
mation result in Equation 9 increases with higher utilization, since
queuing delays are more likely to be non-zero at high utilization
levels. Substituting Equation 9, we get

i
(1- pEdQE) (1- pcloud)\/E

which completes the proof. O
We now explain the practical implications of the above result by
deriving several corollaries and discussing the key takeaways.

An <

(11)

COROLLARY 3.2. In the case where the application workload is
equally balanced across edge sites and the same server configuration
is used by the edge and the cloud, the above result reduces to An <

SC ’21, November 14-19, 2021, St. Louis, MO, USA

V2
(I_Pedge)
above which edge performance inversion occurs

Pedge > 1 - ﬁ(l - i) (12)

An vk

(1- \/LE) which yields a bound on the server utilization

Proof: As explained earlier, pegge = (4/k)/p = A/kp, and pejoya =
Alkp. Since pegge is same as pejouq, We can substitute pegge for
Peloud in the above lemma, and the result reduces to

2 1

n < L(1 S, (13)
(1- pedge) ‘/E

Rearranging peqge in this inequality, we get

petge > 1= (1 7 (19

A

O

COROLLARY 3.3. As the number of edge locations k increases, the
cutoff edge utilization that yields a performance inversion becomes a
function of only An.

Proof: As k — oo, the term X/LE — 0 in the above inequality,

which yields pegge > 1 - A—‘/g O
Practical takeaways: The above corollaries provide the system
designer with a cutoff utilization threshold above which edge perfor-
mance inversion will occur. Given the choice of an edge deployment
that offers network latency ngge or a cloud deployment that offers
a network latency ngj,, 4, the above results offers simple rules of
thumb for comparing these two deployments—if the expected sys-
tem utilization will be lower than 1 — ﬁ (1- \/LI?) the edge will

indeed provide a lower end-to-end latency. Otherwise the cloud
offers a better choice. Further, for a more geographically distributed
edge deployment with large k, the utilization needs to be lower
than 1 — ﬁ to avoid a performance inversion.

It is also important to understand the applicability of these results
in practice. Our analysis assumed a multi-server application that
either runs on k servers in the cloud or on a set of geo-distributed
servers at k edge sites, where k > 1. Consider the special case where
k =1, i.e., an application that run at a single edge site or one that
runs on a single server (which also implies it runs at a single edge
site). In either case, edge performance inversion will never occur. To
see why, when the entire application runs at a single edge site (i.e.,
is not geo-distributed), the entire cloud workload of the application
is also seen by this one edge site. Since the server configuration
is identical in both cases, the server latencies at the cloud and the
edge are also identical. Hence the edge will always provide better
end-to-end response time due to its lower network latency. This
can be seen in Corollary 3.2 where substituting k = 1, reduces
the requirement for performance inversion to pegge > 1, which
can never be true since utilization can not exceed 1. Interestingly,
performance inversion can still occur for the case of k = 1if the edge
uses a different server configuration than the cloud, and specifically
if the edge uses more resource-constrained servers (e.g., servers
with fewer cores or slower processors). In this case, the edge request
execution times are slower than those at the cloud. This results in

SC ’21, November 14-19, 2021, St. Louis, MO, USA

higher queuing delays at the edge than the cloud, implying that
performance inversion can still occur at the edge for the case of
k=1.

The impact of using more resource-constrained servers at the
edge also makes performance inversion more likely for multi-server
geo-distributed applications (i.e., when k > 1). In this case, the
execution time of requests are no longer the same at the edge and the
cloud, and segge > Sciouq- Further performance inversion will occur
if An < (Wedge = Weloud) + (sedge +Scloud)- Since Sedge tScloud > 0,
the right side of the inequality is larger than our result in Lemma
3.1, implying that performance inversion becomes more likely.

COROLLARY 3.4. A hard lower bound on the cloud network latency
below which the edge yield worse response time than the cloud is given

by
V2 LI !) 15
(1- Pedge \/E(l = Peloud) 19

Proof: The best case for the edge network latency is for a very
proximal edge where n,q . is nearly equal to zero. Substituting
Nedge = 0 in An, the lemma reduces to

1 1
Neloud < \/E(-) . (16)
1- Pedge \/E(l - pcloud)

We can see that if n.j,,q is lower than the expression on the right,
the lemma is always true and the edge will always yield worse end
to end latency than the cloud. Hence, the expression is a hard lower
bound on the cloud network latency, below which the edge yields
worse performance than the cloud. O
Practical takeaways: Since major clouds platforms such as Ama-
zon EC2 and Azure have begun to deploy additional data centers
in various geographic regions, the network latency to the cloud is
decreasing when applications choose the closest cloud data center.
Corollary 3.4 implies that if the cloud network latency drops below
a certain threshold through deployment of regional data centers, it
has the potential (at certain utilization levels) to offer overall end
to end response times that are “good enough” for edge applications
and lower than what a smaller edge site can provide. Put another
way, with increasing regional cloud data deployments, the benefits
of the lower network latency offered even by the best edge deploy-
ments will diminish and the cutoff utilization level for performance
inversion will also be lower, allowing the cloud to be "good enough"
even at lower utilization levels.

3.2.2 Generalized Latency Bounds. Our analysis so far assumed
that application request arrivals and service times follow the Pois-
son and exponential distribution, respectively. This assumption
was made for analytical tractability, but real application workloads
can have any arbitrary arrival and service time distributions. This
variability can be as a result of either the workload dynamics, or the
performance variability in cloud systems. We now extend the above
analysis to the general case. To do so, we assume each edge site is
modeled as a G/G/1 queuing system and the cloud is be modeled as
a G/G/k system. In queuing theoretic terminology, G/G/k refers to
a queuing system of k servers that service a workload with with
a general (i.e., arbitrary) distribution for arrival rates and service
times.

Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy

LEMMA 3.5. Assuming that the edge and the cloud are modeled as
G/G/1 and G/G/k queuing systems, respectively, the edge offers higher
end-to-end latency times whenever the network latency difference
between the cloud and the edge An is less than

2 2
o 1 cedgeA + cedgeg
edge
g ﬂedge(l - pedge) 2
k 2 2
Peroua T Peloud 1 Celouds T Cedges
2 Heloud (1 = Peloud) 2k

Proof: Although there are no closed-form equations for waiting
times (queuing delays) in a G/G/1 and G/G/k queuing systems, there
are several good approximations for waiting times that yield closed-
form equations. One such approximation for the expected waiting
time is the Allen-Cunneen approximation [3, 12], a widely used
queuing theory result that has been shown to be reasonably accu-
rate at higher utilization levels [36], and has found many practical
applications [2, 9].

The Allen-Cunneen approximation states that the expected wait-
ing time for a G/G/1 queue is,

P htcp
p(1-p)° 2
where, 0124 and 0125 are the squared Coefficients of Variation (CoV) of
the inter-arrival time and the service times respectively. For G/G/k

systems [3, 36], the approximation for the expected waiting time
is given as

E(w) = , (17)

2, .2
P cs +c
E(w)~ —>— A_B (18)
p(1-p) 2k
where Ps is the steady state probability that an arriving request
has to wait in the queue for a server to become available. Bolch et

al. [3] have shown that Ps can be approximated closely as

k

pE+p .

R ifp>0.7.

P~ 2 7 (19)
pz, ifp<07

Since the Allen-Cunneen approximation is more accurate in
higher utilization regimes, and since edge performance inversion is
likely at higher utilization levels, we consider the higher utilization
case from Equation 19, i.e, p > 0.7. Since An = Wedge — Weloud
as noted in Equation 6, substituting Equation 17, Equation 18 and
Equation 19 in Equation 6, we get

2 2
1 CedgeA + CedgeB
An < Pedge
/ledge(l - pedge) 2 (20)
k 2
_ 'Dcloud * Pcloud 1 cclouda + cclaudB
2 Feloud (1 = Peloud) 2k
where, ¢

glou Ay cilou i’ cz dgea and cg dges are the squared CoVs of
the inter-arrival times and the service times of requests for the
cloud and the edge , respectively. Like before, we assume that the
edge and the cloud use the same hardware configuration for servers
and FCFS service disciplines. Hence the service times of requests on
the edge and cloud are the same. Since service times are inverse of
the service rate, we have scjoud = Sedge = 1/fcloud = 1/Hedge- For
the same reason, the CoV of service times on the edge and cloud

The Hidden Cost of the Edge

servers are the same: ¢ . Equation 20 then simplifies

2 =2
cloudg edgep

to
2 2
1 cedgeA + cedgeB
An < pedge
Hedge (1- pedge) 2
. , , (21)
Peloud T Pcloud 1 CcloudA + CedgeB
2 .uedge(l = Peloud) 2k ,

O

COROLLARY 3.6. As the number of edge locations k increases An
becomes solely a function of the edge workload parameters

Ced
ge
AR < pogge ——2%0¢ (22)
g :Uedge(l - pedge)
. L. . cidgeA+CidgeB
where Cegge, is a variability measure and is equal to —45—=

2 2
ccloudA +cedqu
—a_ 2B 5, and so does the

Proof: As k — oo, the term
second term of the inequality in Equation 21, yielding the above
inequality.]
Practical takeaways Unlike our M/M/k results which depended
solely on the server utilization levels, our general results indicates
that edge performance inversion depends both on the utilization
levels as well as the burstiness of the workload , which is captured
by the coefficient of variation (CoV) of arrival rates and service
times.

Corollary 3.6 implies that spikes, flash crowds, and high variabil-
ity in the edge workload inter-arrival (and service) times can have
a significant impact on whether an edge will see a performance
inversion. When the workload is bursty in nature, the CoV of the
inter-arrival times will be highly variable. This makes performance
inversion more likely and implies that edge is less suitable for appli-
cations where the request rates (and hence the inter-arrival times)
have higher burstiness.

3.3 Impact of Workload Skews

Our analysis thus far assumed equally partitioned edge workload
across edge sites. However, application workloads are unlikely to
be geographically balanced and exhibit spatial skews (as shown in
Figure 2). For example, an edge application such as an online game
may be more popular in certain parts of the world than others caus-
ing the aggregate workload to be split unequally across geographic
sites. We extended our analysis to handle such spatial imbalances
in the workload. Let the total workload of A req/s be arbitrarily
partitioned across the k edge sites with edge site i receiving A; req/s.
Across all edge sites }}; A; = A. The fraction of the total workload
seen by edge site i is given by w; = 4;/31; A; . Since each edge
site sees a different fraction w; of the requests, the utilization and
queuing delays of each edge site will be different. Specifically in
Lemma 3.1, the waiting time seen by requests at site i will be
Efwilw; > 0] = — Y2 (23)
1- Pedge;

where pegge; = Ai/ -

The average queuing delays seen across the edge is the weighted
average of the queuing delays seen by each site. Thatis, 3, w; V2/(1—
Pedge;) Hence, Lemma 3.1 can be restated as follows.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

LEMMA 3.7. In the scenario where the workload sees spatial skews
and is partitioned unequally across edge site, the edge will offer worse
end-to-end latency when

Wi 1
An < ‘/5 Z - - (24)
; 1= Pedge; ‘/E(l = Peloud)

Practical takeaways: When the workload exhibits spatial or ge-
ographic skews, Equation 23 in the above lemma indicates that
sites with higher workloads will experience higher queuing delays.
In such cases, the application should no longer deploy an equal
number of servers at each edge site—edge locations that see higher
workloads should be provisioned with higher processing capacity
(in terms of bigger servers or more servers). Specifically, each each
edge site should be allocated server capacity in proportion to the
workload seen by that site. Further, if the spatial distribution of
the workload changes over time, the allocated processing capacity
at each site should also be adjusted dynamically to match these
workload changes. So long as the processing capacity at each edge
site matches the incoming workload, the edge sites will be balanced
in their utilization levels, and condition in Lemma 3.7 reduces to
that in Lemma 3.1. It is important to note that even with the pro-
cessing capacity of an edge site is matched to the spatial skews in
the workload, the performance inversion problem does not go away.
The edge can still yield worse end-to-end latency it the condition
of Lemma 3.1 is satisfied

4 EXPERIMENTAL COMPARISON

Having analytically compared edge and cloud latencies from the
perspective of performance inversion, we now experimentally com-
pare the two using a realistic application and real cloud workloads.

4.1 Experimental Setup

Edge/Cloud deployments. To demonstrate that edge performance
inversion can occur in real world settings, we conduct our exper-
iments on Amazon’s EC2 cloud. The EC2 cloud platforms offers
numerous choices of cloud data center locations which allows us
to conduct experiments on cloud servers with different network
latencies. We utilize these choice of data center locations to ex-
periment with different edge and cloud application scenarios with
different network latencies. All our experiments assume an edge
round trip latency of 1ms, which represents the best case scenario
for edge deployments. We do so by placing the end client (emulated
using a workload generator) and the edge servers in two different
availability zones (data centers) within the same EC2 availability
region, yielding a very low user-to-edge network latency. We use
four different cloud deployments to complement our 1ms edge de-
ployment.

Our first scenario assumes a nearby cloud that is around 15ms away,
yielding a small An (An < 20). As the number of cloud data centers
has grown, it is now feasible for a cloud server to have less than
20ms round trip time (RTT) latency from the user. We place the
end-client and the edge servers in the us-east-2 EC2 region (in
Ohio), and the cloud servers in the us-east-1 in Virginia, with an
average Round-Trip-Time (RTT) of around 15 ms. !

!We also ran similar experiments with the edge in Ireland and the Cloud in London,
but omit these results since they are similar.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Our second scenario assumes a cloud that is between 20 to 30 ms
away, yielding a medium An (An ~ 20). This is an increasingly
common latency seen by end-users in populated urban centers. Our
experiments use two configurations. We use an edge deployment
in Ireland, and a cloud deployment in Frankfurt, yielding a network
RTT between 20 to 24 ms. We also use an edge deployment in
us-east-2 (Ohio),and a cloud deployment in ca-central-1 (Montreal)
with an RTT time between 25 to 28 ms.

Our third scenario assumes a cloud that is located over 50ms away,
yielding a larger An (An > 50). Users in many parts of the world
may still experience cloud RT Ts that exceed 50ms. It is also common
to experience higher RTT latencies when using a cellular connec-
tion. In this case, we deploy the edge and end-clients in us-east-2
(Ohio) and the cloud in us-west-1 (North California), with an aver-
age RTT of around 50 to 60 ms.

Finally, we also experiment with a distant cloud application by
deploying the edge in the US (us-east-1), and the cloud in Europe
(Ireland), with latencies exceeding 80ms. Since this involves cross-
ing trans-continental ocean links, well-designed geo-distributed
applications will typically avoid such latencies but we include this
scenario for completeness.

All experiments assume the same configuration for the cloud and
edge servers; we use the c5a.xlarge instance type, with 4 vCPUs, 8
GB of memory, and 10GB/s network inferences. We assume that
the cloud deployment of the applications runs on 5 or 10 servers in
the cloud, while corresponding edge deployments use one or two
servers at each site. In the cloud case, we use HAProxy, a popular
load-balancer to balance the load across the different cloud servers.
Application Workload Since many types of edge applications
such as mobile AR, visual analytics and IoT processing involve
some form or machine learning, we choose deep neural network
(DNN) inference workload for our experiments. The application is
a web-based DNN image classification service built using Keras,
TensorFlow, and Flask that is designed to receive image requests
from an end-client and responds with the class of the image. Note
that this is more compute-intensive workload than simple web
applications.

We built a workload generator using Gatling, an open-source
load- and performance-testing framework based on Scala. We choose
Gatling for its scalability. We use a large images dataset from Kag-
gle. Each second, the workload generator randomly selects a set
of images, based on the number of requests configuration for the
experiment, and sends them to the edge application for classifica-
tion. When the response is received, the workload generator logs
the end-to-end response time. The workload generator is capable
of generating requests that follow a specified distribution or it can
replay a request trace.

Azure Trace Workload In addition to synthetic workload gen-
eration, we use traces from the Azure Public Dataset [28] for our
evaluation. This dataset provides request traces seen by serverless
functions that run on the Azure cloud. To construct the edge site
specific workload from these traces, we first choose a set of func-
tions that belong to the same applications and group them into
k mutually exclusive sets. The request traces for each grouping
of functions is then mapped onto one edge site. Figure 8 depicts
the workload seen by five edge sites that we construct from the
aggregate trace and shows spatial and temporal variations that are

Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy

present in the trace. The cloud trace is then the aggregated request
trace from all edge sites. In addition, the Azure dataset provides ex-
ecution times of serverless functions as coarse-grain distributions;
we sample these distributions to generate an execution time and
append it to each request in the trace. When replaying the trace, an
image of an appropriate size is chosen to generate a request with
the appropriate service time.

Research questions Our experimental comparison is designed
to answer several research questions: (1) How likely is the edge
performance inversion problem in real-world cloud and edge setting
under realistic workloads? (2) What types of edge utilization levels
result in a performance inversion? (3) How well do our experimental
results validate the predictions of our analytic models? (4) How do
tail response times of the edge compare with the cloud? (5) How do
cloud locations with different network latencies impact our results?

4.2 Mean Latency Comparison and Validation

First we benchmark our application while running on the c5a.xlarge
EC2 instance type. Since DNN inference requests are compute in-
tensive, we find that the system reaches 100% utilization at 13 req/s
where it starts dropping requests or thrashing. Hence our exper-
iments assume 12 req/s to be the maximum practical sustainable
workload on a c5a.xlarge instance, which yield utilization levels of
around 90%.

Our first experiment uses our typical cloud setup with the edge
in Ireland and the cloud in the Frankfurt EC2 region. We vary the
request rate at each edge server from 6 to 12 req/s and measure the
mean end-to-end request latency. We compare this edge setup to
a cloud setup with 5 servers that see the cumulative request rate
of 5 edge sites (i.e., when each edge server sees n reqs/s, the cloud
servers see 5n req/s). We also experiment with an edge deployment
with 2 servers per edge site and compare it to a cloud deployment
with 10 servers. Figure 3 plots the mean end-to-end latency seen
for the edge and the cloud setups. As can be seen, the application
provides lower response times from the edge at lower request rates.
As the request rate is increased, the edge latency increases faster
than the cloud latency and there is crossover point at 8 req/s where
the edge latency becomes higher than the cloud latency, causing
a performance inversion beyond this workload level. A similar
behavior is seen for the case where the edge has two servers per
site and the cloud has 10 servers, but the cross over occurs at a
higher workload of around 11 regq/s.

These results show that the performance inversion can occur
even in very low latency edge environments (e.g., 1ms network
round trip latency) and at moderate utilization levels of p = 8/13 =
0.61. Our corollary 3.2 predicts a cutoff utilization of pegge = 0.64
for An =30 and k = 5, which is within 4.5% of the experimentally
observed value. For the two server edge case and k = 10, our
analytical result predict a cutoff utilization of p,gge = 0.75 , which
is within 6% of the measured value.? Thus, our analytic models can
also predict the performance inversion utilization threshold with
good accuracy.

2Some of this model error is a result of the discrete changes in p caused by discrete
changes in the request rate as it is varied from 1 to 12 req/s.

The Hidden Cost of the Edge

SC ’21, November 14-19, 2021, St. Louis, MO, USA

o
o
=]

u
=3
=]

w
=]
=]

mean response time (ms)
N E
o o
o o

o
o
<]

600
—— edge, 1 server —— edge, 1 server T e edge, 1 server
7001 —— edge, 2 servers —— edge, 2 servers —— edge, 2 servers
cloud, 5 servers 3 5004 cloud, 5 servers 1400 - cloud, 5 servers
—— cloud, 10 servers E — cloud, 10 servers 2 —— cloud, 10 servers
) £ 1200
£ 400 o
= £
m 5 1000
2 300 2
S S 800
o &
o g
< 200 i 6001
O“j a
£ 400 A
100
200 -
r - T T v T T 01— T r r T r 0l - - - - r v
6 7 8 9 10 11 12 6 7 8 9 10 11 12 6 7 8 9 10 11 12

o

normalized request rate (reqs/server/second)

Figure 3: Mean latency of edge (Ireland)
and a typical cloud (Frankfurt, ~25ms)

4.3 Tail Latency Comparison

There has been considerable research on reducing tail latencies of
cloud applications to improve overall end-user experience [19, 29].
While our analytical results only permit a comparison of mean
latencies of the edge and the cloud, we can use experimentation
to compare tail latencies as well as the distributions of the edge
and cloud latencies. To do so, we repeat the previous experiment
with an edge deployment in Ohio and the cloud deployment in N.
California. Note that unlike the previous experiment where the
cloud was 20-30ms away, the cloud deployment here is 50-60ms
away making a 1ms edge even more beneficial from a network
latency perspective. Figure 4 plots the mean latencies of the edge
and the cloud deployments. Since the cloud is more distant, the
figure shows that edge latencies are lower than the cloud for a
wider range of utilization values. For the 5 cloud server case, a
performance inversion is seen at 11 req/s (i.e., 84.6% utilization).
For the 10 server cloud deployment, we do not see an inversion
even at 12 req/s, indicting the inversion occurs close to saturation
rate of 13 req/s. Not surprisingly, when the cloud is more distant,
edge performance inversion is less likely and will occur at higher
utilization level.

Figure 5 plots the tail latency of the edge the cloud, where tail
latency is defined to be the 95-th percentile of the end-to-end latency
distribution. The figure reveals an interesting insight that goes
beyond our analytical results. It shows that when tail latencies are
concerned, performance inversion occurs a much lower utilization
level than that for the mean latency. Further, even when the edge is
well-behaved (i.e., offers lower mean latency than the cloud), it can
still see a performance inversion with respect to the tail latency.
The figure shows that performance inversion occurs at 8 req/s
(61% utilization) for the 5 cloud server case and for the case of 10
cloud servers with 2 servers per edge site, it occurs at 11 req/s (84%
utilization). Note that at these level, the mean edge latency is lower
than the cloud latency and there is no inversion with respect to the
mean. Figure 6 shows violin plots of distributions of the end-to-end
latency seen at the edge and the cloud for 10 reqg/s. As can be seen,
edge requests see a higher variability in the end-to-end latency
than cloud requests, and the latency distribution at the edge has a
longer tail than the cloud.

normalized request rate (reqs/server/second)

Figure 4: Mean latency of edge (Ohio)
and distant cloud (N California, ~54ms)

normalized request rate (reqs/server/second)

Figure 5: Tail latency of edge (Ohio) and
distant cloud (N. California, ~54ms)

4.4 Impact of Cloud Locations

We next study the impact of varying the cloud latency of the ap-
plication by deploying the application at various cloud locations
and measure the cutoff utilization where the edge latency becomes
worse than the cloud. Figure 7 plots cutoff utilizations for the mean
and tail latency for various cloud deployments (the edge is 1ms
away in all cases). The figure shows that as the cloud gets closer to
the user, the cutoff utilization for a performance inversion keeps
decreasing. For a 15ms cloud (US-east-1), the cutoff utilization for
the mean is only 40% and that for the tail latency is even lower at
25%. For a 25-30ms cloud, the cutoffs are 60% and 40% respectively.
For a transcontinental cloud (80ms RTT), the cutoff for the mean
is close to saturation but that for the tail is 75%. The figure shows
that as cloud deployments increase, edge performance inversion
can occur at progressively lower utilization levels, making it more
likely in real-world deployments.

4.5 Comparison using Azure Workloads

Our final experiment involves replaying trace workloads seen at
real cloud, i.e., using Azure public cloud traces. The experiment
emulates generalized distributions for arrival rates and service times
and also includes dynamic spatial and temporal workload skews, as
shown in Figure 8. We replay the trace workload shown in Figure
8 at each of the five edge sites and the cumulative workload to the
cloud site with 5 servers. We use the typical case cloud scenario
with the edge at US-east-2 (Ohio) and the cloud in Montreal (ca-
central-1), with RTT of 25 to 28ms. Figure 9 compares the mean
latency seen by requests across all edge sites to the mean cloud
latency. The temporal fluctuations across sites causes the utilization
of each edge site to vary over time and edge sites frequently see
a performance inversion, causing the mean edge latency to rise
above the cloud latency. The cumulative workload at the cloud sees
a smoothing benefits and there is less variation in the cloud latency
as a result. Figure 10 shows a box plot of the latency seen by each
of the five edge sites and the cloud. The figure show the unequal
partitioning of the workload across edge sites causes different edge
sites to exhibit different latencies; the more bursty the workload,
the more variable the latency distribution. Edge site 4 see a lower
workload than the rest and also offers the lowest latencies as a
result.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

1750 - M

1500 A

1250 -

1000 A

750 4

500 A

response time (ms)

250 4

ers ers

1 s
e N i
gev';_se oud se! 18,19 el

cdge: sene
Scenario
Figure 6: Response distribution of edge (Ohio) and
distant cloud (N. California) for 10 req/server/s.

Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy

100 | mmm mean
B p95
80 4
60 L__
40 ==
2 I

13 ms 25 ms 54 ms 80 ms
(transcontinental)

Cloud RTT latency
Figure 7: Utilization levels above which the edge
provides worse mean and tail latencies for various
cloud settings.

CPU utilization (%)

o

o

= N ~ w w
7] S G S G
o S =] S o

number of requests

—
)
S

mean response time (ms)

v
o

100{ — Edge 1
Edge 2

—— Edge 3
—— Edge 4

—— Edge 5

Edge servers

response time (ms)

300
200

Cloud servers

5 10 15 20 5
time (minute)

Figure 8: Edge workload of five edge
sites based on the Azure serverless
traces.

4.6 Impact of Server Heterogeneity

Our experiments thus far used a single server type, namely c5.xlarge
servers. To demonstrate that edge performance inversion can occur
under a range of server types, we repeat our experiments with
2-core c5.large, 4-core c5.xlarge, 8-core c5.2xlarge servers at both
the cloud and the edge. We also conduct experiments with the
g4dn.xlarge GPU-enabled servers where both the CPU and the
NVIDIA T4 GPU are used for processing each request. Finally, we
use a heterogeneous deployment with GPU and CPU server types,
where half the cluster servers are g4dn.xlarge GPU servers and the
other half are c5a.xlarge servers in both the edge and cloud. In all
cases, the total number of servers k in the edge and the cloud is kept
the same. Figure 11 shows the cutoff per-server request rate at which
edge performance inversion is seen for each configuration. The
figure shows that regardless of the server configuration, the edge
always sees a performance inversion after a cutoff request rate. Not
surprisingly, as the servers become more capable (e.g., have more
cores or have a GPU), the per-server request rate at which inversion
occurs also rises. Although we omit cutoff utilizations levels due
to space constraints, the shown cutoff request rates correspond
to utilizations levels ranging from 59% to 65.8% across various
configurations. Interestingly, even hybrid deployments with a mix
of CPU and GPU servers types at each cloud or edge sites see a
similar inversion behavior.

10

time (minute)
Figure 9: Mean edge and cloud latencies
for Azure trace workload.

15 20 Edge 3 Edge 4

server location
Figure 10: Higher tail latency of the
edge under the Azure workload.

Edge 1 Edge?2 Edge 5 Cloud

4.7 Performance of Single Server Applications

Our analytic models assume a multi-server clustered application
with k servers and also assume identical configuration for cloud and
edge servers. Neither assumption may hold in some scenarios since
(i) the application may be a “small” single server application, and (ii)
the edge may be more constrained than the cloud (an architecture
argued by many edge researchers). We conduct an experiment
using a single server application (k = 1) that runs in the cloud
and then at a single edge site. We first use the same c5.2xlarge
server configuration in the cloud and the edge, and then make
the edge progressively more constrained by using c5.xlarge and
c5.large servers at the edge. Figure 12 shows the edge and cloud
response times under varying request rates. First, under identical
server configurations, a single server application (k = 1) does not
experience any performance inversion—consistent with Corollary
3.2 which indicates utilization p,qg. will need to exceed 1 for k = 1
(implying inversion is impossible). However, as the edge servers
gets more constrained, performance inversion is seen at utilizations
as low as 30%. This shows that even single server applications see
the same performance inversion problem as clustered applications,
but only in constrained edge settings.

The Hidden Cost of the Edge

SC ’21, November 14-19, 2021, St. Louis, MO, USA

25 500

20

5
S
8

15

w
S
3

10

N
=]
3

mean response time (ms)

cutoff normalized request rate
(regs/server/second)
4
8

— edge, c5a.large
edge, c5a.xlarge

1.0

0.8

cSalarge c5a.xlarge c5a.2xlarge gddn.xlarge hybrid 0 2 4
instance type

Figure 11: Edge performance inversion Figure 12: Single server applications see
inversion in constrained edge settings.

occurs for a range of server
configurations.

5 DESIGN IMPLICATIONS

We now discuss how our results can be used by application devel-
opers and cloud platforms to avoid edge performance inversion.

5.1 Summary of our results.

We summarize our results in the context of the three research ques-
tions posed in §2.2. We first visually summarize our results using
Pareto curves in Figure 13. The figure shows the cutoff utilization
level for various cloud latencies and various application cluster
sizes (k) above which an edge deployment will see performance
inversion and show these cutoffs for a range of realistic utilization
levels and cloud latencies. We note that this Pareto front does not
take into account any workload or service time variability, so it
shows more of a best-case scenario for edge clouds.

Overall, our analytic results in Lemmas 3.1 to 3.5 show that per-
formance inversion is possible under any arbitrary workload and
service time distribution. These lemmas also provide closed-form
equations for cutoff utilizations for edge performance inversion
for any given deployment. Our experimental results confirm our
analytical results and show that edge performance inversion does
occur in real-world edge and cloud deployments. Specifically, even
a low latency 1ms edge can experience a performance inversion
at moderate utilization levels of 40 to 60%. Our experimental re-
sults go beyond our analytical equations, and show that even when
the edge is well-behaved with respect to mean latency, it can still
experience a performance inversion for tail latencies. Further, our
results hold under a variety of server configurations, including GPU
and mixed configurations, and under real-world public cloud work-
loads. With increasing workload skew or cloud penetration, edge
performance inversion can occur at progressively lower utilizations,
making it more likely in real-world edge deployments. Similarly, a
resource-constrained edge is more likely to experience performance
inversion problems. Finally, our results focus on multi-server (clus-
tered) applications, but we also show inversion can occur for single
server application in constrained edge settings.

5.2 Application Considerations

Application developers will need to develop new edge resource
management techniques, such as new autoscalers or latency control
methods, to avoid edge performance inversion issues, When doing
so, an application developer can use our results in three different

request rate (reqs/s)

o
o
°
il
04
¢ -e- k=5.0
0.2 *- k=10.0
edge, c5a.2xlarge -~ k=100.0
—— cloud, c5a.2xlarge -+~ k=1000.0
8 19 12 410 20 50 100
Cloud RTT

Figure 13: Pareto frontier for
Equation 14 with a large cloud

ways: (i) estimate the chances of a performance inversion for a
particular edge deployment, (ii) provision additional capacity at
the edge site to eliminate or reduce the chances of a performance
inversion, and (iii) employ run-time techniques such as geographic
load balancing.

Estimate Chance of a Performance Inversion An application
designer can use the edge versus cloud latency of a particular setup
to determine the cutoff utilization for performance inversion to
occur (e.g., using Corollaries 3.2 and 3.3). Typical cloud application
are provisioned for the peak workload, and it is well known that
they see low average utilization. Assuming that edge applications
are also provisioned similarly, we should expect edge sites to also
have low utilization levels on average. If the estimated edge utiliza-
tion is lower than the cutoff utilization, then the chance of edge
performance inversion is likely to be small.

Provision extra capacity: One approach for avoiding edge per-
formance inversion is to provision extra server capacity at each
site. In this case, the aggregate server capacity at all edge sites is
greater than the k servers of the cloud deployment. One simple rule
of thumb to guide the amount of overprovisioning at the edge is to
use Lemma 3.1. Suppose edge site i has K; servers and receives 4;
req/s. Then for each site i, Lemma 3.1 yields

1 1

An <2 -
M\ Vea- A ka2

(25)

Since An, 4;, and p are all measurable or can be estimated, we

have a numerical lower bound on k; at each site to avoid perfor-
mance inversion. An overprovisioning factor can be applied to k;
to allow sufficient headroom capacity to minimize the probability
of performance inversion.
Geographic Load Balancing. The bank teller analogy of Sec-
tion 2.2, which is the basis for edge performance inversion, does
not hold if “queue jockeying” [24] is allowed where a customer is
allowed to switch queues. In the edge case, this amounts to request
redirection to a different edge site if the local edge site is expe-
riencing high waiting times or high utilization. Content delivery
networks have employed such geographic load balancing meth-
ods to avoid overloading a local edge site [22]. Edge performance
inversion can be avoided by employing similar geographic load
balancing methods, where requested to an overloaded edge sites
are redirected to nearby edge sites with space capacity.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

5.3 Edge Cloud Platform Considerations

The edge performance inversion problem has also important im-
plications for edge cloud providers. Each edge site will host ap-
plications belonging to multiple customers, each of which see a
time varying workload. Like any cloud, an edge cloud has to be
provisioned with enough server capacity to serve peak demand
across customers. This is done by deploying enough servers to
serve a high percentile of the workload across all customers. If
the workload arrivals are Poisson, the well known two sigma rule
can be used to approximate the 95th percentile of the workload.
The two sigma rule states that the 95th percentile of the work-
load is A + 20, where o is the standard deviation of the work-
load. For Poisson arrivals, the standard deviation is the square
root of the mean, i.e., o = V2. Hence, the cloud requires an ag-
gregate server capacity Cojouq = A + 2VA to serve the peak work-
load. However, for edge sites, and in case of a spatially perfectly
balanced workload, each edge site sees A/k req/s. Hence, each
edge site requires enough capacity to serve the peak workload
of A/k+ ZW. Since there are k edge sites, the total edge capacity

is Ceqge = k (% + 2\/%) = 1+2VkA. It follows that Cedge > Ccloud
since VA < VKA.

This means That even for the simplest type of workload (Pois-
son arrival, balanced across sites), the peak capacity at the edge
is higher than that of the cloud. Intuitively, this is due to the sta-
tistical smoothing benefits at the cloud that accrue when multiple
edge site workload is aggregated at the cloud (which sees a lower
peak than the sum of the edge peaks) To avoid its customers from
seeing performance inversion, the degree of overprovisioning at
the edge has to be even higher than the above analysis (which did
not consider the impact of query delays during peak utilization).
Our results in Section 3 only considered the average workload A,
but not the impact of peak workload A + 2V where queuing delays
will be even higher. This implies that cloud providers will incur a
higher cost to serve N customers at the edge than the cloud and
will need to overprovision their edge deployments even more than
their cloud deployments.

6 CONCLUSIONS

In this paper we presented and studied the edge performance in-
version problem where higher edge queuing delays due to resource
constraints or workload skews offset the lower network latency of
the edge when compared to the cloud. We analytically compared
edge and cloud latencies using queuing models and analyzed condi-
tions under which the edge can yield worse performance than the
cloud. We conducted a detailed experimental performance compar-
ison of the edge and cloud performance using realistic applications
and Azure trace workloads on real cloud and edge platforms. Our
experiments showed that the mean and tail latencies seen by edge
applications can indeed be worse than the cloud even at moderate
utilization levels of 40 to 60%. We discussed implications of our
results for application designers and cloud service providers and
provided insights into how such performance inversion problems
can be avoided or mitigated. These insights also point to several di-
rections for future work. We plan to design dynamic edge resource
allocation techniques that are robust to performance inversion and

Ahmed Ali-Eldin, Bin Wang, and Prashant Shenoy

can optimize edge tail latencies. We also plan to study the economic
costs of edge deployments resulting from the need to deploy extra
capacity to prevent performance inversion.
Acknowledgements: We thank the anonymous reviewers for their
helpful comments. This research was funded in part by NSF grants
2105494, 1908536, 1836752, 1763834, US Army contract W911NF-
17-2-0196, Chalmers ICT-AoA, and Amazon AWS cloud credits.

REFERENCES

[1] Azure IoT edge. https://azure.microsoft.com/en-us/services/iot-edge/.

[2] F. Ahmad and T. Vijaykumar. Joint optimization of idle and cooling power in data
centers while maintaining response time. In ACM Sigplan Notices, volume 45,
pages 243-256. ACM, 2010.

[3] G.Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
John Wiley & Sons, 2006.

[4] D.Bruneo. A stochastic model to investigate data center performance and qos
in iaas cloud computing systems. IEEE Transactions on Parallel and Distributed
Systems, 25(3):560-569, 2014.

[5] A.Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf. Exact analysis of
the m/m/k/setup class of markov chains via recursive renewal reward. In ACM
SIGMETRICS Performance Evaluation Review, volume 41, pages 153-166. ACM,
2013.

[6] A.Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality analysis
of energy-performance trade-off for server farm management. Performance
Evaluation, 67(11):1155-1171, 2010.

[7] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding individual
human mobility patterns. nature, 453(7196):779, 2008.

[8] M.Harchol-Balter. Performance modeling and design of computer systems: queueing
theory in action, chapter 14. Cambridge University Press, 2013.

[9] Y.-J. Hong, J. Xue, and M. Thottethodi. Dynamic server provisioning to minimize
cost in an iaas cloud. In Proceedings of the ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems, pages 147-148.
ACM, 2011.

[10] J. Hsu. How youtube led to google’s cloud-gaming service: The tech that made
youtube work everywhere promises to do the same for games-[news]. IEEE
Spectrum, 56(09):9-10, 2019.

[11] W.Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and M. Satyanarayanan.

Quantifying the impact of edge computing on mobile applications. In Proceedings

of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’16, pages 5:1-5:8,

New York, NY, USA, 2016. ACM.

S.Kelly-Bootle and B. W. Lutek. Chapter 5 - queueing theory. In A. O. Allen, editor,

Probability, Statistics, and Queuing Theory with Computer Science Applications

(Second Edition), Computer Science and Scientific Computing, pages 247 - 375.

Academic Press, San Diego, second edition edition, 1990.

[13] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload characterization and
prediction in the cloud: A multiple time series approach. In 2012 IEEE Network
Operations and Management Symposium, pages 1287-1294. IEEE, 2012.

[14] H. Khazaei, J. Misic, and V. B. Misic. Performance analysis of cloud computing
centers using m/g/m/m+ r queuing systems. IEEE Transactions on parallel and
distributed systems, 23(5):936-943, 2012.

[15] H.Khazaei, J. Misi¢, V. B. Misi¢, and S. Rashwand. Analysis of a pool management
scheme for cloud computing centers. IEEE Transactions on parallel and distributed
systems, 24(5):849-861, 2013.

[16] J. Kingman. Inequalities in the theory of queues. Journal of the Royal Statistical
Society. Series B (Methodological), pages 102-110, 1970.

[17] L.Kleinrock. Theory, volume 1, queueing systems, 1975.

[18] C.N.Le Tan, C. Klein, and E. Elmroth. Location-aware load prediction in edge
data centers. In Fog and Mobile Edge Computing (FMEC), 2017 Second International
Conference on, pages 25-31. IEEE, 2017.

[19] J.Li, N. K. Sharma, D. R. Ports, and S. D. Gribble. Tales of the tail: Hardware, os,
and application-level sources of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, pages 1-14. ACM, 2014.

[20] C.Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai. Imbalance in the cloud: An analysis
on alibaba cluster trace. In 2017 IEEE International Conference on Big Data (Big
Data), pages 2884-2892. IEEE, 2017.

[21] Y. Mao, J. Zhang, S. Song, and K. B. Letaief. Power-delay tradeoff in multi-user
mobile-edge computing systems. In IEEE Global Communications Conference
(GLOBECOM),, pages 1-6. IEEE, 2016.

[22] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: a platform for
high-performance internet applications. ACM SIGOPS Operating Systems Review,
44(3):2-19, 2010.

[23] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser. CRAWDAD data
set EPFL/mobility. https://crawdad.org/epfl/mobility/20090224/.

[12

The Hidden Cost of the Edge

[24]
[25]
[26]
[27]

[28]

[29]

[30]

M. H. Rothkopf and P. Rech. Perspectives on queues: Combining queues is not
always beneficial. Operations Research, 35(6):906—909, 1987.

M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal
communications, 8(4):10-17, 2001.

M. Satyanarayanan. The emergence of edge computing. Computer, 50(1):30-39,
2017.

M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies. The case for VM-based
cloudlets in mobile computing. IEEE pervasive Computing, 2009.

M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, and R. Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider. In 2020
{USENIX} Annual Technical Conference ({USENIX}{ATC} 20), pages 205-218,
2020.

L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail latency in
cloud data stores via adaptive replica selection. In 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), pages 513-527, 2015.
L. Tong, Y. Li, and W. Gao. A hierarchical edge cloud architecture for mobile
computing. In INFOCOM 2016-The 35th Annual IEEE International Conference on

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Computer Communications, IEEE, pages 1-9. IEEE, 2016.

[31] J. N. Tsitsiklis and K. Xu. On the power of (even a little) centralization in dis-

tributed processing. ACM SIGMETRICS Performance Evaluation Review, 39(1):121-
132, 2011.

[32] J. N. Tsitsiklis and K. Xu. On the power of (even a little) resource pooling.

(33]

(34]
(35]

(36]

Stochastic Systems, 2(1):1-66, 2012.

R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung. Dynamic service
migration and workload scheduling in edge-clouds. Performance Evaluation,
91:205-228, 2015.

M. Weiser. The computer for the 21st century. Scientific american, 265(3):94-104,
1991.

W. Whitt. Understanding the efficiency of multi-server service systems. Man-
agement Science, 38(5):708-723, 1992.

W. Whitt. "approximations for the gi/g/m queue". Production and Operations
Management, 2(2):114-161, 1993.

[37] J. Xue, R. Birke, L. Y. Chen, and E. Smirni. Spatial-temporal prediction models

for active ticket managing in data centers. IEEE Transactions on Network and
Service Management, 15(1):39-52, 2018.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We present the toolset used in this research as a general and
extensible performance benchmarking framework for real-world
edge/cloud environments. Our framework, which is built based on
a variety of mature open-source technologies, enables automatic
infrastructure provisioning, workload deployment, benchmark exe-
cution, and metrics collection.

Our performance benchmark uses a client/server architecture:
the client side is one node running the load generator, while the
server side is a cluster which consists of one load-balancer node and
multiple worker nodes. We use Gatling (https://gatling.io/), an open-
source load testing tool, as the load generator. We implemented two
load patterns using Gatling for the evaluation in this paper: con-
stant rate Poisson processes, and emulations using Azure Functions
Traces (available at https://github.com/Azure/AzurePublicDataset).
Gatling also support other distributions such as evenly distributed
requests or requests with ramp-up arrival rate. More complex pat-
terns can also be implemented by either 1) describing the simulation
procedures using Scala scripts, or 2) recording user behaviors using
a bundled recorder and replaying the recorded scenarios during
benchmark experiments.

On the server cluster side, each worker node runs an instance of
the deep learning REST API server based on Keras and TensorFlow.
We use docker as the server runtime to make it easier to change
the server application to any other application. For the the load-
balancer we use HAProxy running in multi-thread mode to handle
high throughput. After receiving requests from the workload gener-
ator, HAProxy will distribute the requests among available worker
nodes using the lead connection load balancing algorithm in order
to maximize resource multiplexing.

For users who want to run the benchmark in a public cloud, we
also provide automation scripts based on Terraform for describing
and provisioning the desired infrastructure. Although we currently
only implement the scripts for AWS EC2, Terraform has support for
most major cloud providers, such as Microsoft Azure and Google
Cloud, so the scripts can be easily modified to work with other
providers. The configurations of all the nodes used in the exper-
iment, including regions/availability zones, instance types, SSH
key pair, and the number of worker nodes, can be specified in the
scripts. Once the scripts have been properly configured, a user can
just use one single command to set up or tear down the testing
infrastructure, as demonstrated in the sample workflow below.

Once the testing infrastructure is set up, our framework provide
a set of Ansible playbooks for automating the deployment of the
performance benchmark. All the aforementioned software com-
ponents used for the benchmarking experiments will be installed
and configured using Ansible. Users can change these playbooks
to modify the software environment to their needs. For example,
to change the server application running on the worker nodes, a
user only need to change a few parameters in the docker_image
and docker_container modules in the worker setup playbook. In

addition, the experiment execution and data collection are also im-
plemented as playbooks to improve efficiency. For instance, users
can run multiple benchmarking scenarios at once to fully explore
the performance characteristics, or collect CPU utilization data
from all the worker nodes in parallel.

The workflow of a typical run of the benchmarking framework
looks like follows:

terraform apply -var load-generator-region=us-east-2 -var
cluster-region=ca-central-1 -var worker-count=10 -auto-approve

(cd ansible && ansible-playbook ping.yml && ansible-playbook
setup.yml && ansible-playbook experiment.yml)

terraform destroy -var load-generator-region=us-east-2 -var
cluster-region=ca-central-1 -var worker-count=10 -auto-approve

Thanks to Gatling, after the benchmark experiment is finished
an HTML report will be generated for each simulation with many
statistics and beautiful visualizations, such as the response time
distribution, response time percentiles over time, number of re-
quests per second, etc. These reports can help users develop quick
insights into the system performance and possible bottlenecks. Our
framework will also collect and download more fine-grained data
including

- The RTT between the load generator and the load balancer,
which is measured using the {ping} command.

- The start time and completion time of each request, which is
observed on the load generator node.

- The service time of each request, which is observed on each
worker node. We record the system time before and after the pro-
cessing of each request, then attach the elapsed time as a filed in
the json response. We will then use Gatling to parse the json re-
sponses to extract the service times, and save them into a separate
file. Similarly, any information contained in the response can be
parsed and saved.

- The CPU utilization of each worker node throughout the dura-
tion of the experiment. This is collected by running the {mpstat}
command. Our automation script will start {mpstat} before the
benchmark starts and let it run at 1 second intervals. The com-
mand output will be saved to a file and downloaded later after the
benchmark completes.

These fine-grained data can be processed to generate more de-
tailed performance metrics if needed.

Our performance benchmarking framework is released as an
open-source artifact, available at https://github.com/umassos/edge-
cloud-benchmarking. We have created two tags for the code ver-
sions that were used to produce the results in our paper: "sc21" for
experiments with homogeneous cluster (i.e, all the VMs in the clus-
ter are of the same instance type) and "sc21-hybrid" for experiments
with heterogeneous cluster (i.e., part of the VMs in the cluster are
CPU instances while the others are GPU instances).

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.5163850

Ali-Eldin, et al.

Artifact name: Performance Benchmarking Framework for
— Edge/Cloud Environments

