
2021 IEEE International Conference on Big Data (Big Data)

978-1-6654-3902-2/21/$31.00 ©2021 IEEE 153

CM-GCN: A Distributed Framework for Graph
Convolutional Networks using Cohesive

Mini-batches

Guoyi Zhao, Tian Zhou and Lixin Gao
Dept. of Electrical and Computer Engineering

University of Massachusetts Amherst

guoyi@umass.edu, tzhou@umass.edu, lgao@engin.umass.edu

Abstract—Graph convolutional network (GCN) has been
shown effective in many applications with graph structures.
However, training a large-scale GCN is still challenging due
to the high computation cost that grows with the size of the
graph. In this paper, we propose CM-GCN, a distributed GCN
framework using cohesive mini-batches to accelerate large-scale
GCN training. The cohesive mini-batches group nodes that are
tightly connected in the graph. As a result, CM-GCN can
reduce the computation required to train a GCN. We propose a
computation cost function to quantify the computation required
for mini-batches. By exploring the submodular property of the
computation cost function, we develop an efficient algorithm to
partition nodes into tightly coupled mini-batches. Based on the
computation cost function, we evenly distribute the workloads of
mini-batches to workers. We design asynchronous computations
between GCN layers to further eliminating the waiting among
workers. We implement a CM-GCN framework and evaluate its
performance with graphs that contain millions of nodes. Our
evaluation shows that CM-GCN can achieve up to 3X speedup
without compromising the training accuracy.

Index Terms—graph convolutional networks, mini-batch train-
ing, asynchronous computation, graph partitioning

I. INTRODUCTION

Graph convolutional network (GCN) and its variants [18],

[4], [26] have achieved state-of-the-art results in many graph-

based applications, including node classification [18], link pre-

diction [5], inductive node embedding [9] and recommender

systems [28]. The graph convolution operation applies to all

the neighbors of nodes to obtain node embeddings. In each

convolution layer, the embedding of a node is learned by

aggregating its neighborhood embeddings, followed by the

same linear transformations and nonlinear activations. After

stacking K convolution layers, GCN can learn representative

node embeddings by utilizing information from nodes that are

within K hops away.

The traditional GCN training on large graphs can be slow

because we are only able to update the parameter after pro-

cessing the full graph. It is also memory-consuming to store all

the graph structures especially training on GPUs. Mini-batch

stochastic gradient descent (SGD) [9] is proposed to accelerate

GCN training from more frequent updates. The updates of the

GCN model parameters will focus on the gradients computed

from a mini-batch. So mini-batch SGD reduces the memory

requirement and conducts several updates per epoch which

usually leads to faster convergence. However, mini-batch SGD

introduces a significant computational overhead due to the

neighborhood expansion. This is because the convolution

operation expands the neighborhood nodes in several hops

away. The number of dependent nodes grows exponentially

when GCN goes deeper.

Several GCN models proposed sampling or clustering strate-

gies to reduce the neighborhood expansion issue. GraphSAGE

[9] sampled a fixed number of neighbors to limit the nodes to

expand. FastGCN [3] further proposed importance sampling

to give different weights for the nodes we sampled. However,

the sampling must be done repeatedly in each epoch, and it

loses neighborhood information in the convolution operations.

Cluster-GCN [5] focused on densely connected clusters in the

graph to train GCN. But the edges that are removed between

clusters may also lose important neighborhood information.

The sampling strategy and removed edges in clustering typi-

cally reduce the accuracy of the trained GCNs. Furthermore,

although their training often converges in practice, there is no

convergence guarantee for trivial sampling methods [4].

GPUs are widely used to train GCNs due to their ability

to provide highly parallel computations. But recently CPU

clusters have shown appealing training efficiency and low

pricing for large graphs [19], [14]. Since the real-world graphs

could consist of billions of edges and keep growing [29], [22],

it is getting expensive to use multiple GPUs to train GCN.

The lowest-configured p3 instance type on AWS has a price of

$3.06/h, while an m4.2xlarge instance with 8 vCPU costs only

$0.4/h. Not to mention most of the cloud servers provide more

flexible pricing options for CPU instances, such as transient

resources [31]. NeuGraph [19] and ROC [14] enable multiple

GPUs training to improve scalability. However, the memory

in GPUs is very limited, which makes it more expensive to

scale to billion-edge graphs.

We propose CM-GCN, a distributed GCN framework using

cohesive mini-batches to accelerate large-scale GCN training

in CPU clusters. The cohesive mini-batches group nodes that

are tightly connected in the graph. So these nodes will share

the common neighbors to reduce the dependant nodes in GCN

training. With the reduction of dependant nodes, we can reduce

more than half of the computation required in each epoch. We

propose a computation cost function to efficiently calculate

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

9
7
8
-1

-6
6
5
4
-3

9
0
2
-2

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/B

ig
D

at
a5

2
5
8
9
.2

0
2
1
.9

6
7
1
9
3
1

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

154

the required computation for each mini-batch. After proving

the submodular property of the computation cost function, we

develop an efficient algorithm to partition the graph nodes into

cohesive mini-batches in polynomial time. Therefore, we can

accelerate the large-scale GCN training without compromising

the training accuracy.

In CM-GCN, we utilize CPU clusters in GCN training

to achieve high scalability and low expense comparing with

GPU training. We decompose and perform the computations

of embeddings and gradients on CPUs. Since we need to

synchronize GCN parameters after each mini-batch, CM-GCN

further balances the workloads on workers to avoid waiting.

Using balanced workloads, workers can finish processing each

mini-batch around the same time. Since processing a node only

requires the embeddings or gradients from its neighbors, it is

not necessary to synchronize all the embeddings and gradients

between GCN layers. Within a mini-batch, CM-GCN enables

asynchronous computations to prioritize the processing of

nodes that are ready to be processed. So we can parallelize

the communication and computation to eliminate the waiting

among workers.

We design and implement a framework to support our CM-

GCN model and evaluate it with several large-scale graphs

with millions of nodes from Reddit and OGB datasets [12].

Comparing with a mini-batch training using the traditional

GCN model, CM-GCN achieves comparable training accuracy

while we can save more than half of the computation per

epoch. With balanced workloads and asynchronous compu-

tation between GCN layers, CM-GCN can speedup up to 3X

towards GCN.

The remainder of this paper is organized as follows. Sec-

tion II describes the background of general GCN training

and how the mini-batch SGD scheme can be applied in a

distributed GCN training. Section III introduces our CM-GCN

model on how we partition nodes into cohesive mini-batches

and perform the asynchronous computation on the balanced

workloads. Section IV reports extensive evaluation results.

Section V highlights the related works and Section VI finally

concludes our work.

II. PRELIMINARY

In this section, we give a brief background of the graph

convolutional network training. We first illustrate the general

training procedure of GCN. Then we explain how the mini-

batch SGD scheme accelerates the GCN training for large

graphs.

A. Graph Convolutional Network Training

The graph convolutional network [24], [18], [24], [6] ex-

tends existing neural networks to process data in graph do-

mains. One of the key problems is to learn graph embeddings

[10] to represent graph nodes, edges, and sub-graphs. Give

a graph G = (V,E), the nodes in V are connected through

the edges in E, and each node is associated with a feature

vector. A K-layer GCN consists of K convolution layers

where each layer k contains parameter W (k). In Layer k,

we represent an embedding hk
v ∈ R

dk for each node v ∈ V
where dk is the dimension of embedding. The training of GCN

includes forward propagation and backward propagation steps

to compute embeddings and gradients to update parameter W .

Next, we will discuss the details of forward propagation and

backward propagation steps separately.

1) Forward Propagation Step: In neural networks, forward

propagation refers to the flow of data which maps input

features to the output of the network. In Layer k, each node

aggregates its neighborhood embeddings from the previous

layer to compute its embedding of current layer as follows.

h(k)
v = σ(W (k)

∑

u∈Nv

h(k−1)
u) (1)

where Nv is the neighbor set for node v in graph G, and

σ(·) is an activation function which is usually a Sigmoid

or ReLU function. The embeddings are propagated layer by

layer through the edges of nodes. In the initial layer 0, the

embedding is the input feature as h0
v = xv . The final output

zv at Layer K is zv = h
(K)
v . The output zv is used to compute

the training loss. The loss function sums up the losses from

all labeled nodes VL as follows.

L =
∑

v∈VL

loss(yv, zv) (2)

where yv is the given label for node v. In practice, a cross-

entropy loss or mean squared error (MSE) is commonly used

for node classification in multi-class or multi-label problems.

2) Backward Propagation Step: In the backward propa-

gation step, we compute the gradient of the loss function

with respect to the embeddings h and parameter W . The

gradient is computed based on the chain rule from the opposite

propagation direction in the forward step. The parameter W
is then updated using gradient descent. Specifically, we first

calculate the gradients in the last layer from the final loss.

Take MSE as an example, the gradient of node v is computed

as follows.
∂L

∂zv
= 2(zv − yv) (3)

Based on the chain rule, the gradient of the embedding for

node v at layer k < K is computed as follows.

∂L

∂h
(k)
v

=
∑

u∈Nv

(

∂L

∂h
(k+1)
u

×
∂h

(k+1)
u

∂h
(k)
v

)

(4)

To update W (k), we aggregate the gradients from all the

nodes in Layer k and apply them in the gradient descent

algorithm.

∂L

∂W (k)
=
∑

v∈V

(

∂L

∂h
(k)
v

×
∂h

(k)
v

∂W (k)

)

(5)

B. Mini-Batch GCN training

The full-batch gradient descent training scheme was com-

monly used in GCN training when the graph size is small.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

155

However, full-batch requires storing all the intermediate em-

beddings, which is not scalable for large graphs. The conver-

gence can be slow since the parameters are updated only once

per epoch. Mini-batch SGD scheme [9], [28] is proposed to

accelerate the training. The mini-batch GCN training mainly

takes three meta steps. First, we randomly select a subset of

nodes B ⊂ V as a mini-batch. Then, we expand the full set

or sample a subset of neighbor nodes on each layer to specify

the nodes to be trained. At last, we propagate forward and

backward among the nodes in each GCN layer. The model

parameters in the GCN are updated iteratively via stochastic

gradient descent.

III. CM-GCN MODEL

We propose the CM-GCN model to accelerate the GCN

training with distributed cohesive mini-batches. A cohesive

mini-batch groups nodes that are tightly connected in the

original graph. So we increase the reusability of embedding

computation results and reduce the required computation for

processing the same number of nodes in the mini-batch. Figure

1 shows an overview of our model with a 2-layer GCN. We

first partition nodes into cohesive mini-batches to minimize

the computation required for each epoch. Then we distribute

the computation of each mini-batch to workers. After each

mini-batch, we synchronize the GCN parameters and process

the next mini-batch until the model converges.

Fig. 1: Overview of CM-GCN

Besides cohesive mini-batches, CM-GCN also balances the

workloads on workers and enables asynchronous computation

to reduce the waiting caused by synchronizations between

GCN layers. As shown in Figure 1, the two workers in the

top and bottom have almost the same amount of computation.

So they can finish at the same time to avoid waiting at the syn-

chronization barrier. Meanwhile, we break the synchronization

between GCN layers. So we can parallelize the communication

for passing embeddings and gradients with the node processing

to further accelerate the training.

A. Partition Nodes into Cohesive Mini-batches

Using cohesive mini-batches, we increase the utilization of

the computed embeddings and gradients in each mini-bath

to reduce the computation per epoch. In Figure 2, we show

the nodes that are required to be processed in cohesive mini-

batches and non-cohesive mini-batches. We use the color red

and blue to distinguish different mini-batches. In the cohesive

mini-batches, the nodes are tightly coupled in the mini-batch

and share neighbors. So the computation of embeddings and

gradients can be reused for more nodes. For example, we need

to process 13 nodes for the red mini-batch and 16 nodes for the

blue mini-batch in the cohesive mini-batches. For simplicity,

we assume the computation for each node is the same as 1.

Then, the total computation required in cohesive mini-batches

is 29 per epoch. In the non-cohesive mini-batches, we need to

expend more neighbors in order to compute the same number

of training losses. For example, the non-cohesive mini-batches

in Figure 2 require the total computation as 35. So the cohesive

mini-batches in this simple example can save 17% of the

computation. When the GCN goes deeper, we can save much

more computation time using cohesive mini-batches.

Fig. 2: Cohesive mini-batches and non-cohesive mini-batches

GCN training. Color Red and Blue represent the nodes from

two mini-batches

Finding the optimal cohesive mini-batches is none-trivial.

Clustering nodes that are close to each other into mini-batches

can reduce the required computation. But the computation

required for each node varies because it is related to the

number of its neighbors. Thus, not only the number of nodes

but also the computation required determines the quality of

mini-batches. In CM-GCN, we propose a computation cost

function and partition nodes into mini-batches that minimizes

the computation cost.

The computation cost of a mini-batch B is the time required

to compute all the embeddings and gradients during the GCN

training. The mathematical operations in the training can be

represented as a computational graph GB for mini-batch B.

For example, in Figure 3, it is the computational graph from a

mini-batch with node A. Given the input graph structure on the

left, the computational graph on the right indicates the nodes

to be processed in each layer and the directions to propagate

the embeddings and gradients. The nodes in the forward step

represent the computations of embeddings. The nodes in the

backward step indicate the computations of gradients towards

the training loss for each corresponding embedding.

For computing embeddings in the forward step, we can

directly analyze the required computation in Equation (1).

In the backward step, the gradients are computed for both

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

156

TABLE I: Notations of constant factors in computation cost function

Factor Computation Cost

α Summation of 2 dk vectors αdk
β Multiplication between a dk × dk−1 matrix and a dk−1 vector βdkdk−1

γ Applying activation function σ(·) to a dk vector γdk
η Multiplication between a dk × dk−1 matrix and a scalar ηdkdk−1

λ Computing the gradient of a loss function towards a dk vector λdk

Fig. 3: Computational graph of a mini-batch {A}

embeddings h(k) and the parameters W (k) in Layer k. To

efficiently compute the gradients, we distribute the computa-

tion in Equation (4) into different nodes in the computational

graph. In this subsection, we will first discuss how to derive the

computation cost function in the forward step, backward step,

and the whole mini-batches separately. Then we show how

CM-GCN partitions nodes into cohesive mini-batches using

the computation cost.

1) Computation Cost in Forward Step: In the forward

step, the computation in Equation (1) consists of aggregating

the embeddings from neighbors
∑

u∈Nv
h
(k−1)
u , multiplying

the parameter W (k), and applying the activation function

σ(·). Since the nodes in Layer 0 using the input features as

embeddings, the computation cost for node v is in layer 0 is

cf (v, 0) = 0.

From Layer 1 to Layer K, we divide the computation

cost into three parts. (1) The aggregation of embeddings
∑

u∈Nv
h
(k−1)
u is linear to the number of neighbors |Nv| and

the dimension dk−1 of previous layer k−1. So the computation

time as α|Nv|dk−1, where α indicates the constant factor of

the time for adding two vectors. We show all the constant

factors for the analysis of computation cost in Table I. (2) The

computation time for multiplying W (k) is linear to matrix size

dk×dk−1 and aggregated embedding vector size dk−1, which

is βdkdk−1. (3) Applying the activation function σ(·) is linear

to embedding vector size dk, which takes γdk time. The total

computation cost to compute embedding hk
v is as follows.

cf (v, k) = α|Nv|dk−1 + βdkdk−1 + γdk (6)

2) Computation Cost in Backward Step: In the back-

ward step, we compute the gradients of embedding h(k)

and the parameter W (k). For the example in Figure 3,

each node in backward propagation of the computational

graph computes its gradient ∂L

∂h
(k)
v

. Based on the chain rule,

the gradients are propagated to the neighbors in the next

layer. The gradients are computed using Equation (4) as
∑

u∈Nv

(

∂L

∂h
(k+1)
u

×
∂h(k+1)

u

∂h
(k)
v

)

, where we aggregate all the mul-

tiplication of gradients ∂L

∂h
(k+1)
u

×
∂h(k+1)

u

∂h
(k)
v

from previous layer.

However, the multiplication of gradients should be done in

layer k + 1 instead of layer k for efficiency. Because for any

neighbor v of node u, the gradient
∂h(k+1)

u

∂h
(k)
v

is the same for

embedding h
(k+1)
u . So we can compute the multiplication of

gradients once and reuse the results for all the neighbors of u
in Layer k.

In Layer K, we represent the computation g(v,K) in node v

as the multiplication between the gradient of output zv = h
(K)
v

and the embedding gradient as follows.

g(v,K) =
∂L

∂zv
×

∂zv

∂h
(K−1)
u

(7)

where u is one neighbor of v in layer K − 1. The compu-

tation time for g(v,K) contains three parts: (1) Computing

the gradient towards loss function ∂L
∂zv

takes λdK time. (2)

Computing the embedding gradient ∂zv

∂h
(K−1)
u

is the gradient

of the activations function σ′(·) multiplying the parameter

matrix W (K). So it is linear to the matrix size dK × dK−1

which takes ηdKdK−1 time. (3) The multiplication between

the two result gradients takes βdKdK−1 time. Therefore, the

total computation cost to compute g(v,K) is as follows.

cg(v,K) = λdK + (η + β)dKdK−1 (8)

From Layer 1 to Layer K − 1, the gradient of node v is

calculated as ∂L

∂h
(k)
v

=
∑

u∈Nv
g(u, k + 1). So the computation

of g(v, k) in node v is computed as follows.

g(v, k) =

(

∑

u∈Nv

g(u, k + 1)

)

×
∂h

(k)
v

∂h
(k−1)
u

(9)

The computation includes three parts: (1) the aggregation from

neighbor nodes g(u, k+1) takes α|Nv|dk time, (2) computing

the embedding gradient
∂h(k)

v

∂h
(k−1)
u

is the same as Layer K which

takes ηdkdk−1 time, and (3) the multiplication between the

two result gradients also takes βdkdk−1 time. Therefore, the

total computation cost to compute g(v, k) is as follows.

cg(v, k) = α|Nv|dk + (η + β)dkdk−1 (10)

Since the goal of computing gradients is to update the parame-

ter W (k), we only compute the gradients of embeddings from

Layer 1 to Layer K. So cg(v, 0) = 0.

For computing the gradients of W (k) in Equation (5),

we need to compute ∂L

∂h
(k)
v

×
∂h(k)

v

∂W (k) for each node v. We

amortize the computation cost to each node in the backward

propagation of the computational graph. (1) Computing
∂h(k)

v

∂W (k)

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

157

is multiplying a scalar gradient of the activation function σ′(·)
with the aggregated embedding which takes ηdk time. (2) The

product between a dk × 1 vector and a 1× dk−1 vector takes

βdkdk−1 time. So each node v from Layer 1 to Layer K
requires the additional computation cost as follow.

cW (v, k) = ηdk + βdkdk−1 (11)

Summing up all the required computation cost cg and cW
based on layers, we have the computation cost for any node

v in backward propagation of the computational graph as

follows.

cb(v, k) =

{

(λ+ η)dk + (2β + η)dkdk−1 k = K
α|Nv|dk + (β + η)dkdk−1 + ηdk 0 < k < K

(12)

3) Computation Cost of Mini-batches: The computation

cost for a mini-batch B is computed by summing up the

computation cost from all the nodes in the GB from Layer

1 to Layer K.

C(B) =
K−1
∑

k=0

∑

v∈
⋃

u∈B
Nk

u

(cf (v, k) + cb(v, k)) (13)

where Nk
u represents the nodes in graph G that are k-

hop away from node u. For the 0-hop neighbor, we have

N0
u = u. The computation cost function C(B) in CM-

GCN has a submodular property. So we can find polynomial-

time algorithms to partition mini-batches using submodular

function minimization.

Theorem 1. Given a mini-batch B for a K-

layer GCN, the computation cost C(B) =
∑K−1

k=0

∑

v∈
⋃

u∈B
Nk

u
(cf (v, k) + cb(v, k)) is a submodular

function.

Due to the page limit, the proof of Theorem 1 is shown in

the document1.

Give a graph G, we aim to partition all the nodes V
into cohesive mini-batch partitions P to minimize the total

computation required for each epoch. Since mini-batches

are independent, the objective function is computed as the

summation of the computation cost of each mini-batch B ∈ P .

J(P) =
∑

B∈P

C(B) (14)

4) Partition Nodes into Mini-batches: Using the submod-

ular property of computation cost function C(B), we can

partition the nodes into the optimal two mini-batches in

polynomial time [17], [21]. However, finding the optimal

M mini-batches, where M > 2, is none-trivial. Inspired by

the multi-way graph partitioning algorithms in [8], [32], we

can format our mini-batch partitioning as a multi-way graph

partitioning problem. We can achieve a 2− 2
M

approximation

for M partitions through recursive bisection [17]. That is, we

iteratively split one of the existing mini-batches into 2 mini-

batches to minimize J(P). So each iteration we increase the

1https://drive.google.com/file/d/1LusLZHLon3lUtMYSLIUUNRsrJg6psmPg

number of partitions by one until we get M partitions. Using

this way, the M partitions P may not reach the optimal J(P).
But we can bound the quality of the partition which will not

exceed the 2− 2
M

of the optimal J(P).
We show our algorithm to partition nodes into cohesive

mini-batches in Algorithm 1. Initially, the whole graph G
forms one mini-batch as P = {V }. Then we split P into

two mini-batches that have the minimum J(P) from any

possible two mini-batches. To efficiently find the optimal two-

way partitions, we use the idea in Queyranne’s algorithm [21].

The key observation in the algorithm is that we can identify a

special ordered node pair (t, u) for an arbitrary subset U ⊂ V .

The identification of (t, u) reduces the search space because

we can group t and u together as a new inseparable node

and get a new candidate as P = {{u}, V \ {u}}. We will

explain the details of how to generate pendent pair and find

the candidate in the next paragraph. After examining all the

possible candidates of two-way partitions, the one that gives

the minimum J(P) is set as the new mini-batch partition. We

iteratively repeat this process until we obtain M mini-batches.

Algorithm 1: Partition nodes into cohesive mini-

batches

Input : A graph G = (V,E), number of mini-batch

M
Output: A list of mini-batch partition P

1 Initialize one single partition as P = V
2 for i = 1, ...,M − 1 do

3 for each mini-batch Bj ∈ P do

4 Partition Bj into two mini-batches with

minimum total computation cost

5 Group the two new mini-batches with other

mini-batches to form a partition Pj

6 Compute the total cost J(Pj)
7 end for

8 P = argminij=1 J(Pj)
9 end for

10 Return mini-batch partition P

For splitting an existing mini-batch Bj in line 4 of Algo-

rithm 1, we find the partition that minimizes the symmetric

computation cost function as follows.

U = argmin
U⊂Bj

(C(U) + C(Bj \ U)) (15)

Then we replace Bj in P with U and Bj \ U . Since the

computation cost function C(Bj) has the submodular property,

we can restrict the search space of all the possible two-way

partitions to |Bj | candidates. The key idea is to generate a

special ordered series of nodes from a given subset U ⊂ Bj .

The last two nodes in that ordered series form a pair (t, u)
that is called pendent pair. The C({u}) takes the minimum u
from all subsets of Bj which separate node t from u. Using

the pendent pair, we can determine one candidate partition as

{u} and Bj \ {u}. Meantime, we can reduce the search space

by grouping two nodes t and u together as a new inseparable

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

158

node u′. So the remaining node set S′ = Bj \ {u, v} ∪ {u′}
for generating new candidates.

Algorithm 2: Partition one mini-batch into two

Input : A graph G = (V,E), one mini-batch B
Output: Two mini-batches P

1 Initialize one partition as B1 = B
2 for i = 1, ..., |B| do

3 Randomly select a node v1 in Bi as a initial node.

4 Group W1 = {v1}
5 for j = 2, ..., |B| do

6 Find node vj that minimize

C(Wj−1 ∪ {vj})− C({vj})
7 Wj = Wj−1 ∪ {vj}
8 end for

9 Denote the last two nodes added to W as t and u
10 Compute the computation cost J(Pi) for candidate

partition Pi = {Bi \ {u}, {u}}
11 Group t and u as one node (u, t)
12 Bi+1 = Bi \ {u, t} ∪ {(u, t)}
13 end for

14 P = argmin
|B|
i=1 J(Pi)

15 Return mini-batch partition P

The total running time for partitioning nodes into mini-

batches takes M iterations of finding the best split from current

mini-batches. Each split takes at most M two-way partitions

for each mini-batch partition. Since the total nodes in all the

mini-batch are always V , the running time for each split can

be bounded in O(|V |3) time. Then, the total running time to

partition nodes into mini-batches is in O(M |V |3) time.

B. Balance Workers’ Loads

During the GCN training, the embeddings and gradients are

computed from Layer 0 to Layer K following the directions

in the computational graph GB . When we need to synchronize

the embeddings or gradients between consecutive GCN layers,

the workers that require more computation will delay the

computation on other workers in the next layer. However,

balancing the workloads in each GCN layer will be very

time-consuming and not necessary. In CM-GCN, we propose

asynchronous computation between GCN layers, and only

synchronize the GCN parameters W between mini-batches.

As long as the computation in one mini-batch is balanced

among workers, we can achieve no waiting in training. In

this subsection, we will focus on balancing the workloads and

discuss the asynchronous computation in the next subsection.

The workload can be measured by the running time to

process the nodes in the computational graph. In CM-GCN, we

use our computation cost function to estimate the workloads

on workers. As long as every worker has the same total

computation cost, we balance the workloads. The computation

of gradient for a node v at layer k requires the embeddings

hk
v . So both the forward and backward steps of node v should

be processed at the same worker. Meanwhile, a graph node v

usually exists in multiple layers in the computational graph.

For example, node A need to be processed in every GCN

layer in Figure 3. We put the processing of these nodes in the

same worker so that there is no duplicate copy of nodes in

different workers. Then, each node in the graph is categorized

as a whole computation as follows.

nc(v) =
K
∑

k=1

cf (v, k) + cb(v, k)

Given a mini-batch B, we assign every node v in G that is

shown in the computational graph GB to workers one by one

since the computation costs nc(v) are independent. Initially,

all the P workers have the total computation cost as zero. We

follow the order of breadth-first search starting from nodes in

B to assign nodes to workers. Each time, we assign a node v
to the worker that has the lowest total computation cost so far.

So the workload differences among workers will not exceed

the computation cost of one node. At last, we generate the

assignments as a mapping table from a node ID to a worker.

For each worker p, we construct a list of nodes Np that are

required to be processed in that worker. During the training,

we first load the input features of Np into worker p and

subgraph associated to Np. Although the mini-batches are

isolated, the dependent nodes may appear in multiple workers.

For efficiency, we load the input features of node v to all the

workers that will process v in any layer. When we train a

mini-batch B, every worker p loads the mapping table that is

generated for worker p.

C. Asynchronous Computation between GCN Layers

Traditionally, it is required to synchronize the embeddings

and gradients between two consecutive GCN layers. How-

ever, the synchronization between GCN layers may incur

considerable overhead to wait for embeddings and gradients

from other workers. Since processing a node only requires

the embeddings and gradients from its neighbors, it is not

necessary to synchronize all the embeddings and gradients

between two GCN layers. We can process nodes that have

their neighborhood embeddings or gradients available in an

asynchronous fashion. CM-GCN prioritizes the processing of

nodes that are ready to be processed to enable asynchronous

GCN training. Since we always compute the embeddings and

gradients from current processing results, we can guarantee

the same output as synchronous GCN training.

During the training, we decompose the computation of

nodes in the computational graph and process each node

asynchronously based on its availability. In Figure 4, we illus-

trate an example of our asynchronous computations with two

workers. Each worker stores one partition of the computational

graph based on the balanced workload. For example, the mini-

batch in Figure 4 is {A,C}. Worker 1 processes every node in

G{A,C} for graph node A and B. A1
f indicates the computation

of embedding h
(1)
A for node A at Layer 1. A1

b indicates the

computation of gradient for h
(1)
A in the backward propagation.

Worker 2 focuses on graph nodes C and D.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

159

Fig. 4: Asynchronous computations in CM-GCN

The availability represents whether the dependent embed-

dings or gradients are ready for each node. We maintain a

counter for each node in the computational graph to indicate

the received embeddings or gradients. Initially, the counter of

a node equals 0. In Figure 4, we illustrate the counter under

each node. The first number is the current value of the counter

while the second number is the number of its neighbors from

the previous layer in GB . Since the nodes in layer 0 using the

input features as embeddings, they are always available. So

the counter for node v0f is 0/0.

In CM-GCN, we maintain a processing queue in each

worker for the nodes that are ready to be processed. Each

worker keeps processing the nodes in its processing queue

while updating the counter for each node that is not pro-

cessed. So workers are able to process the nodes without

synchronizations between GCN layers. When the counter of

a node v reaches the required counter value, we enqueue

v into the processing queue. For example, after processing

node A1
f and B1

f , node A2
f will be ready to be processed in

worker 1. There is no need to wait for node C1
f and D1

f in

worker 2. Meanwhile, the embeddings of node A1
f and B1

f are

available for node A2
f and the embedding of B1

f will be sent

to node C2
f through message passing. The counter of node

A2
f will be updated to 2/2 and added to the processing queue

of worker 1. When worker 2 receives the embedding, it will

update the counter of node C2
f to 1/3. There are still two more

embeddings that are required for node C2
f to be ready.

IV. EXPERIMENTS

In this section, we evaluate our CM-GCN model to show

its performance with large-scale datasets. We focus on the

node classification tasks in the evaluation. The GCNs for other

tasks such as link prediction mostly differ in the objective

function while sharing most of the GCN architectures, so we

omit them in this paper. Comparing with the well-known GCN

models, our CM-GCN using cohesive mini-batches reduces the

required computation as well as the total training time. We

also examine the effectiveness of using balanced workloads

and asynchronous computation in reducing the waiting time.

Finally, the scalability test shows that CM-GCN can scale to

large clusters.

A. Experiment Setting

We first describe our experiment settings including the

datasets, benchmark model, and testing environment. We

evaluate our CM-GCN model for training GCN on multi-

class classification on four public datasets. The statistic of

the datasets from Cora, Reddit, and Open Graph Benchmark

(OGB) datasets [12] are shown in Table II. The dimension of

the hidden layers for Cora is 256, while we set the dimension

as 128 for Reddit and 64 for other OGB datasets. We split the

train, validation, and test data ratio as 70%, 20% and 10%.

TABLE II: Dataset Summary

Dataset # Nodes # Edges Node features

Cora 2,708 5,429 1,433
Reddit 232,965 11,606,919 602
OGBN-arxiv 169,343 1,166,243 128
OGBN-product 2,449,029 61,859,140 100

We use the state-of-the-art GCN as the benchmark model.

We use mean pooling architecture and ReLU activation func-

tion per graph convolution layer. We set weight decay as zero,

dropout rate as 0.1. We randomly select 1% of the nodes in the

graph for each mini-batch, which is equivalent to 100 mini-

batches in CM-GCN. Since Cora data is small, we use 5% as

the mini-batches size and 4 workers for training.

We implement our CM-GCN under DGL v0.6, Pytorch 1.8,

and using the existing code of GCN in Dist-DGL [33]. We

use a Google cloud cluster of eight n2-highcpu8 with 8 CPU

cores at 2.8-GHz and 32GB memory. We evaluate all our

experiments using 16 workers on 8 instances and scale to 64

workers in the scalability test. We learn the constant factors

in the computation cost function through testing the running

time in Pytorch. We measure the factors as α = 2 × 10−9,

γ = 2 × 10−9, η = 2 × 10−9, and λ = 1 × 10−9 for MSE

function. The factor β in the multiplication between a matrix

and a vector is not always constant. When the size of the

matrix is large, especially in the first a few GCN layers, β is

more stable as β = 8× 10−9. When the size of the matrix is

small, such as 32× 7 in the last layer, β grows larger. So we

set it as β = 5.2× 10−8.

B. Training Time and Accuracy

In this subsection, we show the performance of CM-GCN

comparing with GCN in terms of training speed and accuracy.

The training time is to run 50 epochs for the Reddit and OGB

datasets, and 200 epochs for the Cora dataset. We show the

training loss and accuracy towards the training time in Figure

5. The x-axis shows the training time in seconds, and the y-

axis shows the training loss and accuracy (F1 score) on the

test datasets.

For the Cora and OGB-arxiv datasets, they are all citation

networks that have relatively low nodes degrees. The average

node degrees are 2 and 6.9. So the nodes in each mini-batch are

more closely connected and share more common neighbors.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

162

TABLE III: Training time and accuracy (F1 scores) for GCN and CM-GCN

2-Layer 3-Layer 4-Layer
Time(s) Accuracy Time(s) Accuracy Time(s) Accuracy

Cora
GCN 2.53 80.7 ± 0.88 8.75 81.3 ± 1.19 25.63 82.1 ± 0.61
CM-GCN 1.85 81.5 ± 0.37 4.21 82.6 ± 0.28 11.34 81.7 ± 0.67

Reddit
GCN 517.8 92.1 ± 0.27 2531.7 91.3 ± 0.42 9632.0 91.9 ± 0.77
CM-GCN 133.5 91.4 ± 0.6 522.5 91.4 ± 0.51 2809.3 91.8 ± 0.37

OGB-
arxiv

GCN 55.2 59.4 ± 0.63 226.8 61.2 ± 0.29 1429.2 60.6 ± 0.36
CM-GCN 21.9 59.5 ± 0.36 152.3 60.9 ± 0.71 561.2 61.1 ± 0.45

OGB-
products

GCN 779.5 85.1 ± 0.26 3895.8 85.7 ± 0.32 23932.4 85.9 ± 0.61
CM-GCN 268.6 85.5 ± 0.11 1353.5 85.8 ± 0.21 8361.0 86.1 ± 0.55

high accuracy since sampling is conditioned on the selected

nodes in the next layer. It may incur significant overhead due

to the expensive sampling algorithm and the extra sampler

parameters to be learned.

Instead of sampling neighbors, some researchers focus on

training from a sub-graph instead of the full graph. Clus-

terGCN [5] proposes graph clustering based mini-batch train-

ing. During pre-processing, the training graph is partitioned

into densely connected clusters. During training, clusters are

randomly selected to form mini-batches, and intra-cluster edge

connections remain unchanged. GraphSAINT [30] samples the

training graph first and then builds a full GCN on the subgraph.

They analyzed the bias and variance of the mini-batches

defined on the subgraphs and proposed normalization tech-

niques and sampling algorithms to improve training quality.

Simplified GCN (SGCN) [27], PPRGo [1], and LightGCN [11]

explore a linear GCN model that integrates self-connection

into graph convolution. The removal of nonlinearities and

collapsing the weight matrices to one weight matrix, but

generally, they will lose the representation power of GCN

models. In CM-GCN, we further optimize the mini-batches

by partitioning nodes with our computation cost function.

So we can find the cohesive mini-batches that minimize the

computation requirements per epoch.

To explore the mini-batch selection, HAG [15] presents

the concept of Hierarchically Aggregated computation Graph

to aggregate operations that are repeated when nodes share

similar neighborhoods. Joseph [16] develops a mini-batch

selection strategy based on submodular function maximization

to capture the informativeness of each sample and the diversity

of the whole subset. They aimed to select the most relevant

samples, but the computation required is not reduced. In CM-

GCN, we focused on the computation cost function to optimize

the required computation to perform full-graph GCN training.

GPUs have been mainly used to train GCNs due to their

ability to provide highly parallel computations. NeuGraph

[19] and ROC [14] coordinate multiple GPUs to improve

the scalability. However, GPUs still have limited memory

which will make the scalability much more expensive since the

real-world graphs are routinely billion-edge scale [28], [22].

Dorylus [25] used the distributed CPU servers and serverless

threads to tackle the scalability issue of using CPUs. They

split the graph operations and the tensor workloads while

using the bounded asynchronous model to reduce the waiting

of dependency in the training. Although they guarantee the

convergence of the training, it may waste the computation by

using the stale value and slow down the convergence.

To train GCN in a distributed fashion, frameworks such as

DistDGL [33], NeuGraph [19], DistGNN [20] and Dorylus

[25] are proposed to support parallel training. NeuGraph

[19] combined a dataflow abstraction with the vertex-program

abstraction to support multi-GPU training. It performed full

graph training on multiple GPUs and distributed memory

whose aggregated memory fits the graph data. However, train-

ing a GCN model in a large graph will become inefficient be-

cause one model update requires a significant amount of com-

putation. In [23], they develop a fully-distributed algorithmic

framework for training GCNs. DistDGL [33] first partitioned

the graph and stored them in different workers. They balanced

the graph partitions to achieve both network communication

reduction and load balancing. However, although the graph

is balanced partitioned on workers, the random mini-batches

may still make the computation in each worker unbalanced.

We propose an asynchronous computation that prioritizes the

processing of nodes that are ready to be processed. So we can

parallelize the communication and computation with balanced

workloads to achieve no waiting among workers.

VI. CONCLUSION

We propose CM-GCN, a novel distributed GCN framework

that exploits an efficient mini-batch training. Based on the

graph structure we group the nodes that are closely connected

into cohesive mini-batches. Therefore, CM-GCN can process

the same amount of nodes without any neighborhood sampling

for only half of the computation cost. After proposing a com-

putation cost function with submodular property, we develop

an efficient algorithm to partition nodes into cohesive mini-

batches. To further reduce the waiting time caused by synchro-

nizations, we distribute the computation on workers through

balanced workloads. We design asynchronous computations

between GCN layers to further eliminate the waiting among

workers. We implement a distributed CM-GCN framework and

evaluate its performance with graphs that contain millions of

nodes. Our evaluation shows that CM-GCN can achieve up to

3X speedup without compromising the training accuracy.

ACKNOWLEDGMENT

This work was supported in part by National Science

Foundation Grants CNS-1815412 and CNS-1908536.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

163

REFERENCES

[1] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais,
B. Rózemberczki, M. Lukasik, and S. Günnemann. Scaling graph neural
networks with approximate pagerank. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 2464–2473, 2020.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and
locally connected networks on graphs. arXiv:1312.6203, 2013.

[3] J. Chen, T. Ma, and C. Xiao. Fastgcn: fast learning with graph
convolutional networks via importance sampling. arXiv:1801.10247,
2018.

[4] J. Chen, J. Zhu, and L. Song. Stochastic training of graph convolutional
networks with variance reduction. arXiv:1710.10568, 2017.

[5] W.-L. Chiang, X. Liu, and etc. Cluster-gcn: An efficient algorithm for
training deep and large graph convolutional networks. In Proceedings

of the 25th ACM SIGKDD, pages 257–266, 2019.

[6] P. Cui, X. Wang, J. Pei, and W. Zhu. A survey on network embedding.
IEEE Transactions on Knowledge and Data Engineering, 31(5):833–
852, 2018.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering.
arXiv:1606.09375, 2016.

[8] S. Fujishige. Submodular functions and optimization. Elsevier, 2005.

[9] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation
learning on large graphs. arXiv:1706.02216, 2017.

[10] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on
graphs: Methods and applications. arXiv:1709.05584, 2017.

[11] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion. In Proceedings of the 43rd International ACM SIGIR conference

on research and development in Information Retrieval, pages 639–648,
2020.

[12] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. arXiv:2005.00687, 2020.

[13] W. Huang, T. Zhang, Y. Rong, and J. Huang. Adaptive sampling towards
fast graph representation learning. arXiv:1809.05343, 2018.

[14] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken. Improving the
accuracy, scalability, and performance of graph neural networks with
roc. Proceedings of Machine Learning and Systems, 2:187–198, 2020.

[15] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken. Redundancy-
free computation for graph neural networks. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 997–1005, 2020.

[16] K. Joseph, K. Singh, V. N. Balasubramanian, et al. Submodular
batch selection for training deep neural networks. arXiv preprint

arXiv:1906.08771, 2019.

[17] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for ir-
regular graphs. Journal of Parallel and Distributed computing, 48(1):96–
129, 1998.

[18] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. arXiv:1609.02907, 2016.

[19] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai. Neugraph:
parallel deep neural network computation on large graphs. In 2019

USENIX Annual Technical Conference, pages 443–458, 2019.

[20] V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Heinecke,
D. Kalamkar, N. K. Ahmed, and S. Avancha. Distgnn: Scalable
distributed training for large-scale graph neural networks. arXiv preprint

arXiv:2104.06700, 2021.

[21] M. Queyranne. Minimizing symmetric submodular functions. Mathe-

matical Programming, 82(1):3–12, 1998.

[22] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos:
Scale-out graph processing from secondary storage. In Proceedings of

the 25th Symposium on Operating Systems Principles, pages 410–424,
2015.

[23] S. Scardapane, I. Spinelli, and P. Di Lorenzo. Distributed training
of graph convolutional networks. IEEE Transactions on Signal and

Information Processing over Networks, 7:87–100, 2020.

[24] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The graph neural network model. IEEE Transactions on Neural

Networks, 20(1):61–80, 2008.

[25] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, et al. Dorylus: affordable,
scalable, and accurate gnn training with distributed cpu servers and
serverless threads. In 15th {USENIX} Symposium on Operating Systems

Design and Implementation ({OSDI} 21), pages 495–514, 2021.
[26] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and

Y. Bengio. Graph attention networks. arXiv:1710.10903, 2017.
[27] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger.

Simplifying graph convolutional networks. In International conference

on machine learning, pages 6861–6871. PMLR, 2019.
[28] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and

J. Leskovec. Graph convolutional neural networks for web-scale rec-
ommender systems. In Proceedings of the 24th ACM SIGKDD, pages
974–983, 2018.

[29] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim. Graph trans-
former networks. Advances in Neural Information Processing Systems,
32:11983–11993, 2019.

[30] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna.
Graphsaint: Graph sampling based inductive learning method.
arXiv:1907.04931, 2019.

[31] G. Zhao, L. Gao, and D. Irwin. Sync-on-the-fly: A parallel framework
for gradient descent algorithms on transient resources. In IEEE Inter-

national Conference on Big Data, pages 392–397. IEEE, 2018.
[32] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for

approximating multiway partition problems. Mathematical Program-

ming, 102(1):167–183, 2005.
[33] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,

and G. Karypis. Distdgl: Distributed graph neural network training for
billion-scale graphs. arXiv:2010.05337, 2020.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 20,2022 at 18:08:27 UTC from IEEE Xplore. Restrictions apply.

