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Abstract—Graph convolutional network (GCN) has been
shown effective in many applications with graph structures.
However, training a large-scale GCN is still challenging due
to the high computation cost that grows with the size of the
graph. In this paper, we propose CM-GCN, a distributed GCN
framework using cohesive mini-batches to accelerate large-scale
GCN training. The cohesive mini-batches group nodes that are
tightly connected in the graph. As a result, CM-GCN can
reduce the computation required to train a GCN. We propose a
computation cost function to quantify the computation required
for mini-batches. By exploring the submodular property of the
computation cost function, we develop an efficient algorithm to
partition nodes into tightly coupled mini-batches. Based on the
computation cost function, we evenly distribute the workloads of
mini-batches to workers. We design asynchronous computations
between GCN layers to further eliminating the waiting among
workers. We implement a CM-GCN framework and evaluate its
performance with graphs that contain millions of nodes. Our
evaluation shows that CM-GCN can achieve up to 3X speedup
without compromising the training accuracy.

Index Terms—graph convolutional networks, mini-batch train-
ing, asynchronous computation, graph partitioning

I. INTRODUCTION

Graph convolutional network (GCN) and its variants [18],
[4], [26] have achieved state-of-the-art results in many graph-
based applications, including node classification [18], link pre-
diction [5], inductive node embedding [9] and recommender
systems [28]. The graph convolution operation applies to all
the neighbors of nodes to obtain node embeddings. In each
convolution layer, the embedding of a node is learned by
aggregating its neighborhood embeddings, followed by the
same linear transformations and nonlinear activations. After
stacking K convolution layers, GCN can learn representative
node embeddings by utilizing information from nodes that are
within K hops away.

The traditional GCN training on large graphs can be slow
because we are only able to update the parameter after pro-
cessing the full graph. It is also memory-consuming to store all
the graph structures especially training on GPUs. Mini-batch
stochastic gradient descent (SGD) [9] is proposed to accelerate
GCN training from more frequent updates. The updates of the
GCN model parameters will focus on the gradients computed
from a mini-batch. So mini-batch SGD reduces the memory
requirement and conducts several updates per epoch which
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usually leads to faster convergence. However, mini-batch SGD
introduces a significant computational overhead due to the
neighborhood expansion. This is because the convolution
operation expands the neighborhood nodes in several hops
away. The number of dependent nodes grows exponentially
when GCN goes deeper.

Several GCN models proposed sampling or clustering strate-
gies to reduce the neighborhood expansion issue. GraphSAGE
[9] sampled a fixed number of neighbors to limit the nodes to
expand. FastGCN [3] further proposed importance sampling
to give different weights for the nodes we sampled. However,
the sampling must be done repeatedly in each epoch, and it
loses neighborhood information in the convolution operations.
Cluster-GCN [5] focused on densely connected clusters in the
graph to train GCN. But the edges that are removed between
clusters may also lose important neighborhood information.
The sampling strategy and removed edges in clustering typi-
cally reduce the accuracy of the trained GCNs. Furthermore,
although their training often converges in practice, there is no
convergence guarantee for trivial sampling methods [4].

GPUs are widely used to train GCNs due to their ability
to provide highly parallel computations. But recently CPU
clusters have shown appealing training efficiency and low
pricing for large graphs [19], [14]. Since the real-world graphs
could consist of billions of edges and keep growing [29], [22],
it is getting expensive to use multiple GPUs to train GCN.
The lowest-configured p3 instance type on AWS has a price of
$3.06/h, while an m4.2xlarge instance with 8 vCPU costs only
$0.4/h. Not to mention most of the cloud servers provide more
flexible pricing options for CPU instances, such as transient
resources [31]. NeuGraph [19] and ROC [14] enable multiple
GPUs training to improve scalability. However, the memory
in GPUs is very limited, which makes it more expensive to
scale to billion-edge graphs.

We propose CM-GCN, a distributed GCN framework using
cohesive mini-batches to accelerate large-scale GCN training
in CPU clusters. The cohesive mini-batches group nodes that
are tightly connected in the graph. So these nodes will share
the common neighbors to reduce the dependant nodes in GCN
training. With the reduction of dependant nodes, we can reduce
more than half of the computation required in each epoch. We
propose a computation cost function to efficiently calculate
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the required computation for each mini-batch. After proving
the submodular property of the computation cost function, we
develop an efficient algorithm to partition the graph nodes into
cohesive mini-batches in polynomial time. Therefore, we can
accelerate the large-scale GCN training without compromising
the training accuracy.

In CM-GCN, we utilize CPU clusters in GCN training
to achieve high scalability and low expense comparing with
GPU training. We decompose and perform the computations
of embeddings and gradients on CPUs. Since we need to
synchronize GCN parameters after each mini-batch, CM-GCN
further balances the workloads on workers to avoid waiting.
Using balanced workloads, workers can finish processing each
mini-batch around the same time. Since processing a node only
requires the embeddings or gradients from its neighbors, it is
not necessary to synchronize all the embeddings and gradients
between GCN layers. Within a mini-batch, CM-GCN enables
asynchronous computations to prioritize the processing of
nodes that are ready to be processed. So we can parallelize
the communication and computation to eliminate the waiting
among workers.

We design and implement a framework to support our CM-
GCN model and evaluate it with several large-scale graphs
with millions of nodes from Reddit and OGB datasets [12].
Comparing with a mini-batch training using the traditional
GCN model, CM-GCN achieves comparable training accuracy
while we can save more than half of the computation per
epoch. With balanced workloads and asynchronous compu-
tation between GCN layers, CM-GCN can speedup up to 3X
towards GCN.

The remainder of this paper is organized as follows. Sec-
tion II describes the background of general GCN training
and how the mini-batch SGD scheme can be applied in a
distributed GCN training. Section III introduces our CM-GCN
model on how we partition nodes into cohesive mini-batches
and perform the asynchronous computation on the balanced
workloads. Section IV reports extensive evaluation results.
Section V highlights the related works and Section VI finally
concludes our work.

II. PRELIMINARY

In this section, we give a brief background of the graph
convolutional network training. We first illustrate the general
training procedure of GCN. Then we explain how the mini-
batch SGD scheme accelerates the GCN training for large
graphs.

A. Graph Convolutional Network Training

The graph convolutional network [24], [18], [24], [6] ex-
tends existing neural networks to process data in graph do-
mains. One of the key problems is to learn graph embeddings
[10] to represent graph nodes, edges, and sub-graphs. Give
a graph G = (V, E), the nodes in V are connected through
the edges in E, and each node is associated with a feature
vector. A K-layer GCN consists of K convolution layers
where each layer k contains parameter W), In Layer Fk,
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we represent an embedding h* € R for each node v € V
where dj; is the dimension of embedding. The training of GCN
includes forward propagation and backward propagation steps
to compute embeddings and gradients to update parameter W.
Next, we will discuss the details of forward propagation and
backward propagation steps separately.

1) Forward Propagation Step: In neural networks, forward
propagation refers to the flow of data which maps input
features to the output of the network. In Layer k, each node
aggregates its neighborhood embeddings from the previous
layer to compute its embedding of current layer as follows.

W =o(W® 3" D) (1)
UE N,

where N, is the neighbor set for node v in graph G, and
o(-) is an activation function which is usually a Sigmoid
or ReLU function. The embeddings are propagated layer by
layer through the edges of nodes. In the initial layer O, the
embedding is the input feature as h) = x,,. The final output
zp at Layer K is z, = th‘). The output z,, is used to compute
the training loss. The loss function sums up the losses from
all labeled nodes V7, as follows.

L= Z 1085(Yus 20)

veV],

2

where y, is the given label for node v. In practice, a cross-
entropy loss or mean squared error (MSE) is commonly used
for node classification in multi-class or multi-label problems.
2) Backward Propagation Step: In the backward propa-
gation step, we compute the gradient of the loss function
with respect to the embeddings h and parameter W. The
gradient is computed based on the chain rule from the opposite
propagation direction in the forward step. The parameter W
is then updated using gradient descent. Specifically, we first
calculate the gradients in the last layer from the final loss.
Take MSE as an example, the gradient of node v is computed
as follows.
oL
0z,

Based on the chain rule, the gradient of the embedding for
node v at layer £ < K is computed as follows.

Q(Z'u - yv) (3)
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To update W(*), we aggregate the gradients from all the
nodes in Layer £ and apply them in the gradient descent

algorithm.
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on®

B. Mini-Batch GCN training

The full-batch gradient descent training scheme was com-
monly used in GCN training when the graph size is small.
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However, full-batch requires storing all the intermediate em-
beddings, which is not scalable for large graphs. The conver-
gence can be slow since the parameters are updated only once
per epoch. Mini-batch SGD scheme [9], [28] is proposed to
accelerate the training. The mini-batch GCN training mainly
takes three meta steps. First, we randomly select a subset of
nodes B C V as a mini-batch. Then, we expand the full set
or sample a subset of neighbor nodes on each layer to specify
the nodes to be trained. At last, we propagate forward and
backward among the nodes in each GCN layer. The model
parameters in the GCN are updated iteratively via stochastic
gradient descent.

III. CM-GCN MODEL

We propose the CM-GCN model to accelerate the GCN
training with distributed cohesive mini-batches. A cohesive
mini-batch groups nodes that are tightly connected in the
original graph. So we increase the reusability of embedding
computation results and reduce the required computation for
processing the same number of nodes in the mini-batch. Figure
1 shows an overview of our model with a 2-layer GCN. We
first partition nodes into cohesive mini-batches to minimize
the computation required for each epoch. Then we distribute
the computation of each mini-batch to workers. After each
mini-batch, we synchronize the GCN parameters and process

the next mini-batch until the model converges.
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Fig. 1: Overview of CM-GCN

Besides cohesive mini-batches, CM-GCN also balances the
workloads on workers and enables asynchronous computation
to reduce the waiting caused by synchronizations between
GCN layers. As shown in Figure 1, the two workers in the
top and bottom have almost the same amount of computation.
So they can finish at the same time to avoid waiting at the syn-
chronization barrier. Meanwhile, we break the synchronization
between GCN layers. So we can parallelize the communication
for passing embeddings and gradients with the node processing
to further accelerate the training.

A. PFartition Nodes into Cohesive Mini-batches

Using cohesive mini-batches, we increase the utilization of
the computed embeddings and gradients in each mini-bath
to reduce the computation per epoch. In Figure 2, we show
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the nodes that are required to be processed in cohesive mini-
batches and non-cohesive mini-batches. We use the color red
and blue to distinguish different mini-batches. In the cohesive
mini-batches, the nodes are tightly coupled in the mini-batch
and share neighbors. So the computation of embeddings and
gradients can be reused for more nodes. For example, we need
to process 13 nodes for the red mini-batch and 16 nodes for the
blue mini-batch in the cohesive mini-batches. For simplicity,
we assume the computation for each node is the same as 1.
Then, the total computation required in cohesive mini-batches
is 29 per epoch. In the non-cohesive mini-batches, we need to
expend more neighbors in order to compute the same number
of training losses. For example, the non-cohesive mini-batches
in Figure 2 require the total computation as 35. So the cohesive
mini-batches in this simple example can save 17% of the
computation. When the GCN goes deeper, we can save much
more computation time using cohesive mini-batches.

Cohesive Mini-batches Non-cohesive Mini-batches

)T ]
)T AR
QT MRy

Fig. 2: Cohesive mini-batches and non-cohesive mini-batches
GCN training. Color Red and Blue represent the nodes from
two mini-batches

Finding the optimal cohesive mini-batches is none-trivial.
Clustering nodes that are close to each other into mini-batches
can reduce the required computation. But the computation
required for each node varies because it is related to the
number of its neighbors. Thus, not only the number of nodes
but also the computation required determines the quality of
mini-batches. In CM-GCN, we propose a computation cost
function and partition nodes into mini-batches that minimizes
the computation cost.

The computation cost of a mini-batch B is the time required
to compute all the embeddings and gradients during the GCN
training. The mathematical operations in the training can be
represented as a computational graph Gp for mini-batch B.
For example, in Figure 3, it is the computational graph from a
mini-batch with node A. Given the input graph structure on the
left, the computational graph on the right indicates the nodes
to be processed in each layer and the directions to propagate
the embeddings and gradients. The nodes in the forward step
represent the computations of embeddings. The nodes in the
backward step indicate the computations of gradients towards
the training loss for each corresponding embedding.

For computing embeddings in the forward step, we can
directly analyze the required computation in Equation (1).
In the backward step, the gradients are computed for both
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TABLE I: Notations of constant factors in computation cost function

Factor | Computation Cost
« Summation of 2 dj, vectors ady,
Jéj Multiplication between a dj X dj_1 matrix and a d_q vector | Bdgdi_1
¥ Applying activation function o(+) to a dj, vector ydj,
n Multiplication between a di X dj_1 matrix and a scalar ndidg_1
A Computing the gradient of a loss function towards a dj, vector Adj,

B N . . oL ah(kJrl) .
layer O layer1  layer2 Trainingloss layer2  layer1  layer 0 tiplication of gradients D) x —+—— from previous layer.

Input graph

Forward propagation

Backward propagation

Fig. 3: Computational graph of a mini-batch {A}

embeddings (%) and the parameters W) in Layer k. To
efficiently compute the gradients, we distribute the computa-
tion in Equation (4) into different nodes in the computational
graph. In this subsection, we will first discuss how to derive the
computation cost function in the forward step, backward step,
and the whole mini-batches separately. Then we show how
CM-GCN partitions nodes into cohesive mini-batches using
the computation cost.

1) Computation Cost in Forward Step: In the forward
step, the computation in Equation (1) consists of aggregating
the embeddings from neighbors N, (k_l), multiplying
the parameter W) and applying the activation function
o(+). Since the nodes in Layer 0 using the input features as
embeddings, the computation cost for node v is in layer O is
cf(v,0) =0.

From Layer 1 to Layer K, we divide the computation
cost into three parts. (1) The aggregation of embeddings
> uen, A1) is linear to the number of neighbors | N, | and
the dimension di_1 of previous layer £—1. So the computation
time as a|N,|d;—_1, where « indicates the constant factor of
the time for adding two vectors. We show all the constant
factors for the analysis of computation cost in Table 1. (2) The
computation time for multiplying W () is linear to matrix size
dj, x di—1 and aggregated embedding vector size dj_1, which
is Bdrdr—1. (3) Applying the activation function o (-) is linear
to embedding vector size dj, which takes ydj, time. The total
computation cost to compute embedding h” is as follows.

cr(v, k) = a|Nyldp—1 + Bdpdp—1 + vdi (6)

2) Computation Cost in Backward Step: In the back-
ward step, we compute the gradients of embedding h(*)
and the parameter W), For the example in Figure 3,
each node in backward propagation of the computational
graph computes its gradient —>=~. Based on the chain rule,
the gradients are propagated to the neighbors in the next

layer. The gradients are computed using Equation (4) as
Oh{k+D

W), where we aggregate all the mul-

Z oL %
UEN, ahik-*-l)
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However, the multiplicatlon of gradlents should be done in

layer k + 1 instead of layer k for efﬁciency Because for any
R(E+D
neighbor v of node wu, the gradlent EO)

is the same for

embedding h,(tk+ ). So we can compute the multiplication of
gradients once and reuse the results for all the neighbors of u
in Layer k.

In Layer K, we represent the computation g(v, K) in node v
as the multiplication between the gradient of output z, = hS,K)
and the embedding gradient as follows.

oL 0z,
g(U’K):T%XW (7

where u is one neighbor of v in layer K — 1. The compu-
tation time for g(v, K) contains three parts: (1) Computing
the gradient towards loss function %LU takes \dx time. (2)
Computing the embedding gradient % is the gradient
of the activations function ¢’(-) multiplying the parameter
matrix W), So it is linear to the matrix size dx X dx_1
which takes ndxdy 1 time. (3) The multiplication between
the two result gradients takes Sdidg 1 time. Therefore, the
total computation cost to compute g(v, K) is as follows.

= Mg + (n+ B)drdik_1 3

From Layer 1 to Layer K — 1, the gradient of node v is
calculated as dhﬁ) = uen, 9(u, k + 1). So the computation

cq(v, K)

of g(v, k) in node v is computed as follows.

on
g(v, k) = Z gluk+1) | x pYsc] 9)

u€eN,

The computation includes three parts: (1) the aggregation from
neighbor nodes g(u, k+ 1) takes a|Ny|dy, time, (2) computing

the embedding gradient ﬂ is the same as Layer K which

takes ndpdp_, time, and (3) the multiplication between the
two result gradients also takes [djdy_1 time. Therefore, the
total computation cost to compute g(v, k) is as follows.

cg(v, k) = a|Ny|di + (n + B)drdi—1

Since the goal of computing gradients is to update the parame-
ter W), we only compute the gradients of embeddings from
Layer 1 to Layer K. So c4(v,0) = 0.

For computing the gradients of W) in Equation (5),
aL onk
on® aw(k)
amortize the computatlon cost to each node in the backward
(o)
propagation of the computational graph. (1) Computing aW SR

(10)

we need to compute for each node v. We
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is multiplying a scalar gradient of the activation function o”(-)
with the aggregated embedding which takes ndy, time. (2) The
product between a dj x 1 vector and a 1 x d_; vector takes
Bdydy—, time. So each node v from Layer 1 to Layer K
requires the additional computation cost as follow.

cw (v, k) = ndy, + Bdrdi—1 (11)

Summing up all the required computation cost ¢, and cy
based on layers, we have the computation cost for any node
v in backward propagation of the computational graph as
follows.

k=K
0<k<K
12)
3) Computation Cost of Mini-batches: The computation
cost for a mini-batch B is computed by summing up the
computation cost from all the nodes in the Gp from Layer
1 to Layer K.

cp(v, k) = (A +n)di + (28 + n)drdy—1
n O[|]\']U|dk + (ﬂ + n)dkdk—l + ndy

K-1
cB)=Y > (evk)+alvk)

k=0 vel,cp NF

u

(13)

where N represents the nodes in graph G that are k-
hop away from node u. For the 0-hop neighbor, we have
N? = wu. The computation cost function C(B) in CM-
GCN has a submodular property. So we can find polynomial-
time algorithms to partition mini-batches using submodular
function minimization.

Theorem 1. Given a mini-batch B for a K-
layer  GCN, the computation cost C(B) =
]16(:701 ZveuueBfo (cr(v k) +cp(v,k)) is a submodular
Sfunction.

Due to the page limit, the proof of Theorem 1 is shown in
the document'.

Give a graph G, we aim to partition all the nodes V'
into cohesive mini-batch partitions P to minimize the total
computation required for each epoch. Since mini-batches
are independent, the objective function is computed as the
summation of the computation cost of each mini-batch B € P.

J(P)=) C(B)

BeP

(14)

4) PFartition Nodes into Mini-batches: Using the submod-
ular property of computation cost function C(B), we can
partition the nodes into the optimal two mini-batches in
polynomial time [17], [21]. However, finding the optimal
M mini-batches, where M > 2, is none-trivial. Inspired by
the multi-way graph partitioning algorithms in [8], [32], we
can format our mini-batch partitioning as a multi-way graph
partitioning problem. We can achieve a 2 — % approximation
for M partitions through recursive bisection [17]. That is, we
iteratively split one of the existing mini-batches into 2 mini-
batches to minimize J(P). So each iteration we increase the

Uhttps://drive.google.com/file/d/1 LusLZHLon31UtMY SLIUUNRSsrJg6psmPg
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number of partitions by one until we get M partitions. Using
this way, the M partitions P may not reach the optimal J(P).
But we can bound the quality of the partition which will not
exceed the 2 — 2 of the optimal J(P).

We show our algorithm to partition nodes into cohesive
mini-batches in Algorithm 1. Initially, the whole graph G
forms one mini-batch as P = {V'}. Then we split P into
two mini-batches that have the minimum J(P) from any
possible two mini-batches. To efficiently find the optimal two-
way partitions, we use the idea in Queyranne’s algorithm [21].
The key observation in the algorithm is that we can identify a
special ordered node pair (¢, u) for an arbitrary subset U C V.
The identification of (¢,u) reduces the search space because
we can group t and w together as a new inseparable node
and get a new candidate as P = {{u},V \ {u}}. We will
explain the details of how to generate pendent pair and find
the candidate in the next paragraph. After examining all the
possible candidates of two-way partitions, the one that gives
the minimum J(P) is set as the new mini-batch partition. We
iteratively repeat this process until we obtain M mini-batches.

Algorithm 1: Partition nodes into cohesive mini-
batches
Input : A graph G = (V, E), number of mini-batch
M
Output: A list of mini-batch partition P
1 Initialize one single partition as P =V
2fori=1,....M —1do

3 for each mini-batch B; € P do

4 Partition B; into two mini-batches with
minimum total computation cost

5 Group the two new mini-batches with other
mini-batches to form a partition P;

6 Compute the total cost J(P;)

7 end for

8 P =arg miné-:1 J(P;)

9 end for

10 Return mini-batch partition P

For splitting an existing mini-batch B; in line 4 of Algo-
rithm 1, we find the partition that minimizes the symmetric
computation cost function as follows.

U =argmin (C(U)+ C(B; \U))

UCB;

Then we replace B; in P with U and B; \ U. Since the
computation cost function C'(B;) has the submodular property,
we can restrict the search space of all the possible two-way
partitions to |B;| candidates. The key idea is to generate a
special ordered series of nodes from a given subset U C B;.
The last two nodes in that ordered series form a pair (¢, u)
that is called pendent pair. The C({u}) takes the minimum
from all subsets of B; which separate node ¢ from u. Using
the pendent pair, we can determine one candidate partition as
{u} and B;\ {u}. Meantime, we can reduce the search space
by grouping two nodes ¢ and u together as a new inseparable

15)
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node u’. So the remaining node set S’ = B; \ {u,v} U {v'}
for generating new candidates.

Algorithm 2: Partition one mini-batch into two

Input : A graph G = (V, E), one mini-batch B

Output: Two mini-batches P
1 Initialize one partition as B; = B
2 for i =1,...,|B| do
Randomly select a node v; in B; as a initial node.
Group Wy = {v1}
for j =2,...,|B| do

Find node v; that minimize
C(W;—1U{v;}) = C({v;})

7 Wj :Wj_lLJ{Uj}
8 end for
9 Denote the last two nodes added to W as t and u

a i AW

10 Compute the computation cost J(P;) for candidate
partition P, = {B; \ {u}, {u}}

1 Group ¢ and u as one node (u,t)

12 B1'+1 = Bl \ {U, t} U {(U, t)}

13 end for

. |B
14 P=arg mm‘:l1 J(P;)

%

15 Return mini-batch partition P

The total running time for partitioning nodes into mini-
batches takes M iterations of finding the best split from current
mini-batches. Each split takes at most M two-way partitions
for each mini-batch partition. Since the total nodes in all the
mini-batch are always V, the running time for each split can
be bounded in O(|V|?) time. Then, the total running time to
partition nodes into mini-batches is in O(M |V |3) time.

B. Balance Workers’ Loads

During the GCN training, the embeddings and gradients are
computed from Layer O to Layer K following the directions
in the computational graph Gp. When we need to synchronize
the embeddings or gradients between consecutive GCN layers,
the workers that require more computation will delay the
computation on other workers in the next layer. However,
balancing the workloads in each GCN layer will be very
time-consuming and not necessary. In CM-GCN, we propose
asynchronous computation between GCN layers, and only
synchronize the GCN parameters W between mini-batches.
As long as the computation in one mini-batch is balanced
among workers, we can achieve no waiting in training. In
this subsection, we will focus on balancing the workloads and
discuss the asynchronous computation in the next subsection.

The workload can be measured by the running time to
process the nodes in the computational graph. In CM-GCN, we
use our computation cost function to estimate the workloads
on workers. As long as every worker has the same total
computation cost, we balance the workloads. The computation
of gradient for a node v at layer k requires the embeddings
hk. So both the forward and backward steps of node v should
be processed at the same worker. Meanwhile, a graph node v
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usually exists in multiple layers in the computational graph.
For example, node A need to be processed in every GCN
layer in Figure 3. We put the processing of these nodes in the
same worker so that there is no duplicate copy of nodes in
different workers. Then, each node in the graph is categorized
as a whole computation as follows.

K

nc(v) = Z cr(v, k) + cp(v, k)

k=1

Given a mini-batch B, we assign every node v in G that is
shown in the computational graph Gp to workers one by one
since the computation costs nc(v) are independent. Initially,
all the P workers have the total computation cost as zero. We
follow the order of breadth-first search starting from nodes in
B to assign nodes to workers. Each time, we assign a node v
to the worker that has the lowest total computation cost so far.
So the workload differences among workers will not exceed
the computation cost of one node. At last, we generate the
assignments as a mapping table from a node ID to a worker.

For each worker p, we construct a list of nodes [V, that are
required to be processed in that worker. During the training,
we first load the input features of NV, into worker p and
subgraph associated to [N,. Although the mini-batches are
isolated, the dependent nodes may appear in multiple workers.
For efficiency, we load the input features of node v to all the
workers that will process v in any layer. When we train a
mini-batch B, every worker p loads the mapping table that is
generated for worker p.

C. Asynchronous Computation between GCN Layers

Traditionally, it is required to synchronize the embeddings
and gradients between two consecutive GCN layers. How-
ever, the synchronization between GCN layers may incur
considerable overhead to wait for embeddings and gradients
from other workers. Since processing a node only requires
the embeddings and gradients from its neighbors, it is not
necessary to synchronize all the embeddings and gradients
between two GCN layers. We can process nodes that have
their neighborhood embeddings or gradients available in an
asynchronous fashion. CM-GCN prioritizes the processing of
nodes that are ready to be processed to enable asynchronous
GCN training. Since we always compute the embeddings and
gradients from current processing results, we can guarantee
the same output as synchronous GCN training.

During the training, we decompose the computation of
nodes in the computational graph and process each node
asynchronously based on its availability. In Figure 4, we illus-
trate an example of our asynchronous computations with two
workers. Each worker stores one partition of the computational
graph based on the balanced workload. For example, the mini-
batch in Figure 4 is { A, C'}. Worker 1 processes every node in
Gia,cy for graph node A and B. A} indicates the computation
of embedding hi‘l) for node A at Layer 1. A} indicates the
computation of gradient for h(Al) in the backward propagation.
Worker 2 focuses on graph nodes C' and D.
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Fig. 4: Asynchronous computations in CM-GCN

The availability represents whether the dependent embed-
dings or gradients are ready for each node. We maintain a
counter for each node in the computational graph to indicate
the received embeddings or gradients. Initially, the counter of
a node equals 0. In Figure 4, we illustrate the counter under
each node. The first number is the current value of the counter
while the second number is the number of its neighbors from
the previous layer in Gp. Since the nodes in layer O using the
input features as embeddings, they are always available. So
the counter for node v9 is 0/0.

In CM-GCN, we maintain a processing queue in each
worker for the nodes that are ready to be processed. Each
worker keeps processing the nodes in its processing queue
while updating the counter for each node that is not pro-
cessed. So workers are able to process the nodes without
synchronizations between GCN layers. When the counter of
a node v reaches the required counter value, we enqueue
v into the processing queue. For example, after processing
node A1 and B} f node A2 will be ready to be processed in
worker 1 There is no need to wait for node C'} and Dj i
worker 2. Meanwhile, the embeddings of node A{ and B1 are
available for node A2 and the embedding of By / will be sent
to node 02 through message passing. The counter of node
A will be updated to 2/2 and added to the processing queue
of worker 1. When worker 2 receives the embedding, it will
update the counter of node C% 2 to 1/3. There are still two more
embeddings that are requlred for node C?% 7 to be ready.

IV. EXPERIMENTS

In this section, we evaluate our CM-GCN model to show
its performance with large-scale datasets. We focus on the
node classification tasks in the evaluation. The GCNs for other
tasks such as link prediction mostly differ in the objective
function while sharing most of the GCN architectures, so we
omit them in this paper. Comparing with the well-known GCN
models, our CM-GCN using cohesive mini-batches reduces the
required computation as well as the total training time. We
also examine the effectiveness of using balanced workloads
and asynchronous computation in reducing the waiting time.
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Finally, the scalability test shows that CM-GCN can scale to
large clusters.

A. Experiment Setting

We first describe our experiment settings including the
datasets, benchmark model, and testing environment. We
evaluate our CM-GCN model for training GCN on multi-
class classification on four public datasets. The statistic of
the datasets from Cora, Reddit, and Open Graph Benchmark
(OGB) datasets [12] are shown in Table II. The dimension of
the hidden layers for Cora is 256, while we set the dimension
as 128 for Reddit and 64 for other OGB datasets. We split the
train, validation, and test data ratio as 70%, 20% and 10%.

TABLE II: Dataset Summary

Dataset # Nodes # Edges Node features
Cora 2,708 5,429 1,433

Reddit 232,965 11,606,919 602
OGBN-arxiv 169,343 1,166,243 128
OGBN-product 2,449,029 61,859,140 100

We use the state-of-the-art GCN as the benchmark model.
We use mean pooling architecture and ReLLU activation func-
tion per graph convolution layer. We set weight decay as zero,
dropout rate as 0.1. We randomly select 1% of the nodes in the
graph for each mini-batch, which is equivalent to 100 mini-
batches in CM-GCN. Since Cora data is small, we use 5% as
the mini-batches size and 4 workers for training.

We implement our CM-GCN under DGL v0.6, Pytorch 1.8,
and using the existing code of GCN in Dist-DGL [33]. We
use a Google cloud cluster of eight n2-highcpu8 with 8 CPU
cores at 2.8-GHz and 32GB memory. We evaluate all our
experiments using 16 workers on 8 instances and scale to 64
workers in the scalability test. We learn the constant factors
in the computation cost function through testing the running
time in Pytorch. We measure the factors as o = 2 x 107
7y=2x10"%n=2x10"% and A = 1 x 1072 for MSE
function. The factor 5 in the multiplication between a matrix
and a vector is not always constant. When the size of the
matrix is large, especially in the first a few GCN layers, 3 is
more stable as 5 = 8 x 10~°. When the size of the matrix is
small, such as 32 x 7 in the last layer, 5 grows larger. So we
set it as B = 5.2 x 1078,

B. Training Time and Accuracy

In this subsection, we show the performance of CM-GCN
comparing with GCN in terms of training speed and accuracy.
The training time is to run 50 epochs for the Reddit and OGB
datasets, and 200 epochs for the Cora dataset. We show the
training loss and accuracy towards the training time in Figure
5. The x-axis shows the training time in seconds, and the y-
axis shows the training loss and accuracy (F1 score) on the
test datasets.

For the Cora and OGB-arxiv datasets, they are all citation
networks that have relatively low nodes degrees. The average
node degrees are 2 and 6.9. So the nodes in each mini-batch are
more closely connected and share more common neighbors.
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As shown in Figure 5a and Figure 5c, the Cora dataset reduces
more computation which leads to faster convergence using
CM-GCN comparing with the OGB-arxiv dataset. We can
reach almost the same training accuracy for both datasets as
shown in Figure 5b and Figure 5d. In general, we can reduce
20%-40% of the training time using CM-GCN.
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Fig. 5: Comparison of running time and accuracy for CM-
GCN and GCN.

The Reddit dataset has the largest node degree as 50.
However, the graph follows a power-law distribution. So the
high degree nodes are surrounded by the low degree nodes in
each mini-batch. As shown in Figure 5Se and Figure 5f, we can
reach more than 3X speedup comparing with GCN. The OGB-
product dataset has a similar phenomenon. The node degree is
around 25, which is smaller than the Reddit dataset. But we
can still achieve around 2X speedup which is shown in Figure
5g and Figure 5h.
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C. Effect of Cohesive Mini-batches

The improvement from cohesive mini-batches in CM-GCN
comes from the reduction of computation per epoch. It is
reflected both in the number of nodes we reduced in the
computational graph and the total computation costs. In Fig-
ure 6, we show the computation reduction from cohesive
mini-batches towards random mini-batches. For random mini-
batches, we randomly split the graph nodes into M mini-
batches. We sum up the computation cost for all the M
mini-batches to show the computation reduction. We vary the
number M of the mini-batches to show the effectiveness of
our cohesive mini-batches.
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Fig. 6: Comparison of computation cost for random mini-
batches and cohesive mini-batches.

In the Cora dataset, the cohesive mini-batches can save
up to 56% of the computation cost towards random mini-
batches. The improvement comes from reusing embeddings
and gradients in each mini-batch to save the computation.
Therefore, the cohesive mini-batches themselves can save
around half of the training time towards traditional GCN.
When the number of mini-batches is large, we can update the
parameter more often, but it required more computation due
to the node expansion. Using cohesive mini-batches, we only
increase 68% of the computation cost using 20 mini-batches
comparing to 5 mini-batches. For other datasets, we observe
46% reduction in OBG-arxiv, 48% reduction in both Reddit
and OGB-products.

D. Effect of Balanced Workloads

After balancing the workloads among workers, we can
further save the waiting time between mini-batches. We look
into the computation time and waiting time for using balanced
workloads comparing with random workloads. For random
workloads, we evenly assign all nodes to workers based on
their nodes ID. So each worker will have the same amount of
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nodes to process but there is no guarantee of the computation
time. Since the waiting time is hard to directly measure, we
compare the total training time. We also vary the number
M of the mini-batches to show the effectiveness of balanced
workloads.

In Figure 7, we show the improvements from the balanced
workloads with different mini-batch sizes. Using our balanced
workloads, we can achieve almost no idle time in training.
So the computation time is around the same for both bal-
anced workloads and random workloads. The time differences
between balanced workloads and random workloads are the
time we reduce. When the size of mini-batches is large,
we improve the total training time by using more up-to-date
parameters. However, more mini-batches leads to fewer nodes
to train in each mini-batch. So the workloads will be more
unbalanced, which incurs a longer waiting time. Using the
balanced workloads can save around 21% of the waiting time
for the Cora dataset. We can save similar waiting time for the
other datasets as 26% for Reddit, 29 % for OGB-arxiv, and
28% for OGB-products.
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Fig. 7: Comparison of computation time using random work-
loads and balanced workloads.

E. Training Deeper GCNs

We show the training time and accuracy when we train
deeper GCNs in Table III. We train each model 4 times and
measure the average training time and accuracy. Comparing
to GCN, our CM-GCN can achieve similar or even better
accuracy while speedup the training at least 2 times faster. Be-
cause CM-GCN carefully generates the cohesive mini-batches
and performs asynchronous computation between GCN layers
to reduce the possible waiting among workers. Due to the
exponential growth of the neighborhood nodes, it is extremely
long to train GCN on large datasets. Especially for the
dataset with large node degrees like Reddit and OGB-products.
Although there is only 1% of the nodes that contribute to the
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loss computation in the last layer, a 4-layer GCN almost needs
to process all the nodes in the first GCN layer for every mini-
batch. And the computation in the first GCN layer is usually
the most expensive because the dimension of the input feature
is the largest. In CM-GCN, we can save more than half of the
computation in the first GCN layer by using cohesive mini-
batches. Generally, we can save one magnitude of nodes that
are required in the computation especially for a graph with
a large average node degree like Reddit and OGB-products
datasets.

F. Scalability

We further evaluate our CM-GCN on the large-scale clusters
to test its scalability. The results are shown in Figure 8
for CM-GCN with different layers. We use two OGB large
datasets to show the speedup that is up to 64 workers. For
both datasets, we get nearly linear speedup comparing to a
single machine version. With the asynchronous computation,
the workers process the computation almost with no waiting,
so we can achieve around 45X to 50X speedup when we use
64 workers.

ideal ideal
—e—2-layer CM-GCN —e—2-layer CM-GCN

o 8 || ——3-ayer c(M-GCN o 8 || ——3ayer cM-GCN
=1 4-layer CM-GCN. = 4-layer CM-GCN
° o
@ 32 @ 32
o o
o o
o a

16 16

_\/-/
0 0 =

0 16 32 48 64 0 16 32 48 64
number of workers number of workers

(a) OGB-arxiv (b) OGB-products
Fig. 8: Scalability of CM-GCN

V. RELATED WORK

The convolution operation is first introduced to the graph
neural network model in [2]. Further, [18], [7] has been
proposed to speed up graph convolution computation with
localized filters based on Chebyshev expansion. They target
relatively small datasets and thus the training proceeds in
full batch. In order to scale GCNs to large graphs, sampling
techniques such as GraphSAGE [9], FastGCN [3], and VR-
GCN [4] have been proposed for efficient mini-batch training.

The sampling algorithms greatly reduce the size of the com-
putational graph in GCN training. GraphSAGE [9] performs
uniform node sampling on the neighbors in the previous layer.
It enforces a pre-defined budget on the sample size, so as
to bound the mini-batch computation complexity. FastGCN
[3] enhances the layer sampler by introducing an importance
score to each neighbor. The algorithm presumably leads to
less information loss due to weighted aggregation. VR-GCN
[4] further restricts neighborhood size by requiring only two
support nodes in the previous layer. The idea is to use the
historical activations in the previous layer to avoid redundant
re-evaluation. However, the mini-batches potentially become
too sparse to achieve high accuracy. Huang et al. [13] improve
FastGCN by an additional sampling neural network. It ensures
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TABLE III: Training time and accuracy (F1 scores) for GCN and CM-GCN

2-Layer 3-Layer 4-Layer
Time(s) | Accuracy Time(s) | Accuracy Time(s) | Accuracy

Cora GCN 2.53 80.7 + 0.88 | 8.75 81.3 + 1.19 | 25.63 82.1 + 0.61
CM-GCN | 1.85 81.5 £ 037 | 4.21 82.6 £ 0.28 | 11.34 81.7 + 0.67

Reddit GCN 517.8 92.1 £ 0.27 | 2531.7 | 91.3 £ 0.42 | 9632.0 91.9 + 0.77
CM-GCN | 1335 91.4 £+ 0.6 522.5 91.4 £ 0.51 | 2809.3 91.8 £ 0.37

OGB- GCN 55.2 59.4 + 0.63 | 226.8 61.2 £0.29 | 1429.2 60.6 £+ 0.36
arxiv CM-GCN | 21.9 59.5 £ 036 | 152.3 60.9 + 0.71 | 561.2 61.1 £ 0.45
OGB- GCN 779.5 85.1 + 0.26 | 3895.8 85.7 + 0.32 | 239324 | 859 + 0.61
products | CM-GCN | 268.6 85.5 £ 0.11 | 1353.5 85.8 + 0.21 | 8361.0 86.1 &+ 0.55

high accuracy since sampling is conditioned on the selected
nodes in the next layer. It may incur significant overhead due
to the expensive sampling algorithm and the extra sampler
parameters to be learned.

Instead of sampling neighbors, some researchers focus on
training from a sub-graph instead of the full graph. Clus-
terGCN [5] proposes graph clustering based mini-batch train-
ing. During pre-processing, the training graph is partitioned
into densely connected clusters. During training, clusters are
randomly selected to form mini-batches, and intra-cluster edge
connections remain unchanged. GraphSAINT [30] samples the
training graph first and then builds a full GCN on the subgraph.
They analyzed the bias and variance of the mini-batches
defined on the subgraphs and proposed normalization tech-
niques and sampling algorithms to improve training quality.
Simplified GCN (SGCN) [27], PPRGo [1], and LightGCN [11]
explore a linear GCN model that integrates self-connection
into graph convolution. The removal of nonlinearities and
collapsing the weight matrices to one weight matrix, but
generally, they will lose the representation power of GCN
models. In CM-GCN, we further optimize the mini-batches
by partitioning nodes with our computation cost function.
So we can find the cohesive mini-batches that minimize the
computation requirements per epoch.

To explore the mini-batch selection, HAG [15] presents
the concept of Hierarchically Aggregated computation Graph
to aggregate operations that are repeated when nodes share
similar neighborhoods. Joseph [16] develops a mini-batch
selection strategy based on submodular function maximization
to capture the informativeness of each sample and the diversity
of the whole subset. They aimed to select the most relevant
samples, but the computation required is not reduced. In CM-
GCN, we focused on the computation cost function to optimize
the required computation to perform full-graph GCN training.

GPUs have been mainly used to train GCNs due to their
ability to provide highly parallel computations. NeuGraph
[19] and ROC [14] coordinate multiple GPUs to improve
the scalability. However, GPUs still have limited memory
which will make the scalability much more expensive since the
real-world graphs are routinely billion-edge scale [28], [22].
Dorylus [25] used the distributed CPU servers and serverless
threads to tackle the scalability issue of using CPUs. They
split the graph operations and the tensor workloads while
using the bounded asynchronous model to reduce the waiting
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of dependency in the training. Although they guarantee the
convergence of the training, it may waste the computation by
using the stale value and slow down the convergence.

To train GCN in a distributed fashion, frameworks such as
DistDGL [33], NeuGraph [19], DistGNN [20] and Dorylus
[25] are proposed to support parallel training. NeuGraph
[19] combined a dataflow abstraction with the vertex-program
abstraction to support multi-GPU training. It performed full
graph training on multiple GPUs and distributed memory
whose aggregated memory fits the graph data. However, train-
ing a GCN model in a large graph will become inefficient be-
cause one model update requires a significant amount of com-
putation. In [23], they develop a fully-distributed algorithmic
framework for training GCNs. DistDGL [33] first partitioned
the graph and stored them in different workers. They balanced
the graph partitions to achieve both network communication
reduction and load balancing. However, although the graph
is balanced partitioned on workers, the random mini-batches
may still make the computation in each worker unbalanced.
We propose an asynchronous computation that prioritizes the
processing of nodes that are ready to be processed. So we can
parallelize the communication and computation with balanced
workloads to achieve no waiting among workers.

VI. CONCLUSION

We propose CM-GCN, a novel distributed GCN framework
that exploits an efficient mini-batch training. Based on the
graph structure we group the nodes that are closely connected
into cohesive mini-batches. Therefore, CM-GCN can process
the same amount of nodes without any neighborhood sampling
for only half of the computation cost. After proposing a com-
putation cost function with submodular property, we develop
an efficient algorithm to partition nodes into cohesive mini-
batches. To further reduce the waiting time caused by synchro-
nizations, we distribute the computation on workers through
balanced workloads. We design asynchronous computations
between GCN layers to further eliminate the waiting among
workers. We implement a distributed CM-GCN framework and
evaluate its performance with graphs that contain millions of
nodes. Our evaluation shows that CM-GCN can achieve up to
3X speedup without compromising the training accuracy.
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