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ABSTRACT

Data parallel frameworks become essential for training machine
learning models. The classic Bulk Synchronous Parallel (BSP) model
updates the model parameters through pre-defined synchronization
barriers. However, when a worker computes significantly slower
than other workers, waiting for the slow worker will lead to ex-
cessive waste of computing resources. In this paper, we propose a
novel proactive data-parallel (PDP) framework. PDP enables the
parameter server to initiate the update of the model parameter.
That is, we can perform the update at any time without pre-defined
update points. PDP not only initiates the update but also determines
when to update. The global decision on the frequency of updates
will accelerate the training. We further propose asynchronous PDP
to reduce the idle time caused by synchronizing parameter updates.
We theoretically prove the convergence property of asynchronous
PDP. We implement a distributed PDP framework and evaluate
PDP with several popular machine learning algorithms including
Multilayer Perceptron, Convolutional Neural Network, K-means,
and Gaussian Mixture Model. Our evaluation shows that PDP can
achieve up to 20X speedup over the BSP model and scale to large
clusters.
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1 INTRODUCTION

Machine learning (ML) has been widely applied in many fields.
In computer vision, deep learning models such as convolutional
neural networks can successfully detect objects and recognize im-
ages [14, 17, 26]. In financial services, ML plays a key role in auto-
matically detecting frauds and checking user identification [23, 33].
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For natural language processing, ML becomes essential in writing
articles and translating languages [5].

With the explosion of data, it becomes challenging for a sin-
gle machine to train machine learning models in a timely manner.
It is essential to distribute the model training to a cluster of ma-
chines [9, 18, 27]. The most widely used data-parallel model is the
Bulk Synchronous Parallel (BSP) model [29]. In BSP, the model
parameters of ML algorithms are updated through synchronization.
Each worker processes data points until it reaches a pre-defined
synchronization point. When we adopt a parameter server archi-
tecture [18], the parameter server aggregates the processing results
from workers and updates the model parameters. During the syn-
chronization, every worker needs to wait until the model parameter
has been updated and then continue the processing. The number
of data points processed between synchronization points needs to
be specified by the programmers before runtime. When a worker
computes significantly slower than other workers (i.e., becomes a
straggler), the pre-defined synchronization point will lead to exces-
sive waste of computing resources. Stragglers can occur in many
scenario [13], including heterogeneity and failures of hardware, un-
balanced data distribution among tasks, using transient resources in
the cloud [34]. For ML algorithms, the computation-intensive tasks
amplify the waiting that can lead to significant straggler effects.

Distributed frameworks such as [18, 24, 25, 31] are proposed to
support asynchronous data-parallel models. In these frameworks,
each worker continues its data processing right after it contributes
to the model parameters. Although asynchronous models remove
the synchronization barrier, they suffer from another problem of
delayed updates. That is, before a worker contributes to the model
parameter, the model parameter may have already been updated
by several other workers. Since the number of data points to be
processed still needs to be specified before runtime, stragglers take
a much longer time to finish a batch. So stragglers usually process
data from an out-of-date model parameter, which will be less ef-
fective or even make a negative impact on the convergence speed
[2, 20].

In this paper, we propose a novel data-parallel distributed frame-
work for ML algorithms, a proactive data-parallel (PDP) framework.
PDP reduces the impact of stragglers to accelerate the training.
Instead of specifying a pre-defined synchronization point, PDP
proactively decides when to update the model parameter at run-
time. So the stragglers will not slow down other workers caused
by waiting. The parameter server pulls the processing results from
workers rather than waiting for workers to push the results. The
global decision on the parameter server can provide workers with
more up-to-date model parameters to accelerate the training.

PDP exploits the fact that an update of model parameters does
not have to be performed after a pass of a fixed set of data points.
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The parameter server can not only pull from workers but also
determine when to pull. The more proactively we pull, the more
frequently the model parameter is updated. So that the workers
can compute updates from more up-to-date model parameters to
potentially accelerate the training. However, the frequent pulling
incurs overhead in interrupting workers and communicating in-
termediate results. Therefore, PDP determines the optimal time to
pull at runtime according to different algorithms and datasets.

To further reduce the waiting time during synchronization, we
propose an asynchronous proactive data-parallel (APDP) model
to support asynchronous computations. APDP removes the syn-
chronization barrier so that each worker can keep computing after
responding to the pulling from the parameter server. Each worker
uses the current model parameter to process data until the updated
model parameters arrive. We theoretically prove that APDP guar-
antees the version differences of the model parameter are at most
one among workers and the parameter server. So APDP still has
the same convergence property as the BSP model.

Our major contributions are summarized as follows.

e We propose a new proactive data-parallel framework for
iterative ML algorithms. PDP reduces the waiting time on
workers especially when stragglers occur. PDP enables the
parameter server to pull from workers so that there are no
pre-defined synchronization points needed for workers. PDP
not only pulls from workers but also determines the optimal
time to pull. As a result, it will accelerate the training with
an appropriate frequency of model parameter update.

e We propose APDP to further reduce the waiting time by
removing synchronization barriers. Each worker keeps com-
puting with its current model parameter instead of waiting
for new model parameters. We theoretically prove that APDP
can guarantee the version differences between a worker and
the parameter server are at most one.

e We design and implement the distributed PDP and APDP.
We evaluate PDP and APDP with several well-known ML al-
gorithms, specifically Multilayer Perceptron, Convolutional
Neural Network, K-means, and Gaussian Mixture Model on
Google cloud clusters. We perform experiments on several
straggler scenarios. The results show that we can achieve
up to 20X speedup over synchronous models and 6X over
asynchronous models.

The remainder of this paper is organized as follows. Section 2
describes how the ML algorithms are implemented under a data-
parallel model. Section 3 introduces our PDP framework and Section
4 presents the design of the PDP system. We show the convergence
property of the PDP framework in Section 5. Section 6 reports
extensive evaluation results. Section 7 highlights the related works
and Section 8 finally concludes this work.

2 MACHINE LEARNING ALGORITHMS

In this section, we show how machine learning algorithms are
implemented under data-parallel models. We first describe the Gra-
dient Descent (GD) algorithm that is widely used for model training.
Then, we explain the well-known Expectation-Maximization (EM)
algorithm in a distributed setting. In the end, we generalize how
other algorithms can be executed in the data-parallel models.
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2.1 Gradient Descent (GD) algorithm

Gradient descent is widely used in training machine learning mod-
els. It aims to learn the model parameters 6 that minimizes an
objective function known as the loss function. The loss function Q
is usually computed as the summation of losses on all data points
x; in dataset X.

06.X)= > 0(6.x) (1)
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The GD algorithms iteratively re-estimate the model parameters

0 to minimize the loss function. At iteration ¢, the model parameters

are calculated through the gradient of the loss function on all the
data in X.
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where 7; is the learning rate.

In a distributed environment, each worker j holds one partition
of the dataset, X; C X, and a copy of the model parameters 6;. At
iteration ¢, worker j computes the total gradient g}, by summing
up the gradients on all the data x; € Xj.
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Then, the updates from all the P workers are aggregated together
to re-estimate the model parameters as follows.

P
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In a distributed environment, model parameters can be managed
with a parameter server architecture [18]. The parameter server ag-
gregates gradients from workers and accumulates them into model
parameters. The aggregation is usually performed at a synchroniza-
tion barrier. During the synchronization, workers send gradients
g} , referred to as update, to the parameter server and wait for new

©

model parameters. The parameter server collects the gradients from
workers, re-estimates the model parameters following Equation (4),
and then broadcasts new model parameters to all workers.

For each update of the model parameters, processing a full batch
of data points might not be necessary. A mini-batch GD is usually
applied. Each worker j only processes a subset B; C X for an
update. Therefore, we can re-estimate the model parameters more
often, and the later mini-batch can make use of the more up-to-date
model parameters to potentially improve the quality of gradients.
Formally, at time ¢, the update g} in Equation (3) is computed from
a mini-batch B; instead of the whole partition Xj.

9= > vO©,x)
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In both full batch GD and mini-batch GD, batch size and con-
sequently synchronization point are pre-defined before runtime.
The fastest worker, which completes its mini-batch first, needs to
wait for other workers to finish. Therefore, synchronization leads
to overhead in a distributed environment.
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2.2 Expectation-Maximization (EM) algorithm

We use the K-means algorithm as an example to introduce how to
implement EM algorithms in a distributed environment through
update aggregation. The K-means algorithm aims to partition N
data points into K clusters. Formally, we represent each cluster with
a centroid, which is the center of the cluster whose coordinators are
the average of data points belonging to the cluster. K-means finds
the assignments of all the data which minimizes the summation of
the distance between each data point and its assigned cluster cen-
troid. The model parameters for K-means consists of the K centroids
0 = {61, ,0k} and the cluster assignments Z = {z1,--- ,zN}.
So the objective function Q(0, Z, X) is

N K
Q0,2,%) = 3" > [1zi, k)lIx; - 0;11°]

i=1k=1

(6)

where I(a, b) is the indicator function which outputs 1 if and only
if a = b, otherwise it outputs 0.

The K-means algorithm re-estimates Z and 0 alternatively to
minimize Q. First, given the current centroids 6, the algorithm
assigns each data point to its nearest centroid as follows.

™

zi = argmin ||x; — 01-||2
ke{1,---,K}
Then, the algorithm re-estimates the centroids by averaging the
coordinates of all data points assigned to the same cluster as the
following equation.

_ SN xil(zi k)
SN I(zi, k)

In a distributed environment, the assignments Z are computed
on workers, while the centroids 6 need to be aggregated based
on the summation of x;I(z;, k) and I(z;, k) from every worker. To
efficiently re-estimate the centroids, we sum up the numerator and
denominator in Equation (8) at each worker as sufficient statistics. So
each worker j computes the sufficient statistics from a mini-batch
Bj € X; for cluster k as

st = Z xil(z! ;. k)
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where z ; represents the assignment of data x; based on model

In the K-means, we can apply a delta change of the sufficient
statistics to the total sufficient statistics to compute the centroids.
So without synchronization, the new centroids can still be com-
puted from the sufficient statistics of all the data. On worker j, the
update is computed as the delta changes between two consecutive
computations of sufficient statistics.

t+1 _ ot+1 _ ot t+1 _ k]l _ ot
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Those updates can be aggregated through a centralized server
or in a decentralized way as well. The model parameter Gltc can be
computed from the update on worker j as

St + ASt*]
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When using a centralized server, the new model parameter 912“ can

be sent back to j or broadcast to all the workers. Or 912“ is directly

apply to 9; +k1 at any worker p that performs the re-estimation.

2.3 Other Machine Learning Algorithms

Many other machine learning algorithms can also be executed in
a distributed fashion. Many ML algorithms try to learn a model
through iteratively processing the given data. Each data point con-
tributes updates towards the final model through update aggrega-
tion. So we can distribute the workload of processing data among
workers while aggregating the updates to re-estimate the model.
Similar to K-means, other algorithms, such as Gaussian Mixture
Model (GMM), Nonnegative Matrix Factorization (NMF), and La-
tent Dirichlet Allocation (LDA), can also be implemented using
a data-parallel model. As long as there are some sufficient statis-
tics that can be aggregated, the algorithms can be executed under
data-parallel models. In each iteration, we compute the sufficient
statistics of all the data points based on current model parameters.
Then we re-estimate the model parameters from sufficient statistics
to maximize the likelihood. Specifically, each worker maintains a lo-
cal copy of the model parameters and computes sufficient statistics
(updates). Then the parameter server aggregates the updates from
all the workers and re-estimates the model parameters through a
synchronization barrier.

3 PROACTIVE DATA-PARALLEL
FRAMEWORK

We propose a novel Proactive Data-Parallel (PDP) model to solve
the problem of the slowdown caused by stragglers. In this section,
we first give an overview of PDP in using a pulling mechanism to
enable updating model parameters at any time. We then describe
how PDP determines the optimal time to update model parameters.
At last, we show the workflow of PDP and how we further reduce
the idle time on workers with asynchronous computation.

3.1 Overview of PDP

PDP is designed to address the straggler problem to accelerate the
training. A straggler is a worker that works significantly slower
than other workers. To parallelize the computation, people typically
distribute the workload to several workers. After every worker
finishes its own workload, we perform a synchronization on the
model parameter. However, the workload on each worker is pre-
defined. When there is a straggler, all the workers have to wait for
the straggler which leads to excessive waste of computing resources.
Even we update model parameters in an asynchronous manner, a
straggler takes a much longer time than other workers to contribute
from an out-of-date model parameter. The pre-defined workload
will make the updates from stragglers less effective or even make a
negative impact on the convergence speed.

PDP determines the synchronization point based on how much
workload has been done globally. Instead of assigning a workload
to each worker beforehand, PDP monitors the global progress all
the time. Therefore, the parameter server can use the global view
of the progress to make a better synchronization point. To help the
parameter server monitor the progress, workers periodically send
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reports which contain the count of processed data points. We will
discuss more details about the reports in Section 4.3.

At the synchronization point, the parameter server pulls from all
the workers and aggregates them to the model parameter. Using the
pulling mechanism, workers can keep processing the data points
without waiting for other workers. Meanwhile, the stragglers can
contribute in time. Since the pulling decision is the key in deter-
mining the efficiency of PDP, we will first describe the high-level
idea.

3.2 Pulling Decision

A good pulling decision helps the PDP framework to accelerate the
training. The more frequently the model parameter is updated, the
workers can compute updates from more up-to-date model param-
eters to potentially accelerate the training. However, the frequent
pulling incurs higher communication overhead and occupies more
computing time. When the benefit of updating the model param-
eter covers the overhead, it is worthwhile to update. However, it
is hard to quantify the benefit directly. Our goal is to accelerate
the training, in other words, increase the convergence speed. We
can estimate the relationship between the convergence speed and
a pulling point to decide the optimal pulling time. Here, the pulling
point k represents the number of data points we need to process
from all the workers between two pullings.

We derive the relationship between convergence speed and dif-
ferent pulling points to find the optimal k. Generally, convergence
speed is the ratio of the final loss function gain and the total train-
ing time which can only be learned after the training is completed.
In order to find a good k at the beginning of the training process,
we estimate the convergence speed after processing a number of
data points. We measure the gain of loss function based on the
model parameters after processing these data points. Therefore, the
optimal pulling point k should have the highest gain as follows.

K* = arg max (gain(k, N)) (10)
k

Where the gain function gain(k, N) presents the gain of loss function
after processing N data points while updating the model parameter
for processing every k data points. The gain function is affected
not only by N and k, but also the starting model parameter, and
the order of data points that are selected to process. We will show
the details of how we select N and k to estimate gain(k, N) in
Section 4.2.

3.3 Synchronous PDP

The update of the model parameter can be performed through syn-
chronization. In contrast with the widely-used bulk synchronous
parallel (BSP) model, PDP does not need a pre-defined synchroniza-
tion barrier. As shown in Figure 1a, the parameter server in BSP
waits for all the workers to finish their computation and then syn-
chronize the model parameter update. Therefore, a faster worker
needs to wait for the slowest worker to finish, which leads to ex-
cessive waste of computing resources especially when there are
stragglers. Also, it is hard to determine the number of data points
that need to be processed for synchronization. That number usually
varies for different algorithms, datasets, and infrastructure we use.
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(a) BSP (b) PDP (Sync.)
Figure 1: [llustration of BSP (a) and PDP (Sync.) (b) on a clus-
ter with one parameter server and two workers

For synchronous PDP, the synchronization is initiated by the
parameter server. As shown in Figure 1b, the parameter server first
broadcasts pull requests to all the workers in the synchronization.
When workers reply to the parameter server, they pause the com-
putation and wait for the new model parameter. So the convergence
property in PDP can be still guaranteed as the same as BSP.

3.4 Asynchronous PDP

To make full use of the computation resources, we propose an asyn-
chronous proactive data-parallel (APDP) model to further eliminate
the idle time on workers during synchronization. After a worker
sends updates, the computation has to pause in synchronous models.
Any delay in synchronizing the updates, aggregating the updates
to the model parameter, or sending the new model parameter will
make idle time get longer. Since we still have the current model
parameter, we can make use of the idle time to keep processing
data. As shown in Figure 2b, after sending the updates, workers
continue the computation with the current model parameters in-
stead of waiting for the updated model parameters. Therefore, more
data points can be processed instead of waiting.

Parameter Parameter

Server Worker 1 Worker 2 Server Worker 1 Worker 2
pulling request
CEr=Lzig- I
.. M L
oo
m\j
(a) BAP (b) APDP

Figure 2: Illustration of BAP (a) and APDP (b) on a cluster
with one parameter server and two workers

The asynchronous variant of PDP further reduces the waiting
time. Comparing to the basic asynchronous parallel (BAP) model
that is used in many frameworks [1, 8, 18, 25], APDP limits the delay
updates. As shown in Figure 2a, BAP makes each worker pushes
its update to the parameter server by its own choice. So there is
no waiting for the stragglers. However, the BAP still requires a
pre-defined number of data points to be processed for each update.
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When the straggling situation occurs, the slow worker takes a much
longer time to contribute its updates that are based on an out-of-
date model parameter. It will make the updates less effective or
even makes a negative impact.

In contrast to the BAP model, APDP guarantees the version
differences between workers and the parameter server are at most
one. Although the delay updates from the current model parameter
still make the update inconsistent with the model parameter in
the parameter server, we can bound the impact. We will show the
theoretical analysis of the convergence property in Section 5.

4 DISTRIBUTED PDP SYSTEM

Now we represent our PDP distributed system. We first show an
overview of the system. Then we explain the design of the parame-
ter server and worker separately.

4.1 Overview of PDP system

Figure 3 shows an overview of the parameter server and workers,
as well as the interactions between them. The parameter server
manages the model parameters while the workers compute the
updates from input data. For the parameter server, it controls the re-
estimation of the model parameters. It also monitors the progress of
workers to determine when to pull the updates from workers. The
pulling determination module derives the pulling point based on
the performance statistics of the parameter server and workers. For
workers, each worker computes updates and reports its progress
that is the number of data points processed from the last pulling.

Parameter Server Workers

Model param. Data processing
update module module
e —————— “ updates | | ~———————___ |
| Re-estimate | | Compute
I modelparam. || | model param. ,aL___”_piitE___'
—————————— st CT T T
I Monitor Worker ]r” aling requ® I Monitor |
| Progress I P } progress l
_________________ So———-
pulling decision ‘L
Pulling worker Performance
inati monitorin
Determination performance e 9
\ module ) statistics \ )

Figure 3: Design of PDP framework

The parameter server and workers interact with each other
through module communication. The parameter server broadcasts
pulling requests to all the workers when the number of data points
processed from all workers reaches K*. Then the workers reply to
the parameter server with its update. After accumulating updates
to the model parameters, the parameter server broadcasts the new
model parameters. The performance monitoring module helps the
parameter server to determine when to pull. So the workers send
the worker performance statistics along with the update.
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4.2 Parameter Server Design

The parameter server maintains and re-estimates the model pa-
rameters, meanwhile, it pulls updates and determines when to pull.
When the number of data points processed reaches K* from the
last pulling, the parameter server broadcasts the pulling requests.
As described in Section 3.2, the gain function gain(k, N) is a key
factor for the efficiency of the PDP framework.

4.2.1 Estimate Gain Function. Based on Equation (10), the opti-
mal k is estimated from the gain of loss function for processing
N data points. Mathematically, the gain function gain(k, N) =
Q8N , X)-0(6°, X), where 6° and 9}(\/ are the initial and final model
parameters. To avoid additional overhead, we estimate gain(k, N)
during the training. We add a probing phase at the beginning of the
training and keep the training progress. Generally, a large N, such
as a full epoch, is more accurate to estimate gain(k, N). However,
the large N will increase the probing phase and delay the time
to find the best K*. To quickly estimate gain(k, N), we only use a
portion of a full batch to compute the gain(k, N). We use a probe
ratio pr towards the full batch to indicate the size of N. By default,
we select pr = 0.01 for each k. We show that 0.5 is sufficient based
on the experiments in Section 6.3. But the user can choose another
pr to achieve a better estimation of gain(k, N) or less probing time.

We adopt a multiplicative strategy to fast approach the opti-
mal K* instead of checking every possible k. From literature re-
searches [4, 6, 19] and our experiments, we observed that the opti-
mal mini-batch size is usually around 1% to 20% of the total data
volume. Therefore, we start from the most possible optimal mini-
batch ko = 0.1 * M and gradually explore the optimal k from both
sides. First, we compute gain(ko, pr = M) after processing one batch
of pr = M data points. Then, we compute gain(ky, pr + M) where k;
is half of previous ky. If the gains are smaller than ko, we explore
the other direction for larger k. For the case that gain(ko /2, pr = M)
is better, we iteratively decrease the k1 by half until a certain k has
a smaller gain. Since each update incurs overhead in pulling and
updating model parameters at the parameter server, the processing
time of k data points cannot be shorter than this overhead. When
we reach the minimum possible k, we stop probing. For the other
case that gain(kg = 2, pr + M) is better, we iteratively increase the
ko by 2 until a certain k has a smaller gain or pr * M reaches. Then
the parameter server broadcasts the optimal K* to every worker
for count reports.

4.2.2  Pull Updates. When the number of data points reaches the
optimal pulling point K*, the parameter server broadcasts the
pulling requests. The parameter server monitors the progress of
workers by counting the reports sent by each worker after the last
pulling. If each worker sends a counter of one for each data points it
processed, the parameter server only needs to count them until K*
is reached. However, this will bring a huge overhead for both the
parameter server and workers. It is not necessary to check every
data points that have been processed either. Only the data points
that are close to reaching K* matter. Also, due to the communica-
tion overhead, the report itself takes time to reach the parameter
server. Therefore, instead of counting the reports from workers for
the accurate number of data points that have been processed, we
estimate when the overall progress is about to reach K*.



BDCAT 21, December 6-9, 2021, Leicester, United Kingdom

To estimate when to pull, we need to know the processing speed
of each worker in runtime. But we want to limit the overhead of the
count report. So the workers will send the count report when each
worker reaches the 1/4 of K*/P where P is the number of workers.
Then we use the time we received the count report between 1/4,
1/2, and 3/4 to estimate when to pull. For example, for worker i,
we have the time to processed K*/P as t;. Then time we broadcast
the pulling requests from the last pulling willbe T = 1/3% 71

i=1"i

4.3 Worker Design

The main job of the workers is to compute updates and monitor the
processed data points. The workers compute updates using their
copy of the model parameters and respond to pulling requests and
the arrived model parameters. After receiving a pulling request, the
worker first finishes its atomic computation on the current data
point. Then it sends out the accumulated updates since the last
pulling. After processing the current data point, the worker pauses
the computation and renews the model parameters. So the next
data point can make use of the latest model parameters.

During the processing of data, the worker sends the count report
to the parameter server. As described in Section 4.2.2, each worker
knows the optimal K* and sends the count report for every K*/P/4
data points that have been processed. Therefore, there will be 3
count reports for each pulling which will not bring much overhead.

5 CONVERGENCE PROPERTY OF APDP
MODEL

In this section, we use GD algorithms as an example to analyze the
convergence property of APDP.

As described in Section 3, the gradient to re-estimate parameter
6% is computed based on both of parameters #*~! and 6 under
APDP. Here we use A; to represent all the data we process in mini-
batch A; at iteration t. In A;, we divide the data into two parts B;
and Cy, which depends on the parameters we use. Suppose 6°71 is
applied to a subset B; and 67 is applied to C;. The re-estimation of
the model parameters using a learning rate n; can be written as

0 =0 =yt | Y VOO x)+ L VOO x| (11)

x;€B; XjECt

To bound the expected loss, we use the instantaneous regret
0(#*, X) — 0(0*, X) to show the loss difference between 6* and 6*,
where 6% = arg ming Q(0, X). By bounding the average regret from
asequence © = {6, ...,07} of parameters when T increase, we can
say 87 converges to 0*.

In APDP, the gradients that are computed on model parame-
ters 6¢ come from two sets B;4+1 and C;. We denote the total set
as At = Ct + B¢+1. So the instantaneous regret is computed as
(0%, A;) — (0%, Ay), where Q(0%, A;) = Sy i, QO x:). Since
the loss function Q is convex, the average regret we want to bound
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is as follows.

T
RO] = 2 3" (00", An) - 00", A0)] (12

t=1

1 T
<7, (VeE' Aot - 67) (13)

t=1

1 9 ~t pnt *

< (900 -07) (14)

~
1l
—

Here we denote g”t as the subdifferentials for Q, that is, gﬁ =
Y. ei, VOO xi) = 5,z 9] where g = VO(6", x;).

To prove the regret bounds of GD in APDP, we can bound each
instantaneous regret (gt 0% — 9*) at a given iteration t. So we
first derive the following auxiliary lemma which bound the regret
<ZjeB, g}_l, 61— 9*> + <Z,~Ect g:.0" - 0*). Then we show how

the total regrets are bounded in theorem 5.1.

THEOREM 5.1. Suppose the loss function Q is convex and Lipschitz
continuous with a constant L, and maxgp g D(6]|0") < F2, given
nt = o/t for some constant ¢ > 0 and maximum mini-batch size
as M, the regret of GD in APDP is bounded by
30 MAL N F?

VT oVT
and consequently for o = F/ML and we obtain the bound

4MFL
RO] < —

VT

The proof is shown in the document !.

R[O] <

6 EXPERIMENTS

In this section, we evaluate our PDP framework to show its perfor-
mance with several well-known ML algorithms. We use two EM
algorithms, K-means and Gaussian Mixture Model (GMM), and two
GD algorithms, Multi-Layer Perceptron (MLP) and Convolutional
Neural Network (CNN) to show the efficiency of PDP and APDP
under both homogeneous clusters and heterogeneous clusters. We
also examine the effectiveness of the pull decisions in PDP. Finally,
we test the scalability to show PDP can scale to large clusters.

6.1 Experiment Settings

We first describe our experiment settings including the algorithms,
dataset, benchmark models, and testing environments. We build
our PDP framework and implement the EM algorithms and GD
algorithms using C++. We use OPEN MPI [12] to implement the
distributed protocol for synchronous and asynchronous communi-
cations. Our code is publicly available 2.

6.1.1 Algorithms and Datasets. We test four representative ML
applications to explore the performance of our PDP framework.
We apply the K-means and Gaussian Mixture Model (GMM) [22]
for the EM algorithms and Multilayer Perceptron (MLP) and Con-
volutional Neural Network (CNN) for the GD algorithms. We use

!https://drive.google.com/file/d/141cPnxRKRxtDq_vWx2nh8aBMV9iw5Wju
Zhttps://github.com/haku117/PDP
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publicly available datasets MASS 3 and HIGGS * from the high-
energy physics field to evaluate the K-means and GMM algorithms.
For the MLP and CNN, we test them on real-world dataset MNIST °
and synthetic dataset. The summary of the datasets is shown in
Table 1.

Table 1: Dataset Summary

Datasets | Points Dimensions | Algorithms
MASS 7,000,000 27

EM: K-means/GMM
HIGGS 11,000,000 | 28
MNIST 60,000 28x28 — 10

GD: MLP/CNN
Synthetic | 1,000,000 1000x20 — 1

For K-means and GMM, we select K = 50 as the number of
clusters. So the total parameter size is K X (d + 1), d is the number
of dimensions. Since K-means has been discussed in Section 2.2,
now we explain the implementation of other algorithms.

GMM: The goal of GMM is to specify how likely a given data
point X; is generated from the j-th Gaussian distribution with the
mean c; and covariance matrix X ;, where j € 1,2, ..., k. 0; = (¢j, Zj).
The objective function is f = % >h log(Zj?=1 wjP(x;]0j)) The
statistics include three k-dimensions vectors, T, S and C which are
computed as Tj = 3.7, yij X721 S; = 0, vijXi:Cj = T, vij

The computation of update is to first compute the new value y; 2
Letd =y/ G~ Vijs then summarize the statistics by: T; = Tj + 5Xl.2,
Sj = §j + 6X;, and C; = Cj + 6. Finally, the parameter server
recomputes the model parameters as w; = Cj/n, ¢j = S;j/Cj, and
% =T1;/Cj - S7/C.

MLP: We set up a 3-layer Multi-Layer perceptron model for the
MNIST dataset. There are 28+ 28 = 784 input neurons and 10 output
neurons. We set up 300 neurons in the hidden layer. Neurons are
activated via the sigmoid function.

CNN: We design a CNN that has two convolutional layers with
10 and 20 2x2 kernels respectively. We use max-pooling and ReLU
activation functions for each convolutional layer.

6.1.2  Benchmark models. We compare our PDP and APDP with
synchronous model BSP and Asynchronous model BAP. Since the
pulling determines the number of data points between two updates
of model parameters, it is equivalent to a mini-batch size in BSP
and BAP. Our PDP model is able to automatically determine the
optimal global batch size, we do not need to set it up in advance.
For BSP and BAP, we use 1% of input data as the mini-batch size
following the literature researches [4, 6, 19]. Note that, since MLP
and CNN are much more computation-intensive, we apply 0.2% as
their mini-batch size.

6.1.3  Cluster Setting. We conduct our experiments on a Google
Cloud cluster. We choose two types of instances to test the perfor-
mance and scalability of our framework. One type is n1-standard8
with 8 CPU cores at 2.0-GHz and 7.5GB memory which is treated
as a straggler. The other type is n2-highcpu8 with 8 CPU cores at
2.8-GHz and 7.5GB memory.
3http://archive.ics.uci.edu/ml/datasets/ HEPMASS

*http://archive.ics.uci.edu/ml/datasets/ HIGGS
Shttp://yann.lecun.com/exdb/mnist/
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We organize instances into homogeneous clusters and hetero-
geneous clusters. We use 16 n2-highcpu8 instances to construct
a homogeneous environment. We design two scenarios for the
heterogeneous clusters with 16 instances as well. First, a static
heterogeneous cluster contains two types of instances. We further
simulate the different slowdowns by limiting the maximum CPU
usage of slow workers. So we can show the performance with dif-
ferent scenarios. Second, in a dynamic heterogeneous cluster, the
running speed of a worker may change over time. We simulate it
by dynamically limiting the maximum CPU usage of a worker.

6.2 Efficiency of PDP framework

In this subsection, we evaluate the efficiency of our framework by
comparing synchronous PDP and APDP with the BSP and BAP
models. In the following, we evaluate the convergence speed on
homogeneous clusters and heterogeneous clusters respectively.

6.2.1 Convergence Speed on Homogeneous Clusters. We first eval-
uate our PDP framework on homogeneous clusters, where every
worker computes at the same speed. In Figure 4, we show the
performance for different ML algorithms. For EM algorithms, we
demonstrate the evaluation results for K-means algorithm on the
MASS dataset in Figure 4a and GMM algorithm on the HIGGS
dataset in Figure 4b. Since there is almost no additional waiting for
workers on homogeneous clusters, PDP has a similar convergence
speed as the BSP model. The value jump of the objective function
in K-means around 25 seconds is when a full batch of data has been
processed. In BAP model, it uses the assignments from out-of-date
centroids to update the model parameter. So the convergence of
the model parameter is slower. APDP can still outperform other
models since it reduces the idle time during synchronization. APDP
decreases the objective function faster from the beginning of the
training and it achieves around 2X speedup towards BSP and 6X
towards the BAP model.
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Figure 4: Runtime comparison among BSP, BAP and PDP



BDCAT 21, December 6-9, 2021, Leicester, United Kingdom

For GD algorithms like MLP in Figure 4c and CNN in Figure 4d,
PDP and APDP achieve similar performance. Due to the stochastic
nature of GD algorithms, these algorithms are not very sensitive
to pulling decisions. As a result, although PDP and APDP can find
a better update frequency, the speedup is not significant. Since
they are more computation-intensive, the communication time is
relatively short. So the waiting time during synchronization is not
much to save for APDP. Generally, APDP is about 1.3X faster than
BSP and BAP for MLP and 2.8X faster for CNN.

6.2.2 Convergence Speed on Heterogeneous Clusters. The pulling
mechanism in the PDP framework makes each worker contribute
as much as they could. So that it can reduce the waiting time of fast
workers when we train on heterogeneous clusters. In this subsec-
tion, we show the performance of our PDP framework in a variety
of heterogeneous environments. We also use the HIGGS dataset for
the K-means and GMM algorithms and the MNIST dataset for the
MLP and CNN algorithms.

Static Heterogeneous Cluster: We first test the performance
on a cluster with a worker that computes constantly slow. We set
up a cluster with 16 workers, and one of them is a straggler which
works slower than the other three. In order to show the impact of
the straggler, we set up one straggler with different speeds, ranging
from 1X slower to 9X slower. It is clear in the Figure 5 that no
matter how slow the straggler is, the PDP and APDP framework
outperforms the BSP and BAP model.

s BSP

BAP
. PDP
Emm APDP

time (s)
time (s)

1x 3x 6x 9x 1x 3x 6x 9x
straggler speed (x-times slower) straggler speed (x-times slower)

(a) K-means (b) GMM

s BSP

BAP
s PDP
. APDP

mmm BSP

BAP
== PDP
. APDP

0
1x 3x 6x 9x 1x 3x 6x 9x

straggler speed (x-times slower) straggler speed (x-times slower)

(c) MLP (d) CNN

Figure 5: Convergence time comparison on static heteroge-
neous clusters. The X axis indicates the speed of the slowest
worker

When the straggler is 9X slower than the normal workers, the
PDP framework is about 4X faster than the BSP and 2.6X faster
than the BAP model for the K-means algorithm. The delay is not as
much because of the high ratio of communication time compared to
the computation time. So APDP can further reduce the convergence
time around 7X towards BSP and 5X towards the BAP model. A
similar phenomenon is found in GMM. For GMM, PDP can speed
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up 3.2X and 2.4X towards BSP and BAP models. While APDP can
speedup 7X and 4.6X towards BSP and BAP models For MLP and
CNN, the computation time is dominant in training. So both PDP
and APDP can reach a good speedup. Also, PDP can find a better
update frequency when a straggler occurs. So APDP can achieve
up to 20X faster than the BSP model and 6X faster than the BAP
model.
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Figure 6: Runtime comparison on dynamic heterogeneous
clusters.

Dynamic Heterogeneous Cluster: We also evaluate the per-
formance when the processing speed of workers changes over time.
This is a common phenomenon on private clusters and multi-tenant
clouds where a limited amount of hardware resources is shared by
multiple users. We designed our dynamic scenario as all workers
periodically become slower or faster. The processing speed of the
whole cluster gets changed noticeably. To simulate it, we randomly
change the maximum CPU usage of all workers every 5 seconds.

We illustrate the training time in Figure 6. For the K-means and
GMM algorithms, PDP and APDP decrease the objective function
faster than the BSP and BAP models by about 6X and 2.1X. Espe-
cially when the algorithm almost converges, the PDP framework
decreases the objective function faster. For the MLP and CNN algo-
rithms, the PDP and APDP reach a similar convergence time. That
is because they are more computation-intensive. The influence of
the waiting time for synchronizing model parameters is relatively
shorter than computation time. Generally, the speedup over the
BSP model reaches up to 10X on dynamic heterogeneous clusters.

6.3 Impact of PDP Decisions

The pulling decision highly affects the performance of the PDP
framework. Here, we show the impact of pulling point k in gain(k, N)
in Figure 7. On homogeneous clusters, K-means and GMM prefer
a larger mini-batch size, which is a portion of 10 and 5 x 107>
towards the full batch. For MLP, it prefers a smaller size which is
2 x 107> which is only around 20 data points per update. On het-
erogeneous clusters, the trend is similar to homogeneous clusters.
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Figure 7: Impact of pulling

In PDP, we can find either the optimal or a little larger k which has
the same scale with the convergence time increasing less than 3%.

Second, we examine the impact of pulling for N in gain(k, N),
which is based on the number of data to check for one update and
the number of different k we need to probe. We select the different
N in terms of the probe ratio pr. According to the probing ratio
described in Section 4, a smaller pr indicates a smaller probing time
but the probe result is not necessarily far away from the actual
value. As shown in Figure 8, a small pr = 0.01 is able to help us
determine optimal k. For K-means and MLP, we observe the same
phenomenon.
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Figure 8: Impact of probe ratio

6.4 Scalability

We further evaluate our PDP framework on the large-scale clusters
to test its scalability. The scalability of different frameworks is tested
on a homogeneous cluster and a static heterogeneous cluster with
a delay up to 5 times slower than the normal run and there are 10%
of the workers can be the straggler. We vary the total number of
workers from 4 to 120.

We observe very good scalability results compared with BSP and
BAP on both homogeneous and heterogeneous clusters in Figure 9.
In BSP, the communication overhead grows dramatically. Using
the same optimal batch size, which only incurs 1% overhead on
communication on 4 workers, the overhead for 120 workers spends
99% of the training time. For BAP, it outperforms BSP since there
is no synchronization cost. But the stale model parameters will still
slow down the convergence speed. For our PDP, we automatically
balance the ratio between data computation and update of model
parameters by determining when to pull. So we still have a good
speedup compared to BSP and BAP.
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Figure 9: Scalability evaluation on PDP, BSP and BAP models

So with a large cluster of workers, the mini-batch size needs
to get much larger than small clusters. In this scalability test, we
select a mini-batch size as 5% of the total input data for BSP. It
limits the synchronization overhead to less than 10% of the total
training time. But the larger mini-batch size will make the time to
use an up-to-date model parameter much later. So BSP will still be
relatively slower.

7 RELATED WORKS

Many distributed frameworks [16, 21, 24, 31] adopt a centralized
parameter server [18] for distributed implementation of machine
learning algorithms. Machine learning algorithms infer models by
refining model parameters. In a parameter server based distributed
framework, workers compute the updates on the model parame-
ters. The parameter server gathers the updates from workers and
accumulates the updates to the model parameters.

Parameter server based distributed frameworks can update the
model parameters in a synchronous fashion. That is, sending up-
dates from workers and accumulating updates on the parameter
server can be performed at a synchronization barrier. Each worker
has to pause its computation of updates and wait for new model pa-
rameters from the parameter server to continue. A classic synchro-
nous model is the bulk synchronous parallel (BSP) model [9, 27, 29].
However, synchronization may slow down the computation since
workers have to wait for each other to reach the synchronization
barrier. This is particularly true when there are stragglers that com-
pute significantly slower than others [7, 13, 32] or using transient
resources [34].

Several distributed systems have been proposed to reduce the
synchronization overhead. For example, in K-sync SGD in [11], the
parameter server waits for k workers to reach their synchronization
points then updates the model parameters. The stale synchronous
parallel (SSP) model [15] allows workers to skip synchronization
barriers. However, each worker can skip at most a fixed number
of steps (bounded staleness) before synchronization. SSP reduces
the wait on synchronization but the faster workers still need to
wait after the bounded staleness threshold is reached. FlexRR [13]
combines the SSP model with the dynamic peer-to-peer reassign-
ment of work among workers to further address the problem of
stragglers. However, the overhead of migrating data can be huge.

FSP [30] and Sync-on-the-fly [34] propose a flexible synchro-
nization barrier to reduce the impact of stragglers. Each worker
can suspend the computation of updates when synchronizing with
each other. Thus, synchronization barriers can be established at
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any time. Adaptive batch sizes are also proposed to optimize the
mini-batch size during machine learning [3, 10]. However, even we
determine the best mini-batch size, the computing resources are
still wasted when all the workers pause during synchronization.

In contrast to the synchronous parallel model, the update of the
model parameters from each worker can be sent to the parameter
server in an asynchronous manner. Each worker sends the update
to the parameter server at its own pace. Without waiting for other
workers, the parameter server accumulates this update and sends
the new model parameters back to the worker. Frameworks such
as [18, 24, 25, 31] are used to support this asynchronous parallel
model. MLNET [21] deploys a communication layer to implement
asynchronous aggregation and ASYNC [28] build on top of Spark to
support asynchronous computation. DistBelief [8] and TensorFlow
[1] also support deep learning applications with asynchronous
computation.

The asynchronous parallel model removes the synchronization
overhead but usually suffers from the stale computation where
workers use stale model parameters to compute updates. The stale
computation of ML algorithms can slow down the convergence
speed. To reduce the stale computation, K-async SGD in [11] waits
for K workers to finish their mini-batch and then updates the model
parameters. ASYNC [28] enables the workers and/or the param-
eter server to bookkeep (log) parameters to construct a dynamic
dependence graph for the implementation with a partial broadcast
of model parameters. These frameworks reduce the stale computa-
tion but still require a pre-defined model parameter update point.
Stragglers can still slow down the computation.

Our PDP framework can update the model parameter at any
time. Meanwhile, APDP is asynchronous. That is, workers do not
wait for the update of the model parameters at the parameter server.
Further, the framework determines when workers provide updates
online. As a result, stragglers will not slow down the update of
model parameters.

8 CONCLUSION

We propose a proactive data-parallel framework that enables the
parameter server to initiate the update of model parameters at any
time. PDP pulls from workers so that there are no pre-defined up-
date points for workers and avoid workers waiting for each other.
The parameter server cannot only pull from workers but also de-
termine when to pull. The global decision on the parameter server
can provide workers with more up-to-date model parameters to
accelerate the training. We further propose asynchronous PDP to
further reduce the idle time caused by synchronization. We theo-
retically prove the convergence property of APDP which shows
the same result as PDP. We design and implement the PDP frame-
work to determine the optimal time to pull from workers. Extensive
experiments show that the PDP model consistently outperforms
state-of-the-art solutions.
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