
A Proactive Data-Parallel Framework for Machine Learning

Guoyi Zhao, Tian Zhou and Lixin Gao
gzhao@umass.edu,tzhou@umass.edu,lgao@engin.umass.edu

Dept. of Electrical and Computer Engineering

University of Massachusetts Amherst

USA

ABSTRACT

Data parallel frameworks become essential for training machine

learning models. The classic Bulk Synchronous Parallel (BSP) model

updates the model parameters through pre-defined synchronization

barriers. However, when a worker computes significantly slower

than other workers, waiting for the slow worker will lead to ex-

cessive waste of computing resources. In this paper, we propose a

novel proactive data-parallel (PDP) framework. PDP enables the

parameter server to initiate the update of the model parameter.

That is, we can perform the update at any time without pre-defined

update points. PDP not only initiates the update but also determines

when to update. The global decision on the frequency of updates

will accelerate the training. We further propose asynchronous PDP

to reduce the idle time caused by synchronizing parameter updates.

We theoretically prove the convergence property of asynchronous

PDP. We implement a distributed PDP framework and evaluate

PDP with several popular machine learning algorithms including

Multilayer Perceptron, Convolutional Neural Network, K-means,

and Gaussian Mixture Model. Our evaluation shows that PDP can

achieve up to 20X speedup over the BSP model and scale to large

clusters.

KEYWORDS

machine learning, asynchronous distributed computation, strag-

glers, gradient descent, expectation-maximization

ACM Reference Format:

Guoyi Zhao, Tian Zhou and Lixin Gao. 2021. A Proactive Data-Parallel

Framework for Machine Learning. In 2021 IEEE/ACM 7th International Con-

ference on Big Data Computing, Applications and Technologies (BDCAT ’21)

(BDCAT ’21), December 6–9, 2021, Leicester, United Kingdom. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3492324.3494167

1 INTRODUCTION

Machine learning (ML) has been widely applied in many fields.

In computer vision, deep learning models such as convolutional

neural networks can successfully detect objects and recognize im-

ages [14, 17, 26]. In financial services, ML plays a key role in auto-

matically detecting frauds and checking user identification [23, 33].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

BDCAT ’21, December 6–9, 2021, Leicester, United Kingdom

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9164-1/21/12. . . $15.00
https://doi.org/10.1145/3492324.3494167

For natural language processing, ML becomes essential in writing

articles and translating languages [5].

With the explosion of data, it becomes challenging for a sin-

gle machine to train machine learning models in a timely manner.

It is essential to distribute the model training to a cluster of ma-

chines [9, 18, 27]. The most widely used data-parallel model is the

Bulk Synchronous Parallel (BSP) model [29]. In BSP, the model

parameters of ML algorithms are updated through synchronization.

Each worker processes data points until it reaches a pre-defined

synchronization point. When we adopt a parameter server archi-

tecture [18], the parameter server aggregates the processing results

from workers and updates the model parameters. During the syn-

chronization, every worker needs to wait until the model parameter

has been updated and then continue the processing. The number

of data points processed between synchronization points needs to

be specified by the programmers before runtime. When a worker

computes significantly slower than other workers (i.e., becomes a

straggler), the pre-defined synchronization point will lead to exces-

sive waste of computing resources. Stragglers can occur in many

scenario [13], including heterogeneity and failures of hardware, un-

balanced data distribution among tasks, using transient resources in

the cloud [34]. For ML algorithms, the computation-intensive tasks

amplify the waiting that can lead to significant straggler effects.

Distributed frameworks such as [18, 24, 25, 31] are proposed to

support asynchronous data-parallel models. In these frameworks,

each worker continues its data processing right after it contributes

to the model parameters. Although asynchronous models remove

the synchronization barrier, they suffer from another problem of

delayed updates. That is, before a worker contributes to the model

parameter, the model parameter may have already been updated

by several other workers. Since the number of data points to be

processed still needs to be specified before runtime, stragglers take

a much longer time to finish a batch. So stragglers usually process

data from an out-of-date model parameter, which will be less ef-

fective or even make a negative impact on the convergence speed

[2, 20].

In this paper, we propose a novel data-parallel distributed frame-

work for ML algorithms, a proactive data-parallel (PDP) framework.

PDP reduces the impact of stragglers to accelerate the training.

Instead of specifying a pre-defined synchronization point, PDP

proactively decides when to update the model parameter at run-

time. So the stragglers will not slow down other workers caused

by waiting. The parameter server pulls the processing results from

workers rather than waiting for workers to push the results. The

global decision on the parameter server can provide workers with

more up-to-date model parameters to accelerate the training.

PDP exploits the fact that an update of model parameters does

not have to be performed after a pass of a fixed set of data points.

✻�

BDCAT ’21, December 6–9, 2021, Leicester, United Kingdom Guoyi Zhao, Tian Zhou and Lixin Gao

The parameter server can not only pull from workers but also

determine when to pull. The more proactively we pull, the more

frequently the model parameter is updated. So that the workers

can compute updates from more up-to-date model parameters to

potentially accelerate the training. However, the frequent pulling

incurs overhead in interrupting workers and communicating in-

termediate results. Therefore, PDP determines the optimal time to

pull at runtime according to different algorithms and datasets.

To further reduce the waiting time during synchronization, we

propose an asynchronous proactive data-parallel (APDP) model

to support asynchronous computations. APDP removes the syn-

chronization barrier so that each worker can keep computing after

responding to the pulling from the parameter server. Each worker

uses the current model parameter to process data until the updated

model parameters arrive. We theoretically prove that APDP guar-

antees the version differences of the model parameter are at most

one among workers and the parameter server. So APDP still has

the same convergence property as the BSP model.

Our major contributions are summarized as follows.

• We propose a new proactive data-parallel framework for

iterative ML algorithms. PDP reduces the waiting time on

workers especially when stragglers occur. PDP enables the

parameter server to pull from workers so that there are no

pre-defined synchronization points needed for workers. PDP

not only pulls from workers but also determines the optimal

time to pull. As a result, it will accelerate the training with

an appropriate frequency of model parameter update.

• We propose APDP to further reduce the waiting time by

removing synchronization barriers. Each worker keeps com-

puting with its current model parameter instead of waiting

for newmodel parameters.We theoretically prove that APDP

can guarantee the version differences between a worker and

the parameter server are at most one.

• We design and implement the distributed PDP and APDP.

We evaluate PDP and APDP with several well-known ML al-

gorithms, specifically Multilayer Perceptron, Convolutional

Neural Network, K-means, and Gaussian Mixture Model on

Google cloud clusters. We perform experiments on several

straggler scenarios. The results show that we can achieve

up to 20X speedup over synchronous models and 6X over

asynchronous models.

The remainder of this paper is organized as follows. Section 2

describes how the ML algorithms are implemented under a data-

parallel model. Section 3 introduces our PDP framework and Section

4 presents the design of the PDP system. We show the convergence

property of the PDP framework in Section 5. Section 6 reports

extensive evaluation results. Section 7 highlights the related works

and Section 8 finally concludes this work.

2 MACHINE LEARNING ALGORITHMS

In this section, we show how machine learning algorithms are

implemented under data-parallel models. We first describe the Gra-

dient Descent (GD) algorithm that is widely used for model training.

Then, we explain the well-known Expectation-Maximization (EM)

algorithm in a distributed setting. In the end, we generalize how

other algorithms can be executed in the data-parallel models.

2.1 Gradient Descent (GD) algorithm

Gradient descent is widely used in training machine learning mod-

els. It aims to learn the model parameters θ that minimizes an

objective function known as the loss function. The loss function Q

is usually computed as the summation of losses on all data points

xi in dataset X .

Q(θ ,X) =
∑

xi ∈X
Q(θ ,xi) (1)

The GD algorithms iteratively re-estimate the model parameters

θ to minimize the loss function. At iteration t , the model parameters

are calculated through the gradient of the loss function on all the

data in X .

θ t+1 = θ t − ηt

∑

xi ∈X
∇Q(θ t ,xi) (2)

where ηt is the learning rate.

In a distributed environment, each worker j holds one partition

of the dataset, X j ⊂ X , and a copy of the model parameters θ j . At

iteration t , worker j computes the total gradient дtj , by summing

up the gradients on all the data xi ∈ X j .

дtj =
∑

xi ∈X j

∇Q(θ tj ,xi) (3)

Then, the updates from all the P workers are aggregated together

to re-estimate the model parameters as follows.

θ t+1 = θ t − ηt

P∑

j=1

дtj (4)

In a distributed environment, model parameters can be managed

with a parameter server architecture [18]. The parameter server ag-

gregates gradients from workers and accumulates them into model

parameters. The aggregation is usually performed at a synchroniza-

tion barrier. During the synchronization, workers send gradients

дtj , referred to as update, to the parameter server and wait for new

model parameters. The parameter server collects the gradients from

workers, re-estimates the model parameters following Equation (4),

and then broadcasts new model parameters to all workers.

For each update of the model parameters, processing a full batch

of data points might not be necessary. A mini-batch GD is usually

applied. Each worker j only processes a subset Bj ⊆ X j for an

update. Therefore, we can re-estimate the model parameters more

often, and the later mini-batch can make use of the more up-to-date

model parameters to potentially improve the quality of gradients.

Formally, at time t , the update дtj in Equation (3) is computed from

a mini-batch Bj instead of the whole partition X j .

дtj =
∑

xi ∈Bj
∇Q(θ tj ,xi) (5)

In both full batch GD and mini-batch GD, batch size and con-

sequently synchronization point are pre-defined before runtime.

The fastest worker, which completes its mini-batch first, needs to

wait for other workers to finish. Therefore, synchronization leads

to overhead in a distributed environment.

✼�

A Proactive Data-Parallel Framework for Machine Learning BDCAT ’21, December 6–9, 2021, Leicester, United Kingdom

2.2 Expectation-Maximization (EM) algorithm

We use the K-means algorithm as an example to introduce how to

implement EM algorithms in a distributed environment through

update aggregation. The K-means algorithm aims to partition N

data points intoK clusters. Formally, we represent each cluster with

a centroid, which is the center of the cluster whose coordinators are

the average of data points belonging to the cluster. K-means finds

the assignments of all the data which minimizes the summation of

the distance between each data point and its assigned cluster cen-

troid. Themodel parameters for K-means consists of theK centroids

θ = {θ1, · · · ,θK } and the cluster assignments Z = {z1, · · · , zN }.
So the objective function Q(θ ,Z ,X) is

Q(θ ,Z ,X) =
N∑

i=1

K∑

k=1

[
I (zi ,k)| |xi − θ j | |2

]
(6)

where I (a,b) is the indicator function which outputs 1 if and only

if a = b, otherwise it outputs 0.

The K-means algorithm re-estimates Z and θ alternatively to

minimize Q . First, given the current centroids θ , the algorithm

assigns each data point to its nearest centroid as follows.

zi = argmin
k ∈{1, · · · ,K }

| |xi − θ j | |2 (7)

Then, the algorithm re-estimates the centroids by averaging the

coordinates of all data points assigned to the same cluster as the

following equation.

θk =

∑N
i=1 xi I (zi ,k)∑N
i=1 I (zi ,k)

(8)

In a distributed environment, the assignments Z are computed

on workers, while the centroids θ need to be aggregated based

on the summation of xi I (zi ,k) and I (zi ,k) from every worker. To

efficiently re-estimate the centroids, we sum up the numerator and

denominator in Equation (8) at each worker as sufficient statistics. So

each worker j computes the sufficient statistics from a mini-batch

Bj ⊆ X j for cluster k as

St+1
j,k
=

∑

xi ∈Bj
xi I (zti, j ,k) Ct+1

j,k
=

∑

xi ∈Bj
I (zti, j ,k)

where zti, j represents the assignment of data xi based on model

parameter θ tj .

In the K-means, we can apply a delta change of the sufficient

statistics to the total sufficient statistics to compute the centroids.

So without synchronization, the new centroids can still be com-

puted from the sufficient statistics of all the data. On worker j, the

update is computed as the delta changes between two consecutive

computations of sufficient statistics.

∆St+1
j,k
= St+1

j,k
− St

j,k
∆Ct+1

j,k
= Ct+1

j,k
−Ct

j,k

Those updates can be aggregated through a centralized server

or in a decentralized way as well. The model parameter θ t
k
can be

computed from the update on worker j as

θ t+1
k
=

St
k
+ ∆St+1

j,k

Ct
k
+ ∆Ct+1

j,k

(9)

When using a centralized server, the newmodel parameter θ t+1
k

can

be sent back to j or broadcast to all the workers. Or θ t+1
k

is directly

apply to θ t+1
p,k

at any worker p that performs the re-estimation.

2.3 Other Machine Learning Algorithms

Many other machine learning algorithms can also be executed in

a distributed fashion. Many ML algorithms try to learn a model

through iteratively processing the given data. Each data point con-

tributes updates towards the final model through update aggrega-

tion. So we can distribute the workload of processing data among

workers while aggregating the updates to re-estimate the model.

Similar to K-means, other algorithms, such as Gaussian Mixture

Model (GMM), Nonnegative Matrix Factorization (NMF), and La-

tent Dirichlet Allocation (LDA), can also be implemented using

a data-parallel model. As long as there are some sufficient statis-

tics that can be aggregated, the algorithms can be executed under

data-parallel models. In each iteration, we compute the sufficient

statistics of all the data points based on current model parameters.

Then we re-estimate the model parameters from sufficient statistics

to maximize the likelihood. Specifically, each worker maintains a lo-

cal copy of the model parameters and computes sufficient statistics

(updates). Then the parameter server aggregates the updates from

all the workers and re-estimates the model parameters through a

synchronization barrier.

3 PROACTIVE DATA-PARALLEL
FRAMEWORK

We propose a novel Proactive Data-Parallel (PDP) model to solve

the problem of the slowdown caused by stragglers. In this section,

we first give an overview of PDP in using a pulling mechanism to

enable updating model parameters at any time. We then describe

how PDP determines the optimal time to update model parameters.

At last, we show the workflow of PDP and how we further reduce

the idle time on workers with asynchronous computation.

3.1 Overview of PDP

PDP is designed to address the straggler problem to accelerate the

training. A straggler is a worker that works significantly slower

than other workers. To parallelize the computation, people typically

distribute the workload to several workers. After every worker

finishes its own workload, we perform a synchronization on the

model parameter. However, the workload on each worker is pre-

defined. When there is a straggler, all the workers have to wait for

the straggler which leads to excessive waste of computing resources.

Even we update model parameters in an asynchronous manner, a

straggler takes a much longer time than other workers to contribute

from an out-of-date model parameter. The pre-defined workload

will make the updates from stragglers less effective or even make a

negative impact on the convergence speed.

PDP determines the synchronization point based on how much

workload has been done globally. Instead of assigning a workload

to each worker beforehand, PDP monitors the global progress all

the time. Therefore, the parameter server can use the global view

of the progress to make a better synchronization point. To help the

parameter server monitor the progress, workers periodically send

✼�

BDCAT ’21, December 6–9, 2021, Leicester, United Kingdom Guoyi Zhao, Tian Zhou and Lixin Gao

To estimate when to pull, we need to know the processing speed

of each worker in runtime. But we want to limit the overhead of the

count report. So the workers will send the count report when each

worker reaches the 1/4 of K∗/P where P is the number of workers.

Then we use the time we received the count report between 1/4,
1/2, and 3/4 to estimate when to pull. For example, for worker i ,

we have the time to processed K∗/P as ti . Then time we broadcast

the pulling requests from the last pulling will be T = 1/∑P
i=1 t

−1
i .

4.3 Worker Design

The main job of the workers is to compute updates and monitor the

processed data points. The workers compute updates using their

copy of the model parameters and respond to pulling requests and

the arrived model parameters. After receiving a pulling request, the

worker first finishes its atomic computation on the current data

point. Then it sends out the accumulated updates since the last

pulling. After processing the current data point, the worker pauses

the computation and renews the model parameters. So the next

data point can make use of the latest model parameters.

During the processing of data, the worker sends the count report

to the parameter server. As described in Section 4.2.2, each worker

knows the optimal K∗ and sends the count report for every K∗/P/4
data points that have been processed. Therefore, there will be 3

count reports for each pulling which will not bring much overhead.

5 CONVERGENCE PROPERTY OF APDP
MODEL

In this section, we use GD algorithms as an example to analyze the

convergence property of APDP.

As described in Section 3, the gradient to re-estimate parameter

θ t is computed based on both of parameters θ t−1 and θ t under

APDP. Here we use At to represent all the data we process in mini-

batch At at iteration t . In At , we divide the data into two parts Bt
and Ct , which depends on the parameters we use. Suppose θ t−1 is
applied to a subset Bt and θ

t is applied to Ct . The re-estimation of

the model parameters using a learning rate ηt can be written as

θ t+1 = θ t − ηt


∑

xi ∈Bt
∇Q(θ t−1,xi) +

∑

x j ∈Ct
∇Q(θ t ,x j)


(11)

To bound the expected loss, we use the instantaneous regret

Q(θ t ,X) −Q(θ∗,X) to show the loss difference between θ t and θ∗,
where θ∗ = argminθ Q(θ ,X). By bounding the average regret from
a sequence Θ = {θ1, ...,θT } of parameters whenT increase, we can

say θT converges to θ∗.
In APDP, the gradients that are computed on model parame-

ters θ t come from two sets Bt+1 and Ct . We denote the total set

as Ãt = Ct + Bt+1. So the instantaneous regret is computed as

Q(θ t , Ãt) − Q(θ∗, Ãt), where Q(θ t , Ãt) =
∑
xi ∈Ãt Q(θ

t
,xi). Since

the loss function Q is convex, the average regret we want to bound

is as follows.

R[Θ] := 1

T

T∑

t=1

[
Q(θ t , Ãt) −Q(θ∗, Ãt)

]
(12)

6
1

T

T∑

t=1

〈
∇Q(θ t , Ãt),θ t − θ∗

〉
(13)

6
1

T

T∑

t=1

〈
д̃t ,θ t − θ∗

〉
(14)

Here we denote д̃t as the subdifferentials for Q , that is, д̃t =∑
xi ∈Ãt ∇Q(θ

t
,xi) =

∑
i ∈Ãt д

t
i where д

t
i = ∇Q(θ t ,xi).

To prove the regret bounds of GD in APDP, we can bound each

instantaneous regret
〈
дt ,θ t − θ∗

〉
at a given iteration t . So we

first derive the following auxiliary lemma which bound the regret〈∑
j ∈Bt д

t−1
j ,θ

t−1 − θ∗
〉
+

〈∑
i ∈Ct д

t
i ,θ

t − θ∗
〉
. Then we show how

the total regrets are bounded in theorem 5.1.

Theorem 5.1. Suppose the loss function Q is convex and Lipschitz

continuous with a constant L, and maxθ,θ ′∈Θ D(θ | |θ ′) 6 F 2, given

ηt = σ/
√
t for some constant σ > 0 and maximum mini-batch size

asM , the regret of GD in APDP is bounded by

R[Θ] 6 3σM2L2
√
T

+

F 2

σ
√
T

and consequently for σ = F/ML and we obtain the bound

R[Θ] 6 4MFL
√
T

The proof is shown in the document 1.

6 EXPERIMENTS

In this section, we evaluate our PDP framework to show its perfor-

mance with several well-known ML algorithms. We use two EM

algorithms, K-means and Gaussian Mixture Model (GMM), and two

GD algorithms, Multi-Layer Perceptron (MLP) and Convolutional

Neural Network (CNN) to show the efficiency of PDP and APDP

under both homogeneous clusters and heterogeneous clusters. We

also examine the effectiveness of the pull decisions in PDP. Finally,

we test the scalability to show PDP can scale to large clusters.

6.1 Experiment Settings

We first describe our experiment settings including the algorithms,

dataset, benchmark models, and testing environments. We build

our PDP framework and implement the EM algorithms and GD

algorithms using C++. We use OPEN MPI [12] to implement the

distributed protocol for synchronous and asynchronous communi-

cations. Our code is publicly available 2.

6.1.1 Algorithms and Datasets. We test four representative ML

applications to explore the performance of our PDP framework.

We apply the K-means and Gaussian Mixture Model (GMM) [22]

for the EM algorithms and Multilayer Perceptron (MLP) and Con-

volutional Neural Network (CNN) for the GD algorithms. We use

1https://drive.google.com/file/d/141cPnxRKRxtDq_vWx2nh8aBMV9iw5Wju
2https://github.com/haku117/PDP

✼�

BDCAT ’21, December 6–9, 2021, Leicester, United Kingdom Guoyi Zhao, Tian Zhou and Lixin Gao

any time. Adaptive batch sizes are also proposed to optimize the

mini-batch size during machine learning [3, 10]. However, even we

determine the best mini-batch size, the computing resources are

still wasted when all the workers pause during synchronization.

In contrast to the synchronous parallel model, the update of the

model parameters from each worker can be sent to the parameter

server in an asynchronous manner. Each worker sends the update

to the parameter server at its own pace. Without waiting for other

workers, the parameter server accumulates this update and sends

the new model parameters back to the worker. Frameworks such

as [18, 24, 25, 31] are used to support this asynchronous parallel

model. MLNET [21] deploys a communication layer to implement

asynchronous aggregation and ASYNC [28] build on top of Spark to

support asynchronous computation. DistBelief [8] and TensorFlow

[1] also support deep learning applications with asynchronous

computation.

The asynchronous parallel model removes the synchronization

overhead but usually suffers from the stale computation where

workers use stale model parameters to compute updates. The stale

computation of ML algorithms can slow down the convergence

speed. To reduce the stale computation, K-async SGD in [11] waits

forK workers to finish their mini-batch and then updates the model

parameters. ASYNC [28] enables the workers and/or the param-

eter server to bookkeep (log) parameters to construct a dynamic

dependence graph for the implementation with a partial broadcast

of model parameters. These frameworks reduce the stale computa-

tion but still require a pre-defined model parameter update point.

Stragglers can still slow down the computation.

Our PDP framework can update the model parameter at any

time. Meanwhile, APDP is asynchronous. That is, workers do not

wait for the update of the model parameters at the parameter server.

Further, the framework determines when workers provide updates

online. As a result, stragglers will not slow down the update of

model parameters.

8 CONCLUSION

We propose a proactive data-parallel framework that enables the

parameter server to initiate the update of model parameters at any

time. PDP pulls from workers so that there are no pre-defined up-

date points for workers and avoid workers waiting for each other.

The parameter server cannot only pull from workers but also de-

termine when to pull. The global decision on the parameter server

can provide workers with more up-to-date model parameters to

accelerate the training. We further propose asynchronous PDP to

further reduce the idle time caused by synchronization. We theo-

retically prove the convergence property of APDP which shows

the same result as PDP. We design and implement the PDP frame-

work to determine the optimal time to pull from workers. Extensive

experiments show that the PDP model consistently outperforms

state-of-the-art solutions.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation

Grants CNS-1815412 and CNS-1908536.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, et al. 2016. Tensorflow:

A system for large-scale machine learning. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16). 265–283.

[2] Haim Avron, Alex Druinsky, and Anshul Gupta. 2015. Revisiting asynchronous
linear solvers: Provable convergence rate through randomization. Journal of the
ACM (JACM) 62, 6 (2015), 1–27.

[3] Lukas Balles, Javier Romero, and Philipp Hennig. 2016. Coupling adaptive batch
sizes with learning rates. arXiv preprint arXiv:1612.05086 (2016).

[4] Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2018. Optimization methods for
large-scale machine learning. Siam Review 60, 2 (2018), 223–311.

[5] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey Dean. 2007.
Large language models in machine translation. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL). 858–867.

[6] Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. 2012. Sample
size selection in optimization methods for machine learning. Mathematical
programming 134, 1 (2012), 127–155.

[7] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R Ganger, Garth
Gibson, Kimberly Keeton, and Eric Xing. 2013. Solving the straggler problem
with bounded staleness. In 14th Workshop on Hot Topics in Operating Systems.

[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Ranzato, Ke Yang, et al. 2012. Large scale distributed deep networks. In Advances
in neural information processing systems. 1223–1231.

[9] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[10] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017. Adabatch:
Adaptive batch sizes for training deep neural networks. arXiv preprint
arXiv:1712.02029 (2017).

[11] Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya
Nagpurkar. 2018. Slow and stale gradients can win the race: Error-runtime
trade-offs in distributed SGD. arXiv preprint arXiv:1803.01113 (2018).

[12] Edgar Gabriel, Graham E Fagg, et al. 2004. Open MPI: Goals, concept, and
design of a next generation MPI implementation. In European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting. Springer, 97–104.

[13] Aaron Harlap, Henggang Cui, Eric P Xing, and etc. 2016. Addressing the straggler
problem for iterative convergent parallel ML. In Proceedings of the Seventh ACM
Symposium on Cloud Computing. ACM, 98–111.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Qirong Ho, James Cipar, Henggang Cui, Eric P Xing, and etc. 2013. More effective
distributed ml via a stale synchronous parallel parameter server. In Advances in
neural information processing systems. 1223–1231.

[16] Rolf Jagerman and Carsten Eickhoff. 2016. Web-scale topic models in spark: An
asynchronous parameter server. arXiv preprint arXiv:1605.07422 (2016).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[18] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583–598.

[19] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. 2014. Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD.
ACM, 661–670.

[20] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. 2015. Asynchronous parallel
stochastic gradient for nonconvex optimization. InAdvances in Neural Information
Processing Systems. 2737–2745.

[21] LuoMai, Chuntao Hong, and Paolo Costa. 2015. Optimizing network performance
in distributed machine learning. In 7th {USENIX} Workshop on Hot Topics in
Cloud Computing (HotCloud 15).

[22] Radford M Neal and Geoffrey E Hinton. 1998. A view of the EM algorithm that
justifies incremental, sparse, and other variants. In Learning in graphical models.
Springer, 355–368.

[23] Robert J Orr and Gregory D Abowd. 2000. The smart floor: A mechanism for
natural user identification and tracking. In CHI’00 extended abstracts on Human
factors in computing systems. ACM, 275–276.

[24] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang Chen, Qirong Ho, Garth A
Gibson, and Eric P Xing. 2018. Litz: Elastic framework for high-performance
distributed machine learning. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 631–644.

[25] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems. 693–701.

[26] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. 2013. Overfeat: Integrated recognition, localization and detection

✼�

A Proactive Data-Parallel Framework for Machine Learning BDCAT ’21, December 6–9, 2021, Leicester, United Kingdom

using convolutional networks. arXiv preprint arXiv:1312.6229 (2013).
[27] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The hadoop distributed file system. In Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on. Ieee, 1–10.

[28] Saeed Soori, Bugra Can, Mert Gurbuzbalaban, and Maryam Mehri Dehnavi. 2019.
ASYNC: A Cloud Engine with Asynchrony and History for Distributed Machine
Learning. arXiv preprint arXiv:1907.08526 (2019).

[29] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[30] Zhigang Wang, Lixin Gao, Yu Gu, Yubin Bao, and Ge Yu. 2017. FSP: towards
flexible synchronous parallel framework for expectation-maximization based
algorithms on cloud. In Proceedings of the 2017 Symposium on Cloud Computing.

[31] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A new
platform for distributed machine learning on big data. IEEE Transactions on Big
Data 1, 2 (2015), 49–67.

[32] Jiangtao Yin, Yanfeng Zhang, and Lixin Gao. 2012. Accelerating expectation-
maximization algorithms with frequent updates. In 2012 IEEE International Con-
ference on Cluster Computing. IEEE, 275–283.

[33] Reza Zafarani and Huan Liu. 2017. User identification across social media. US
Patent 9,544,381.

[34] Guoyi Zhao, Lixin Gao, and David Irwin. 2018. Sync-on-the-fly: A parallel frame-
work for gradient descent algorithms on transient resources. In IEEE International
Conference on Big Data. IEEE, 392–397.

✼�

