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Abstract—Machine learning models such as deep neural net-
works have been shown to be successful in solving a wide range
of problems. Training such a model typically requires stochastic
gradient descent, and the process is time-consuming and expen-
sive in terms of computing resources. In this paper, we propose a
distributed framework that supports the prioritized execution of
the gradient computation. Our proposed distributed framework
identifies important data points through computing or estimating
the priority for each data point. We evaluate the proposed
distributed framework with several machine learning models
including multi-layer perceptron (MLP) and convolutional neural
networks (CNN). Our experimental results show that prioritized
SGD accelerates the training of machine learning models by
as much as 1.6X over that of the mini-batch SGD. Further,
the distributed framework scales linearly with the number of
workers.

I. INTRODUCTION

In recent decades, machine learning models such as deep
neural networks are successful in many fields such as computer
vision [1], [2], speech recognition [3], and natural language
processing [3]. For example, a deep-learning model developed
in [2] is able to identify human faces with an accuracy of
over 99%. Training a deep neural network is usually time-
consuming and expensive in terms of computing resources
due to its increasing size. For example, Lecun et al. show that
identifying handwritten digits requires a deep neural network
with around 1 million parameters [4]. Later, Krizhevsky et al.
recognized images with a deep neural network consisting of
60 million parameters and won the ImageNet competition [1].
More recently, Deepface successfully classified human faces
with a deep neural network containing 120 million parame-
ters [2]. As the model becomes more complex, the correspond-
ing training time increases dramatically. Despite the rapid
increase of computing power in recent decades, the training
time increases from several hours to several days, or even
several weeks [4]-[6].

To accelerate the training process of deep neural networks,
both hardware and software approaches have been proposed.
Graphics Processing Units (GPU) are used to train deep learn-
ing models. Many distributed frameworks, including Torch [7],
Tensorflow [8], Caffe [9] and MXNet [10], support the training
of machine learning model through GPUs. Google’s special-
ized hardware, Tensor Processing Unit (TPU) [5], targets at
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deep neural network models training. Others have acceler-
ated the training and testing of deep learning models with
customized hardware, such as field-programmable gate array
(FPGA) [11]-[13].

In addition to hardware approaches, researchers have pro-
posed a series of training algorithm such as RMSProp [14],
ADAM [15], Nadam [16] and AdaGrad [17] to accelerate
the gradient descent process. The acceleration stems from
two major ideas. First, instead of simply updating the model
parameter with gradients, they consider the momentum as
well. Second, instead of a fixed learning rate for every
parameter, each parameter has its own learning rate. And
the rates are adaptively adjusted during the training process.
Other researchers accelerate the training process by pruning
or augmenting the training data set [18]-[20].

In this paper, we propose a distributed framework that ac-
celerates the training process of deep learning models through
prioritizing the execution of gradient descent. The proposed
distributed framework automatically identifies and utilizes the
most important data points to update the gradient of the model
parameters. We quantify the importance of a data point as
how much that data point is able to reduce the loss function
value. Using the quantified importance as the priority value
for each data point, our distributed framework selects a set of
data points with the highest priority values as a mini-batch.
Only the gradients of the selected data points in the batch are
used to update the model parameters.

The challenge of adopting priority in stochastic gradient
descent is that the computation of priority values is extremely
time-consuming. To reduce the overhead of the prioritized
execution, we propose to compute priority values only for a
subset of data points and estimate priority values for the rest.
The distributed framework learns the trend of priority values
for each data point online and estimates the priority values
with the learned trends. Our distributed framework can be
applied to a large variety of deep learning models solved with
stochastic gradient descent, including multi-layer perceptron
(MLP), convolutional neural network (CNN), and recurrent
neural network (RNN).

We implement a distributed framework to facilitate deep
neural network training in the cloud environment. To evaluate
the proposed distributed framework, we implement several
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deep neural network models including multi-layer perceptron
and convolutional neural network using the framework. Our
experimental results show that the distributed framework ac-
celerates the training of these deep neural network models by
about 1.6X over that of the typical SGD. We further show that
our framework scales linearly with the number of workers.

The outline of this paper is as follows. In Section II, we
review the gradient descent algorithm and derive the priority
value for each data point. Then, we propose our prioritized
framework for gradient descent (PGD) in Section III. In
Section IV, we elaborate how to estimate priority values. We
evaluate the distributed framework in terms of the impact
of parameters, training time and scalability in Section V.
Finally, we describe related works and conclude our paper
in Section VI and Section VII respectively.

II. PRIORITY IN GRADIENT DESCENT

In this section, we start with a review of the gradient
descent algorithm and stochastic gradient descent algorithm
from the perspective of optimization problems. Base on that,
we quantify the importance of a data point in terms of its
contribution to the loss function and then derive the priority
value of a data point.

A. Review of Gradient Descent

Machine learning problems are typically expressed with
optimization problems. An optimization problem can be for-
mulated as a problem of finding the optimal parameter W to
maximize or minimize a loss function L(W). The loss function
L is usually a summation among individual losses L; among
a data set D = (d;), i.e., L(W

Gradient Descent (GD), Stochastlc é}radlent Descent (SGD)
and mini-batch SGD, search the model parameter by recur-
sively updating current W using the gradient g of the loss
function as shown in Equation (1):

W« W +ng (1)

where g = %L(W; D). We use g; to represent the gradient
of an individual data point d;. It is defined as in the following
equation.

gi = WLi(W§ di) 2)

GD calculates g by averaging all gradients from the data set
as in the following equation
> o
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The typical SGD simplifies the gradient calculation by using
one data point each time as in the following equation.

g9=9i “

The mini-batch SGD lies between GD and SGD. It calculates g
using the average gradient from a subset of data points S C D
as in the following equation

> o
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Because the mini-batch SGD is usually faster than GD and
stabler than the typical SGD, it is one of the most wildly used
gradient-based optimizing algorithm. In the rest of this paper,
we use the term SGD to represent the mini-batch SGD.

B. Priority of Data Points

In gradient descent algorithms, data points are considered
to be equally important in calculating the gradient. So usually,
data points are used to update the model parameter in a round-
robin fashion.

However, this assumption is not true. The gradient of each
data point does not necessarily contribute equally to model
parameters. We quantify the importance of a data point with
its impact on the loss function. According to the definition of
differentiation, when the model parameter is changed by AW,
the change of the loss function can be approximated with the
inner product of its gradient 9L /OW and the change of model
parameter, i.e., AL = 0L/OW - AW.

We define the term AL(d;; W, n), AL(d;) for short, as the
difference on the loss function L when only the data point
d; is used to update the model parameter. In that case, the
difference of the model parameter AW; = ng;. It changes the
loss function value as the following equation.

> o] o

djED
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AL(d;) = oW

AW =1 (6)

Based on that, we quantify the impact of data point d; as
Equation (6).

The impact of data points on the loss function can be used
to select the most important data points. The term 7 can
be omitted in calculating priorities, since this scalar factor
1 is applied to every data point. We use g to represent the
aggregated gradient of all data points.

!7:293‘
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Therefore, the priority of a data point is the inner product of
the gradient on that data point g; and the aggregated gradient
of all data points, as in Equation (8).

> 9

djeD

pi = “9i=G"Gi )

Note that, the priority definition works for all objective
functions. Different objective functions only affect how g; is
computed.

Different data points have different impacts on the loss
function. We show the distribution of priority values of a multi-
layer perceptron model with 100 hidden neurons in Fig. 1. This
model is trained for a classification task using the MNIST data
set. As we can see from Fig. la, the priority values are neither
evenly distributed or gathered around a certain value.

The distribution suggests that a small number of top data
points contribute a significant part to the loss function. Using
the loss decrease made by adopting all data points as a
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reference, we check how much does the top-k data points
contribute to it. Shown in Fig. 1b, the top 0.5%, 1%, 2%, 5%
data points contribute 5%, 8%, 15%, 32% of the loss decrease
at iteration 50.

III. PRIORITIZED DISTRIBUTED FRAMEWORK FOR
GRADIENT DESCENT

In this section, we propose a distributed framework to
support the prioritized execution of gradient descent. First, we
give an overview of our framework and the workflow of each
worker in Section III-A. Since the priority value is crucial
to the prioritized execution, we then introduce an efficient
computation of priority values in Section III-B. After that,
we summarize the workflow in Section III-C.

A. Framework Overview

We design a distributed framework for the prioritized exe-
cution of GD. We distribute data points and corresponding
calculation of priority and gradient among workers. They
report the gradient to a parameter server that maintains the
latest model parameter. We illustrate the general structure of
our framework in Fig. 2. The parameter sever updates the
model parameter using the gradients received from workers
and sends back the updated model parameter to workers.
Then, workers compute new gradients using the updated model
parameter.

The majority of the computation task in the system is
the computation of gradient performed on each worker. As
discussed in Section II, data points with high priority values
contribute more in decreasing the loss function value. Instead
of selecting a mini-batch in a Round-Robin manner, updating
the model parameter using the data points with the highest
priority values is able to decrease more of the loss function.
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Therefore, instead of uniformly sampling data points in the
typical SGD, we propose to select data points with the highest
priority values in each iteration. We refer to this framework
as Prioritized Gradient Descent (PGD).

Fig. 3 illustrates the main workflow of a worker. Different
from typical SGD which constructs a mini-batch in Round-
Robin, the workers in our framework select the data points
with top priority values to form a mini-batch in each iteration.
So at the beginning of each round, a worker updates the
priority value of all its local data points. Then, it picks top-k
data points as a mini-batch from all local data points, where
k is predefined and indicates the batch-size. In the rest of
this paper, denote k as a ratio of data points instead of an
integer. After that, the worker performs the actual gradient
computation task and sends out the aggregated gradient to the
parameter server.

B. Update of Priority Value

A worker needs to know the priority value of each data
point before it calculates gradients in an iteration. The most
straight-forward method is to apply Equation (8) for all data
points in each iteration. However, it is not feasible to compute
priority values of all data points from scratch in each iteration.
Calculating priority values can be time-consuming, because
according to Equation (8) we need to calculate the gradient of
a data point to get its priority value. The computation resources
consumed for this cannot cover the gain from prioritized
execution. Therefore, as shown in Fig. 4, our framework only
computes the priority values of some data points and estimates
the rest in each iteration. In the next iteration, our framework
choose another set of data points in Round-Robin to compute
priority values. We define the ratio of data points chosen to
compute priority values as renewal ratio and denote it with 7.
We should set » < k to make sure the benefit of prioritized
execution is not covered by the additional cost of computing
priority values.

Since the aggregated priority value of all data points is
needed for priority calculation, we initialize computation by
calculating the gradient of all data points in the first iteration.
Then, we aggregate them and then apply Equation (8) to ini-
tialize the priority of all data points. After that, the framework
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picks the most prioritized data points and uses their gradients
to update the model parameter.

1) Calculating Priority Value: In order to compute priority
values, we need to know the aggregated gradient of all data
points, i.e., g, according to the definition of priority. But it is
not reasonable because we want to use the priority to choose
data points for gradient calculation. So we approximate the
aggregated gradient term with the one in the last iteration. It
is because in SGD the model parameter is updated gradually,
so that the corresponding gradient also changes slowly in
consecutive iterations.

The memory can also be a problem in computing the priority
values. Since aggregating all gradient is time-consuming, we
can incrementally update it using the newly computed gradient
in each iteration. A straightforward method to do so is to store
old gradients of all data points and use them to compute the
delta of gradients. However, it requires the memory of O(N -
M), where N is the number of data points and M is the
number of parameters of the model. For example, if we want
to train a face recognition CNN model with 100,000 single-
precision parameters using a data set with 1 million images,
we will need as much as 400GB memory for storing previous
gradients.

Therefore, we update the aggregated gradient via a memory-
efficient approximate method. Instead of performing the accu-
rate incremental update, we employ a proportional idea to do
an approximate update. We approximate the old gradient of a
mini-batch with n data points with £-g where N is the total
number of data points. So that we only store the aggregated
gradient. When we get the local aggregated gradient g,, of a
new mini-batch with n data points, we update the aggregated
gradient g as Equation (9).

§=3= 30+ = (1= )3 +0m ©)

We can aggressively update the gradient during the phase

of calculating priority values. The worker needs to calculate
the gradient of a data point in order to compute its priority

204

according to Equation (8). Usually, the cost of calculating
the gradient of the data point is much larger than the cost
of calculating the priority with the given gradient. Therefore,
instead of simply using the gradient for priority calculation,
we accumulate them for updating the model parameter. As
a result, (k 4+ r)N data points are used to update the model
parameter in each iteration.

2) Estimate Priority Value: Instead of computing the actual
priority values using Equation (8), we estimate priority values
for data points that are not selected to calculate priority
values. We estimate the priority value of a data point using
its computed priority values in history. In our framework, the
priority value of a data point is computed at most every [1/7]
iterations. We employ an online learning method to estimate
the priority value for each data point. We will elaborate the
learning and estimation method in Section IV.

C. Workflow Summary of Workers

We show the workflow of a worker in Alg. 1. At the
beginning of each iteration, we update the priority value P
of all data points. The worker selects /N data points in the
Round-Robin manner to calculate priority values as shown at
Line 9, where N is the number of data points. Then, it learns
the parameter for priority estimation u; using the calculated
priority as shown at Line 10. For the priority values of un-
selected data points, the worker estimates them using the
estimation parameter as shown in Line 10. The learning and
estimating will be elaborated later in Section IV. Meanwhile,
the gradients used for calculating priority are aggressively
accumulated in variable G as shown in Line 11.

Then, the worker picks the top-(kN) data points by their
priorities and then calculates the gradient of picked data points.
The calculated gradients are accumulated into the variable G.
Since the priority calculation is much cheaper than the gradient
calculation, the worker computes the priority value for each
calculated gradient during this phase. The priority value is
used to learn the estimation parameter which will be used in
the next iterations. This aggressive update of priority values is
shown with Line 20-21. After that, the variable G accumulates
every gradient calculated in this iteration and all calculated
gradients are used to update the estimation parameter. At the
end of each iteration, the worker sends G to the parameter
server and updates the aggregated gradient g using G' with
Equation (9) by setting n/N = r + k.

IV. PRIORITY VALUE ESTIMATION

In this section, we describe how priority values are esti-
mated for data points that are not selected to calculate their
priority in an iteration. We introduce how to learn the priority
trend of a data point using its history priority values and how
to the estimation using the learned trend.

We need to construct an estimation function which outputs
the priority value of a data point for any given iteration num-
ber. We estimate from the data historical data. We assume that
the gradient function is continuous with the model parameter.
Then, according to Equation (8), the priority value of a data
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Algorithm 1 Workflow of a Worker
1: procedure WorkerTask(D, r, k, W, U, g, it)
Require: data set D, renewal ratio r, top ratio k
Require: model parameter W, estimation parameters U =
(1, up))
Require: aggregated gradient g, current iteration number it

2: G+ 0
3: /I update priority
4: S <+ select r|D| data points in Round-Robin
5: P:<p1,---pu)|><—0
6: for each d; € D do
7 if d; € S then

8: 9; < gradient(W, d;)

9: Di G- G; > calculate priority
10: u; « learn(ug, p;, it) > learn priority
11: G+ G+g; > aggressive gradient update
12: else
13: Di < estimate(u;, it) > estimate priority
14: /I pick top-k
15: T « pick the top k|D| data points by priority P
16: /I calculate gradient
17: for each d; € T do
18: gi < gradient(W, d;)

19: G+ G+y;

20: Di G- Gi > aggressive priority update
21: u; < learn(u;, p;,it) > aggressive prio. learning
22: g (1-r—kg+aG

23: send GG to the parameter server

24: return U, g

is a continuous function with the model parameter as the
argument. Therefore, we employ the extrapolation method
to predict the priority values in terms of iteration number
given history priority values. Since we get a new priority
value of any data at most every [1/r] iterations, we will not
extrapolate values too far away from known records. Fig. 5
demonstrates the priority values during the training process of
an MLP model and a CNN model on the MNIST data set. We
randomly select 3 data points and show their priority values
with different colors. As we can see, the priority values change
drastically in the first several iterations and then decrease at a
relatively stable pace. For example, shown in Fig. 5a, priority
values of MLP decrease linearly in log-scale between iterations
10 and 100. From iteration 100, the priority values of some
data points bump around certain values and the priority values
of some other data points follow some new straight lines whose
slopes are much smaller.

Now, the question is which fitting function to use for the
extrapolation. Since the estimation operation is executed fre-
quently in our framework, the fitting function should be simple
and fast. Therefore, we design a specific fitting function for
our estimation. Our experiments on various types of machine
learning models show that the priority values of each data
point are piece-wise linear in log-scale in terms of the number
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of iterations. Therefore, we use the following equation to
approximate the priority value of data point dj, in the iteration
between j and ¢ (j < 7).

k _ galitby _ k af(i—j)

pi = e = ple® (10)

a;”-” is a constant factor to be learned. The empirical result
shows that the factor is relatively stable in consecutive itera-
tions. We can calculate a;? using the following equation.

k k
ob = NP IRy
i i— g

In addition to Equation (10), we also apply an exponential
average method for a¥ using the following equation,

an

ay = Aaf + (1—N\)aj (12)

where )\ is a factor controlling how much the new value
contributes. Empirically, we set A = 0.8 to give more attention
to the new values, so that we mitigate the impact of random
bumps on the priority values which are caused by the mini-
batch update manner. We discribe the learn and estimate
procedure in Alg. 2.

Algorithm 2 Priority Estimation

. procedure learn(uy, = (Inph, a¥, j), . i)
af = (lnpi.C — lnp;?) /(i —7)

af = Xaf + (1 - N)a
return u; ’Z

<hlpi'€, a‘inv 7>
: procedure estimate(uy, = (lnp¥, a¥, j), i)
return exp (a% (i — j) +Inp})

1
2
3
4:
5
6

V. EVALUATION

In this section, we evaluate our PGD framework in terms
of the impact of parameters, convergence time and scalability.

A. Data Set and Setting

We evaluate our framework with three types of machine
learning models, including logistic regression (LR), multilayer
perception (MLP) and convolutional neural network (CNN).
Both synthetic data and the real-world data set are employed
in the evaluation. In considering the uncertainty in real-world
data, we artificially add a random noise following the Gaussian
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distribution to each dimension of the synthetic data. We adopt
the MNIST image data set. We implement our system using
C++ with OpenMPI. The source code is publicly accessible
on GitHub '. We evaluate it on a local Linux cluster. In the
following experiments, we use 4 workers by default.

B. Impact of Parameters

There are two key parameters in the PGD framework, the
renewal ratio k and the top ratio . We examine their individual
impacts on training time and the impact of their combinations.

1) Top Ratio: First, we demonstrate the impact of the top
ratio k in Fig. 6. In this experiment, we show the training
curve of the first 10000 iterations a 1000-dimension logistic
regression model under a synthesized data set. There are
10,000 data points in the synthesized data set. The impact
of the top ratio k is conditioned on the renewal ratio r. When
only a small amount of data points renews their priority values
in each iteration, shown in Fig. 6a, small top ratios lead to
divergence. While given a relatively larger renewal ratio like
10%, shown in Fig. 6b, large top ratios usually make the
training slower. However, the top ratio should be set too small.
It leads to big bumps or even divergence.

2) Renewal Ratio: Similar to the top ratio, the impact
renewal ratio r is also conditional on the setting of the top
ratio k. We show the training curve of the same logistic
regression model using the same data set for renewal ratio
in Fig. 7. Tllustrated in Fig. 7a, when the top ratio k is small,
the training curve is not stable. But in general, the larger r
is, the stabler the training curve is. And the final loss value
is also lower with larger r. As a trade-off, the running time
increases when a larger renewal ratio is adopted. Meanwhile,
the priority estimation is more accurate, which improves the
quality of the selected top-k data points. On the other hand,
shown in Fig. 7b, given a large top ratio, like 10%, the renewal
ratio, except some extreme values, just slightly affects the
convergence speed. It is because that when £ is large enough,
the average gradient of the top-k data points will be very close
to the average gradient of all data points, even if the top-k data
points are selected totally randomly.

3) Top Ratio and Renewal Ration Combination: We also
examine the relationship between k and r when k + r is
fixed, i.e., the same amount of gradients are calculated in each

Source Code: https://github.com/yxtj/FAB
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iteration. In this scenario, the running time for each iteration is
roughly the same. In Fig. 8, we compare the training time of
several k., r combinations for the LR model on the synthesized
data set and a CNN model on the real-world MNIST data
set. In both experiments, the combinations with smaller £ and
larger r (solid lines in the figure) lead to better results in
terms of both training time and stability. The combinations
with larger £ and smaller r (dashed lines in the figure) bump
drastically in the for the LR model and converge slower in the
CNN model.

As a conclusion, we can determine the total number of
processed data points in each iteration i.e., k + r using the
techniques people determine the best mini-batch ratio for SGD.
And based on that, we should make the top ratio k smaller
than the renewal ratio r.

C. Aggressive Optimization

Our PGD framework aggressively utilizes all calculated
gradients. We compare the performance of PGD with the
aggressive optimization and a basic version without it in Fig. 9
using the CNN model with the MNIST data set. Because the
aggressive version updates the priority values more frequently,
the quality of selected top-k data points is higher than those
without the aggressive optimization. As we can see that
in both experiments, the aggressive versions (dashed lines,
annotated with a suffix ”-A”) converges 10%-500% faster
than the basic version (solid lines). And with the help of the
aggressive update, the larger the renewal ratio r is, the faster
the framework is.
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D. Convergence Time

We evaluate the convergence time of PGD for the MLP
and CNN model using the real-world MNIST data set. In
this experiment, we adopt a 3-layer MLP with 300 hidden
neurons. We design a CNN model containing two 5 X 5
convolution layers activated with the ReLU function, two 5 x5
max-pooling layers and a fully-connected layer. There are 10
and 20 convolution kernels in the two convolutional layers
respectively. Based on the parameter impact discussion above,
we set the top ratio and renewal ratio to 1% by some profiling
results. Correspondingly, we set the mini-batch size to 2% for
SGD in comparison.

Shown in Fig. 10, PGD converges 2X-5X faster than the
typical SGD at the beginning of the training process. It is
consistent with the AL contribution we shown in Fig. 1.
With the training process, the difference in loss function
contribution among data points becomes smaller. Therefore,
starting from a certain time, the overhead of prioritization
overwhelms its benefit. As a result, the basic PGD without ag-
gressive optimization (annotated with PGD-S) becomes slower
than SGD from that moment. While the aggressive version
(annotated with PGD-A) is able to make use of all computed
gradients. Compared with calculating gradient, selecting top-k
data points takes very little time. Therefore, in the worst case,
PGD is able to perform almost the same as SGD. Overall,
PGD converges up to 1.6X faster than SGD.

E. Scalability

Shown in Fig. 11, PGD scales linearly to the number of
workers. In the experiments, we test the scalability using both
synchronous parallelization and asynchronous parallelization
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on the MLP and CNN model. We calculate the speed-up by
comparing the time spent in reaching the identical loss value
with the time of the 1-worker PGD case. For both models,
the asynchronous mode scales better than the corresponding
synchronous mode. The CNN model scales better than the
MLP model. It is because that each worker performs top-k
selection locally and relatively the MLP model spends more
time in the priority selection. Actually, calculating the gradient
for one data point on CNN consumes more time than MLP,
while the prioritization time for each data point is fixed. As a
result, given the same amount of total running time, the CNN
model spends more time updating the model parameter.

VI. RELATED WORKS

In recent years, many efficient or dedicated devices are
designed or adopted to accelerate the training process. Similar
to the 3D rendering, in the training of machine learning
models, especially deep neural networks, identical operations
are taken on a huge amount of floating-point data. Graphics
Processing Units (GPU) are designed with high parallelism for
higher throughput of floating-point computation. Therefore,
GPUs are employed by the machine learning community and
widely used by many popular systems, including Torch [7],
Tensorflow [8], Caffe [9] and MXNet [10]. Compared with
CPUs, GPUs reduce the training time by 10X-100X. The
field-programmable gate array (FPGA) is a highly customized
hardware with high parallelism and low cost. There are works
about accelerating the training and testing of machine learning
models with FPGA [11]-[13]. Google’s specialized hardware,
Tensor Processing Unit (TPU), is reported to be 15X-30X
faster than CPUs and GPUs and 10X-80X more power-
efficiency [5].

Some researchers work on improving training algorithms.
NAG [21] accelerates SGD in the relevant direction and



dampens oscillations by adopting the momentum of previous
gradients. Recently, researchers focus on the adaptive learning
rates and propose many related algorithms, including RM-
SProp [14], ADAM [15], Nadam [16] and AdaGrad [17].
For example, AdaGrad and RMSProp calculate the learning
rates according to the previous gradients. Nadam combines
the adaptive learning rates ideas of Adam and the Nesterov
momentum from NAG. While most algorithms focus on the
learning rate, some other researchers report that in some cases
instead of decaying the learning rate, we can get the same
learning curve by increasing the batch size [22].

The importance difference among data points is noticed by
many researchers [20], [23], [24]. The most common idea is to
filter out the low-quality data points before feeding them into
the training process. Millard et al. analyze the importance of
data points and proposed a criterion of data selection for image
classification with the random forest model in [23]. Similarly,
Gong et al. investigate the influence of data selection for GPS
data [24]. AutoClean is an iterative data cleaning system that
automatically learns the quality of data points [20]. It applies
machine learning technologies to greatly reduce the human
interaction while data cleaning.

Instead of pruning out low-quality data points, some re-
searchers utilize the data points discriminatively according
to their importance. Jiang et al. prioritize candidate training
samples as functions of their test trial performance, including
correctness and confidence [19]. They perform a test process
on a partially trained model. Using domain knowledge like
signal-noise-ratio, Sivasankaran er al. proposed a weighting
algorithm for acoustic model [18].

Some researchers adopt the online decision about priority
values in some fields, especially the deep reinforcement learn-
ing [25]-[27]. A deep Q-network learns how to take actions
given a certain state from history experiences. The reward of
an experience is quantified based on its TD-error [26]. Instead
of uniformly sampling the history, Schaul et al. report that by
sampling history experiences with probabilities based on their
rewards, the training time is reduced and the test performance
of the trained model is improved [25].

VII. CONCLUSION

In this paper, we show that during the training process of
a machine learning model, the contribution of different data
points can be highly different. We quantify the contribution
of a data point as how much this data point decreases the
loss function. Based on that, we find that a small portion
of data points contributes most decrease of the loss function
value. Therefore, we propose a Prioritized Gradient Descent
(PGD) framework which updates the model parameter using
the data points with the highest contribution. To overcome the
challenge of the overhead in computing the priority values,
we design a priority value estimation mechanism. It learns
and estimates the priority values of all data points online. We
implement our distributed framework and evaluate it with both
synthesized and real-world data set. Our evaluation results
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show that PGD gets up to 1.6X speedup over the typical
gradient descent and scales linearly.
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