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Abstract. We present a discontinuity aware quadrature (DAQ) rule, and use it to develop
implicit self-adaptive theta (SATh) schemes for the approximation of scalar hyperbolic conservation
laws. Our SATh schemes require the solution of a system of two equations, one controlling the cell
averages of the solution at the time levels, and the other controlling the space-time averages of the
solution. These quantities are used within the DAQ rule to approximate the time integral of the
hyperbolic flux function accurately, even when the solution may be discontinuous somewhere over
the time interval. The result is a finite volume scheme using the theta time stepping method, with
theta defined implicitly (or self-adaptively). Two schemes are developed, SATh-up for a monotone
flux function using simple upstream stabilization, and SATh-LF using the Lax-Friedrichs numerical
flux. We prove that DAQ is accurate to second order when there is a discontinuity in the solution and
third order when it is smooth. We prove that SATh-up is unconditionally stable, provided that theta
is set to be at least 1/2 (which means that SATh can be only first order accurate in general). We
also prove that SATh-up satisfies the maximum principle and is total variation diminishing under
appropriate monotonicity and boundary conditions. General flux functions require the SATh-LF
scheme, so we assess its accuracy through numerical examples in one and two space dimensions.
These results suggest that SATh-LF is also stable and satisfies the maximum principle (at least at
reasonable CFL numbers). Compared to solutions of finite volume schemes using Crank-Nicolson
and backward Euler time stepping, SATh-LF solutions often approach the accuracy of the former
but without oscillation, and they are numerically less diffuse than the later.
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1. Introduction. A hyperbolic conservation law posed on Rd, d ≥ 1, for the
scalar function u(x, t) can be written in terms of the flux function f(u) ∈ Rd as

(1.1) ut +∇ · f(u) = 0, u(x, 0) = u0(x), x ∈ Rd, t > 0.

The differential operator has hyperbolic scaling, which implies that a numerical scheme
should use ∆t ∼ ∆x. Often, a second (or higher) order diffusive operator is added
to the left hand side, giving an advection-diffusion equation with parabolic scaling
requiring ∆t ∼ ∆x2 (or worse). Numerical solution by explicit time stepping there-
fore requires extremely small time steps. The differential operator can be split into
advection and diffusion subproblems and solved using methods tailored to each. A
popular choice are the IMEX methods, which use implicit solution of the diffusive op-
erator and explicit solution of the advective operator. However, in this paper, we take
the point of view that we will use fully implicit methods, so that the problem can be
solved without resorting to operator splitting. A practical advantage of the implicit

∗The first author was supported in part by the U.S. National Science Foundation under grant
DMS-1912735. The second author was supported in part by the Taiwan Ministry of Science and
Technology under grant MOST 109-2115-M-110 -003 -MY3, the National Center for Theoretical
Sciences, Taiwan, and the Multidisciplinary and Data Science Research Center of the National Sun
Yat-sen University, Taiwan.

†Department of Mathematics, University of Texas, 2515 Speedway, C1200, Austin, TX 78712-
1202 and Oden Institute for Computational Engineering and Sciences, University of Texas, 201 East
24th St., C0200, Austin, TX 78712-1229 (arbogast@oden.utexas.edu)

‡Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan,
R.O.C. (huangcs@math.nsysu.edu.tw)

1



2 Arbogast and Huang

approach, especially for nonlinear problems, is that the discretization parameters can
be chosen based on one’s desire to maintain numerical accuracy of the underlying
physics, rather than the artificial concern of maintaining numerical stability.

A basic finite volume approximation of (1.1) uses backward Euler time stepping
combined with upstream weighting for spatial stability (the BE scheme). Unfortu-
nately, it is a low order accurate scheme that bestows on the solution excessive nu-
merical diffusion, so that shocks, contact discontinuities, and steep fronts are smeared
greatly over time. Nevertheless, the BE scheme is useful in many contexts. For some
applications, it is the method of choice, since it is unconditionally stable and sat-
isfies the maximum principle [16, 5] (or invariant domain property [6]). For other
applications, it can be used in combination with a higher order scheme to improve
the quality of the solution, for example in flux-limiter and flux corrected transport
schemes [18, 14, 15, 13, 11, 2, 12].

The theta time stepping method is often seen to reduce numerical diffusion com-
pared to the BE scheme. For parameter θ, the method blends the implicit backward
Euler (θ = 1) and explicit forward Euler (θ = 0) time stepping. The implicit Crank-
Nicolson method results when θ = 1/2 (see (1.2) below). The resulting finite volume
scheme can be viewed as a flux limiting method with the limiting parameter θ. How-
ever, it is only conditionally stable and violates the maximum principle when θ < 1.

A fundamental difficulty with the usual approaches are that an assessment of
accuracy is based on the analysis of smooth solutions. We develop in this paper a
nonlinear, self-adaptive theta (SATh) scheme that varies θ based on estimating the
location of the discontinuities in the solution. The price we pay is that on a cell Ii, we
need to approximate both the spatial averages of the solution at time level tn+1, ūn+1

i ,

and the space-time average of the solution ũ̄
n+1
i (see (2.4)). In one space dimension,

using upstream weighting for transport in the positive direction, the SATh scheme is

ūn+1
i = ūn

i − ∆t

∆x

[︁
f(ūn

i ) + θn+1
i

(︁
f(ūn+1

i )− f(ūn
i )
)︁

(1.2)

− f(ūn
i−1)− θn+1

i−1

(︁
f(ūn+1

i−1 )− f(ūn
i−1)

)︁]︁
,

ũ̄
n+1
i = ūn

i − ∆t

2∆x

[︁
f(ūn

i ) + (θn+1
i )2

(︁
f(ūn+1

i )− f(ūn
i )
)︁

(1.3)

− f(ūn
i−1)− (θn+1

i−1 )
2
(︁
f(ūn+1

i−1 )− f(ūn
i−1)

)︁]︁
,

where, as we will see,

(1.4) θn+1
i =

ũ̄
n+1
i − ūn

i

ūn+1
i − ūn

i

,

at least when the denominator does not vanish.
This θn+1

i will arise from an accurate approximation of a time integral using what
we call discontinuity aware quadrature (DAQ), which is an approximate integration
rule that respects a discontinuity in the solution, should one appear. The stability
constraint θn+1

i ≥ 1/2 will also be necessary. This is not the first adaptive theta
scheme to appear [3], but ours is unconditionally stable and satisfies the maximum
principle in appropriate situations (see §5). Unlike explicit methods [4], the maximum
principle is not so well characterized for implicit methods.

In the next section, we discuss the framework for finite volume schemes to set our
notation. DAQ is developed in §3, and two SATh schemes are defined in §4. In §5,
the upstream weighted scheme is proved to be unconditionally stable and satisfy
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the maximum principle in the case of a monotone flow. After discussing two space
dimensions in §6, we present in §7 numerical results designed to test the other, Lax-
Friedrichs stabilized SATh scheme. We end with a summary of results, conclusions,
and some open issues.

2. The finite volume framework. In a finite volume scheme, we fix a com-
putational mesh of elements and time levels 0 = t0 < t1 < t2 < · · · . We approximate
the average of u over each mesh element E, which we write as

(2.1) ūE(t) =
1

|E|

∫︂
E

u(x, t) dx,

where |E| is the volume of E. (Later we abuse notation by using the symbol ūE for
the approximation of this average.) One reason finite volume methods are popular is
that the governing equation (1.1) directly controls ūn+1

E = ūE(t
n+1). This is usually

derived by integrating the equation over E × [tn, tn+1] to see that

ūn+1
E = ūn

E − 1

|E|

∫︂ tn+1

tn

∫︂
E

∇ · f(u(x, t)) dx dt(2.2)

= ūn
E − 1

|E|

∫︂ tn+1

tn

∫︂
∂E

f(u(x, t)) · ν dσ(x) dt.

However, if the solution can be discontinuous, it is not so clear that this result is
valid. Rather, one should return to the physics of the problem, which dictates mass
conservation in the form

(2.3) ūE(t) = ūn
E − 1

|E|

∫︂ t

tn

∫︂
∂E

f(u(x, s)) · ν dσ(x) ds,

and restrict to t = tn+1 to obtain (2.2).
One cannot estimate the location of a discontinuity in the solution u using only ūn

E

and ūn+1
E . One needs more information. As in multi-moment finite volume schemes [8,

7], we approximate another linear functional of the solution, namely, its space-time
average defined by

(2.4) ũ̄
n+1
E =

1

∆tn+1|E|

∫︂ tn+1

tn

∫︂
E

u(x, t) dx dt,

where ∆tn+1 = tn+1 − tn. This quantity is useful because it is controlled by the
physics of mass conservation. Simply integrate (2.3) in time to see that

ũ̄
n+1
E =

1

∆tn+1

∫︂ tn+1

tn
ūE(t) dt

= ūn
E − 1

∆tn+1|E|

∫︂ tn+1

tn

∫︂ t

tn

∫︂
∂E

f(u(x, s)) · ν dσ(x) ds dt

= ūn
E − 1

∆tn+1|E|

∫︂ tn+1

tn

∫︂ tn+1

s

∫︂
∂E

f(u(x, s)) · ν dσ(x) dt ds,

which gives

(2.5) ũ̄
n+1
E = ūn

E − 1

|E|

∫︂ tn+1

tn

∫︂
∂E

f(u(x, t)) · ν dσ(x) t
n+1 − t

∆tn+1 dt.
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For completeness, we remark that the governing equation formally gives (2.5) as well.
To see this, multiply (1.1) by w(t) = (tn+1 − t)/∆tn+1, integrate in space and time,
and use integration by parts in time for the first term.

Hyperbolic stabilization will need to be incorporated into (2.2) and (2.5). More-
over, the time integrals will be evaluated accurately by using discontinuity aware
quadrature (DAQ), which we develop next.

3. Discontinuity aware quadrature (DAQ). We begin by defining what we
mean by an isolated discontinuity.

Definition 3.1. A function v : [0,∆t] → R has a (potential) isolated disconti-
nuity at τ ∈ (0,∆t) if there exist continuous functions vL(t) and vR(t) with vL(0) =
vR(∆t) = 0 and constants v0 and v1 such that

(3.1) v(t) =

{︄
v0 + vL(t), 0 ≤ t < τ,

v1 + vR(t), τ < t ≤ ∆t.

We consider approximate integration (quadrature) of a smooth function g(t, v)
over the interval [0,∆t], where v = v(t) has an isolated discontinuity at t = τ but is
otherwise smooth. We use only the data

(3.2) v0 = v(0), v1 = v(∆t), ṽ =
1

∆t

∫︂ ∆t

0

v(t) dt.

For some τ∗ ≈ τ , we approximate∫︂ ∆t

0

g(t, v(t)) dt ≈
∫︂ τ∗

0

g(t, v0) dt+

∫︂ ∆t

τ∗
g(t, v1) dt.

To determine τ∗ we apply the same rule to the function g(t, v) = v and assume
equality, i.e.,

(3.3) ∆t ṽ =

∫︂ ∆t

0

v(t) dt = τ∗ v0 + (∆t− τ∗) v1,

which implies that the location of the discontinuity is approximated by

(3.4) τ∗ =
v1 − ṽ

v1 − v0
∆t, provided v1 ̸= v0.

Definition 3.2. Let g(t, v) be a continuous function defined from R × R to R,
and let v(t) satisfy the conditions for an isolated discontinuity at τ ∈ (0,∆t). With

(3.5) τ∗ =

⎧⎨⎩
v1 − ṽ

v1 − v0
∆t if v1 ̸= v0,

1
2∆t if v1 = v0,

the discontinuous aware quadrature (DAQ) rule Q∆t
0 (g) is

(3.6)

∫︂ ∆t

0

g(t, v(t)) dt ≈ Q∆t
0 (g) =

∫︂ τ∗

0

g(t, v0) dt+

∫︂ ∆t

τ∗
g(t, v1) dt.
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We remark that although τ ∈ (0,∆t), we cannot conclude the same for τ∗. More-
over, when v1 = v0, one could take other values for τ∗. The value τ∗ = ∆t/2 seems
most reasonable at this stage, but later we will see that τ∗ = 0 may be preferred to
emphasize v1 (i.e., implicitness in the SATh scheme).

In our setting, we define

(3.7) θ = 1− τ∗

∆t
=

ṽ − v0

v1 − v0

and apply DAQ using g(t, v) = f(v) to see that

(3.8)

∫︂ ∆t

0

f(v(t)) dt ≈ Q∆t
0 (f) =

(︁
f0 + θ (f1 − f0)

)︁
∆t,

where f0 = f(v0) and f1 = f(v1). Moreover, with g(t, v) = f(v) (∆t− t)/∆t, we see
that

(3.9)

∫︂ ∆t

0

f(v(t))
∆t− t

∆t
dt ≈ Q∆t

0

(︃
f
∆t− t

∆t

)︃
=

1

2

(︁
f0 + θ2 (f1 − f0)

)︁
∆t.

3.1. Accuracy of DAQ in the case of an isolated discontinuity.

Theorem 3.3. Suppose that v : R → R satisfies the conditions for a (potential)
isolated discontinuity on [0,∆t] at τ ∈ (0,∆t). If vL and vR have bounded derivatives
and g : R × R → R is continuous, differentiable in the second argument, and D2g is
bounded, then

(3.10)

⃓⃓⃓⃓ ∫︂ ∆t

0

g(t, v(t)) dt−Q∆t
0 (g)

⃓⃓⃓⃓
≤ C∆t2,

where C depends only on the L∞ norms of v′L, v
′
R, and D2g. Moreover, the result

holds no matter how τ∗ is defined when v0 = v1.

Proof. We first note that since vL(0) = 0 and vR(∆t) = 0, for t ∈ [0,∆t],

(3.11) |vL(t)| =
⃓⃓⃓ ∫︂ t

0

v′L(s) ds
⃓⃓⃓
≤ ∥v′L∥L∞∆t,

and similarly |vR(t)| ≤ ∥v′R∥L∞∆t. We compute the integral of g to the left side of
the true discontinuity τ as∫︂ τ

0

g(t, v(t)) dt =

∫︂ τ

0

g(t, v0 + vL(t)) dt =

∫︂ τ

0

g(t, v0) dt+RL,

where the absolute value of the remainder

|RL| =
⃓⃓⃓ ∫︂ τ

0

(︁
g(t, v0 + vL(t))− g(t, v0)

)︁
dt
⃓⃓⃓
≤ ∥D2g∥L∞∥vL∥L∞∆t

≤ ∥D2g∥L∞∥v′L∥L∞∆t2.

We get a similar estimate of the integral of g to the right side of τ , namely∫︂ ∆t

τ

g(t, v(t)) dt =

∫︂ ∆t

τ

g(t, v1) dt+RR, |RR| ≤ ∥D2g∥L∞∥v′R∥L∞∆t2.
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Therefore, the quadrature error is⃓⃓⃓⃓ ∫︂ ∆t

0

g(t, v(t)) dt−
∫︂ τ∗

0

g(t, v0) dt−
∫︂ ∆t

τ∗
g(t, v1) dt

⃓⃓⃓⃓
(3.12)

=

⃓⃓⃓⃓ ∫︂ τ

0

g(t, v0) dt+RL +

∫︂ ∆t

τ

g(t, v1) dt+RR

−
∫︂ τ∗

0

g(t, v0) dt−
∫︂ ∆t

τ∗
g(t, v1) dt

⃓⃓⃓⃓
=

⃓⃓⃓⃓ ∫︂ τ

τ∗

(︁
g(t, v0)− g(t, v1)

)︁
dt+RL +RR

⃓⃓⃓⃓
≤ ∥D2g∥L∞ |(v0 − v1)(τ − τ∗)|+ ∥D2g∥L∞

(︁
∥v′L∥L∞ + ∥v′R∥L∞

)︁
∆t2.

It remains only to estimate τ − τ∗. We note that

∆t ṽ =

∫︂ ∆t

0

v(t) dt = τ v0 + (∆t− τ) v1 +

∫︂ τ

0

vL(t) dt+

∫︂ ∆t

τ

vR(t) dt,

so using (3.11),⃓⃓
∆t ṽ − τ v0 − (∆t− τ) v1

⃓⃓
≤

(︁
∥v′L∥L∞ + ∥v′R∥L∞

)︁
∆t2.

Recalling (3.3), we conclude that⃓⃓
(τ − τ∗)(v1 − v0)

⃓⃓
≤

(︁
∥v′L∥L∞ + ∥v′R∥L∞

)︁
∆t2.

Combining this with (3.12) completes the proof.

We remark that the Theorem holds even in the case that v is actually continuous,
i.e., v0 + vL(τ) = v1 + vR(τ). When v and g are two times differentiable, we can
improve the result.

3.2. Accuracy of DAQ in the case of smooth functions.

Theorem 3.4. If v : R → R has two bounded derivatives and g : R × R → R is
twice differentiable with bounded derivatives, then

(3.13)

⃓⃓⃓⃓ ∫︂ ∆t

0

g(t, v(t)) dt−Q∆t
0 (g)

⃓⃓⃓⃓
≤ C∆t3,

where C depends only on the L∞ norms of v′, v′′, Dg, and D2g. Moreover, the result
holds no matter how τ∗ is defined when v0 = v1.

Proof. We first recall that the trapezoidal rule applied to a function φ(t) satisfies∫︂ ∆t

0

φ(t) dt = 1
2

(︁
φ(0) + φ(∆t)

)︁
∆t+RT (φ), |RT (φ)| ≤ 1

12∥φ
′′∥L∞∆t3.

Therefore the DAQ error is

E =

∫︂ ∆t

0

g(t, v(t)) dt−Q∆t
0 (g) = 1

2

(︁
g(0, v0) + g(∆t, v1)

)︁
∆t−Q∆t

0 (g) +RT (g(·, v)),

|RT (g(·, v))| ≤ 1
12

⃦⃦
D2

(︁
g(·, v(·))

)︁⃦⃦
L∞∆t3.
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If v0 = v1, then E simplifies independently of the value of τ∗ to

E = 1
2

(︁
g(0, v0) + g(∆t, v0)

)︁
∆t−Q∆t

0 (g(·, v0)) +RT (g(·, v))

= 1
2

(︁
g(0, v0) + g(∆t, v0)

)︁
∆t−

∫︂ ∆t

0

g(t, v0) dt+RT (g(·, v))

= RT (g(·, v0)) +RT (g(·, v)),

and we conclude the bound stated in the theorem.
If v0 ̸= v1, we compute

E = 1
2

(︁
g(0, v0) + g(∆t, v1)

)︁
∆t−

∫︂ τ∗

0

g(t, v0) dt−
∫︂ ∆t

τ∗
g(t, v1) dt+RT (g(·, v))

=

∫︂ ∆t/2

0

(︁
g(0, v0)− g(t, v0)

)︁
dt+

∫︂ ∆t

∆t/2

(︁
g(∆t, v1)− g(t, v1)

)︁
dt

−
∫︂ τ∗

∆t/2

(︁
g(t, v0)− g(t, v1)

)︁
dt+RT (g(·, v))

= E1 + E2 + E3 +RT (g(·, v)),

respectively.
We first estimate E1 + E2 by computing

E1 + E2 =

∫︂ ∆t/2

0

(︁
g(0, v0)− g(t, v0)

)︁
dt+

∫︂ ∆t

∆t/2

(︁
g(∆t, v1)− g(t, v1)

)︁
dt

= −
∫︂ ∆t/2

0

∫︂ t

0

D1g(s, v
0) ds dt+

∫︂ ∆t

∆t/2

∫︂ ∆t

t

D1g(s, v
1) ds dt

=

∫︂ ∆t/2

0

∫︂ t

0

(︁
D1g(∆t− s, v1)−D1g(s, v

0)
)︁
ds dt,

using the change of variables t̂ = ∆t − t and ŝ = ∆t − s on the second integral of
the middle line (and replacing t̂ by t and ŝ by s). The mean value theorem in two
dimensions then gives

|E1 + E2| ≤
⃓⃓⃓ ∫︂ ∆t/2

0

∫︂ t

0

∥DD1g∥L∞
(︁
|∆t− 2s|+ |v1 − v0|

)︁
ds dt

⃓⃓⃓
≤ 1

2∥D
2g∥L∞

(︁
1 + ∥v′∥L∞

)︁
∆t3.

Now for E3, we see that

|E3| =
⃓⃓⃓ ∫︂ τ∗

∆t/2

(︁
g(t, v0)− g(t, v1)

)︁
dt
⃓⃓⃓
≤ ∥D2g∥L∞ |(v0 − v1)(τ∗ −∆t/2)|.

Moreover,

(︁
v0 − v1)(τ∗ − 1

2∆t
)︁
= (v0 − v1)

(︂ v1 − ṽ

v1 − v0
− 1

2

)︂
∆t(3.14)

=
(︁
ṽ − 1

2 (v
0 + v1)

)︁
∆t = RT (v),
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since this is a trapezoidal approximation of ṽ. Thus

|E3| ≤ 1
12∥D2g∥L∞∥v′′∥L∞∆t3,

and the proof is complete.

We remark that when the solution is smooth, (3.14) implies that

(3.15) τ∗ = 1
2∆t+

ṽ − 1
2 (v

0 + v1)

v0 − v1
∆t.

The absolute value of the deviation of τ∗ from ∆t/2 could be quite large, for example
at a minimum or maximum in v, where ṽ ̸= 1

2 (v
0 + v1) but v0 could be arbitrarily

close to v1.

4. Derivation of self-adaptive theta (SATh) schemes in one space di-
mension. We restrict to one space dimension; that is, to the governing equation

(4.1) ut +
(︁
f(u)

)︁
x
= 0, x ∈ R, t > 0.

Our computational mesh is defined by grid points · · · < xi−1/2 < xi+1/2 < xi+3/2 <
· · · and elements (or grid cells) Ii = [xi−1/2, xi+1/2]. For simplicity, we replace sub-
script E by i, rather than Ii.

We introduce the numerical flux function f̂ and restrict (2.2) and (2.5) to one

space dimension. Denoting f̂ i+1/2 = f̂ |xi+1/2
, the result is

ūn+1
i = ūn

i − 1

∆xi

∫︂ tn+1

tn

(︁
f̂ i+1/2 − f̂ i−1/2

)︁
dt,(4.2)

ũ̄
n+1
i = ūn

i − 1

∆xi

∫︂ tn+1

tn

(︁
f̂ i+1/2 − f̂ i−1/2

)︁ tn+1 − t

∆tn+1 dt.(4.3)

4.1. The SATh scheme using upstream weighting. When the flux function
f is monotone in u, say f ′(u) > 0, then we can use simple one point upstream

weighting stabilization, i.e., f̂ i+1/2 = f̄ i = f(ūi). We apply DAQ to the integrals in
(4.2)–(4.3) to obtain the self-adaptive theta upstream weighted (SATh-up) scheme

ūn+1
i = ūn

i − ∆tn+1

∆xi

[︁
f̄
n
i + θn+1

i (f̄
n+1
i − f̄

n
i )− f̄

n
i−1 − θn+1

i−1 (f̄
n+1
i−1 − f̄

n
i−1)

]︁
,(4.4)

ũ̄
n+1
i = ūn

i − ∆tn+1

2∆xi

[︁
f̄
n
i + (θn+1

i )2(f̄
n+1
i − f̄

n
i )(4.5)

− f̄
n
i−1 − (θn+1

i−1 )
2(f̄

n+1
i−1 − f̄

n
i−1)

]︁
,

where, for some ϵ ≥ 0,

(4.6) θn+1
i =

⎧⎪⎨⎪⎩max

(︃
1

2
,
ũ̄
n+1
i − ūn

i

ūn+1
i − ūn

i

)︃
if |ūn+1

i − ūn
i | > ϵ,

θ∗ if |ūn+1
i − ūn

i | ≤ ϵ.

The restriction θn+1
i ≥ 1/2 will be explained in §5.1. We take ϵ very small (even zero)

and θ∗ = 1 (backward Euler) or possibly θ∗ = 1/2 (Crank-Nicolson). We will discuss
these issues in §7 on numerical results.
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4.2. The SATh scheme using Lax-Friedrichs stabilization. For a general
flux function f , we can use Lax-Friedrichs stabilization, posed in terms of the maxi-
mum wave speed

(4.7) αLF = max
u

|f ′(u)|.

The numerical flux is

(4.8) f̂(u−, u+) =
1

2

[︁
f(u−) + f(u+)− αLF(u

+ − u−)
]︁
,

where at a point in space, u− and u+ are left and right limits of the solution (allowing
for discontinuities). We use simple one point upstream weighting to define these
quantities, so

(4.9) u−
i+1/2 = ūi and u+

i+1/2 = ūi+1.

In this case, we approximate (4.2)–(4.3) by applying the DAQ integration formulas
(3.8)–(3.9) to obtain the self-adaptive theta Lax-Friedrichs (SATh-LF) scheme

ūn+1
i = ūn

i − ∆tn+1

2∆xi

{︂
(4.10)

f̄
n
i+1 + θn+1

i+1 (f̄
n+1
i+1 − f̄

n
i+1)− f̄

n
i−1 − θn+1

i−1 (f̄
n+1
i−1 − f̄

n
i−1)

− αLF

[︁
ūn
i+1 + θn+1

i+1 (ū
n+1
i+1 − ūn

i+1)− 2ūn
i − 2θn+1

i (ūn+1
i − ūn

i )

+ ūn
i−1 + θn+1

i−1 (ū
n+1
i−1 − ūn

i−1)
]︁}︂

,

ũ̄
n+1
i = ūn

i − ∆tn+1

4∆xi

{︂
(4.11)

f̄
n
i+1 + (θn+1

i+1 )
2(f̄

n+1
i+1 − f̄

n
i+1)− f̄

n
i−1 − (θn+1

i−1 )
2(f̄

n+1
i−1 − f̄

n
i−1)

− αLF

[︁
ūn
i+1 + (θn+1

i+1 )
2(ūn+1

i+1 − ūn
i+1)− 2ūn

i − 2(θn+1
i )2(ūn+1

i − ūn
i )

+ ūn
i−1 + (θn+1

i−1 )
2(ūn+1

i−1 − ūn
i−1)

]︁}︂
,

where (4.6) defines θn+1
i .

5. Properties of the upstream weighted scheme (SATh-up). Analysis of
the scheme using Lax-Friedrichs stabilization (4.10)–(4.11) is complicated by the fact
that waves can move in both directions. However, the upstream weighted scheme
(4.4)–(4.5) is amenable to a more straightforward analysis. We analyze the upstream
weighted scheme under a mild monotonicity condition on the flux function f , namely,
that f(0) = 0 and f ′(u) > 0 for u ̸= 0.

5.1. Nonlinear stability for a monotone flux. We show that the upstream
weighted scheme (4.4)–(4.5) is stable, provided only that one sets a lower bound
on θn+1

i ≥ 1/2. That is, it is unconditionally stable in terms of the discretization
parameters. Both the backward Euler method and the Crank-Nicolson method are
stable, so the proof does not require that we analyze carefully the definition of θn+1

i .

Theorem 5.1. Assume that f(0) = 0 and f ′(u) ≥ 0 for all u ∈ R (but not
identically zero). If the SATh-up scheme (4.4)–(4.5) is posed on a finite interval with
a boundary condition imposed on the left, then the scheme is stable provided that

θn+1
i ≥ 1

2
− ∆xi

αLF∆tn+1 ,
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where the maximum wave speed αLF is defined in (4.7). Moreover, the scheme is
unconditionally stable and independent of all problem parameters provided that θn+1

i ≥
1/2.

Proof. Let

δni =

⎧⎪⎨⎪⎩
f̄
n
i

αLFūn
i

if ūn
i ̸= 0,

0 if ūn
i = 0,

and note that δni ∈ [0, 1], since δni =
f(ūn

i )− f(0)

αLF(ūn
i − 0)

when un
i ̸= 0. The scheme (4.4)–

(4.5) can be expanded to three equations in three unknowns ūn+1
i , ũ̄

n+1
i , and f̄

n+1
i

by including the equation

(5.1) f̄
n+1
i = αLF δn+1

i ūn+1
i .

In this expanded form, we may view the scheme in terms of the variables

(5.2) ξn = (. . . , ūn
i−1, f̄

n
i−1, ũ̄

n
i−1, ū

n
i , f̄

n
i , ũ̄

n
i , . . .)

T

as Aξn+1 = Bξn+bn+1, where bn+1 represents the boundary condition. The matrices
A and B are block 3 × 3 lower triangular. The eigenvalues of the matrix A−1B are
the eigenvalues of A−1

d Bd, where Ad and Bd are the diagonal blocks. In terms of

λ̂i = ∆tn+1/∆xi, the ith blocks are

(5.3) Ad =

⎡⎣ 1 λ̂iθ
n+1
i 0

−αLFδ
n+1
i 1 0

0 λ̂i(θ
n+1
i )2/2 1

⎤⎦ , Bd =

⎡⎣1 −λ̂i(1− θn+1
i ) 0

0 0 0

1 −λ̂i

(︁
1− (θn+1

i )2
)︁
/2 0

⎤⎦ .

It is not difficult to compute the eigenvalues of A−1
d Bd, and they are 0, 0, and

(5.4)
1− αLFλ̂i(1− θn+1

i )δn+1
i

1 + αLFλ̂iθ
n+1
i δn+1

i

,

provided that the denominator does not vanish (the denominator is detAd, so the
condition is simply that Ad is invertible). The scheme is stable to rounding error
provided that the absolute values of the eigenvalues are bounded by 1; that is, if
1 + αLFλ̂iθ

n+1
i δn+1

i > 0 and

−1− αLFλ̂iθ
n+1
i δn+1

i ≤ 1− αLFλ̂i(1− θn+1
i )δn+1

i ≤ 1 + αLFλ̂iθ
n+1
i δn+1

i .

The upper bound holds trivially, and the lower bound holds if and only if δn+1
i = 0

(and θn+1
i is unconstrained) or

θn+1
i ≥ αLFλ̂iδ

n+1
i − 2

2αLFλ̂iδ
n+1
i

=
1

2
− 1

αLFλ̂iδ
n+1
i

.

In either case, 1 + αLFλ̂iθ
n+1
i δn+1

i > 0. Since δn+1
i ∈ [0, 1], the proof is complete.
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5.2. Satisfaction of the maximum principle and TVB/TVD property in
a monotone setting. The maximum principle does not hold for the Crank-Nicolson
method, so we must analyze carefully the way in which θn+1

i is set within the overall
scheme. For the analysis, we need to assume a monotone flow, as would occur for a
Riemann shock or rarefaction problem.

Theorem 5.2. Assume that f is strictly monotone increasing and ϵ = 0 in (4.6),
and that the SATh-up scheme (4.4)–(4.5), (4.6) is posed on a finite interval with a
boundary condition imposed on the left (so ūn

0 is given for all n). If the boundary and
initial conditions of the flow satisfy the monotone decreasing property

(5.5) ūn
0 ≤ ūn+1

0 ∀n ≥ 0 and ū0
i ≤ ū0

i−1 ∀i ≥ 1,

then the scheme satisfies the maximum principle in the sense that

(5.6) ūn
i ≤ ūn+1

i ≤ ūn+1
i−1 ∀n ≥ 0, i ≥ 1.

Moreover, if the inequalities involving ū are reversed, so that

(5.7) ūn
0 ≥ ūn+1

0 ∀n ≥ 0 and ū0
i ≥ ū0

i−1 ∀i ≥ 1,

then

(5.8) ūn
i ≥ ūn+1

i ≥ ūn+1
i−1 ∀n ≥ 0, i ≥ 1.

Proof. We prove the theorem by an inductive argument. The result (5.6) holds
initially where (i, n) = (i,−1) ∀i ≥ 1 and on the boundary where (i, n) = (0, n) ∀n ≥
0, provided we define ū−1

i = ū0
i and ūn+1

−1 = ūn+1
0 . We need to show that if it holds

for (i, n−1) and (i−1, n), then it also holds for (i, n), which will give the result for all
i and n. To be specific, for fixed i ≥ 1 and n ≥ 0, we make the induction hypothesis

(5.9) ūn
i ≤ ūn

i−1 and ūn
i−1 ≤ ūn+1

i−1 (i.e., ūn
i ≤ ūn

i−1 ≤ ūn+1
i−1 ),

and we show (5.6) for the same i and n. By (strict) monotonicity of f , we also have

(5.10) f̄
n
i ≤ f̄

n
i−1 ≤ f̄

n+1
i−1 .

In the case that ūn+1
i = ūn

i , it is trivial to check that the induction continues. So
we consider the case when ūn+1

i ̸= ūn
i . To handle the nonlinearity in f , we define

δi =
f̄
n+1
i − f̄

n
i

ūn+1
i − ūn

i

> 0,

suppressing the index n. To handle the lower bound on θn+1
i in (4.6), we define

(5.11) ηi = θn+1
i − ũ̄

n+1
i − ūn

i

ūn+1
i − ūn

i

≥ 0,

so that ũ̄
n+1
i −ūn

i = wi(θ
n+1
i −ηi), where we find it convenient to define wi = ūn+1

i −ūn
i ,

and also λ̂ = ∆tn+1/∆xi. Then (4.4)–(4.5) can be written as

(1 + λ̂θn+1
i δi)wi = −λ̂

[︁
(f̄

n
i − f̄

n
i−1)− θn+1

i−1 (f̄
n+1
i−1 − f̄

n
i−1)

]︁
= −λ̂A,(5.12)

2wi

[︁
θn+1
i − ηi + (λ̂/2)(θn+1

i )2δi
]︁

(5.13)

= −λ̂
[︁
(f̄

n
i − f̄

n
i−1)− (θn+1

i−1 )
2(f̄

n+1
i−1 − f̄

n
i−1)

]︁
= −λ̂B.
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By (5.10), we conclude that A ≤ 0 and B ≤ 0, and in fact A = 0 if and only if B = 0.
Now (5.12) implies that wi ≥ 0, hence wi > 0. That is, ūn

i < ūn+1
i , which gives half

of what must be shown in (5.6).
Substitute wi from (5.12) into (5.13) to obtain that

2
[︁
θn+1
i − ηi + (λ̂/2)(θn+1

i )2δi
]︁
A = (1 + λ̂θn+1

i δi)B.

This is a quadratic equation in θn+1
i ,

(λ̂Aδi)(θ
n+1
i )2 + (2A− λ̂Bδi)θ

n+1
i − (2Aηi +B) = 0.

If A = 0, then (5.12) implies that wi = 0. But we are working in the case where
wi ̸= 0, so we conclude that A < 0, and so also B < 0. Since δi > 0, the equation for
θn+1
i is strictly quadratic. The two solutions are

θn+1
i =

1

2λ̂Aδi

[︂
− 2A+ λ̂Bδi ±

√︂
(2A− λ̂Bδi)2 + 4λ̂Aδi(2Aηi +B)

]︂
=

1

2λ̂Aδi

[︂
− 2A+ λ̂Bδi ±

√︂
(2A)2 + (λ̂Bδi)2 + 8λ̂A2δiηi

]︂
.

The solution which adds the square root would yield a negative θn+1
i , but θn+1

i ≥ 1/2,
so we must take the solution which subtracts the square root. Then

(5.14) 1 + λ̂θn+1
i δi =

λ̂Bδi
2A

+

√︄
1 +

(︂ λ̂Bδi
2A

)︂2

+ 2λ̂δiηi >
λ̂Bδi
A

> 0.

Returning to (5.12), we have that

wi = − λ̂A

1 + λ̂θn+1
i δi

< − A2

Bδi

=

[︁
θn+1
i−1 (f̄

n+1
i−1 − f̄

n
i−1)− (f̄

n
i − f̄

n
i−1)

]︁2[︁
(θn+1

i−1 )
2(f̄

n+1
i−1 − f̄

n
i−1)− (f̄

n
i − f̄

n
i−1)

]︁
δi

=
1

δi
g(θn+1

i−1 ).

The function g(θ) =
(aθ + b)2

aθ2 + b
in our case has a = (f̄

n+1
i−1 − f̄

n
i−1) ≥ 0 and b =

−(f̄
n
i − f̄

n
i−1) ≥ 0, and at least one of a and b is strictly positive (since A < 0 and

B < 0). If a = 0, g(θ) = b = a + b, and otherwise the maximum of g on [1/2,∞)
occurs at θ = 1. The maximum is a+ b in either case, so

wi ≤
1

δi

[︁
(f̄

n+1
i−1 − f̄

n
i−1)− (f̄

n
i − f̄

n
i−1)

]︁
=

f̄
n+1
i−1 − f̄

n
i

f̄
n+1
i − f̄

n
i

wi,

and we conclude that 1 ≤
f̄
n+1
i−1 − f̄

n
i

f̄
n+1
i − f̄

n
i

. Since the numerator is positive by (5.10), so

also is the denominator, and we conclude that

f̄
n+1
i − f̄

n
i ≤ f̄

n+1
i−1 − f̄

n
i and then f̄

n+1
i ≤ f̄

n+1
i−1 .

This then implies that ūn+1
i ≤ ūn+1

i−1 , and the other half of (5.6) has been shown. This
completes the induction.

For the reverse inequalities (5.7), A ≥ 0 and B ≥ 0, and an entirely similar
argument gives the result (5.8).
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As a corollary of the proof, we have the following result.

Corollary 5.3. Assume the hypotheses of Theorem 5.2 and that θ∗ ∈ [1/2, 1]

in (4.6). If ũ̄
n+1
0 satisfies the monotonicity property that it lies between ūn

0 and ūn+1
0

∀n ≥ 0, then θn+1
i ∈ [1/2, 1] ∀n ≥ 0, i ≥ 1. Moreover, if θ∗ = 1, then ũ̄

n+1
i lies

between ūn
i and ūn+1

i ∀n ≥ 0, ∀i ≥ 1.

The corollary does not hold in general, but it holds in the case of a monotone
flow, i.e., when either (5.5) or (5.7) holds.

Proof. We prove θn+1
i ≤ 1 for all n ≥ 0 and i ≥ 1 by induction on i. By the

monotonicity assumption on ũ̄
n+1
0 , θn+1

0 ≤ 1 ∀n ≥ 0. So assume by induction that
θn+1
i−1 ≤ 1. The case of ūn

i = ūn+1
i leads to θn+1

i = θ∗ ≤ 1, so consider the case

ūn
i ̸= ūn+1

i . We conclude that the A and B defined in (5.12)–(5.13) satisfy

B

2A
=

(θn+1
i−1 )

2(f̄
n+1
i−1 − f̄

n
i−1)− (f̄

n
i − f̄

n
i−1)

2
[︁
θn+1
i−1 (f̄

n+1
i−1 − f̄

n
i−1)− (f̄

n
i − f̄

n
i−1)

]︁ ≤ 1

2

(recalling that a = (f̄
n+1
i−1 − f̄

n
i−1) and b = −(f̄

n
i − f̄

n
i−1) have the same sign and both

do not vanish). We remark that if θn+1
i > 1/2, then ηi = 0 in (5.11). Since we are

trying to eliminate the case that θn+1
i > 1, we can assume that ηi = 0. Returning to

(5.14), we have that

θn+1
i =

B

2A
+

√︄(︂ 1

λ̂δi

)︂2

+
(︂ B

2A

)︂2

− 1

λ̂δi
≤ 1

2
+

√︄(︂ 1

λ̂δi

)︂2

+
1

4
− 1

λ̂δi
≤ 1,

and the induction is complete.

We now prove the result for ũ̄
n+1
i . Provided that ūn+1

i ̸= ūn
i ,

1 ≥ θn+1
i ≥ ũ̄

n+1
i − ūn

i

ūn+1
i − ūn

i

.

To continue, assume the monotonicity condition (5.5), so that also (5.6) holds. We

conclude that ũ̄
n+1
i ≤ ūn+1

i , one side of the bound on ũ̄
n+1
i . For the other bound,

suppose to the contrary that ũ̄
n+1
i < ūn

i so that θn+1
i = 1/2. Then (4.5) implies that

ũ̄
n+1
i = ūn

i − λ̂

2

[︂
(f̄

n
i − f̄

n
i−1) +

1

4
(f̄

n+1
i − f̄

n
i )− (θn+1

i−1 )
2(f̄

n+1
i−1 − f̄

n
i−1)

]︂
.

The right side is minimized by θn+1
i−1 = 1/2, so

ũ̄
n+1
i ≥ ūn

i − λ̂

2

[︂1
4
(f̄

n+1
i − f̄

n+1
i−1 ) +

3

4
(f̄

n
i − f̄

n
i−1)

]︂
≥ ūn

i .

Thus when ūn+1
i ̸= ūn

i , we conclude that ūn
i ≤ ũ̄

n+1
i ≤ ūn+1

i . Assuming the mono-
tonicity condition (5.7) leads similarly to the opposite inequalities.

In case ūn+1
i = ūn

i , the right hand side of (4.4) reduces to ūn
i . But, by assumption,

θn+1
i = θ∗ = 1 in this case, so the right hand side of (4.5) also reduces to ūn

i , which

shows that ūn
i = ũ̄

n+1
i = ūn+1

i .

In the monotone decreasing or increasing cases of Theorem 5.2, it is straightfor-
ward to compute the total variation (TV) of ūn. In the monotone decreasing case
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(5.5), it is

(5.15) TV(ūn) =

∞∑︂
i=1

|ūn
i−1 − ūn

i | =
∞∑︂
i=1

(ūn
i−1 − ūn

i ).

As a corollary of Theorem 5.2, we can then show that the scheme is total variation
bounded (TVB) and total variation diminishing (TVD) under appropriate hypotheses.

Corollary 5.4. Assume the hypotheses of Theorem 5.2. If there is a constant
M ≥ 0 such that |un

0 | ≤ M and |u0
i | ≤ M for all n ≥ 0 and i ≥ 0, then the SATh-up

scheme is TVB, i.e.,

(5.16) TV(ūn) ≤ 2M.

Moreover, if also ūn+1
0 = ūn

0 , then the scheme is TVD, i.e.,

(5.17) TV(ūn+1) ≤ TV(ūn).

Proof. In the monotone decreasing case (5.5)–(5.6), ūn
i ≤ ūn+1

i , which implies
that for all i, −M ≤ ū0

i ≤ ū1
i ≤ · · · ≤ ūn

i . The sum in (5.15) collapses, so

TV(ūn) = lim
imax→∞

imax∑︂
i=1

(ūn
i−1 − ūn

i ) ≤ ūn
0 − lim inf

imax→∞
ūn
i ≤ 2M.

Moreover, when ūn+1
0 = ūn

0 ,

TV(ūn)− TV(ūn+1) = lim
imax→∞

imax∑︂
i=1

[︁
(ūn

i−1 − ūn
i )− (ūn+1

i−1 − ūn+1
i )

]︁
= lim

imax→∞

imax∑︂
i=1

[︁
(ūn

i−1 − ūn+1
i−1 )− (ūn

i − ūn+1
i )

]︁
≥ (ūn

0 − ūn+1
0 )− lim sup

imax→∞
(ūn

imax
− ūn+1

imax
)

= lim inf
imax→∞

(ūn+1
imax

− ūn
imax

) ≥ 0.

The monotone increasing case (5.7)–(5.8) is shown in a similar way.

6. Extension to higher space dimensions. Extension of low order finite vol-
ume methods to general meshes in higher dimensions is nontrivial, even using back-
ward Euler time stepping, since the classic two point flux may not be orthogonal to
the mesh element edge. However, it is easy to extend to rectangular meshes. While
this could be done using Strang splitting [17] into one dimensional problems, we dis-
cuss here a genuine multidimensional extension of the SATh scheme. We illustrate
the ideas for the scalar equation in two space dimensions, namely,

(6.1) ut +
(︁
f(u)

)︁
x
+
(︁
g(u)

)︁
y
= 0, (x, y) ∈ R2, t > 0.

We fix a rectangular mesh of grid points by choosing · · · < xi−1/2 < xi+1/2 <
xi+3/2 < · · · and · · · < yj−1/2 < yj+1/2 < yj+3/2 < · · · for each coordinate direction,
and we let Iij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], ∆xi = xi+1/2 − xi−1/2, and ∆yj =
yj+1/2 − yj−1/2. For simplicity, we replace subscript E by ij, rather than Iij .
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Suppose that there is a shock or contact discontinuity within the space-time cell
Iij × [tn, tn+1] at time τij(x, y). Since we expect a low order of approximation, we
simply approximate τij(x, y) by a constant τ∗ij . Moreover, we assume that the solution
is constant in space and in time on either side of τ∗ij . To determine τ∗ij , consider that

∆tn+1ũ̄
n+1
ij =

∫︂ tn+1

tn
ūij(t) dt ≈ (τ∗ij − tn) ūn

ij + (tn+1 − τ∗ij) ū
n+1
ij ,

which implies that

(6.2) τ∗ij − tn =
ūn+1
ij − ũ̄

n+1
ij

ūn+1
ij − ūn

ij

∆tn+1 and θij =
tn+1 − τ∗ij

∆tn+1 =
ũ̄
n+1
ij − ūn

ij

ūn+1
ij − ūn

ij

.

Equation (2.2) posed over Iij reduces to

ūn+1
ij = ūn

ij −
1

∆xi∆yj

∫︂ tn+1

tn

{︃∫︂ yj+1/2

yj−1/2

[︁
f(u(xi+1/2, y, t)− f(u(xi−1/2, y, t))

]︁
dy

+

∫︂ xi+1/2

xi−1/2

[︁
g(u(x, yj+1/2, t))− g(u(x, yj−1/2, t))

]︁
dx

}︃
dt.

We use midpoint quadrature on each spatial interval to conclude (approximately) that

ūn+1
ij = ūn

ij −
1

∆xi

∫︂ tn+1

tn

[︁
f(u(xi+1/2, yj , t)− f(u(xi−1/2, yj , t))

]︁
dt(6.3)

− 1

∆yj

∫︂ tn+1

tn

[︁
g(u(xi, yj+1/2, t))− g(u(xi, yj−1/2, t))

]︁
dt.

We have reduced the flux integrals to two terms, each one varying only in one space
dimension. It is now straightforward to incorporate a numerical flux and apply the
DAQ rule as in the case for one dimension. Moreover, a similar procedure can be used
for (2.5).

7. Numerical results. We have theoretical proof that the SATh-up scheme
works well, but it is restricted to monotone flux functions. We show some numerical
results for SATh-up, but concentrate on the more general SATh-LF scheme (4.10)–
(4.11). Although we have no theory for this scheme, we will see that it satisfies the
results obtained for SATh-up. As should be expected, when the SATh-up scheme can
be used, it produces less numerical diffusion than SATh-LF.

In most of our figures, we plot the solution to the SATh scheme ū as a black line
and ũ̄ as a black dotted line. We compare SATh-LF with two other schemes, both
stabilized with the same Lax-Friedrichs numerical flux and using equivalent space
discretization, but the time stepping is either Crank-Nicolson (CN), shown in red, or
backward Euler (BE), shown in blue. Since SATh solves for both ū and ũ̄, we take
twice as many steps using the BE scheme (so it uses half the CFL number reported
for SATh). We also show the value of θ in magenta. For reference, we sometimes give
light green horizontal lines at the minimum and maximum values that u may take
(usually, but not always, at u = 0 and u = 1). In the case of linear transport, we
also compare SATh-LF with an implicit TVD scheme due to Yee [18], and plot its
results in purple. Like BE, we use twice as many time steps for Yee to present a fairer
comparison to SATh.
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Yee presents several TVD flux corrected transport schemes. They are finite dif-
ference schemes based on central differencing in space and use the theta method for
time stepping. We use the linearized scheme which is fully implicit, since the partially
implicit schemes (i.e., those with θ < 1) require a CFL-like time step constraint to
achieve the TVD property. The limiter function Q blends the higher order scheme
that uses central differencing in space with BE, which is simply upstream differencing
for the linear transport problem. We use the limiter function

Qi+1/2 = minmod
(︂
1,

ui − ui−1

ui+1 − ui

)︂
+minmod

(︂
1,

ui+2 − ui+1

ui+1 − ui

)︂
− 1.

The unlimited scheme is unstable, but it is formally second order accurate in space
and first order in time.

Before proceeding, we remark that we will see test cases in which θ > 1. This
seems counterintuitive to our development of DAQ, but such values of θ arise in at
least two situations. First, when the denominator in (3.7) is close to zero, rounding
error can produce θ > 1. This possibility has no effect on the solution, however,
since the integrals (3.8)–(3.9) are well approximated. Second, θ > 1 may occur at
a peak or valley in the solution. In the notation of (3.7), a peak or valley will lead
to a mesh element where ṽ is larger or smaller than the endpoint values v0 and v1,
and so θ > 1 results. This possibility does not cause problems for the SATh scheme.
The explanation and development of DAQ given in Section 3 tacitly assumed that
0 ≤ θ ≤ 1, but the theoretical results do not in fact require this assumption. The
integrals in (3.8)–(3.9) are accurately approximated by an extrapolation procedure
rather than through interpolation when θ > 1.

Let H(x) denote the Heaviside function, which is zero for x < 0 and one for x > 0.

7.1. Implementation. Before presenting the results, we make a few comments
on the implementation of the scheme. We restrict the problem to [L0, L1]× [0, tmax],
and we impose either a periodic boundary condition or a Dirichlet boundary condition
on both sides of the spatial interval (for simplicity of implementation). The scheme
almost always develops instabilities if θ ≥ 1/2 is not enforced. We define wi =

ūn+1
i − ūn

i and vi = ũ̄
n+1
i − ūn

i and solve for these variables using a straightforward
implementation of Newton’s method with the initial guess wi = 0 and vi = ũ̄

n
i − ūn

i .
Recall the two parameters ϵ and θ∗ in the definition of θ, (4.6). We found that

the value of ϵ has little effect on the solution, as long as it is small (say ϵ ≤ 10−6).
The value ϵ = 0 seems to work well, but in principle it could lead to floating point
overflow. We therefore took ϵ = 10−100. We also found that the value of θ∗ has little
effect on the converged solution. However, the first Newton iteration will use θ = θ∗

(since then wi = 0). We found that for this first iteration, taking θ∗ = 1 enabled
Newton’s method to converge faster. After the first Newton iteration, one can revert
to θ∗ = 1/2, say, if one wishes.

We define θi as in (4.6) using a cut-off function κ. That is, we let

θi =

{︄
κ(θ̃i), θ̃i = vi/wi if |wi| > ϵ,

θ∗ if |wi| ≤ ϵ.

With the choice κ(θ̃) = max(1/2, θ̃), we recover the stated definition (4.6). Since
then κ′(θ̃) = 0.5(1 + sign(θ̃ − 0.5)) is not continuous, we took smoothed versions
of the function κ, with the intent to improve the Newton convergence. We found
that smoothing κ had little effect on the number of iterations. However, whatever
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instantiation of κ was chosen, it was seen to be important to use its correct derivative,
even when this derivative is discontinuous. The results we present below use no
smoothing.

In Newton’s method, it is important that the implementation of the derivatives
(i.e., the Jacobian matrix) of the function (4.10)–(4.11) can handle division by w in
θ̃ = v/w, since w can be quite small and even vanish. When |w| ≤ ϵ, we simply fix
θ = θ∗ and consider its derivatives with respect to w and v to be zero. So consider the
case when |w| > ϵ. The terms involving θ̃ = v/w in the function (4.10)–(4.11) have a
form like T = θp

(︁
f(w+ ūn)− f(ūn)

)︁
, p = 1, 2, so the derivatives can be computed as

∂T

∂w
= θp f ′(w + ūn)− pθp−1κ′(θ̃) θ̃

f(w + ūn)− f(ūn)

w
,

∂T

∂v
= pθp−1κ′(θ̃)

f(w + ūn)− f(ūn)

w
.

One should implement the derivatives this way, since the quantity
f(w + ūn)− f(ūn)

w
is the derivative of f at some point between w+ ūn and ūn, and so it is reasonable in
size.

We determined Newton’s method had converged when the size of the Newton
update met a tolerance of 10−6 times the quantity one plus the initial size of the
residual. Overall, our SATh-LF scheme converged in about 1-4 more iterations per
time step than the backward Euler scheme.

7.2. Linear transport in one space dimension. We consider first the linear
equation

(7.1) ut + ux = 0, L0 < x < L1, t > 0,

with unit speed, so αLF = 1. In this case, SATh-LF and SATh-up are the same
scheme, up to rounding error.

7.2.1. A contact discontinuity. We consider the linear advection equation
(7.1) with L0 = −0.1 and L1 = 0.9, the boundary condition u(L0, t) = 1 (and
u(L1, t) = 0, but the mass does not propagate that far in the simulation), and the
initial jump condition u(x, 0) = 1 − H(x) (H(x) is the Heaviside function). The
solution should be a contact discontinuity at x = t. We show the solution at time
t = 0.5 for four tests in Figure 7.1, using ∆x = 1/80, 1/160, 1/320 and ∆t = 5∆x (so
the CFL number is 5 and we use 8, 16, and 32 time steps) as well as ∆x = 1/160
and ∆t = 10∆x (CFL 10). As mentioned above, we plot the solution to the SATh-LF
scheme ū as a black line and ũ̄ as a dotted line. We compare the solution to standard
Lax-Friedrichs stabilized Crank-Nicolson (CN) time stepping in red. We also compare
to backward Euler (BE) in blue and Yee’s TVD scheme in purple, both of which use
twice as many time steps, i.e., CFL 2.5 and CFL 5.

We can see that Crank-Nicolson, although stable, displays excessive oscillation,
and both backward Euler and Yee’s scheme display excessive numerical diffusion.
The SATh-LF scheme, however, shows no oscillation, nearly the accuracy of CN,
and much less numerical diffusion compared to backward Euler and TVD flux-limited
scheme of Yee. The solution remains stable and monotone (cf. Theorems 5.1 and 5.2).
For reference, the value of θ is shown in magenta. For this problem, SATh-LF uses
Crank-Nicolson (θ = 1/2) over most of the domain, but improves on backward Euler
by maintaining 1/2 ≤ θ < 1. (That θ ≤ 1 is consistent with Corollary 5.3.)
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ū
,
ū̃
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Fig. 7.1. Contact discontinuity at t = 0.5, using ∆x = 1/80 (top left), ∆x = 1/160 (top right),
and ∆x = 1/320 (bottom left) with ∆t = 5∆x (CFL 5), as well as ∆x = 1/160 (bottom right) with
∆t = 10∆x (CFL 10) (although BE and Yee use CFL/2).

Table 7.1
Contact discontinuity at t = 0.5, error and convergence order for SATh, BE, CN, and Yee

using m = 1/∆x cells and ∆t = 5∆x (CFL 5, but BE and Yee use CFL 2.5).

SATh BE CN Yee
m L1

∆x err. order L1
∆x err. order L1

∆x err. order L1
∆x err. order

40 1.045e-1 0.414 1.528e-1 0.328 1.195e-1 0.523 1.356e-1 0.353
80 7.348e-2 0.508 1.140e-1 0.423 7.740e-2 0.626 9.971e-2 0.444
160 5.066e-2 0.536 8.198e-2 0.475 4.984e-2 0.635 7.120e-2 0.486
320 3.490e-2 0.538 5.835e-2 0.491 3.313e-2 0.589 5.103e-2 0.481
640 2.411e-2 0.533 4.141e-2 0.495 2.264e-2 0.549 3.657e-2 0.481

We computed the total variation of SATh-LF, backward Euler, and Yee’s scheme.
As we would hope from Corollary 5.4, the total variation remained one for all three
schemes.

The computed discrete L1 error and convergence order are given in Table 7.1. It
shows an order of convergence O(∆x1/2) for all the schemes, as one should expect for
a pure contact discontinuity. In spite of the convergence theory for DAQ, we do not
see O(∆x) for SATh since θ ≥ 1/2 is enforced to maintain stability.

7.2.2. Convergence for a smooth problem. We test our scheme, CN, BE,
and Yee in the simple case of constant linear transport (7.1) with L0 = 0 and L1 = 2,
the initial condition u0(x) = 0.5 + sin(πx), and periodic boundary conditions. We
observe in Table 7.2 a first order rate of convergence for the schemes in the discrete L1

norm at moderate (5) CFL. At high (20) CFL, SATh and CN converge a bit better,
while BE and Yee converge a bit worse. Results in the L∞ norm are also given in the
table.

In light of Theorem 3.4, one might have expected to see second order convergence
for SATh-LF, and moreover, third order for CN and second order for Yee. However,
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the accuracy of SATh-LF and CN are limited to first order accuracy since we use
simple one point upstream weighting. The unlimited Yee scheme (central differencing
in space) is an unstable scheme, and so flux limiting is required to maintain stability
and achieve the TVD property even for a smooth problem, making it behave more
like BE. Moreover, SATh is also limited by the stability requirement that θ ≥ 1/2, so
the full accuracy of DAQ is not realized. We remark that we have observed second
order convergence in some tests when a higher order flux stabilization is used (such
as one based on WENO reconstruction); however, the maximum principle is lost in
those cases.

Table 7.2
Smooth linear transport error and convergence order for SATh-LF, BE, CN, and Yee at t = 2,

using m = 2/∆x mesh cells.

SATh-LF BE CN Yee
CFL 5 CFL 2.5 CFL 5 CFL 2.5

m L1
∆x err. order L1

∆x err. order L1
∆x err. order L1

∆x err. order
80 3.114e-1 1.041 7.319e-1 0.510 2.854e-1 0.937 6.244e-1 0.598
160 1.531e-1 1.025 4.453e-1 0.717 1.486e-1 0.941 3.664e-1 0.769
320 7.711e-2 0.989 2.470e-1 0.850 7.626e-2 0.963 1.992e-1 0.879
640 3.883e-2 0.990 1.303e-1 0.923 3.868e-2 0.979 1.042e-1 0.935

m L∞
∆x err. order L∞

∆x err. order L∞
∆x err. order L∞

∆x err. order
80 2.953e-1 0.877 5.747e-1 0.509 2.241e-1 0.934 4.944e-1 0.593
160 1.500e-1 0.977 3.497e-1 0.717 1.167e-1 0.941 2.891e-1 0.774
320 7.371e-2 1.025 1.940e-1 0.850 5.990e-2 0.963 1.570e-1 0.881
640 3.571e-2 1.046 1.023e-1 0.923 3.038e-2 0.979 8.203e-2 0.936

CFL 20 CFL 10 CFL 20 CFL 10
m L1

∆x err. order L1
∆x err. order L1

∆x err. order L1
∆x err. order

80 9.159e-1 0.503 1.205e-0 0.161 1.103e-0 0.964 1.184e-0 0.187
160 4.149e-1 1.142 9.381e-1 0.361 3.799e-1 1.538 9.042e-1 0.389
320 1.448e-1 1.519 6.237e-1 0.589 1.224e-1 1.634 5.947e-1 0.605
640 4.781e-2 1.598 3.655e-1 0.771 4.590e-2 1.415 3.437e-1 0.791

m L∞
∆x err. order L∞

∆x err. order L∞
∆x err. order L∞

∆x err. order
80 6.921e-1 0.571 9.467e-1 0.159 8.656e-1 0.967 9.318e-1 0.186
160 3.819e-1 0.858 7.368e-1 0.362 2.984e-1 1.537 7.126e-1 0.387
320 1.805e-1 1.081 4.898e-1 0.589 9.615e-2 1.634 4.675e-1 0.608
640 8.228e-2 1.133 2.871e-1 0.771 3.605e-2 1.415 2.705e-1 0.789

7.2.3. Shu’s linear test. We next consider a standard test problem [9], often
called Shu’s linear test. The initial profile is defined over x ∈ [0, 2], contains discon-
tinuous jumps and smooth regions, and imposes periodic boundary conditions. The
test is designed for high order methods, so we should not expect to see particularly
good results, but only some improvement for SATh over the backward Euler results.

The results are shown in Figure 7.2, where we have used ∆x = 1/320 and advanced
to time t = 2, which is one period. The initial profile is shown in green (and is the
exact solution at t = 2). The left plot uses CFL 0.5, and SATh-LF and CN give
essentially the same solution (i.e., the red line is covered by the black line). We also
show forward Euler (FE) in cyan, which of course is more accurate than most of the
implicit schemes, although Yee’s scheme is slightly better than FE in this test (recall
that Yee uses twice the number of time steps).
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Fig. 7.2. Shu’s linear test at t = 2, using ∆x = 1/320 and ∆t = ∆x/2 (CFL 0.5) on the
left and ∆t = 8∆x (CFL 8) on the right (although BE and Yee use half the CFL step). The true
solution is shown in green, and forward Euler (FE) results on the left are shown in cyan. The total
variation for SATh-LF, BE, and Yee are shown on the bottom.

The right plot uses CFL 8. As expected, there is significant numerical diffu-
sion; however, we see considerable improvement for SATh-LF (black) over BE (blue).
Moreover, SATh-LF shows little degradation from CN (red) for the larger CFL, but
this is not so for BE. Yee’s scheme (purple) reverts closer and closer to BE as the CFL
increases (and more limiting is needed). One should note that θ > 1 often occurs at
a local extrema in the solution.

The total variation for SATh-LF and BE are shown on the bottom line of Fig-
ure 7.2. The SATh-LF, BE, and Yee schemes display the TVD property for this
example, with SATh-LF dissipating the total variation at a better (i.e., slower) rate
than BE, and much better than Yee’s scheme at the higher CFL.

7.3. Burgers equation in one space dimension. Next we consider Burgers
equation with the flux function f(u) = u2/2, i.e.,

(7.2) ut + uux = 0, L0 < x < L1, t > 0.

7.3.1. A Riemann shock. The first test is for a Riemann shock, implemented
as in the case of a contact discontinuity above (L0 = −0.1, L1 = 0.9, u(x, 0) =
1 − H(x), u(L0, t) = 1, and u(L1, t) = 0). For this problem, αLF = 1. We show
the results in Figure 7.3, for a test at CFL 4 and both low (∆x = 1/20), medium
(∆x = 1/40), and high ∆x = 1/80) resolution. We also show ∆x = 1/40 at CFL 8.

We see results similar to the contact discontinuity. The three schemes correctly
predict the speed of the shock. SATh-LF has less numerical diffusion compared to
backward Euler, and predicts the shock about as well as CN, which oscillates un-
acceptably. The SATh-LF solution remains stable and monotone (as suggested by
Theorems 5.1 and 5.2). The total variation also remains 1 for both SATh-LF and BE
at CFL 4 and 8. At the higher CFL, we see a degradation in the overall approxima-
tion for all three schemes, but the comparisons remain the same (i.e., SATh-LF is the
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most accurate without introducing oscillatory behavior).
At very high CFL (greater than about 10), we have difficulty solving the equations,

but it appears that the SATh-LF solution may not be TVD. A slight oscillation arises
at the location of the shock at the first time step, with the total variation being 1.005.
The second time step appears to be fine, and the solution is TVD from then on. If
SATh-LF is TVD, it may be so only with some conditions.

We remark that we also ran this example with the SATh-up scheme. We found
that Theorem 5.2 and Corollary 5.4 hold as expected. The solution remains monotone
and the total variation is one, even with tests using CFL 200.
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Fig. 7.3. Burgers Riemann shock discontinuity at t = 1, using ∆x = 1/20 (top left), ∆x = 1/40
(top right), and ∆x = 1/80 (bottom left) with ∆t = 4∆x (CFL 4), as well as ∆x = 1/40 (bottom
right) with ∆t = 5∆x (CFL 8) (although BE uses CFL/2).

The contact discontinuity and the Riemann shock differ in the observed conver-
gence rate. As shown in Table 7.3 for CFL 4, the SATh-LF scheme convergences
with first order accuracy. As is well known, the shock is in some sense self-sharpening
(since characteristics converge at the shock), and so this problem is actually better
behaved than the contact discontinuity of Table 7.1.

Table 7.3
Burgers Riemann shock at t = 1.0, error and convergence order for SATh-LF, BE, and CN

using m = 1/∆x and ∆t = 4∆x (CFL 4, BE uses CFL 2).

SATh-LF BE CN
m L1

∆x error order L1
∆x error order L1

∆x error order
20 8.724e-02 —— 1.047e-01 —— 8.150e-02 ——
40 4.443e-02 0.973 5.529e-02 0.921 4.105e-02 0.989
80 2.225e-02 0.998 2.792e-02 0.986 2.055e-02 0.998
160 1.112e-02 1.001 1.396e-02 1.000 1.028e-02 0.999
320 5.562e-03 0.999 6.982e-03 1.000 5.138e-03 1.001
640 2.781e-03 1.000 3.491e-03 1.000 2.569e-03 1.000
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Table 7.4
Burgers Riemann shock at t = 1.0, computational efficiency study.

Scheme ∆t CFL CPU time Average number
(µs) of Newton iterations

SATh-LF 1/20 4 1364.65 5.05
BE 1/40 2 770.90 4.00
BE 1/100 0.8 1471.15 3.03

We use this problem to conduct a study of the computational efficiency of SATh-
LF versus BE. For this test, we implemented the schemes using the C++ programming
language and used identical programming style for each scheme. The linear systems
are solved using the LAPACK [1] double precision banded solver routine. We ran the
simulations using a fixed ∆x = 1/80 and final simulation time t = 1.0. (The solutions
were depicted earlier in Fig. 7.3, lower left.)

We report measurements in Table 7.4, which gives the overall CPU time used by
the computer program for each scheme (in microseconds) and the average number of
Newton iterations used per time step. The CPU time varies from run to run, but we
reported typical average values. We compare SATh-LF using ∆t = 1/20 (CFL 4) and
BE using both ∆t = 1/40 (CFL 2) and ∆t = 1/100 (CFL 0.08). The latter test was
chosen because the SATh-LF and BE schemes produce nearly the same solution for
∆t = 1/100 (although there is still slightly more numerical dissipation for BE), while
∆t = 1/80 (CFL 1) gave noticeably different solutions. As one can see, the SATh-LF
scheme is relatively efficient compared to BE. For the same quality of solution, it is a
little faster than BE, which requires a CFL below 1 in this test.

Table 7.5
Burgers Riemann rarefaction at t = 0.25, L1 and L∞ error and convergence order for SATh-

LF, BE, and CN using m = 1/∆x cells and ∆t = 5∆x (CFL 5, BE uses CFL 2.5).

SATh-LF BE CN
m L1

∆x error order L1
∆x error order L1

∆x error order
40 4.658e-02 0.759 5.068e-02 0.736 3.958e-02 0.862
80 2.716e-02 0.778 2.978e-02 0.767 2.247e-02 0.817
160 1.562e-02 0.798 1.799e-02 0.727 1.325e-02 0.762
320 8.858e-03 0.818 1.104e-02 0.704 7.661e-03 0.790
640 4.962e-03 0.836 6.761e-03 0.707 4.359e-03 0.814

m L∞
∆x error order L∞

∆x error order L∞
∆x error order

40 1.892e-01 0.315 2.221e-01 0.218 1.671e-01 1.388
80 1.495e-01 0.340 1.839e-01 0.272 1.265e-01 0.402
160 1.146e-01 0.384 1.478e-01 0.315 1.016e-01 0.316
320 8.568e-02 0.420 1.159e-01 0.351 7.890e-02 0.365
640 6.285e-02 0.447 8.919e-02 0.378 5.936e-02 0.411

7.3.2. A Riemann rarefaction. We also consider Burgers equation with a Rie-
mann rarefaction, implemented as u(0, t) = 0, u(1, t) = 1, and u(x, 0) = 1. Again
αLF = 1. We show the results for CFL 5 in Figure 7.4 using ∆x = 1/40 and ∆x = 1/80
resolution. All three schemes work reasonably well, although CN oscillates unaccept-
ably and SATh-LF has less numerical diffusion than backward Euler. The SATh-LF
solution remains stable and monotone (as suggested by Theorems 5.1 and 5.2 and
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Corollary 5.3). The total variation also remains 1 for both SATh-LF and BE. The
rate of convergence of SATh-LF in both the discrete L1 and L∞ norms is given in
Table 7.5 for CFL 5. It appears to be approaching a convergence rate of 1 in L1 and
1/2 in L∞ as ∆x is refined.
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Fig. 7.4. Burgers Riemann rarefaction at t = 0.25, using ∆x = 1/40 (left) and ∆x = 1/80
(right) and ∆t = 5∆x (CFL 5) (although BE uses half the CFL step).

7.3.3. Shock formation. Finally, we can simulate shock formation by, e.g.,
imposing periodic boundary conditions and the initial sine wave condition u0(x) =
0.5 + sin(πx) over x ∈ [0, 2]. For this problem, the solution lies in the interval
[−0.5, 1.5], so αLF = 1.5 and the characteristics move in both the positive and nega-
tive directions. The shock forms at time 1/π = 0.318. Results are shown in Figure 7.5
for ∆x = 1/100 and CFL 5 at times 0.2, 0.4, and 0.6. The shock forms cleanly, with
SATh-LF giving a solution about as accurate as CN, although the CN solution oscil-
lates a bit, and the BE solution is more diffuse. The total variation should remain
constant until the shock forms (it reduces a little), and it should reduce after the
shock forms (as it does). In both regimes, however, SATh-LF improves on the BE
results.
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Fig. 7.5. Burgers shock formation, using ∆x = 1/100 and ∆t = 1/30 (CFL 5) at times t = 0.2,
t = 0.4, and t = 0.6, and the total variation. In this figure, the horizontal green reference lines are
at u = −0.5, 1.5.
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Table 7.6
Before Burgers shock formation, L1 error and convergence order for SATh-LF at t = 0.3 (just

before the true shock forms at t = 1/π = 0.318) using m = 2/∆x cells and CFL 5 and CFL 25.

CFL 5 CFL 25
m L1

∆x error order L∞
∆x error order L1

∆x error order L∞
∆x error order

100 5.388e-2 —— 2.136e-1 —— 1.053e-1 —— 3.235e-1 ——
200 3.018e-2 0.836 1.561e-1 0.453 5.472e-2 0.944 2.779e-1 0.219
400 1.601e-2 0.915 1.078e-1 0.534 2.555e-2 1.099 1.995e-1 0.478
800 8.380e-3 0.934 7.076e-2 0.608 1.140e-2 1.164 1.228e-1 0.700

In Table 7.6 we give the discrete L1 and L∞ errors and convergence order for
the SATh-LF scheme. The results are at t = 0.3, which is just before the true shock
forms at t = 1/π = 0.318. Results for CFL 5 and CFL 25 are presented, and both
sets of results show first order convergence in L1. The L∞ convergence order seems to
approach one as the mesh is refined (i.e., as the smooth but steep front is resolved).

7.4. Buckley-Leverett equation in one space dimension. Next we consider
the Buckley-Leverett equation

(7.3) ut + f(u)x = 0, 0 < x < 1, t > 0, where f(u) =
u2

u2 + (1− u)2
.

We consider two problems with u ∈ [0, 1], so αLF = 2.

7.4.1. A Riemann problem. We apply an initial jump at x = 0 by setting
u(0, t) = 1 and u(x, 0) = 0, and a shock followed by a rarefaction is produced. The
results at t = 0.5 are shown in Figure 7.6 using ∆x = 1/40 and ∆t = ∆x (CFL 2)
and ∆x = 1/80 and ∆t = 2.5∆x (CFL 5). The three schemes perform similarly
for the low CFL test, although BE is more diffusive. For the higher CFL test, the
higher order CN scheme is able to capture the transition from the rarefaction to the
shock (occurring at about x = 0.6) better than the low order methods. However,
the CN solution has an unphysical oscillation there. The SATh-LF scheme clearly
outperforms BE (and we remind the reader, BE is using half the CFL number).
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Fig. 7.6. A Buckley-Leverett rarefaction and shock at t = 0.5, using ∆x = 1/40 and ∆t = ∆x
(CFL 2) on the left and ∆x = 1/80 and ∆t = 2.5∆x (CFL 5) on the right (although BE uses half
the CFL step).
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7.4.2. A problem of merging pulses. The next example for the Buckley-
Leverett flux function uses the initial condition

(7.4) u0(x) =

⎧⎪⎨⎪⎩
1− 20x for 0 ≤ x ≤ 0.05,

0.5 for 0.25 ≤ x ≤ 0.4,

0 otherwise.

Two pulses merge over time, which gives rise to an interaction of shocks and rarefac-
tions. We use ∆x = 1/120 grid elements and ∆t = 1.5∆x (CFL 3). The results at
times t = 0.15, 0.3, 0.45 are shown in Fig. 7.7 for the Lax-Friedrichs schemes. We also
show in Fig. 7.8 results for the upstream schemes, which are less diffuse and so give
better results. The fine scale CN-up scheme (∆x = 1/1200, ∆t = ∆x) is shown in
light green, and it is considered the reference solution. All six schemes handle the
merging of the two pulses reasonably well. For each stabilization (LF or upstream),
the CN results are sharpest, but the solution oscillates, and much worse so as the
CFL number increases.

Fine scale simulations show that the right-most pulse is overtaken by the left one
at about t = 0.5 (i.e., two shocks merge into one at this time). The BE results are so
diffuse that the second pulse is lost at t = 0.4, while SATh and CN lose it at about
t = 0.45. Moreover, BE dissipates the total variation faster than SATh, although
both are TVD. Overall, in this test SATh-LF and SATh-up reproduce the solution to
adequate accuracy without oscillation.
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Fig. 7.7. A Buckley-Leverett example of merging pulses using Lax-Freidrichs stabilization,
∆x = 1/120 and ∆t = 1.5∆x (CFL 3, BE uses half the CFL step). The fine scale CN-up scheme
(∆x = 1/1200, ∆t = ∆x) is used to produce the reference solution, shown in light green. Also shown
is the total variation for BE-LF and SATh-LF.

7.5. A non-monotone flux function in one space dimension. The theory
we developed for SATh-up depended on the monotonicity of the flux function. We
consider next a flux function that is not monotone, namely,

(7.5) ut+f(u)x = 0, −0.1 < x < 0.9, t > 0, where f(u) =
64

39

(︂
u3− 3

2
u2+

39

64
u
)︂
.
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Fig. 7.8. A Buckley-Leverett example of merging pulses using upstream stabilization, ∆x =
1/120 and ∆t = 1.5∆x (CFL 3, BE uses half the CFL step). The fine scale CN-up scheme (∆x =
1/1200, ∆t = ∆x) is used to produce the reference solution, shown in light green. Also shown is the
total variation for BE-up and SATh-up.

When u ∈ [0, 1], one can verify that αLF = 1. The graph of f(u) appears in Figure 7.9
on the top right. The flux is far from being monotone; moreover, it is not convex.
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ū̃
,
o
r
θ

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t = 0.6, ∆x = 1/1280, CFL 1

x

f
(u

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

f(u)

u

ū
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Fig. 7.9. A non-monotone flux. On the top left is the reference solution at t = 0.6 using
∆x = 1/1280 and ∆t = ∆x (CFL 1). Forward Euler (FE) time stepping gives the same result,
plotted in cyan (although it is not really visible). On the top right is the flux function. On the
bottom is the solution at t = 0.6 (left) and t = 6 (right) using ∆x = 1/80 and ∆t = 8∆x (CFL 8),
although BE uses half the CFL step.

The results also appear in Figure 7.9 for the standard jump problem u(−0.1, t) =
1, u(0.9, t) = 0, and u(x, 0) = 1−H(x). The top left can be considered as the reference
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solution at t = 0.6. It uses ∆x = ∆t = 1/1280 (CFL 1), and all schemes produce the
same solution, including forward Euler. Results for CFL 8 are given in the bottom
left, where one sees that BE is the most diffuse and CN overshoots. However, the
solution is well behaved for all schemes to t = 6, shown in the bottom right.

Interestingly, the value of θ seems to oscillate at t = 6 after the steep front, i.e.,
to the left of x = 0.4. However, the solution is constant in this region, so ūn+1

i − ūn
i

is zero to rounding error and θn+1
i is poorly defined by (4.6). In fact, the solution

oscillates a bit on the order of rounding error, and since we used ϵ = 10−100, we
compute a value for θ rather than reverting to θ∗. If one uses ϵ = 10−6, there are no
oscillations in θ (i.e., θ = θ∗) and we observe less rounding error in the solution. But
this issue has no effect on the quality of the solution ū and ũ̄. The SATh-LF scheme
is stable for this problem, and the solution has no oscillation in the sense that the
total variation for SATh-LF (and BE) remains 1 to rounding error for all time. This
test suggests that our theory might extend to non-monotone fluxes.

7.6. Problems in two space dimensions. Finally, we consider problems in
two space dimensions (6.1). We report results of the Lax-Friedrichs stabilized scheme
SATh-LF and BE using a uniformly spaced rectangular mesh. The maximum wave
speeds in each direction are αLF = maxu |f ′(u)| and βLF = maxu |g′(u)|.

7.6.1. Linear transport in two space dimensions. We consider the problem

ut + ux + uy = 0 for 0 < x < 1, 0 < y < 1,(7.6)

u(x, y, 0) =

{︄
1 for 0 < x < 0.25, 0 < y < 0.25,

0 otherwise,
(7.7)

and impose u(x, y, t) = 0 on the boundary. For this problem, αLF = βLF = 1. The
true solution is a square of height one that moves diagonally across the domain.

t = 0.04 t = 0.12 t = 0.36

t = 0.04,
BE

t = 0.12,
BE

t = 0.36,
BE

Fig. 7.10. Linear transport in two space dimensions. Shown is ū(x, y, t) with ∆x = ∆y = 1/100
at t = 0.04, 0.12, 0.36 for SATh-LF (top row, ∆t = 1/25, CFL = 4, at step 1, 3, and 9) and BE
(bottom row, ∆t = 1/12.5, CFL = 2, at step 2, 6, and 18).

The results are given in Fig. 7.10 using ∆x = ∆y = 1/100. SATh-LF uses
∆t = 1/25 (CFL = 4) and we see the solution at steps 1, 3, and 9 (times 0.04, 0.12,
and 0.36). BE uses half the time step (CFL=2) but shows the solution at the same
times. Clearly the BE results display much more numerical diffusion. In fact, the
height of the solution is 0.834 for SATh-LF but only 0.663 for BE.
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7.6.2. Burgers equation in two space dimensions. We now consider the
two dimensional Burgers equation

(7.8) ut + (u2/2)x + (u2/2)y = 0 for 0 < x < 1, 0 < y < 1.

We impose the initial condition u(x, y, 0) = 0 and a boundary condition imitating a
Riemann shock, namely, u(0, y, t) = u(x, 0, t) = 1 and u(1, y, t) = u(x, 1, t) = 0. For
this problem, αLF = βLF = 1.
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Fig. 7.11. Burgers equation in two space dimensions. Shown is ū(x, y, t) for SATh-LF at
t = 0.2, 0.5, 1.0, and the backward Euler result at t = 1.0. The test uses ∆x = ∆y = 1/40,
∆t = 1/10 (CFL = 4). Also shown are cross section comparisons of the front at times t = 0.5 and
t = 1.0, SATh-LF in black and BE in blue.

Results for SATh-LF are shown in Figure 7.11, using ∆x = ∆y = 1/40, ∆t = 1/10
(CFL 4). The solution is shown at times t = 0.2, 0.5, 1. The solution of the scheme
never goes above one nor below zero. Moreover, there is a bit less numerical diffusion
compared to backward Euler, shown at time t = 1. Also shown are the x = y cross
sections at t = 0.5 and t = 1 for both schemes. We remark that similar results are
obtained for this problem using linear transport and the Buckley-Leverett flux.

Finally, we impose a more challenging initial condition given by Jiang and Tadmor
[10] involving the “oblique” data given on [0, 1]2 by

(7.9) u(x, y, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5, x < 0.5, y < 0.5,

0.8, x > 0.5, y < 0.5,

−0.2, x < 0.5, y > 0.5,

−1.0, x > 0.5, y > 0.5.

To avoid effects of the boundary conditions, we used the larger region [0, 2]2 and
adjusted the initial condition to center the transition lines. We report only the interior
[0.5, 1.5]2. The challenge of this Riemann problem with shocks and rarefactions is to
avoid oscillation. Indeed, good results are obtained, as shown in Fig. 7.12 at t = 0.5
on a 160 × 160 mesh and ∆t = 4∆x (CFL 4) for SATh-LF and ∆t = 2∆x (CFL 2)
for BE. No oscillation whatsoever is observed. Moreover, the contour plot in Fig. 7.12
shows that BE is more diffusive.
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Fig. 7.12. Burgers equation with “oblique” initial data (7.9) at t = 0.5 using m = 160 and CFL
4 for SATh-LF and CFL 2 for BE. Also shown is a contour plot of both superimposed with BE in
blue (with 20 lines from −0.9 to 0.9).

8. Summary and conclusions. We developed a discontinuity aware quadrature
(DAQ) rule (Definition 3.2). It uses the values of the (potentially) discontinuous
function v(t) at the ends of the interval of integration as well as its average value. For
a smooth function g(t, v),∫︂ ∆t

0

g(t, v(t)) dt ≈
∫︂ τ

0

g(t, v(0)) dt+

∫︂ ∆t

τ

g(t, v(∆t)) dt, τ =
ṽ − v(0)

v(∆t)− v(0)
.

The rule is accurate to order O(∆t2) when there is a discontinuity (Theorem 3.3),
and O(∆t3) when the solution is smooth (Theorem 3.4), even when v(∆t) = v(0) and
τ cannot be defined.

The hyperbolic conservation law (expressed either by the principle of mass con-
servation (2.3) or the differential equation (1.1)) controls both the local space averages

at specific times, ūn+1
i , and the local space-time average, ũ̄

n+1
i . With these quanti-

ties, the DAQ rule can be applied (implicitly) to a finite volume approximation of
the conservation law. The result is a theta time stepping scheme with an implicit
definition of θ, i.e.,

θn+1
i = max

(︃
1

2
,
ũ̄
n+1
i − ūn

i

ūn+1
i − ūn

i

)︃
.

Two versions of the self-adaptive theta (SATh) scheme were presented, SATh-up using
upstream numerical stabilization (4.4)–(4.5), and SATh-LF using the Lax-Friedrichs
numerical flux function (4.10)–(4.11). These schemes were also extended to two space
dimensions on rectangular meshes (§6).

For a monotone flux function, the upstream weighted scheme was amenable to
analysis. We showed that SATh-up is unconditionally stable (provided only that
θn+1
i ≥ 1/2, Theorem 5.1). If the initial and boundary conditions satisfy a monotone
decreasing or increasing property, then SATh-up will satisfy the maximum principle,
i.e., it gives an approximate solution that has the monotonicity property for all space
and time (Theorem 5.2). Moreover, the numerical solution is TVB, and TVD if the
boundary conditions do not initiate oscillation (Corollary 5.4).

For general flows one needs to use the SATh-LF scheme. We assessed its accu-
racy through numerical examples in one and two space dimensions. These results
suggested that SATh-LF is also stable and satisfies the maximum principle, possi-
bly even for non-monotone flux functions, at least for reasonable CFL numbers. We
compared SATh-LF solutions to those of the schemes using Crank-Nicolson (CN) and
backward Euler (BE) time stepping. In general, CN was oscillatory and BE was nu-
merically diffuse, while SATh-LF gave solutions that were often near the accuracy
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of CN but without oscillation, and less diffuse than BE. One might say that SATh
should be viewed as a better backward Euler scheme, in the sense that it has reduced
numerical dispersion while continuing to satisfy stability, the maximum principle, and
TVD/TVB properties. It is suitable for direct use, or for use in higher order flux-
limited or flux corrected transport schemes. We plan to explore this latter use in a
forthcoming paper.

We end with a brief discussion of the issues regarding extension of SATh to handle
systems of hyperbolic equations. The different system variables of the true solution
all produce a shock at the same place in space and time, so τ in Section 3 would
be well defined. However, the numerical solution may not have this property. Each
system variable may predict a shock in a somewhat different location than the other
variables. This leads to multiple numerical predictions of τ∗, and the resulting θ’s. We
expect that the issue can be overcome by using an average θ, or by further resolving
the shock structure (in time). We plan to explore this issue in a future paper.
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