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Abstract

This paper develops a framework for finite volume radial basis function (RBF) approximation of
a function u on a stencil of mesh cells in multiple dimensions. The theory of existence of the
approximation is given. In one dimension, as the cell diameters tend to zero, numerical evidence
is given to show that the RBF approximation converges to u to the same order as a polyno-
mial approximation when the RBF is infinitely differentiable. Specific multiquadric RBFs on
stencils of 2 and 3 mesh cells are proven to have this convergence property. A two-level RBF
based weighted essentially non-oscillatory (WENO) reconstruction with adaptive order (RBF-
WENO-AO) is developed. WENO-AO reconstructions use arbitrary linear weights, and so they
can be developed easily for RBF approximations, even on nonuniform meshes in multiple di-
mensions. Following the classical polynomial based WENO, a smoothness indicator is defined
for the reconstruction. For one dimension, the convergence theory is given regarding the cases
when u is smooth and when u has a discontinuity. These reconstructions are applied to develop
finite volume schemes for hyperbolic conservation laws on nonuniform meshes over multiple
space dimensions. The focus is on reconstructions based on multiquadric RBFs that are third
order when the solution is smooth and second order otherwise, i.e., RBF-WENO-AO(3,2). Nu-
merical examples show that the scheme maintains proper accuracy and achieves the essentially
non-oscillatory property when solving hyperbolic conservation laws.
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1. Introduction

In this paper, we develop a framework for radial basis function (RBF) based finite volume,
weighted essentially non-oscillatory (WENO) reconstructions with adaptive order (AO), and ap-
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ply them to develop a scheme for solving a system of hyperbolic conservation laws,

ut + ∇ · F(u) = 0, t > 0, x ∈ Rd, (1)

where u = u(x, t) may be a vector and d = 1 or 2. WENO schemes [1, 2, 3] are one of the more
popular and effective set of numerical methods for solving hyperbolic conservation laws.

While classical WENO reconstructions are based on polynomials, there exist several non-
polynomial based approaches, e.g., trigonometric WENO schemes [4, 5], a polyharmonic spline
WENO scheme [6], and multiquadratic RBF-WENO schemes [7, 8, 9, 10]. In this paper, we use
RBF-based approximations. Compared to polynomial approximations, RBF-based approxima-
tions have the advantages that they oscillate less and naturally extend to multiple space dimen-
sions. The disadvantages are that they require more costly computations which are numerically
less stable, and they require a good choice of the shape parameter (later denoted as ϵr). Our nu-
merical examples solving (1) will use multiquadric RBFs [11], since they appear to outperform
alternatives [12].

RBFs are most often used for point interpolation of high dimensional and unstructured data.
However, in the context of finite volume WENO methods, we have a relatively low dimension
and data representing local averages of a function constrained to a computational mesh. Theo-
retical results for the former type of data are not necessarily relevant for finite volume data. In
particular, new results are needed in two directions.

First, we need to establish the existence of the RBF approximations. A seminal paper of
Micchelli [13] proved the existence of RBF interpolations of point-based data. The arguments
rely heavily on point-based evaluation, so this work does not extend directly to the finite volume
case (even though, e.g., [6, 7] claim otherwise). We present a general proof that uses the Widder-
Bernstein Theorem and applies to both interpolation and finite volume approximations.

Second, new results are also needed to establish the accuracy of finite volume RBF approxi-
mations. We present results in this direction for 1D reconstructions, some theoretical and some
computational. They show that the accuracy of the RBF approximations are determined by the
number of finite volume cells used and the singularity of the RBF near zero. So an infinitely
differentiable RBF using r cells will be accurate to order O(hr) as the cell diameter h→ 0.

There are three important ingredients to WENO reconstruction, approximation on stencils of
mesh cells, linear weights, and smoothness indicators. In finite volume schemes, an approxima-
tion of a function can be reconstructed from approximations of its cell averages over a subset (a
stencil) of the computational mesh. WENO methods use several stencils and a linear combination
of the resulting stencil approximations. Such approximations would oscillate badly near discon-
tinuities, so a smoothness indicator is used to modify the linear weights, creating the nonlinear
weights. The new combination has weights biased away from stencils where the function is not
smooth, and thereby suppresses spurious oscillations near discontinuities. If done carefully, this
also has the effect of reducing the order of accuracy of the reconstruction near discontinuities to
the order of the small stencil polynomial approximations.

Bigoni and Hesthaven [7] developed an RBF-WENO reconstruction using a classic WENO
approach. Normally, the linear weights combine the small stencil approximations so that they
match what would be the higher order reconstruction over the large stencil (i.e., the union of the
small stencils), at least when the function is smooth and at the point in space of interest. It is not
generally possible to determine the linear weights in RBF-based methods. Bigoni and Hesthaven
determined them for 1D uniform meshes with stencils of two and three cells, and showed that
these linear weights are asymptotically equal to those of the classical WENO reconstructions.
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They then conjectured that the same results hold for higher order schemes and proposed to use
the classical linear weights in their RBF-WENO reconstructions.

However, on general meshes and in multiple dimensions, these linear weights might not ex-
ist. If they exist, they might not be positive, which leads to the undesirable property that the
WENO approximation is not an average of the smaller stencil approximations. A class of multi-
level WENO reconstructions with adaptive order (WENO-AO) [14, 15, 16, 17] was developed to
circumvent these difficulties. The idea is to obtain WENO reconstructions by combining poly-
nomials of different degrees, i.e., to adapt the order, using linear weights that can be chosen
arbitrary (as long as they sum to one). In this paper, we use WENO-AO reconstructions, since
they resolve the issue of linear weights trivially, even in the cases of nonuniform computational
meshes and meshes in multiple space dimensions.

A smoothness indicator for polyharmonic splines was defined in [6], and Bigoni and Hes-
thaven [7] used a similar definition for multiquadric RBFs. Their smoothness indicators give
reconstructions of the desired order of accuracy when the function is smooth; however, we will
show that they do not give the order of the small stencil approximation near a discontinuity.
When applied to conservation laws, their schemes can exhibit numerical oscillations in the solu-
tion near discontinuities. In this work, we propose to follow the classic definition of smoothness
indicators given by Jiang and Shu [18]. We present theoretical results that show that our RBF-
WENO-AO reconstructions have the accuracy of the large stencil when the function is smooth
and reduce the accuracy of the small stencil when there is a discontinuity.

The paper is organized as follows. In the next section, we provide a general framework of
RBF interpolation of point values and approximation of cell averages, as well as our proof of the
existence of the these reconstructions. In Section 3, we define finite volume WENO-AO recon-
structions based on RBFs (i.e., RBF-WENO-AO reconstructions). In Section 4, we restrict to
1D and give a general convergence theory, numerical evidence for the accuracy of general finite
volume RBF approximations, and theoretical results for RBF-WENO-AO(3,2) reconstructions
using multiquadrics and a large stencil of 3 cells with two small stencils of 2 cells. We apply the
1D reconstruction to solve conservation laws in Section 5, and perform extensive numerical test-
ing. Section 6 gives our applications to multiple space dimensional conservation laws. Finally, a
summary and conclusions are provided in Section 7.

2. Approximation with Radial Basis Functions (RBFs)

For d > 0 an integer, a multivariate function Φ : Rd → R is a radial basis function (RBF) if

Φ(x) = ϕ(∥x∥) = ϕ(r), r = ∥x∥, (2)

for some function ϕ : [0,∞)→ R, wherein ∥ · ∥ denotes some norm on Rd. In this work, we will

take the Euclidean norm, i.e., ∥x∥ = ∥(x1, . . . , xd)∥ =
√︂∑︁d

i=1 x2
i . Some commonly used infinitely

differentiable RBFs are defined in terms of the shape parameter ϵr > 0, and include the Gaussian
ϕG(r) = e−(ϵrr)2

and the multiquadric (MQ, ν > 0) and inverse multiquadric (IMQ, ν < 0) RBF

ϕMQ(r) =
(︁
1 + (ϵrr)2)︁ν, (3)

where ν is not an integer. The MQ RBF was used originally by Hardy [11] as an approximation
to |r| with ν = 1/2. The thin plate spline (TPS) RBF ϕTPS(r) = r2k log(ϵrr) (k ≥ 1 an integer) is
also commonly used, even though it is not infinitely differentiable at 0.
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2.1. Abstract RBF approximation
In order to discuss both interpolation and finite volume approximations, we describe in ab-

stract terms the RBF approximation of a target function u : Rd → R as follows. Let λi,
i = 1, 2, . . . ,N, denote a set of linear functionals defined on such functions. Denote by Pd

κ−1
the space of all polynomials of degree at most κ − 1 on Rd, and let {p1(x), . . . , pq(x)} form a
basis, where q = dimPd

κ−1. Then the RBF approximation, augmented by a polynomial, is given
in terms of coefficients c j and dℓ as

U(x) :=
N∑︂

j=1

c j λ
y
jϕ(∥x − y∥) +

q∑︂
ℓ=1

dℓ pℓ(x), (4)

where λy
j denotes the functional λ j applied to ϕ(∥x − y∥) as a function of y with x fixed. The

coefficients are chosen so that
λiU = λiu, i = 1, . . . ,N. (5)

Of course, additional assumptions are needed to ensure that the coefficients exist. Since the
problem is underdetermined, we add the constraints

N∑︂
j=1

c j λ j pℓ = 0, ℓ = 1, . . . , q. (6)

In matrix terms, the problem is to find a solution to the (N + q)× (N + q) system of equations(︄
A P

PT 0

)︄ (︄
c
d

)︄
=

(︄
f
0

)︄
, (7)

where

A =
(︁
λx

i λ
y
jϕ(∥x − y∥)

)︁
1≤i, j≤N ∈ R

N×N , (8)

P =
(︁
λi pℓ

)︁
1≤i≤N;1≤ℓ≤q ∈ R

N×q, (9)

and
c = (c1, . . . , cN)T , d = (d1, . . . , dq)T , f =

(︁
λiu

)︁
1≤i≤N ∈ R

N .

The unique solvability of the system (7) and some of the approximation properties of (4) are
based on the theory of conditionally positive definite matrices.

Definition 2.1. An N × N matrix A is said to be conditionally positive definite on the nullspace
of the q × N matrix PT if∑︂

i, j

cic jAi, j ≥ 0 for all c ∈ RN such that PT c = 0. (10)

If the sum is required to be strictly positive when c ≠ 0, then A is strictly conditionally positive
definite. If the inequality is reversed, then A is (strictly) conditionally negative definite.

Because the constraint matrix P arises from polynomials of degree κ − 1, we say that A is
(strictly) positive/negative definite of order κ, and if κ = 0 so that no condition arises, A is simply
(strictly) positive/negative definite. The following result is easily shown.
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Lemma 2.2. If A ∈ RN×N is strictly conditionally positive or negative definite on the nullspace

of PT ∈ Rq×N and the rank of P is q ≤ N, then the matrix
(︄

A P
PT 0

)︄
is invertible.

We remark that if u is a linear combination of the pℓ, then the uniqueness part of this lemma
implies that U = u. We have the following result.

Theorem 2.3. If the functionals λi and the RBFs are chosen such that A is strictly conditionally
positive or negative definite of order κ ≥ 0, then the abstract interpolation problem (5) has a
unique approximating function U satisfying (4) and the constraint (6). Moreover, if u ∈ Pd

κ−1,
then U = u.

It remains to choose the linear functionals and RBFs that generate matrices A that are condi-
tionally positive or negative definite of some order.

2.2. Completely monotone functions and the choice of RBF
We consider only RBFs of the form ϕ(r) = φ(r2), such as the Gaussian φG(r) = e−ϵ

2
r r, the MQ

and IMQ
φMQ(r) =

(︁
1 + ϵ2

r r
)︁ν
, (11)

and the TPS φTPS(r) = 1
2 rk log(ϵ2

r r). The property that φ must satisfy is that some derivative of it
is a completely monotone function.

Definition 2.4. A function φ ∈ C0[0,∞) ∩C∞(0,∞) satisfying

(−1)ℓφ(ℓ)(r) ≥ 0, r > 0, ℓ = 0, 1, . . . , (12)

is said to be completely monotone.

It is trivial to verify that the Gaussian φG(r) and IMQ (ν < 0) are completely monotone. The
MQ (ν > 0) is not completely monotone, but its derivative φ(k)

MQ(r) is completely monotone for
k = ⌈ν⌉. The (k + 1)st derivative of the TPS is completely monotone. The celebrated Bernstein-
Widder Theorem [19, 20] characterizes completely monotone functions.

Theorem 2.5 (Bernstein-Widder). A function φ ∈ C0[0,∞) is completely monotone if and only
if it is the Laplace transform of a finite, nonnegative Borel measure µ on [0,∞), i.e.,

φ(r) =
∫︂ ∞

0
e−rt dµ(t). (13)

In fact, we need the following generalization of this theorem to account for having only some
derivative being completely monotone. A similar generalization can be found in [21, 22], where
the measure is adjusted to remove any singularity at zero. However, we have no need of this
adjustment, so we prove the following simpler result.

Theorem 2.6. If φ ∈ C0[0,∞) ∩C∞(0,∞) and its kth derivative φ(k) is completely monotone for
some k ≥ 0, then

φ(r) = Pk−1(r) + (−1)k
∫︂ ∞

0

[︁
e−rt − Qk−1(rt)

]︁
t−k dµ(t), (14)

where

Pk−1(r) = φ(0) + φ′(0) r + · · · +
φk−1(0)
(k − 1)!

rk−1, Qk−1(s) = 1 − s + · · · +
(−s)k−1

(k − 1)!
.
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The theorem is known, and we include a proof only for completeness. But first, we note that
the integrals are well defined.

Lemma 2.7. For all integers k ≥ 0,∫︂ ∞

0

⃓⃓⃓
e−rt − Qk−1(rt)

⃓⃓⃓
t−k dµ(t) < ∞. (15)

Proof. Taylor’s Theorem implies that e−x = Qk−1(x) + Rk(x), where the remainder satisfies, for
some 0 < ξ < x,

|Rk(x)| =
⃓⃓⃓⃓⃓
1
k!

dke−y

dyk

⃓⃓⃓⃓
y=ξ

xk
⃓⃓⃓⃓⃓
=

1
k!

e−ξxk ≤
xk

k!
.

Thus, ∫︂ ∞

0

⃓⃓⃓
e−rt − Qk−1(rt)

⃓⃓⃓
t−k dµ(t) =

∫︂ ∞

0
|Rk(rt)| t−k dµ(t)

≤

∫︂ ∞

0

(rt)k

k!
t−k dµ(t) =

∫︂ ∞

0

rk

k!
dµ(t) =

rk

k!
µ(0,∞) < ∞.

Proof of Theorem 2.6. We prove the theorem by induction on k. The case k = 0 is the Bernstein-
Widder Theorem 2.5.

Suppose the result holds for k and assume that φ(k+1) is completely monotone. Then the kth
derivative of φ′ is completely monotone, and so

φ′(r) = φ′(0) + φ′′(0) r + · · · +
φk(0)

(k − 1)!
rk−1

+ (−1)k
∫︂ ∞

0

[︃
e−rt −

(︃
1 − rt + · · · +

(−rt)k−1

(k − 1)!

)︃]︃
t−k dµ(t).

We integrate in r to obtain

φ(r) = φ(0) + φ′(0) r + · · · +
φk(0)

k!
rk

+ (−1)k
∫︂ r

0

∫︂ ∞

0

[︃
e−rt −

(︃
1 − rt + · · · +

(−rt)k−1

(k − 1)!

)︃]︃
t−k dµ(t) dr.

For finite r, the lemma implies that we can invoke Fubini’s Theorem to compute the integral as∫︂ ∞

0

∫︂ r

0

[︃
e−rt −

(︃
1 − rt + · · · +

(−rt)k−1

(k − 1)!

)︃]︃
dr t−k dµ(t)

=

∫︂ ∞

0

[︃
1 − e−rt −

(︃
r −

1
2

r2t + · · · +
rk(−t)k−1

k!

)︃]︃
t−k dµ(t)

= −

∫︂ ∞

0

[︃
e−rt −

(︃
1 − rt +

1
2

(rt)2 − · · · +
(−rt)k

k!

)︃]︃
t−(k+1) dµ(t),

and so (14) holds for k + 1.

We will presently use the representation given in Theorem 2.6 to show when an RBF of the
type considered here gives rise to a strictly conditionally positive definite matrix. But first, we
show a simple lemma.
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Lemma 2.8. Recall that {p1(x), . . . , pq(x)} is a basis for Pd
κ−1. If c ∈ RN satisfies (6) (i.e.,

PT c = 0), then ∑︂
i, j

ci c j λ
x
i λ

y
j (x − y)α = 0 (16)

for all multi-indices α such that |α| ≤ 2(κ − 1).

Proof. The Leibniz rule says that

(x − y)α =
∑︂
|β|≤|α|

(︃
α
β

)︃
xα−βyβ,

and so ∑︂
i, j

ci c j λ
x
i λ

y
j (x − y)α =

∑︂
|β|≤|α|

(︃
α
β

)︃ ∑︂
i

ci λi(xα−β)
∑︂

j

c j λ j(yβ) = 0,

since either |α − β| ≤ κ − 1 or |β| ≤ κ − 1.

Theorem 2.9. Suppose that the RBF ϕ(r) = φ(r2) has φ(κ) being nonzero and completely mono-
tone for some κ ≥ 0. Suppose also that the λi are continuous linear functionals (i.e., bounded)
on C0[0,∞) endowed with the L∞-norm. Let A be defined by (8) and B be defined by

B =
(︁
λx

i λ
y
je
−∥x−y∥2/2)︁

1≤i, j≤N ∈ R
N×N . (17)

If (−1)κB is strictly conditionally positive definite, then A is strictly conditionally positive definite
of order κ.

Proof. Let c satisfy the condition (6) and consider∑︂
i, j

ci c j Ai, j =
∑︂
i, j

ci c j λ
x
i λ

y
jφ(∥x − y∥2).

By Theorem 2.6,

λx
i λ

y
jφ(∥x − y∥2) = λx

i λ
y
j

(︃
Pκ−1(∥x − y∥2) + (−1)κ

∫︂ ∞

0

[︁
e−∥x−y∥2t − Qκ−1(∥x − y∥2t)

]︁
t−κ dµ(t)

)︃
,

where Pκ−1(∥x− y∥2) and Qκ−1(∥x− y∥2) are polynomials of degree 2(κ − 1) in x− y. We remove
Pκ−1(∥x − y∥2) by Lemma 2.8. The continuity of each linear functional allows us to interchange
its application with integration (using the finite Borel measure µ), so

λx
i λ

y
jφ(∥x − y∥2) = (−1)κ

∫︂ ∞

0
λx

i λ
y
j
[︁
e−∥x−y∥2t − Qκ−1(∥x − y∥2t)

]︁
t−κ dµ(t),

and we can remove Qκ−1(∥x − y∥2t) by Lemma 2.8. Finally,∑︂
i, j

ci c j Ai, j = (−1)κ
∫︂ ∞

0

∑︂
i, j

ci c j λ
x
i λ

y
je
−∥x−y∥2t t−κ dµ(t).

When φ(κ) is nonzero, the measure µ is not identically zero, so the strict conditional positivity is
established (after a scaling transformation to replace t by 1/2 in the exponential).

We will next apply our theory to pointwise RBF interpolation and finite volume RBF ap-
proximation of a function u(x). The strategy is to show the conditions of Theorem 2.9. Then
Theorem 2.3 gives the approximation U in (4) satisfying (5)–(6).
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2.3. RBF interpolation of point values
Let xi ∈ Rd be a set of N distinct points and define λiΦ = Φ(xi) = ϕ(∥xi∥). In this case,

the points xi are called centers for the RBF approximation. The λi are clearly bounded linear
functionals on C0[0,∞), and the condition (17) of Theorem 2.9, i.e., that the matrix given by

Bi, j = e−∥xi−x j∥
2/2 (18)

is strictly positive definite, is known to hold (see, e.g., [13, 23]). Thus any appropriate RBF
and κ (as defined by Theorem 2.9), such as the Gaussian, MQ, IMQ, and TPS will provide an
interpolation (as is well-known).

To be precise, the approximation of u(x) is given by

U(x) =
N∑︂

j=1

c j ϕ(∥x − x j∥) + p(x), (19)

for some augmented polynomial p ∈ Pd
κ−1, where the coefficients c j and the coefficients of p are

given by interpolating the values of u at the centers, i.e.,

U(xi) = u(xi), ∀i = 1, . . . ,N, (20)

and imposing
N∑︂

j=1

c j pℓ(x j) = 0, ∀ℓ = 1, . . . , q. (21)

The interpolation problem has been well-studied, and special language has been coined for
this problem [13, 20]. One says that ϕ is (strictly) conditionally positive definite of order κ
if for any set of distinct points xi in Rd and coefficients satisfying (21), the quadratic form
cT Ac =

∑︁
i, j ci c j ϕ(∥xi − x j∥) is (strictly) positive. It is known that our example RBFs are strictly

conditionally positive definite of order 0 for the Gaussian and IMQ, of order κ = ⌈ν⌉ for MQ, and
of order κ = k + 1 for TPS.

2.4. Finite volume RBF approximation of cell averages
For finite volume approximation, we begin with a computational mesh of N bounded cells Ci,

i = 1, . . . ,N, defined over a bounded domain of interest Ω ⊂ Rd. We will require the mesh cells
to be closed with nonempty and nonoverlapping interiors, but tessellatingΩ, i.e., interior(Ci) ≠ ∅,
interior(Ci) ∩ interior(C j) = ∅ (i ≠ j), and ∪iCi = Ω. Normally, each cell is a polytope, but this
is not necessary at this stage. We call the collection of mesh cells S = {C1, . . . ,CN} a stencil.

We define the bounded linear functional λi associated with Ci to be the cell averaging opera-
tor; that is, for a function f ,

λi f =
1
|Ci|

∫︂
Ci

f (x) dx, for any cell Ci ⊂ S , (22)

where |Ci| is the d-dimensional hypervolume of Ci. The cell average values of the target function
u(x) are denoted more simply as

ūi = λiu =
1
|Ci|

∫︂
Ci

u(x) dx, i = 1, . . . ,N. (23)
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To invoke Theorem 2.9, we must show strict positive definitness of the matrix given by

Bi, j = λ
x
i λ

y
je
−∥x−y∥2/2 =

1
|Ci| |C j|

∫︂
Ci

∫︂
C j

e−∥x−y∥2/2 dy dx. (24)

Let c ∈ RN and define the simple function

c(x) =
N∑︂

i=1

ci

|Ci|
χi(x),

where χi(x) is the characteristic function of Ci. Then c(x) is real, so

cT Bc =
∑︂
i, j

ci c j Bi, j =

∫︂
Ω

∫︂
Ω

c(x) c(y) e−∥x−y∥2/2 dy dx = (2π)d/2
∫︂
Rd
|ĉ(ξ)|2 e−∥ξ∥

2/2 dξ,

where ĉ(ξ) is the Fourier transform of c(x) and e−∥x∥
2/2 is its own Fourier transform. This expres-

sion is nonnegative, and strictly positive as long as c ≠ 0 (so ĉ(ξ) is not identically zero). We
conclude that any appropriate RBF and κ, including the Gaussian (κ = 0), MQ (κ = ⌈ν⌉), IMQ
(κ = 0), and TPS (κ = k + 1), will have a unique finite volume RBF approximation.

We have recovered the generalization of RBF interpolation of point values to cell averages as
given by Aboiyar, Georgoulis, and Iske [6], with now a rigorous proof of existence. The function
u is reconstructed on S as the stencil radial basis function, defined as

US (x) = U(x) =
N∑︂

j=1

c j λ
y
C j
ϕ(∥x − y∥) + p(x), (25)

where p(x) ∈ Pd
κ−1 is the augmented polynomial. The stencil RBF US satisfies

λiUS = ūi, ∀i = 1, . . . ,N. (26)

3. Finite Volume RBF-WENO-AO Reconstructions

Standard WENO-AO reconstructions use polynomial approximations. It is straightforward to
adapt them to RBF approximations. For simplicity, we consider only two-level approximations,
although multilevel approximations could be defined as well (see [17]).

Recall that we have a computational mesh of N bounded cells Ci ⊂ Rd partitioning the
domain Ω. We now call the overall stencil the large stencil and denote it by S 0 = {C1, . . . ,CN}.
We fix i and the cell Ci, and define small stencils S j ⊂ S 0 of M < N cells such that Ci ∈ S j for
all j = 1, 2, . . . , n.

For j = 0, 1, . . . , n, let US j denote the RBF approximation of u on the stencil S j as discussed
in Section 2.4. Then the RBF-WENO-AO approximation of u on the cell Ci is

Ri(x) =
ω̃0

ω0

[︃
US 0 (x) −

n∑︂
j=1

ω jUS j (x)
]︃
+

n∑︂
j=1

ω̃ jUS j (x), (27)

where ω j are arbitrary positive linear weights that sum to one and ω̃ j are the corresponding
nonlinear weights. The nonlinear weights are defined as

ω̃ j =
ω̂ j∑︁n
j=0 ω̂ j

where ω̂ j =
ω j

(σ j + ϵh)η
, (28)

9



for some smoothness indicator σ j, ϵh > 0, and η > 0. Following [24, 17], we take either ϵh = ϵ0
or ϵh = ϵ0h2 for some fixed ϵ0 > 0.

There are several ways to define smoothness indicators, but we take the classic one due to
Jiang and Shu [18]. For the stencil S j, the smoothness indicator of a function ψ(x) is given by

σ
ψ
j =

∑︂
1≤|α|≤L−1

∫︂
Ci

|Ci|
|α|−1(︁Dαψ(x)

)︁2 dx, (29)

where α is a multi-index andD is the derivative operator. Classically, ψ is a polynomial and L is
chosen to be one more than its degree. In our context, we would expect ψ to be an approximation
as accurate as a polynomial of degree r − 1 (i.e., accurate to order r) and set L = r. Finally, we
define

σ j =
∑︂

1≤|α|≤L−1

∫︂
Ci

|Ci|
|α|−1(︁DαUS j (x)

)︁2 dx. (30)

It is well known that implementation of WENO schemes is greatly simplified if one uses a
dual basis [24]. The same is true here. We need to use indexing local to the stencil to proceed,
so let I take local to global indexing. That is, the stencil S j = {CI(1), . . . ,CI(K)}, where K = N
when j = 0 and K = M when j > 0. Let US j,k denote the approximation using data ūI(i) = 0
except ūI(k) = 1 (i.e., let f = ek be the standard unit vector in (7)). In terms of the Kronecker
delta function, then

1
|CI(ℓ)|

∫︂
CI(ℓ)

US j,k(x) dx = δk,ℓ, k, ℓ = 1, 2, . . . ,K, (31)

and

US j (x) =
K∑︂

k=1

ūI(k) US j,k(x). (32)

The smoothness indicator is then computed as

σ j =
∑︂

1≤|α|≤L−1

∫︂
Ci

|Ci|
|α|−1(︁DαUS j (x)

)︁2 dx

=
∑︂

1≤|α|≤L−1

∫︂
Ci

|Ci|
|α|−1

(︃ K∑︂
k=1

ūI(k)D
αUS j,k(x)

)︃2
dx

=

K∑︂
k=1

K∑︂
ℓ=1

ūI(k)ūI(ℓ) σ j,k,ℓ,

(33)

where
σ j,k,ℓ =

∑︂
1≤|α|≤L−1

∫︂
Ci

|Ci|
|α|−1DαUS j,k(x)DαUS j,ℓ(x) dx. (34)

The efficiency stems from the fact that all the US j,ℓ and σ j,k,ℓ can be precomputed from the
computational mesh and reused.
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4. RBF-WENO-AO in One Dimension

We now restrict to 1D and assume that we have a mesh of points · · · < x−1/2 < x1/2 < x3/2 <
· · · which partition space into cells (intervals) Ii = [xi−1/2, xi+1/2] with length ∆xi = xi+1/2− xi−1/2
and midpoint xi = (xi+1/2 + xi−1/2)/2. Later we will use h = maxi ∆xi and assume that the mesh
is quasiuniform (i.e., there is some ρ > 0 such that ρh ≤ mini ∆xi, so ρh ≤ ∆xi ≤ h for all i). Let
ūi be the average of u(x) on the cell Ii as in (23), i.e.,

ūi =
1
∆xi

∫︂
Ii

u(x) dx. (35)

For a cell Ii, let S = S 0 be a stencil of r ≥ 3 contiguous cells with Ii being either the middle
cell if r is odd or one of the two middle cells if r is even. Let {S 1, . . . , S n} be the set of all
contiguous substencils of length s < r, with s large enough to ensure that Ii is in each substencil.
In this context, we refer to RBF-WENO-AO(r, s) approximations.

4.1. Convergence theory in 1D
We consider the convergence theory as given [24, 25, 17, 26]). In particular, the results given

in [17] will carry over to RBF-WENO-AO(r, s) approximations provided that three assumptions
can be verified. The first assumption is obviously needed.

Assumption 4.1. When u is smooth on the stencil, assume that for some constant C > 0, the
approximations on the middle cell Ii satisfy

∥US 0 − u∥L∞(Ii) ≤ Chr and ∥US j − u∥L∞(Ii) ≤ Chs, j ≥ 1. (36)

This assumption fixes L as r or s in the smoothness indicator (29) as discussed there; that is,

σ j =

t−1∑︂
m=1

∫︂
Ii

(∆xi)2m−1(︁DmUS j (x)
)︁2 dx, where t =

⎧⎪⎪⎨⎪⎪⎩r if j = 0,
s otherwise.

(37)

Assumption 4.2. In the case that u is smooth, assume that for some constant C > 0, the smooth-
ness indicators satisfy

σ j = O(h2), (38)

σ j − σk = O(hs+1), j ≠ k. (39)

Recall that a function f (h) = Θ(ht) provided that there are constants C1 and C2 such that

C1ht ≤ | f (h)| ≤ C2ht as h→ 0+. (40)

Quasiuniformity of the mesh means that ∆xi = Θ(h) for all i.

Assumption 4.3. In the case that u has a jump discontinuity on the stencil S j, assume that the
smoothness indicator satisfies

σ j = Θ(1). (41)

The three assumptions can be shown to hold for the case of standard WENO-AO using poly-
nomial approximations. Assumption 4.3 requires a condition such as having the discontinuity
being bounded away from the gridpoints as h→ 0 (see [17]).
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Theorem 4.4. Let Assumptions 4.1–4.2 hold, suppose that η ≥ 1 and ϵ0 > 0 in the definition of
the smoothness indicators (28), and let r > s ≥ 2. If the function u is smooth on S 0, then the
RBF-WENO-AO(r, s) approximation Rr,s

i (27) on the middle cell Ii satisfies

∥R
r,s
i − u∥L∞(Ii) ≤

⎧⎪⎪⎨⎪⎪⎩Chmin(r, 2s+1), if ϵh = ϵ0,

Chmin(r, 2s−1), if ϵh = ϵ0h2.
(42)

Moreover, let Assumption 4.3 hold and suppose further that ϵh = ϵ0h2 and η ≥ s/2. If u is smooth
except for a jump discontinuity in the interior of S 0 but not in some stencil S j, then

∥R
r,s
i − u∥L∞(Ii) ≤ Chs. (43)

For completeness, we provide the proof of this result by following and combining various
proofs found in [17].

Proof. We begin with the case in which u is smooth. For any j, we have

ω̃ j =

ω j

(σ j + ϵh)η
n∑︂

k=0

ωk

(σk + ϵh)η

=
ω j

n∑︂
k=0

ωk

(︃σ j + ϵh

σk + ϵh

)︃η = ω j
n∑︂

k=0

ωk

(︃
1 +

σ j − σk

σk + ϵh

)︃η. (44)

By Assumption 4.2 and the fact that
∑︁n

k=0 ωk = 1, we conclude that

n∑︂
k=0

ωk

(︃
1 +

σ j − σk

σ j + ϵh

)︃η
=

⎧⎪⎪⎨⎪⎪⎩1 + O(hs+1), if ϵh = ϵ0,

1 + O(hs−1), if ϵh = ϵ0h2,
(45)

and therefore

ω j − ω̃ j =

⎧⎪⎪⎨⎪⎪⎩O(hs+1), if ϵh = ϵ0,

O(hs−1), if ϵh = ϵ0h2.
(46)

Because
∑︁n

k=0 ωk =
∑︁n

k=0 ω̃k = 1, we have on Ii that

R
r,s
i − u =

ω̃0

ω0

[︃
(US 0 − u) −

n∑︂
j=1

ω j(US j − u)
]︃
+

n∑︂
j=1

ω̃ j(US j − u)

=
ω̃0

ω0
(US 0 − u) −

n∑︂
j=1

[︃
ω̃0 − ω0

ω0
ω j − (ω̃ j − ω j)

]︃
(US j − u).

(47)

Thus invoking Assumption 4.1,

R
r,s
i − u = O(hr) +

n∑︂
j=1

[︁
O(ω̃0 − ω0) + O(ω̃ j − ω j)

]︁
O(hs), (48)

and using (46) leads to the result (42).
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We turn to the case in which u has a discontinuity. For j ≠ k, Assumptions 4.2–4.3 gives that

σ j − σk

σk + ϵh
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
O(hs−1), if u is smooth on S j and S k,

Θ(1), if u is smooth on S j, but jumps on S k,

Θ(h−2), if u jumps on S j, but is smooth on S k,

O(1), if u jumps on S j and S k.

This implies
n∑︂

k=0

ωk

(︃
1 +

σ j − σk

σk + ϵh

)︃η
=

⎧⎪⎪⎨⎪⎪⎩Θ(1), if u is smooth on S j,

Θ(h−2η) if u jumps on S j,
(49)

and so (44) leads us to

ω̃ j =

⎧⎪⎪⎨⎪⎪⎩Θ(1), if u is smooth on S j,

Θ(h2η), if u has a jump discontinuity on S j.
(50)

Returning to (47), we see that

|R
r,s
i − u| ≤

⃓⃓⃓⃓⃓
ω̃0

ω0

[︃
(US 0 − u) −

n∑︂
j=1

ω j(US j − u)
]︃⃓⃓⃓⃓⃓
+

n∑︂
j=1

ω̃ j

⃓⃓⃓
US j − u

⃓⃓⃓
≤ O(ω̃0)O(1) +

{︃ ∑︂
u discontin-
uous on S j

O(ω̃ j)O(1) +
∑︂

u smooth
on S j

O(ω̃ j)O(hs)
}︃

= Θ(h2η)O(1) +
{︃ ∑︂

u discontin-
uous on S j

Θ(h2η)O(1) +
∑︂

u smooth
on S j

Θ(1)O(hs)
}︃
,

(51)

which implies the result (43).

We remark that Theorem 4.4 clarifies the role of ϵh and η in the smoothness indicators (28).
Accuracy in the smooth case is relatively unaffected by these parameters, and the simple choices
ϵh = ϵ0 and η ≥ 1 suffice to obtain O(hr) accuracy (often 1e-6 and η = 2 are used). However, to
maintain reduced order accuracy O(hs) near a discontinuity, one must take ϵh = ϵ0h2 and choose
η appropriately.

4.2. Computational investigation of Assumptions 4.1 and 4.2 in 1D
It is difficult to quantify the accuracy of general RBF interpolation, since RBFs are used in

highly unconstrained situations. However, in finite volume approximation, we are constrained
to work on a computational mesh. For a given RBF ϕ and stencil S , it is still difficult to prove
Assumptions 4.1–4.2 needed to obtain the convergence results of Theorem 4.4. One reason is
that the coefficients c j in (4) can be large, on the order of negative powers of h. We turn instead to
a computational investigation of whether given RBFs lead to Assumptions 4.1–4.2. But first, we
prove a lemma that says that a strengthened version of Assumption 4.1 implies Assumption 4.2.

Lemma 4.5. Suppose that u is smooth and for some constant C > 0, the approximations on the
middle cell Ii satisfy

∥Dm(US 0 − u)∥L∞(Ii) ≤ Chr−m m = 0, 1, . . . , r − 1, (52)
∥Dm(US j − u)∥L∞(Ii) ≤ Chs−m, j ≥ 1, m = 0, 1, . . . , s − 1. (53)

Then Assumptions 4.1–4.2 hold.
13



Proof. When u is smooth, note that⃓⃓⃓
DmUS j (x)

⃓⃓⃓
≤

⃓⃓⃓
Dm(US j (x) − u(x))

⃓⃓⃓
+

⃓⃓⃓
Dmu(x)

⃓⃓⃓
≤ C.

Therefore, with t as in (37) and noting |Ii| ≤ h, we compute

σ j =

t−1∑︂
m=1

∫︂
Ii

(∆xi)2m−1(︁DmUS j (x)
)︁2 dx ≤ Ch2,

and so (38) holds. For (39), we treat the harder case of, say, k = 0. Then when m ≤ s − 1,⃓⃓⃓(︁
DmUS j (x)

)︁2
−

(︁
DmUS 0 (x)

)︁2 ⃓⃓⃓
≤

⃓⃓⃓
Dm(US j (x) + US 0 (x))

⃓⃓⃓ ⃓⃓⃓
Dm(US j (x) − US 0 (x))

⃓⃓⃓
≤ 2C

[︁⃓⃓⃓
Dm(US j (x) − u(x))

⃓⃓⃓
+

⃓⃓⃓
Dm(u(x) − US 0 (x))

⃓⃓⃓]︁
≤ Chs−m,

and so

σ j − σ0 =

s−1∑︂
m=1

∫︂
Ii

(∆xi)2m−1[︁(︁DmUS j (x)
)︁2
−

(︁
DmUS 0 (x)

)︁2]︁ dx

−

r−1∑︂
m=s

∫︂
Ii

(∆xi)2m−1(︁DmUS 0 (x)
)︁2 dx

≤ C
(︁
hs+1 + h2s)︁ ≤ Chs+1,

and the result is established.

By the lemma, to show that the two Assumptions hold, it is sufficient to show that if u is
smooth and the stencil S contains r contiguous cells with Ii being the middle cell, then there is
some constant C > 0 such that

∥Dm(US − u)∥L∞(Ii) ≤ Chr−m m = 0, 1, . . . , r. (54)

We call the left-hand side the m-seminorm.
We now give results of a computational study on RBF approximations in 1D. We take u(x) =

ex and the initial mesh points {−0.5,−0.3,−0.05, 0.15, 0.35, 0.5}, which are nonuniformly spaced
and give a stencil of five cells. We refine the mesh four times by dividing by 2 each time. In
all the tests, we take the RBF parameter ϵr = 1. A seven point Gauss-Legendre rule is used to
compute the integrals.

Results for the multiquadric ϕMQ with ν = 1/2 (with augmented polynomials of degree q = 0)
are shown in Table 1. We see convergence consistent with (54): the function is approximated
to O(h5) and each mth derivative is accurate to order O(h5−m). Very similar results are obtained
by the multiquadric with ν = 3/2 (with augmented polynomials of degree q = 1), the inverse
multiquadric with ν = −1/2, and the Gaussian ϕG (the latter two use no augmented polynomials
in the approximation). Moreover, we see results (not shown here) consistent with (54) on meshes
of 3 and 4 cells.

Results for the thin plate spline ϕTPS(r) = r2 log(ϵrr) are shown in Table 2. It shows only,
perhaps, O(h2) accuracy for the function and O(h) accuracy for the derivative. Recall that ϕTPS(r)
is not infinitely differentiable at 0. In fact, ϕTPS(r) ∈ C1(R) but ϕ′′TPS(r) = 3 + 2 log(|r|) has a
singularity. Presumably, this accounts for why the convergence is capped at second order.

14



Table 1: Approximation of ex using multiquadric ϕMQ with ν = 1/2 and ϵr = 1, and augmented polynomials of degree
q = 0. Error and convergence order on dyadic refinements of the mesh {−0.5,−0.3,−0.05, 0.15, 0.35, 0.5}.

refine 0-seminorm 1-seminorm 2-seminorm 3-seminorm 4-seminorm
level error order error order error order error order error order

Point interpolation at cell centers
1 1.66e-5 4.60 4.32e-4 3.69 1.32e-2 2.77 2.99e-1 1.80 6.82e+0 0.87
2 5.65e-7 4.88 2.85e-5 3.92 1.69e-3 2.96 7.73e-2 1.95 3.47e+0 0.97
3 1.81e-8 4.96 1.80e-6 3.98 2.11e-4 3.00 1.95e-2 1.99 1.74e+0 0.99
4 9.80e-10 4.21 9.17e-8 4.30 2.77e-5 2.93 4.73e-3 2.04 9.59e-1 0.86

Finite volume approximation
1 2.16e-5 4.55 5.49e-4 3.64 1.53e-2 2.71 3.35e-1 1.78 6.89e+0 0.84
2 7.46e-7 4.86 3.69e-5 3.89 2.01e-3 2.93 8.73e-2 1.94 3.56e+0 0.95
3 2.41e-8 4.95 2.35e-6 3.97 2.52e-4 2.99 2.21e-2 1.98 1.80e+0 0.99
4 1.79e-9 3.75 2.24e-7 3.39 4.19e-5 2.59 6.12e-3 1.85 1.07e+0 0.74

Table 2: Approximation of ex using TPS ϕTPS with ϵr = 1 and augmented polynomials of degree q = 1. Error and
convergence order on dyadic refinements of the mesh {−0.5,−0.3,−0.05, 0.15, 0.35, 0.5}.

refine 0-seminorm 1-seminorm 2-seminorm 3-seminorm 4-seminorm
level error order error order error order error order error order

Point interpolation at cell centers
1 2.13e-5 2.77 2.22e-3 1.20 1.18e-1 -0.08 4.25e+1 -0.98 1.41e+4 -2.03
2 4.41e-6 2.27 1.04e-3 1.09 1.16e-1 0.02 8.31e+1 -0.97 5.58e+4 -1.99
3 9.83e-7 2.17 5.07e-4 1.04 1.15e-1 0.02 1.64e+2 -0.98 2.21e+5 -1.99
4 2.31e-7 2.09 2.50e-4 1.02 1.13e-1 0.01 3.24e+2 -0.99 8.79e+5 -1.99

Finite volume approximation
1 3.04e-4 2.34 1.32e-2 1.15 5.93e-1 0.29 1.78e+10 0.21 1.78e+22 0.21
2 6.68e-5 2.18 6.57e-3 1.00 5.28e-1 0.17 1.64e+10 0.11 1.64e+22 0.11
3 1.56e-5 2.10 3.36e-3 0.97 4.92e-1 0.10 1.58e+10 0.06 1.58e+22 0.06
4 3.77e-6 2.05 1.70e-3 0.98 4.69e-1 0.07 1.55e+10 0.03 1.55e+22 0.03

Interestingly, we do not need to use RBFs generated by completely monotone functions to
see good convergence. We considered the exponential function ϕE(r) = er2

, for which φE(r) = er

never has a negative derivative. We imposed no augmented polynomial, and although we were
not guaranteed by Theorem 2.9 that we could solve for the approximations, they were found to
exist. Results are shown in Table 3, and they are consistent with those in Table 1.

Overall, these computational results suggest that the accuracy of the RBF approximations
are controlled by the number of cells in the stencil and the singularity of the RBF near zero (and
perhaps other factors). So an infinitely differentiable RBF is expected to satisfy the hypothesis
of Lemma 4.5, and therefore also the convergence of Theorem 4.4 (assuming Assumption 4.3
holds, i.e., that any discontinuities are bounded away from the gridpoints as h→ 0).

4.3. Multiquadric RBF-WENO-AO(3,2) reconstruction in 1D

In special cases one can prove rigorously Assumptions 4.1–4.2. In this section, we restrict
attention to the multiquadric RBF (3) and a large stencil of size three cells, S 0 = {Ii−1, Ii, Ii+1}

(using ν = 3/2 and q = 2), with its two small stencils S 1 = {Ii, Ii+1} and S 2 = S −1 = {Ii−1, Ii}

of two cells each (using ν = 1/2 and q = 1). This choice was suggested in [7]. We will show
that Assumptions 4.1–4.2 hold on a uniform mesh (∆xi = h > 0 for all i). In fact, Bigoni and
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Table 3: Approximation of ex using ϕ(r) = er2
and no augmented polynomial. Error and convergence order on dyadic

refinements of the mesh {−0.5,−0.3,−0.05, 0.15, 0.35, 0.5}.
refine 0-seminorm 1-seminorm 2-seminorm 3-seminorm 4-seminorm
level error order error order error order error order error order

Point interpolation at cell centers
1 6.81e-6 5.07 1.68e-4 4.07 4.87e-3 3.08 1.13e-1 2.04 2.48e-0 0.97
2 2.10e-7 5.02 1.03e-5 4.02 5.97e-4 3.03 2.79e-2 2.02 1.24e-0 1.00
3 6.52e-9 5.01 6.43e-7 4.01 7.41e-5 3.01 6.94e-3 2.01 6.17e-1 1.00
4 2.86e-10 4.51 3.81e-8 4.08 9.63e-6 2.94 1.70e-3 2.03 3.25e-1 0.92

Finite volume approximation
1 9.06e-6 5.09 2.20e-4 4.09 5.84e-3 3.08 1.28e-1 2.04 2.56e-0 0.95
2 2.78e-7 5.03 1.35e-5 4.03 7.16e-4 3.03 3.16e-2 2.02 1.28e-0 1.00
3 8.64e-9 5.01 8.40e-7 4.01 8.89e-5 3.01 7.86e-3 2.01 6.42e-1 1.00
4 3.45e-10 4.64 5.08e-8 4.05 1.17e-5 2.92 1.95e-3 2.01 3.28e-1 0.97

Hesthaven [7] showed that US j (x), j = −1, 0, 1, agrees with stencil polynomial PS j (x) up to an
O(ϵ2

r h2) perturbation for the endpoints of Ii, so |US j (xi±1/2) − u(xi±1/2)| = O(h2). (Finite volume
transport schemes only require accuracy at these endpoints.)

To show the general result for any x ∈ Ii, our strategy is to show that the RBF approximation
is a small perturbation of the usual polynomial based approximation. The quadratic stencil poly-
nomial PS 0 on S S 0 and the two linear polynomials PS −1 on S S −1 and PS 1 on S S 1 are obtained by
imposing the interpolation conditions

1
∆xk

∫︂
Ik

PS j (x) dx = ūk, ∀Ik ∈ S j, j = −1, 0, 1, (55)

resulting in

PS 0 (x) =
1

24
(26ūi − ūi−1 − ūi+1) + (ūi+1 − ūi−1)

x − xi

2h
− (2ūi − ūi−1 − ūi+1)

(x − xi)2

2h2 ,

PS −1 (x) = ūi + (ūi − ūi−1)
x − xi

h
, PS 1 (x) = ūi + (ūi+1 − ūi)

x − xi

h
.

(56)

The smoothness indicator σP
j is given by the classic formula (37) (with US j replaced by PS j ).

For a uniform mesh, we have

σP
0 =

13
12

(ūi−1 − 2ūi + ūi+1)2 +
1
4

(ūi−1 − ūi+1)2,

σP
−1 = (ūi−1 − ūi)2, σP

1 = (ūi − ūi+1)2.
(57)

We compute the RBF-WENO-AO(3,2) reconstruction in 1D using computer assisted sym-
bolic manipulation software (Mathematica). We obtain the coefficients of the approximations by
solving (7), which is a 5×5 linear system for the large stencil and 3×3 for the two small stencils.
The exact integrations can be found, since for ν = 1/2,

ϕ(r) =
√︁

1 + (ϵrr)2,∫︂
ϕ(r) =

1
2ϵr

[︂
ϵrr

√︁
1 + (ϵrr)2 + log

(︂
ϵrr +

√︁
1 + (ϵrr)2

)︂]︂
,∫︂∫︂

ϕ(r) =
1

6ϵ2
r

[︂(︁
(ϵrr)2 − 2

)︁ √︁
1 + (ϵrr)2 + 3ϵrr log

(︂
ϵrr +

√︁
1 + (ϵrr)2

)︂]︂
,

(58)
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and for ν = 3/2,

ϕ(r) =
(︁
1 + (ϵrr)2)︁3/2

,∫︂
ϕ(r) =

1
8ϵr

[︂(︁
2(ϵrr)3 + 5ϵrr

)︁ √︁
1 + (ϵrr)2 + 3 log

(︂
ϵrr +

√︁
1 + (ϵrr)2

)︂]︂
,∫︂∫︂

ϕ(r) =
1

40ϵ2
r

[︂(︁
2(ϵrr)4 + 9(ϵrr)2 − 8

)︁ √︁
1 + (ϵrr)2 + 15ϵrr log

(︂
ϵrr +

√︁
1 + (ϵrr)2

)︂]︂
.

(59)

The RBF approximation US j (x), j = −1, 0, 1, is a function of x, h, ϵr, ūi−1, ūi, and ūi+1,
with ν fixed. Only the first two variables matter, and the latter four variables can be considered
parameters. For x ∈ Ii, we scale x = ξh and find the Taylor expansion of the approximation
US j (ξ, h) in terms of h about 0. Mathematica shows that US 0 (x) = PS 0 (x) + O(h4) and US ±1 (x) =
PS ±1 (x) + O(h3). We conclude that |US 0 (x) − u(x)| = O(h3) and |US ±1 (x) − u(x)| = O(h2) for any
x ∈ Ii. We have thus shown that Assumption 4.1 holds.

The smoothness indicators take integration over the interval, so they are functions of only ϵrh,
ūi−1, ūi, and ūi+1. Again, the latter three variables are parameters. We use Mathematica to take
a Taylor expansion of (37) in terms of ϵrh about the base point 0 and see that σ j = σ

P
j + O(h4),

j = −1, 0, 1. Combining these results shows that

σ0 − σ±1 = σ
P
0 − σ

P
±1 + O(h4) = O(h3),

σ1 − σ−1 = σ
P
1 − σ

P
−1 + O(h4) = O(h3),

(60)

and we conclude that Assumption 4.2 holds.
The convergence results of Theorem 4.4 hold for this multiquadric RBF-WENO-AO(3,2)

reconstruction. We will use it in the applications, and we will see that the reconstruction R3,2(x)
is essentially non-oscillatory since the RBF smoothness indicators are asymptotically equal to
those based on polynomials.

Following Aboiyar et al. [6], Bigoni and Hesthaven [7] defined the RBF smoothness indicator
differently. For the stencil S j, the reconstruction US j (x) (4) has the coefficients c j,k for the RBF
part and the augmented polynomial P. They computed

σBH
j = ∆xi

⃓⃓⃓⃓⃓
⃓⃓∑︂

k

c j,k

∫︂
Ii

∂2

∂x2

[︁
λ
ξ
Ik
ϕ(x − ξ)

]︁
dx

⃓⃓⃓⃓⃓
⃓⃓ + q−1∑︂

ℓ=1

∫︂
Ii

∆x2ℓ−1
i

(︃dℓP(x)
dxℓ

)︃2
dx. (61)

A Taylor expansion of (61) gives, for a uniform mesh,

σBH
0 =

1
4

(ūi−1 − ūi+1)2 +
⃓⃓⃓
ūi−1 − 2ūi + ūi+1 + O(ϵ2

r h2)
⃓⃓⃓
= O(h2), (62)

and, similarly,

σBH
±1 =

⃓⃓⃓⃓⃓
3
2

(ūi − ūi±1)ϵ2
r h2 + O(ϵ4

r h4)
⃓⃓⃓⃓⃓
= O(h3). (63)

Therefore, we only have that

σBH
0 − σ

BH
±1 = O(h2) and σBH

−1 − σ
BH
1 = O(h3). (64)

In the smooth case, this order is sufficient to reach third order accuracy of convergence as long
as ϵh is chosen to be constant. However, then the reconstruction cannot behave correctly near a
discontinuity, which results in numerical oscillations (see Section 5.3).
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5. Application to Conservation Laws in One Space Dimension

In this section, we apply RBF-WENO-AO(3,2) reconstructions to finite volume schemes for
solving conservation laws.

5.1. The finite volume scheme in 1D
Consider a scalar hyperbolic conservation law

ut + f (u)x = 0, t > 0, x ∈ R. (65)

The semidiscrete finite volume scheme for solving this problem is given by integrating in space
over the element Ii, i.e.,

d
dt

ūi(t) +
1
∆xi

[︁
f̂ i+1/2(t) − f̂ i−1/2(t)

]︁
= 0, (66)

where f̂ is the numerical flux approximating f , which needs to be chosen. We use the standard
Lax-Friedrichs numerical flux in our implementation, which is

f̂ i+1/2 =
1
2
[︁
f (u+i+1/2) + f (u−i+1/2) − α(u+i+1/2 − u−i+1/2)

]︁
, (67)

where α = maxu |
∂ f
∂u | and u±i+1/2 are left and right biased approximations of u at xi+1/2 given by

RBF-WENO-AO reconstruction. For time integration of (66), we use the third order total varia-
tion diminishing explicit Runge-Kutta method (TVD RK-3) [18], although other time integrators
could be used.

To be more specific, we now summarize our RBF-WENO-AO(3,2) scheme. We use the
multiquadric RBF-WENO-AO(3,2) reconstruction proven to be accurate in Section 4.3. The
large stencil uses three consecutive mesh cells, ν = 3/2, shape parameter ϵr = 3, and augmented
polynomial of degree 1. The small stencils use two consecutive mesh cells, ν = 1/2, ϵr = 1,
and augmented polynomials of degree 0. (See [7] for a discussion of how one should select
ϵr. Determining the optimal value of the shape parameter ϵr remains an open problem.) The
algorithm follows.
I. Before commencing with the time stepping procedure, precompute the following.

1. Compute the coefficients of the dual basis functions US ,k (see (31) and (4)) for each large
and small stencil S .

• Use (58)–(59) (or quadrature) to compute the integrals of the MQ RBF.

• Solve the linear systems (7)–(9) to find the coefficients of each US ,k. These systems
are only 5 × 5 and 3 × 3 for the large and small stencils, respectively.

2. Compute the coefficients of the dual basis function smoothness indicators σS ,k,ℓ (see (34))
in terms of the coefficients of the US ,k and US ,ℓ, where L = 2 or 1 for each large and small
stencil S , respectively.

3. Find the average values of the initial condition ū0
i for all i.

II. For each time step, given ūn
i , we compute ūn+1

i by applying the TVD RK-3 Runge-Kutta
method to (66)–(67) in order to advance the solution from time tn to time tn+1. To do this, we
need the left and right biased approximations of the solution at the mesh points. For each Runge-
Kutta stage on the previous stage’s solution ūi, we need the following steps.
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1. Compute the RBF approximations US for all stencils using the ūi, (32), and the dual basis
functions.

2. Compute the smoothness indicatorsσS for all stencils using (33) and the dual basis smooth-
ness indicators.

3. Compute the RBF-WENO-AO(3,2) reconstruction Ri for each cell Ii (see (27)).

• The large stencil is {Ii−1, Ii, Ii+1} and the two small stencils are {Ii−1, Ii} and {Ii, Ii+1}.

• Compute the nonlinear weights ω̃ j using (28). We fix ϵ0 = 1 and η = 1.

4. Evaluate u−i+1/2 = Ri(xi+1/2) and u+i+1/2 = Ri+1(xi+1/2) for each i.

In order to test accuracy and performance of the scheme, we now present several numerical
examples. The symbol m is used to denote the number of mesh elements for a domain of length
Ldomain. We use either a uniform mesh with ∆xi = Ldomain/m = h, or a perturbation of it. In
the later case, the mesh points are randomly perturbed within ±10% of h, except the boundary
points, to form a nonuniform mesh. We choose ω0 = 1/2 and ω−1 = ω1 = 1/4 as the linear
weights. We take ϵh = h2 in (28) when defining the nonlinear weights, unless otherwise stated.
We use the formulas (58)–(59) to compute the integrals, although a quadrature rule could be used
instead.

5.2. Reconstruction near jump discontinuities

Our first test case is from [27, 24, 25]. Let H be the Heaviside function

H(x) =

⎧⎪⎪⎨⎪⎪⎩0, x < 0,
1, x > 0.

(68)

For x∗ fixed, let
u(x) = x3 + sin(x) + H(x∗ − x).

Consider the uniform mesh {−2h,−h, 0, h} with h = 2/m and middle cell Ii = [−h, 0]. Here we
simply test the accuracy of RBF-WENO-AO-(3,2) reconstructions at x = 0 when x∗ = −h. That
is, u is smooth only on S 1. The results are shown in Table 4. We see second order of accuracy if
η ≥ 1, as expected from Theorem 4.4. We also see the order of accuracy drop to one if η = 1/2,
again as expected.

Table 4: Example 5.2, RBF-WENO-AO(3,2) error and convergence rate at x = 0.
η = 1/2 η = 1

m error order error order
320 5.58e-03 0.97 4.93e-05 2.01
640 2.82e-03 0.98 1.22e-05 2.00
1280 1.41e-03 0.99 3.05e-06 2.00

5.3. Linear equation

We begin with a linear equation to evaluate the convergence rate, i.e., the problem

ut + ux = 0 and u(x, 0) = 0.5 + sin(πx) for x ∈ (0, 2).
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Table 5: 5.3, Linear equation. Error and convergence order at t = 2 on nonuniform meshes.
L1

h L∞h
m error order error order
80 4.63e-03 2.79 8.46e-03 2.19

160 6.01e-04 2.94 1.50e-03 2.49
320 7.61e-05 2.98 2.28e-04 2.71
640 9.71e-06 2.97 3.17e-05 2.84

We ran the computation over gradually refined nonuniform meshes up to time t = 2 using ∆t =
0.1h. The numerical errors and convergence orders for the scheme are given in Table 5. We see
third order convergence, as expected.

We compare RBF-WENO-AO(3,2) and classical WENO3 schemes in terms of numerical
errors and convergence orders on a uniform mesh in Table 6. Although both schemes are third
order accurate, the RBF-WENO-AO(3,2) appears to have less error. This phenomenon has been
seen repeatedly in the literature: RBF based schemes provide better approximation than those
based on polynomials.

Table 6: 5.3, Linear equation. Error and convergence order at t = 2 on uniform meshes.
RBF-WENO-AO(3,2) WENO3
L1

h L∞h L1
h L∞h

m error order error order error order error order
80 4.05e-03 2.85 7.38e-03 2.27 2.64e-02 2.02 4.39e-02 1.36

160 5.09e-04 2.99 1.23e-03 2.57 5.36e-03 2.30 1.41e-02 1.63
320 6.23e-05 3.03 1.74e-04 2.82 7.00e-04 2.93 3.09e-03 2.19
640 7.76e-06 3.00 2.27e-05 2.94 5.03e-05 3.79 3.03e-04 3.34

Finally, we take the function that steps down at x = 0.5 as initial condition, i.e., u(x, 0) =
1 − H(x − 0.5). We use a uniform mesh, ϵh = 1e-6, ∆t = 0.1h, and m = 640. The results are
given in Fig. 1 for the problem solved to time t = 1 using two different smoothness indicators, σ
in (37) (shown in black) and σBH in (61) (shown in blue). It can be seen that oscillations occur
when σBH is used.
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Figure 1: 5.3, Linear equation with step function as initial condition. The results are at time t = 1, and they use
smoothness indicators σ in (37) (black) and σBH in (61) (blue).
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5.4. Burgers equation
We now test the scheme on the nonlinear Burgers equation with a simple initial condition to

evaluate convergence rates; that is, for the problem

ut + (u2/2)x = 0 and u(x, 0) = 0.5 + sin(πx) for x ∈ (0, 2).

We ran the computation over gradually refined meshes up to time t = 0.25 using ∆t = 0.1h,
before shocks develop at time t = 1/π ≈ 0.32.

The numerical errors and convergence orders for the RBF-WENO-AO(3,2) scheme are given
in Table 7 with uniform and nonuniform meshes. We see clean third order convergence for the
uniform mesh. The nonuniform mesh results are not as well behaved, but the rates appear to
approach third order as well.

Table 7: 5.4, Burgers equation. Error and convergence order at t = 0.25.
uniform mesh nonuniform mesh

L1
h L∞h L1

h L∞h
m error order error order error order error order
80 1.09e-03 2.67 6.79e-03 1.95 1.56e-03 2.66 7.94e-03 1.81

160 1.57e-04 2.78 1.17e-03 2.53 2.29e-04 2.76 1.76e-03 2.16
320 2.07e-05 2.92 1.60e-04 2.87 3.26e-05 2.81 3.05e-04 2.53
640 2.62e-06 2.98 2.07e-05 2.95 4.41e-06 2.89 5.42e-05 2.49

Results after shocks have formed at t = 3/(2π) ≈ 0.48 > 1/π are shown in Fig. 2 using
nonuniform meshes. No numerical oscillation is observed. The RBF-WENO-AO(3,2) performs
well for this non-smooth problem using nonuniform meshes.
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Figure 2: 5.4, Burgers equation with a shock. The solution at time t = 3/(2π) on nonuniform meshes using ∆t = 0.1h.
The solid line is the reference solution.

5.5. Buckley-Leverett equation
The final scalar equation considered, ut + ( f (u))x = 0, uses the nonconvex Buckley-Leverett

flux function

f (u) =
u2

u2 + (1 − u)2 . (69)

The initial condition

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − 20x for 0 ≤ x ≤ 0.05,
0.5 for 0.25 ≤ x ≤ 0.4,
0 otherwise,

(70)
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leads to an interaction of shocks and rarefactions. There are two pulses that merge over time. We
use m = 100 mesh elements and ∆t = 0.1h. The results for our RBF-WENO-AO(3,2) scheme
are shown in Fig. 3. The merging of the two pulses is handled quite well and with good accuracy.
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Figure 3: 5.5, Buckley-Leverett. The solid line is the reference solution. The squares are RBF-WENO-AO(3,2) results
on a nonuniform mesh using m = 100 and ∆t = 0.1h.

5.6. The Euler system

We consider the one-dimensional Euler equations for gas dynamics⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ρ
ρu
E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
t

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ρu
ρu2 + p
u(E + p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

= 0, (71)

where p, ρ, and u are the pressure, density, and velocity, respectively, and γ is the adiabatic index
which is taken to be 1.4.

As is usual in solving the Euler system, we avoid spurious oscillations by first performing
a local characteristic decomposition over the conserved variables, and then applying our RBF-
WENO-AO(3,2) reconstruction to the characteristic variables. Roe’s flux is used as an approxi-
mate Riemann solver.

5.6.1. A smooth problem for the Euler equations
In this example, the initial condition is ρ(x, 0) = 1+ 0.2 sin(πx), u(x, 0) = 1, p(x, 0) = 1, with

periodic boundary condition on (0, 2). The exact solution is ρ(x, t) = 1 + 0.2 sin(π(x − t)), u = 1,
p = 1. The solution is computed up to time t = 2 using ∆t = 0.1h. The numerical errors and
convergence orders for the density are given in Table 8. A clean third order accuracy is seen for
uniform and nonuniform meshes.

Table 8: 5.6.1, Euler equations. Error and convergence order at t = 2.
uniform mesh nonuniform mesh

L1
h L∞h L1

h L∞h
m error order error order error order error order
80 1.28e-04 2.99 1.14e-04 2.96 1.66e-04 2.92 2.48e-04 2.79

160 1.61e-05 2.99 1.43e-05 2.99 2.12e-05 2.96 3.26e-05 2.92
320 2.02e-06 2.99 1.80e-06 2.98 2.75e-06 2.95 4.26e-06 2.93
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5.6.2. Riemann problems for the Euler equations
In this example, we consider 1D shock tube tests that use a discontinuous initial condition

specified in terms of the primitive variables ρ, u, and p. The one-dimensional shock tube test of
Sod uses the initial condition

ρ, u, p =

⎧⎪⎪⎨⎪⎪⎩ρl = 1, ul = 0, pl = 1, for x < 1/2,
ρr = 1/8, ur = 0, pr = 1/10, for x > 1/2,

and the test of Lax uses the initial condition

ρ, u, p =

⎧⎪⎪⎨⎪⎪⎩ρl = 0.445, ul = 0.698, pl = 3.528, for x < 1/2,
ρr = 0.5, ur = 0, pr = 0.571, for x > 1/2.

The results for the density ρ at time t = 0.16 are shown in Fig. 4. We use ∆t = 0.1h, m = 100
(squares) and m = 200 (crosses) uniform mesh elements. It can be seen that the finer mesh better
resolves the contact discontinuities.
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Figure 4: 5.6.2, Sod and Lax 1D shock tube tests. The density profile at time t = 0.16 using a uniform mesh of m = 100
(squares) and m = 200 (crosses) elements and ∆t = 0.1h. The solid line is the reference solution.

5.6.3. Shu and Osher’s shock interaction with entropy waves
In this example, we present a shock interacting with entropy waves in a problem of Shu and

Osher [2]. The solution of this problem contains both shocks and regions of complex smooth
structures. We scale the problem to the domain (0, 1), and the initial condition is

ρ, u, p =

⎧⎪⎪⎨⎪⎪⎩ρl = 3.857143, ul = 2.629369, pl = 10.333333, for 0 < x < 1/10,
ρr = 1 + ϵ sin(5(10x − 5)), ur = 0, pr = 1, for 1/10 ≤ x < 1,

where ϵ = 0.2. The results at time t = 0.18 appear in Fig. 5, using ∆t = 0.1h and m = 900
uniform mesh elements. We also report the WENO3 results (blue squares) with the same mesh
and time step. It can be seen that RBF-WENO-AO(3,2) (black squares) performs a bit better than
WENO3.

5.6.4. Woodward and Colella’s double blast test
The double blast test of Woodward and Colella uses the initial condition

ρ, u, p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρl = 1, ul = 0, pl = 1000, for x < 1/10,
ρm = 1, um = 0, pm = 1/100, for 1/10 < x < 9/10,
ρr = 1, ur = 0, pr = 100, for 9/10 < x.
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Figure 5: 5.6.2, Shu and Osher’s test. The density profile for RBF-WENO-AO(3,2) (black squares) and WENO3 (blue
squares) at time t = 0.18 using ∆t = 0.1h with a uniform mesh of m = 900 element and the fine resolution reference
solution (solid line).

This problem involves the interaction of two shock waves. Results obtained by our RBF-WENO-
AO(3,2) scheme using m = 400, 800, and 1600 mesh elements and WENO3 using m = 800 are
shown in Fig. 6 for the time t = 0.038. The solutions look reasonably good, and RBF-WENO-
AO(3,2) gives a slightly better solution than WENO3 with m = 800.
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Figure 6: 5.6.4, Woodward and Colella’s double blast test. The density profile at time t = 0.038 on uniform meshes using
m = 400, 800, 1600 (RBF-WENO-AO(3,2), black, green, red, respectively), m = 800 (WENO3, blue) and m = 4000
(MUSCL scheme reference solution, fine line).

6. Application to Conservation Laws in Multiple Space Dimensions

In this section, we apply RBF-WENO-AO reconstructions to finite volume schemes for solv-
ing conservation laws in multiple space dimensions. Our approach could be used to develop
schemes on general meshes; however, there are a number of issues that one must confront when
implementing WENO methods in multiple space dimensions that have nothing to do with the
use of RBF-based approximations. In particular, one must define good small stencils [28, 29] (or
resort to least squares techniques [30]). Therefore, as a practical matter to avoid these unrelated
issues, we define only an RBF-WENO-AO(3,2) scheme on logically rectangular computational
meshes.

6.1. The finite volume scheme in multiple space dimensions
In d > 1 space dimensions, we partition space into a computational mesh of polytopal el-

ements {Ek}. We denote by |Ek | the d-dimensional volume of Ek. Let ∂Ek,ℓ, ℓ = 1, · · · , Lk be
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the Lk facet of Ek, and let |∂Ek,ℓ | denote its (d − 1)−dimensional volume. We assume that the
computational mesh is quasiuniform: let h = maxk |Ek |

1/d, and suppose that |Ek | = Θ(hd) and
|∂Ek,ℓ | = Θ(hd−1), with bounds independent of k and ℓ.

We integrate (1) over the element Ek, divide by |Ek |, and apply the Divergence Theorem to
obtain the semi-discrete finite volume formulation

dūk

dt
+

1
|Ek |

∮︂
∂Ek

F · νk ds = 0, (72)

where νk is the outward unit normal to the element boundary ∂Ek. The boundary integral is ap-
proximated on each facet by an nq-th order q-point quadrature rule with points xk,ℓ,m and weights
|∂Ek |wk,ℓ,m on facet ∂Ek,ℓ, so the boundary integral is∮︂

∂Ek

F · νk ds =
Lk∑︂
ℓ=1

|∂Ek,ℓ |

q∑︂
m=1

wk,ℓ,mF̂k,ℓ,m(t) + O(hnq ), (73)

where F̂k,ℓ,m(t) = F̂
(︁
u(xk,ℓ,m, t)

)︁
· νk is the numerical flux.

We again use the Lax-Friedrichs flux, which is given by

F̂k,ℓ,m(t) = F̂
(︁
u−k,ℓ,m(t), u+k,ℓ,m(t), νk

)︁
=

1
2

[︂(︂
F
(︁
u−k,ℓ,m(t)

)︁
+ F

(︁
u+k,ℓ,m(t)

)︁)︂
· νk,ℓ − α

(︁
u+k,ℓ,m(t) − u−k,ℓ,m(t)

)︁]︂
,

(74)

where α is an upper bound for the absolute value of the eigenvalues of the Jacobian of F in the
direction of νk,ℓ = νk

⃓⃓⃓
∂Ek,ℓ

, and u−k,ℓ,m and u+k,ℓ,m are RBF-WENO-AO reconstructed values of u
inside the element and in the neighboring element at the quadrature point xk,ℓ,m, respectively.

As in the 1D case, we use a Runge-Kutta method for time discretization. Specifically, we use
the TVD RK-3 method.

6.2. RBF-WENO-AO(3,2) reconstruction in multiple dimensions
We now give a practical implementation of the RBF-WENO-AO reconstructions needed for

the multi-D scheme. We restrict to 2D for simplicity of the exposition, since extension to higher
dimensions is straightforward. We use a simple RBF-WENO-AO(3,2) reconstruction defined
using a logically rectangular mesh of quadrilaterals (see Figure 7 for an example). The index
space of such a mesh can be taken to be rectangular, which greatly simplifies the description and
implementation of the reconstruction. We follow closely the ideas described in [31].

We denote the computational mesh of quadrilateral cells as {Ei, j}, where i = 1, 2, . . . ,N1
and j = 1, 2, . . . ,N2. As shown in Figure 8 for middle cell Ei, j, the large stencil of nine cells
surrounding it is S 0 = {Ek,ℓ : k = i − 1, i, i + 1, ℓ = j − 1, j, j + 1}, and the four smaller stencils
are taken to be

S 1 = S SW = {Ei−1, j−1, Ei, j−1, Ei−1, j, Ei, j},

S 2 = S SE = {Ei, j−1, Ei+1, j−1, Ei, j, Ei+1, j},

S 3 = S NW = {Ei−1, j, Ei, j, Ei−1, j+1, Ei, j+1},

S 4 = S NE = {Ei, j, Ei+1, j, Ei, j+1, Ei+1, j+1}.

The RBF-WENO-AO(3,2) reconstruction is then as described in Section 3. Our choice of stencils
suggests that the reconstruction should be O(h3) for smooth u and reduce to O(h2) in the case of
a discontinuity. In that case, it is sufficient to take a Gauss quadrature rule with q = 2 for the 1D
integrals on each facet of the element in (73).
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Figure 7: An example of a 10×10 logically rectangular
mesh as a random perturbation of a rectangular mesh.

Ei, j

S SE
S SW

S NW
S NE

S 0

Figure 8: The five stencils for logically rectangular 2D
RBF-WENO-AO(3,2) reconstruction.

6.3. General remarks on the numerical results in 2D

In the rest of this section, we give results for our RBF-WENO-AO(3,2) scheme in two space
dimensions. We take ϵh = |Ei, j|, ω0 = 1/2, and ω j = 1/8, for all j > 0. To compute the integrals,
we use the 3-point Gauss-Legendre rule, which is locally sixth order accurate and thus more than
adequate for our third order scheme.

We use three types of meshes: uniform rectangular meshes; nonuniform, perturbed logically
rectangular meshes; and nested logically rectangular meshes. The points of a nonuniform, per-
turbed logically rectangular mesh are given by a random perturbation of the points of a uniform
rectangular mesh. Each interior point is randomly perturbed within ±10% of the uniform mesh
spacing h, and the boundary points are perturbed only in the tangential direction (maintaining
periodicity on the mesh).

The points of a series of nested logically rectangular meshes are given as follows. The base
mesh (m×m, m = 16) is a perturbed logically rectangular mesh created as described above. Now
given a perturbed m×m logically rectangular (coarse) mesh, the next level (fine) mesh is 2m×2m.
It inherits the points of the coarse mesh. Between any two coarse mesh points, we include in the
fine mesh a perturbation of the midpoint (only in the tangential direction if it is on the boundary,
and maintaining periodicity) by some percentage of the fine mesh spacing hfine = hcoarse/2 (±10%
unless otherwise indicated). Finally, the four vertices of every coarse (quadrilateral) element are
averaged, and this point is also perturbed and included in the fine mesh.

6.4. Linear advection in 2D

We first test our scheme on the linear problem ut + ux + uy = 0 on [0, 2]2, with the initial
condition u(x, y, 0) = sin(x+ y). The shape parameters for the multiquadric RBFs are taken to be
ϵr = 20 with ν = 3/2 for the large stencil S 0, and ϵr = 10 with ν = 1/2 for the smaller stencils.
We use nonuniform, nested logically rectangular meshes to obtain a clean order of convergence.
Table 9 shows the error and convergence rates at t = 2, using ∆t = 0.1h. We see third order
convergence.

6.5. Burgers equation in 2D

The next example is a two dimensional Burgers equation

ut + (u2/2)x + (u2/2)y = 0.
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Table 9: 6.4, Linear equation in 2D. Error and convergence order at t = 2 on nonuniform, nested logically rectangular
meshes.

L1
h L∞h

m error order error order
32 1.61e-01 2.13 8.70e-02 1.91
64 2.14e-02 2.90 1.88e-02 2.21

128 2.41e-03 3.15 3.45e-03 2.44

We first impose the initial condition

u(x, y, 0) = sin2(πx) sin2(πy), (x, y) ∈ [0, 2]2. (75)

We perturb a 160 × 160 uniform mesh, take ∆t = 0.1h, and set the shape parameters to ϵr = 20
with ν = 3/2 for the large stencil S 0, and ϵr = 10 with ν = 1/2 for the smaller stencils. Figure 9
shows the results at t = 0, 0.75, and 1.5. The scheme resolves the shocks well.

t = 0, initial condition t = 0.75 t = 1.5

Figure 9: 6.5, Burgers equation with initial condition (75) using m = 160 and ∆t = 0.1h, at times t = 0, 0.75, and 1.5.

Next, we impose a more challenging initial condition given by Jiang and Tadmor [32] involv-
ing the “oblique” data given by

u(x, y, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.5, x < 0.5, y < 0.5,
0.8, x > 0.5, y < 0.5,
−0.2, x < 0.5, y > 0.5,
−1.0, x > 0.5, y > 0.5.

(76)

We are interested in the result on [0, 1]2. Since we use periodic boundary conditions, we ran
the scheme on the larger region [−0.5, 1.5]2, so the interior [0, 1]2 is unaffected by the boundary
condition. Good results are obtained, as shown in Figure 10 on [0, 1]2 at t = 0.5 on the perturbed
160 × 160 logically rectangular mesh and ∆t = 0.4h. The solution remains essentially non-
oscillatory on all fronts, even though the mesh is non-rectangular.

6.6. The 2D Euler equations
For our final set of examples, we solve the nonlinear system of Euler equations for the density

ρ, the velocity (u, v), and the total energy E, with the pressure p being related to the total energy
by E = p

γ−1 +
1
2ρ(u2 + v2) with γ = 1.4. In terms of ξ = (ρ, ρu, ρv, E)⊤, we solve

ξt + f (ξ)x + g(ξ)y = 0, (77)
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Figure 10: 6.5. Burgers equation with “oblique” initial data (76) using m = 160 and ∆t = 0.4h. The contour plot has 21
level lines.

where

f (ξ) = (ρu, ρu2 + p, ρuv, u(E + p))⊤ and g(ξ) = (ρv, ρuv, ρv2 + p, v(E + p))⊤.

We use the multiquadric RBF (3). In general, the problem of determining the optimal value of
the shape parameter ϵr remains open. Here, we found that ϵr = 25 with ν = 3/2 for the large
stencil and ϵr = 12.5 with ν = 1/2 for the small stencils works well, unless otherwise indicated.

We first test the convergence of the scheme. Working on the domain [0, 2] × [0, 2], we set
the initial condition to be ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, and
p(x, y, 0) = 1, and we impose a 2-periodic boundary condition. The exact solution is ρ(x, y, t) =
1 + 0.2 sin(π(x + y − (u + v)t)), u = 0.7, v = 0.3, and p = 1.

Table 10: 6.6, 2D Euler. Error and convergence order at t = 2 for the WENO-AO(3,2) and RBF-WENO-AO(3,2)
schemes, ∆t = 0.4h.

uniform mesh nonuniform mesh
L1

h L∞h L1
h L∞h

m error order error order error order error order
WENO-AO(3,2)

32 7.50E-03 3.00 4.71E-03 2.48 7.55E-03 3.00 4.77E-03 2.47
64 9.32E-04 3.00 7.25E-04 2.70 9.52E-04 2.98 7.47E-04 2.67

128 1.15E-04 3.01 9.72E-05 2.89 1.21E-04 2.97 1.02E-04 2.86
RBF-WENO-AO(3,2)

32 6.74E-03 2.54 2.99E-03 2.58 6.81E-03 2.53 3.33E-03 2.48
64 6.03E-04 3.48 3.59E-04 3.05 6.37E-04 3.41 4.44E-04 2.90

128 5.95E-05 3.34 4.65E-05 2.94 6.64E-05 3.26 6.49E-05 2.77

The problem is solved on a series of m ×m nonuniform, nested logically rectangular meshes
that are nested; however, we use only a±5% perturbation for this problem. We compare our RBF-
WENO-AO(3,2) scheme to the relatively standard WENO-AO(3,2) scheme [16, 17], which is a
modification of the classic WENO3 scheme suitable for multiple space dimensions. The errors
and numerical orders of convergence scheme appear in Table 10 (at the final time t = 2). We
see third order convergence, as we should expect, and somewhat better results for the RBF-based
scheme.
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6.6.1. A Riemann problem
Let us consider the 2D Euler equation problem defined in [33] identified as Configuration F.

On [0, 2] × [0, 2], the initial condition is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(ρ1, u1, v1, p1)T = (0.5313, 0, 0, 0.4)T , (x, y) ∈ (1, 2) × (1, 2),
(ρ2, u2, v2, p2)T = (1, 0, 0.7276, 1)T , (x, y) ∈ (1, 2) × (0, 1),
(ρ3, u3, v3, p3)T = (1, 0.7276, 0, 1)T , (x, y) ∈ (0, 1) × (1, 2),
(ρ4, u4, v4, p4)T = (0.8, 0, 0, 1)T , (x, y) ∈ (0, 1) × (0, 1).

(78)

This Riemann problem is an interaction of four elementary planar waves, and the solution is
symmetric about the diagonal x = y.
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Figure 11: 6.6.1, The 2D Euler equation Riemann problem. Density using a 400 × 400 mesh plotted as thirty equally
spaced density contours from 0.56 to 1.67. Plots show WENO-AO(3,2) and RBF-WENO-AO(3,2) on uniform and
nonuniform meshes.

We take both uniform and nonuniform meshes of size 400 × 400. The nonuniform mesh
is created as a perturbation of the points of the uniform mesh by ±10% of h = 2/400. Using
∆t = 0.2h, we compute the solutions up to t = 0.52 and show the results in in Fig. 11. We
see here that WENO-AO(3,2) and RBF-WENO-AO(3,2) on uniform and nonunifrom meshes
produce nearly the same solutions, with only slight differences between them.

6.6.2. Double Mach reflection
Our final test problem is originally from [34]. The computational domain is [0, 4] × [0, 1]. A

reflecting wall lies at the bottom, starting from x = 1/6. Initially a right-moving Mach 10 shock
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starts at (x, y) = (1/6, 0) and makes a 60 degree angle to the x-axis. For the bottom boundary,
the exact postshock condition is imposed for the part from x = 0 to x = 1/6 and a reflective
boundary condition is used for the rest. At the top boundary, the flow values are set to describe
the exact motion of a Mach 10 shock.
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Characteristic decomposition WENO-AO(3, 2) reconstruction, nonuniform mesh

0 0.5 1 1.5 2 2.5 3
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1
Characteristic decomposition RBF-WENO-AO(3, 2) reconstruction, nonuniform mesh,

using ϵr = 40 when ν = 3/2 and ϵr = 20 when ν = 1/2.

Figure 12: 6.6.2, Double Mach reflection. Density using 1600× 400 randomly perturbed mesh elements plotted as thirty
equally spaced density contours from 1.731 to 20.92.

We apply the standard characteristic decomposition to the WENO reconstruction procedure.
We compute the solution on meshes of 1600 × 400 uniform elements and randomly perturbed
(by 10%) elements up to time t = 0.2. There is no significant difference between using a uniform
mesh and a nonunifrom mesh, so we only show in Fig. 12 the results for the nonuniform mesh,
restricted to the interesting part of the domain [0, 3] × [0, 1]. We use ϵr = 40 when ν = 3/2 and
ϵr = 20 when ν = 1/2 in this test. The two schemes produce very similar results, and results
comparable to those found in the literature (e.g., in [28]).

7. Summary and Conclusions

For a function u, we discussed its abstract RBF approximation U augmented with polynomi-
als of degree κ − 1 (4). The abstraction allowed us to discuss approximation based on matching
either point values or finite volume averages of u. The coefficients of U are given by solving
(7). Results of Micchelli [13] show that (7) can be solved in the case of matching point values;
however, the results are strictly point-based and do not extend to the finite volume case (in spite
of some claims to the contrary in the literature). We provided a proof that (7) can be solved,
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provided that the κth derivative of the RBF is completely monotone. The proof makes use of
the Bernstein-Widder Theorem 2.5 and reduces to a question about Gaussians (Theorem 2.9),
which holds when matching either point values or finite volume averages. We conclude that all
the usual RBFs (Gaussian, multiquadric, inverse multiquadric, and thin plate spline (TPS)) give
rise to RBF approximations.

We developed (two-level) WENO approximations with adaptive order using RBF approx-
imations (27). We imposed the standard smoothness indicator (29). Restricting to 1D, Theo-
rem 4.4 gives conditions on the RBF-WENO-AO(r, s) approximation so that it is O(hr) accurate
when u is smooth, and O(hs) when there is a discontinuity in u. In particular, the RBFs need
to approximate well, Assumption 4.1, and the smoothness indicators need to be well behaved,
Assumption 4.2. These assumptions are difficult to prove in general, so we provided numeri-
cal evidence that infinitely differentiable RBFs work well, but singular RBFs like TPS do not.
Computer assisted symbolic manipulation software (Mathematica) can be used to prove the As-
sumptions, and we did so for a specific RBF-WENO-AO(3,2) reconstruction using a uniform
mesh. We conclude that all the usual infinitely differentiable RBFs (Gaussian, multiquadric, and
inverse multiquadric) should give rise to RBF-WENO-AO approximations that have the desired
approximation properties for both smooth and discontinuous u.

We applied our results to hyperbolic conservation laws. We developed a scheme in one and
multiple space dimensions that uses RBF-WENO-AO reconstructions, thereby circumventing
the lack of linear weights seen in other RBF-WENO approaches. Good numerical results were
obtained for solving 1D and 2D scalar hyperbolic conservation laws and systems of the same on
uniform and nonuniform meshes. The scheme achieves third order accuracy for smooth solutions
and improves on classic WENO approximation. Various benchmark test problems involving
solutions with discontinuities showed that the scheme is essentially non-oscillatory, as opposed
to other RBF-WENO approaches using different smoothness indicators. As our final conclusion,
RBF-WENO-AO works well for solving hyperbolic conservation laws.
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