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Abstract—We study the capacity region of two-user erasure
interference channels with random receiver-end side-information
and delayed channel state knowledge at the transmitters. We
present a new set of outer-bounds on the achievable rates when
each receiver has access to a random fraction of the message
intended for the other receiver. The outer-bounds reveal the
significant potential rate boost associated with even a small
amount of side-information at each receiver. The key in deriving
the bounds is to quantify the baseline entropy that will always
become available to the unintended receiver given the intermit-
tent connectivity, random available side-information, and causal
feedback. We will also present the achievability of these outer-
bounds under certain conditions.

Index Terms—Random side-information, interference channel,
packet erasure, channel state information.

I. INTRODUCTION

Sharing the same medium among different users comes with
challenges, such as signal interference, and opportunities, such
as multicast gains. There are more subtle opportunities that
have been somewhat ignored. For instance, wireless users may
overhear parts of the other users’ signals and this available ran-
dom side-information can be capitalized on to boost network
capacity. This model differs from the known results wherein
a mechanism is used to populate the local user memory, also
known as cache [1]-[4]. Unfortunately, predetermining what
needs to be placed at each user’s local cache may not be
feasible in practice due to privacy issues, lack of centralized
decision-making, and mobility of the wireless nodes. We thus
focus on the benefit of random receiver side-information in
wireless systems, and we investigate how to harness this
random knowledge to enhance network throughput.

To provide fundamental capacity results with distributed
transmitters, we focus on the two-user erasure interference
model first introduced in [5] for which a comprehensive set
of results with no receiver side-information has been reported
in [6]-[8]. In this model, each wireless link may be active
or inactive (down) according to some Bernoulli process, and
these processes may be correlated across users. This model has
been shown to capture intermittent communications in massive
machine-type systems and high packet failure rate in mmWave
communications. The randomness in the available receiver-end
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cache is generated by independent erasure processes, and the
transmitters are aware of which portion of their own messages
is available to the unintended receiver. We further assume the
transmitter become available of the network topology with
unit delay, a suitable model for mmWave and machine-type
communications. As the topology is captured by whether each
link is active or not, this latter assumption can be thought
of as the delayed channel state information at the transmitter
(delayed CSIT) model.

The random receiver cache model is also motivated by the
unreliability of the feedback channel. More precisely in [9],
[10], we assumed an intermittent feedback channel model and
when the feedback links are inactive, the transmitter would
only knows the statistics of the side-information available to
the receivers. Moreover, in [11], [12], we assumed a one-
sided feedback channel wherein one receiver does not provide
any feedback, which results in a similar side-information
knowledge at the transmitter.

Our contributions are two-fold. We present a new set of
outer-bounds on the capacity region of the two-user inter-
ference channel with altering topology and channel state
feedback. The first step in the derivation of the outer-bounds
is to quantify the baseline entropy that will always become
available to the unintended user regardless of the communica-
tion strategy. In particular, the key is to incorporate the apriori
side-information at each receiver’s local cache, the altering
topology, and the delayed channel feedback into our analysis.
Next, the outer-bounds are derived by using a genie-aided
argument to convert the channel into a one-sided interference
channel and then, the bounds are obtained by applying the
baseline entropy inequality discussed above. The outer-bounds
of course recover those known previously in the literature for
the no-cache and full-cache (when the entire message of each
user is available to the other one) scenarios. Interestingly, the
outer-bounds suggest even a small amount of side-information
may drastically improve the capacity region as we will discuss
later in the paper.

We then investigate under what conditions these outer-
bounds can be achieved. We provide two sets of conditions.
First, we show for “strong channels” and “small cache” sizes
(to be quantified in the main results), we can achieve the
sum-capacity with symmetric channel parameters. Second, we
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identify a subset of these conditions for which the entire outer-
bound region can be achieved and thus, characterizing the
capacity region in those cases.

Summary of Results on Interference Channels with Alter-
ing Topology: The interference channel with altering topology
or the erasure interference channel (EIC) was first introduced
in [5], where it was referred to as the “binary fading” model,
to generalize the erasure channel to incorporate interference
from other transmitters. The capacity region of the two-user
EIC with output feedback was reported in [6] followed by
a comprehensive set of results covering the capacity region
under delayed and instantaneous CSIT with or without output
feedback in [7]. The model and the results were shown to be
a good representative of mmWave packet communications [8],
[13], [14] and topological dynamics of wireless networks [15]—
[18]. The model was also proven valuable in studying the
impact of channel correlation [19], [20] and local delayed
knowledge [21], [22] on the capacity of distributed wireless
networks. Interestingly, the capacity region under the no CSIT
assumption and arbitrary erasure probabilities remains open,
and the best known inner and outer bounds were reported
in [23] with alternative proof in [24], [25], echoing the famous
“W-curve” result of [26]. The model has also been used to
study the stability region of interference channels [27], [28]
where newer coding techniques compared to the study of the
capacity region were reported. Finally, this model was adopted
in [29], [30] to investigate the coexistence of critical and non-
critical IoT services.

The rest of the paper is organized as follows. In Section II,
we present the problem setting and the assumptions we make
in this work. Section III presents the main contributions and
provides further insights and interpretations of the results. The
proof of the outer-bounds are presented in Section IV, and the
achievability region is derived in Section V. Finally, Section VI
concludes the paper.

II. PROBLEM FORMULATION

To quantify the impact of available random receiver side-

information on network capacity, we consider the erasure
interference channel (EIC) of Figure 1. In this network, two
single-antenna transmitters, Tx; and Txo, wish to transmit two
independent messages, W; and W, to their corresponding
single-antenna receiving terminals, Rx; and Rxs, respectively,
over n channel uses.
Channel model: The channel gain from transmitter Tx; to
receiver Rx; at time ¢ is denoted by G;;[t], ¢,j € {1,2}. The
channel gains are either 0 or 1 (i.e. G;;[t] € {0,1}), and they
are distributed as Bernoulli (1 — &) random variables. The
channels are assumed to be distributed independently across
time but at each time, the channel may only be in one of the
four states shown in Figure 2-Topology A, B, C, and D, with
respective probabilities:

pa=(1-0) pg=pc=0(1-36), pp=0% (1)

There are multiple reasons for choosing this specific channel
distribution as in general with four binary links, a total of 16
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Fig. 1. The two-user interference channel with altering topology, random
local cache at the receivers, and delayed channel knowledge.

channel realizations would be possible as considered in [7].
However, including all cases would make tracking the status
of the previously transmitted signals more complicated; while
the four channel realizations of Figure 2 maintain the key
technical challenges and simplify the analysis. Second, the
channel realizations of Figure 2 have an interesting motivation
from two-unicast networks with a group of relays and the end-
to-end network could be captured with these realizations [16],
[31]-[33]. Finally, we note that correlation across users can
be induced with antenna designs [34], [35].
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Fig. 2. For the inner-bounds, we assume the channel can only fall into one
of four configurations at any given time.

Input and output signals: At each time instant ¢, the transmit
signal of Tx; is denoted by X;[t] € {0,1}, and the received
signal at Rx; is given by

Yilt] = Gult) X[t @ Gl Xs[1), =

i=1,2, i=3—1, (2)
where all algebraic operations are in Fs. We note that one
could assign a continuous channel gain beyond the binary
coefficient and also assume additive noise at the receivers,
however, this will not change the fundamental of this problem
as was the case in [15], [16]. Further, the results can be easily
extended to the case where signals are in IF, and a correction

factor of log, ¢ will be added to the inner and outer bounds.

Remark 1. Each point-to-point link is an erasure channel, but
instead of representing the output by a symbol in {0, e, 1}, we
use a channel gain in the binary field. When the link is equal
to 1 (i.e. the link is on), the binary output equals to the input,
and when the link is equal to 0 (i.e. the link is off), the output
is deterministically zero.

Channel state information: We define the channel state in-
formation (CSI) at time ¢ to be the quadruple

G[t] 2 (G [t], Gaalt), Gan[t], Gaalt]) 3)
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and for natural number k, we set

G* 2 (G[1),G[2,.... G, )

where G[t] is defined in (3), and (-) denotes the transpose
operation. Finally, we set

Gt Xt @ Gtxt 2
(G [1]Xa[1] © Gz[1] X1, ..

5)
L Galt]Xlt] ® Gl X3 [t]]

Messages: Each message, W;, contains m; data packets, and
we denote the packets for Rx; with @ = (a1,as9,...,am),
and the packets for Rxy with b= (b1,b2,...,by). Here, we
note each packet is a collection of encoded bits, however,
for simplicity and without loss of generality, we assume each
packet is in the binary field, and we refer to them as bits. As
mentioned earlier, if we assume the packets are in I, instead,
all that would be needed is a correction factor of log, ¢ in the
inner and outer bounds.

Available CSI at the Transmitters: In this work, we con-
sider the delayed CSIT model in which at time ¢, each
transmitter has the knowledge of the channel state information
up to the previous time instant (i.e. G'~') as depicted in
Figure 1, and the distribution from which the channel gains
are drawn, t =1,2,...,n.

Available CSI at the Receivers: At time instant ¢, Rx; has
the its local channel state information up to time ¢ (i.e. G%; and
G%), see Figure 1, and the distribution from which the channel
gains are drawn. Each receiver then broadcasts its local CSI
which becomes available to all other nodes with unit delay. To
make notations simpler, and since receivers only decode the
messages at the end of the communication block, we assume
both receivers have instantaneous knowledge of the entire CSI.
We note that each channel gain in the intermittent (erasure)
model captures the success or the failure in delivering a large
number of bits in the forward channel, and thus, the feedback
overhead is negligible. This also explains why the feedback
channel is used to share CSI rather than information about the
received signals.

Random receiver cache: We assume a random fraction (1 —
€) of the bits intended for receiver Rx; are available at Rx;,
1 = 3—1i, and we denote this side information with W3 as in
Figure 1. In particular, we assume that each packet intended for
Rx; becomes available to Rx; according to a Bernoulli (1 — €)
process distributed independently from all other processes and
the messages, and that

H(Wy,) == HW;), i=12 (6
Transmitter’s knowledge of side-information: We assume
the transmitters know exactly what fraction of their own
messages is available to the unintended receiver.

Encoding: The constraint imposed at the encoding function

fit(.) at time index ¢ is given by:

Xilt] = fir (Wi, G, (7)

however, to highlight the transmitters’ knowledge of the avail-
able side-information at the unintended receiver, we use the
following notation:

Xi[t] = fie (Wi, Wi, G, (8)

where we implicitly assume the knowledge of 4, and € is
available to each transmitter as side-information.
Decoding: Each receiver Rx;, ¢ = 1,2, uses a decoding

function ¢;,, (¥;*,G™, Wj;) to get an estimate W, of W;.
An error occurs whenever W; # W,;. The average probability
of error is given by

Aim = E[P(W; £ W], 9)

where the expectation is taken with respect to the random
choice of the transmitted messages.

Capacity region: We say that a rate pair (R, R) is achiev-
able, if there exist block encoders at the transmitters, and block
decoders at the receivers, such that ), , goes to zero as the
block length n goes to infinity. The capacity region is the
closure of the set of the achievable rate pairs and is denoted
by C.

III. MAIN RESULTS

In this section, we present the main contributions of this
paper and provide interpretations of the results.

A. Outer-bounds

The following theorem establishes a new set of outer-bounds
on the capacity region of the two-user interference channel
with altering topology and random receiver cache.

Theorem 1 (Outer-bounds). For the two-user erasure inter-
ference channel with delayed CSIT and random receiver side-
information as described in Section II, we have

0<R; <(1-9), i=1,2,
0< $5Ri+R; < (1-06%), i=12
(10)

CccoutE{

Proof of Theorem 1 is presented in Section IV, and a gen-
eralization to a broader set of channel parameters is provided
in the extended version of this work [36]

Remark 2. From (10), we conclude that when € < 6(14-0), the
region is simply described by 0 < R; < (1 — ). We note that
this latter expression describes the capacity of two parallel
non-interfering point-to-point erasure channels. To put into
perspective, when § = 1/2 and € < 3/4 (i.e. only 1/4 of each
message is available to the unintended user), the outer-bound
matches that of two non-interfering erasure channels.

Figure 3 depicts the parallel (non-interfering) sum-rate
bound of 2(1 — &) as well as the sum-rate outer-bound.
For convenience, the x-axis represents (1 — &), which the
probability of each link being active. As noted in Remark 2
(and also observed in [7] for the no side-information scenario),
depending on the value of ¢ and §, the sum-rate might be
dominated by either of these bounds. For instance, for e = 1/2,
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Fig. 3. The outer-bounds of (10) for € € {1,1/2,0} and the non-interfering
sum-rate bound as a red dashed line. Note that for convenience, the x-axis
represents (1 — &), which the probability of each link being active.

when (1 —0) < (—1++/3)/2, the parallel erasure bounds are
dominant and when (1 —6) > (—1++/3)/2, the other bounds
in (10) are dominant. We also note that ¢ = 0 corresponds
to the scenario in which the entire message of each user is
available to the unintended user, and thus, 2(1 — 0) is easily
achievable. On the other end, ¢ = 1 is the scenario with no
side-information, and the results recover the region in [7].

e=0(1+56)

ol e=5/T

3/4 \\\;)J

Fig. 4. The outer-bound region for 6 = 1/4 and different values of e.

Figure 4 depicts the outer-bound region for § = 1/4 and
different values of e¢. The grey shaded region is the baseline
with no side-information (¢ = 1), and the hashed green region
is the gain when € = 5/7. As we show in Theorem 2 and under
the specified conditions, for 5/7 < € < 1, we can achieve the
outer-bounds and thus, the capacity region is characterized.
We further note that for e < §(1+6) = 5/16, the outer-bound
region is simply expressed by R; < (1 —§) = 3/4.

B. Achievable rates

The following theorem establishes the conditions under
which the outer-bounds of Theorem 1 are achievable.

Theorem 2 (Achievability Conditions). For the two-user
erasure interference channel with delayed CSIT and random
receiver side-information as described in Section II, we have

1) Sum-Capacity: The maximum sum-rate outer-bound of

Theorem 1 is achievable when

1
€> ————. (11)
= (1—20)+
L+ 5455
2) Capacity Region: The entire outer-bound region of

Theorem 1 is achievable when
1
(14 9) } (12)

1
€> max{
= (1=20)* (1 _
1+ 8- (-9

First, we note that for 6 > 1/2, the condition expressed in
(11) implies € = 1, i.e. no side-information at the receivers,
which is covered in [7]. Thus, we focus on § < 1/2, and (11)
becomes:

€ > g, for 6 < %
We further note that (13) also implies that € > (1 + J), and
based on the outer-bounds expressed in (10) and Remark 2,
at the maximum sum-rate point, we have
2
Ri=(1+5)(1_5). 14
1+d6+e¢
Finally, if § < (4+3 — +/5)/2 ~ 0.382 and the condition in
(11) is satisfied, then (12) also holds. In other words, for § <
(+3 — V/5)/2 and e satisfying (11), the capacity region is
characterized.
Proof of Theorem 2 is presented in the extended version of
this work [36], but in Section V, we summarize the key ideas
behind the achievability strategy.

13)

IV. PROOF OF THEOREM 1: DERIVING THE
OUTER-BOUNDS

In this section, we derive the outer-bounds of Theorem 1.
The derivation of the outer-bounds on individual rates is
straightforward and omitted. We derive the following bound,
and the derivation of the other bound follows from symmetry:

¢/(1+0)Ry + Ry < (1-6%). (15)

Suppose rate-tupe (Rj, Rs) is achievable. We enhance re-
ceiver Rx; by providing the entire W5 to it, as opposed to
WQH, and we note that this cannot reduce the rates. Then, for
B =¢€/(1+6), we have

n(BR1 + Ry) = BH(Wy) + H(W2)
@ B H(W1|[Wa, G") +H (W2 Wy )2, G")
—_—

Enhanced Rx;

(Fano

)
< BI(W Y [We, G™) + T(Wa; Yo' [Wh2, G™) + né,
= BH(Y{"|W2,G") — B H(Y{"|W1, W2, G")

=0
+ H(Y5' Wyjp, G") — H(Yy'|Wyjp, Wa, G™) + né,

(b) (c)
< H(Y3'|[Wij2,G") + 2n&, < n(1—6%) +2&,, (16)
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where &,, — 0 as n — oo; (a) follows from the independence
of the messages and the channels, and captures the enhance-
ment of receiver Rxy; (b) follows from Theorem 3 below; (c)
is true since the entropy of a binary random variable is at most
one, and the receiver is not in erasure a fraction (1 — 52) of
the communication time. Dividing both sides by n and let
n — oo, we get (15).

Theorem 3. For the two-user erasure interference channel
with delayed CSIT and random receiver side-information as
described in Section II, and 3 = €¢/(1 + 0), we have

H (Y| Whja, Wa, G") 4+ néyn > BH (YW, G™),  (17)

where &, — 0 as n — oo.

Proof of Theorem 3 is provided in the extended version of
this work [36]. This theorem captures the baseline entropy that
becomes available regardless of the transmission strategy to
the unintended user under the assumptions of the problem. We
note that for specific strategies, we might be able to provide
a tighter bound. As an example, for a transmitter that ignores
channel feedback 5 = e would suffice. However, to prove the
converse, the bound must hold for any encoding strategy.

V. THEOREM 2: KEY IDEAS AND MOTIVATING EXAMPLE

In this section, we provide a summary of the techniques as
well as an example. The complete proof is deferred to [36].
Key ideas: The power of wireless is in multicast. More
specifically, gains are magnified if we can satisfy multiple
users simultaneously. This simple and intuitive idea is behind
most wireless communication algorithms. To see how this idea
can be used in interference channels with altering topology,
delayed CSIT, and random receiver cache, we first explain the
network coding opportunities, and then, present an example to
explain the overall achievability strategy.

od

a o—eq Db c

d e C
Topology B

b o—eq Db

Topology A
(@ (b)

Fig. 5. The transmitted bits in these examples can be combined for efficient
multicast retransmission.

Suppose at some time instant ¢;, network topology A is
realized, meaning that all wireless links are active as in
Figure 5(a). If bits a and b were transmitted from Tx; and Txo,
respectively, then each receiver obtains a linear combination of
these bits. It seems that providing only a or b to both receivers
would be the optimal solution. However, we show there are
other opportunities that can improve the network throughput.
Suppose c is part of I, (intended for Rx; but in Rxy’s cache)
and d is part of Wy;. This scenario could have also happened
if at the time of transmitting ¢ and d, topology B was realized
as in Figure 5(b). This time, it seems c and d could be sent to

their respective receivers through two non-interfering point-to-
point erasure links as they are apriori known to the unintended
receiver. Interestingly, we can come up with a more efficient
solution: Tx; should deliver a®c¢ and Txy should deliver b®d
to both receivers. This way, Rx; will end up with a®b, d, a®c,
and b d, from which, it can recover a and c. A similar story
goes for Rxs. In summary, we achieved multicasting gains by
mixing the signals available locally to each transmitter rather
than retransmitting individual ones.

Motivating example: To keep the description short and con-
vey the main points, for the motivating example, we focus on
the maximum sum-rate point. We further use expected values
of random variables as opposed to a more careful analysis
involving concentration theorems and defer such analysis to
the next subsection where we present the complete proof. We
further choose an example where ¢ satisfies (11) of Theorem 2
with equality, which further shortens the description of achiev-
ability. In particular, we assume

0= %, €= g (18)
This scenario corresponds to strong point-to-point erasure
links (success rate of 4/5) and when each receiver has apriori
access to 1/3 of the message of the other user. For these
parameters, the maximum sum-rate point using (10) is:
(R1, R2) ~ (0.62,0.62) . (19)
We start with m bits for each receiver where 1/3m of
the bits for each receiver is apriori known to the unintended
receiver. Each transmitter separates its bits into two groups,
the first are those known to the unintended receiver, called the
side-information bits, and the second would be the comple-
ment of the first group. Each transmitter keeps sending out
one bit from the second group until the channel realization
learned through the feedback channel is not topology D. This
process on average takes

em

st (20)

After this initial phase, each bit falls into three categories
based on the topology that was realized during its transmission
(topology A, B, or C'). Those in topology C' are already deliv-
ered and no further action is needed. For those in topologies A
and B, we can retransmit the combination of them as discussed
above. Further, for the choice of § = 1/5, there will be more
bits associated with topology A than B. We take advantage of
this and mix the remaining bits of topology A with the side-
information bits at each transmitter, i.e. those known apriori
to the unintended receiver through the random cache. In this
example, 6 and ¢ were carefully chosen such that the number
of bits in topology A was exactly equal to those in topology
B and the random cache. The combined (XORed) bits can
be delivered at the multiple-access channel (MAC) capacity
formed at each receiver equal to (1 — ¢2). In summary, for
this particular example, the total communication time is given
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by

_em e(1—6)*m
ttotal = 1_ 52 (1 — 52)2 ~ 162, (21)
——

initial phase multicasting XORed bits

which combined with the fact that each transmitter had m bits
to deliver, immediately implies the desired sum-rate.

VI. CONCLUSION

In this paper, we studied the benefit of having random
receiver cache in interference channels with altering topology
and delayed feedback. We provided a new set of outer-bounds
based on a key theorem that quantifies the baseline entropy
available to each receiver under the specific assumptions of
the problem. We showed that these bounds are tight under
certain conditions, thus, characterizing the capacity region in
such cases. The next steps include investigating whether non-
linear coding may improve the inner-bounds or the outer-
bounds need improvement when the capacity remains open.
Further, it would interesting to understand the implications of
random receiver cache on latency and age of information in
interference channels with altering topology.
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