

1 **A site for deep ice coring at West Hercules Dome: results from
2 ground-based geophysics and modeling**

3
4 T.J. Fudge¹, Benjamin H. Hills^{1,2}, Annika N. Horlings¹, Nicholas Holschuh³, John Erich
5 Christian^{4,5}, Lindsey Davidge¹, Andrew Hoffman¹, Gemma K. O'Connor¹, Knut Christianson¹,
6 and Eric J. Steig¹

7 1 Department of Earth and Space Sciences, University of Washington

8 2 Applied Physics Lab, University of Washington

9 3 Department of Geology, Amherst College

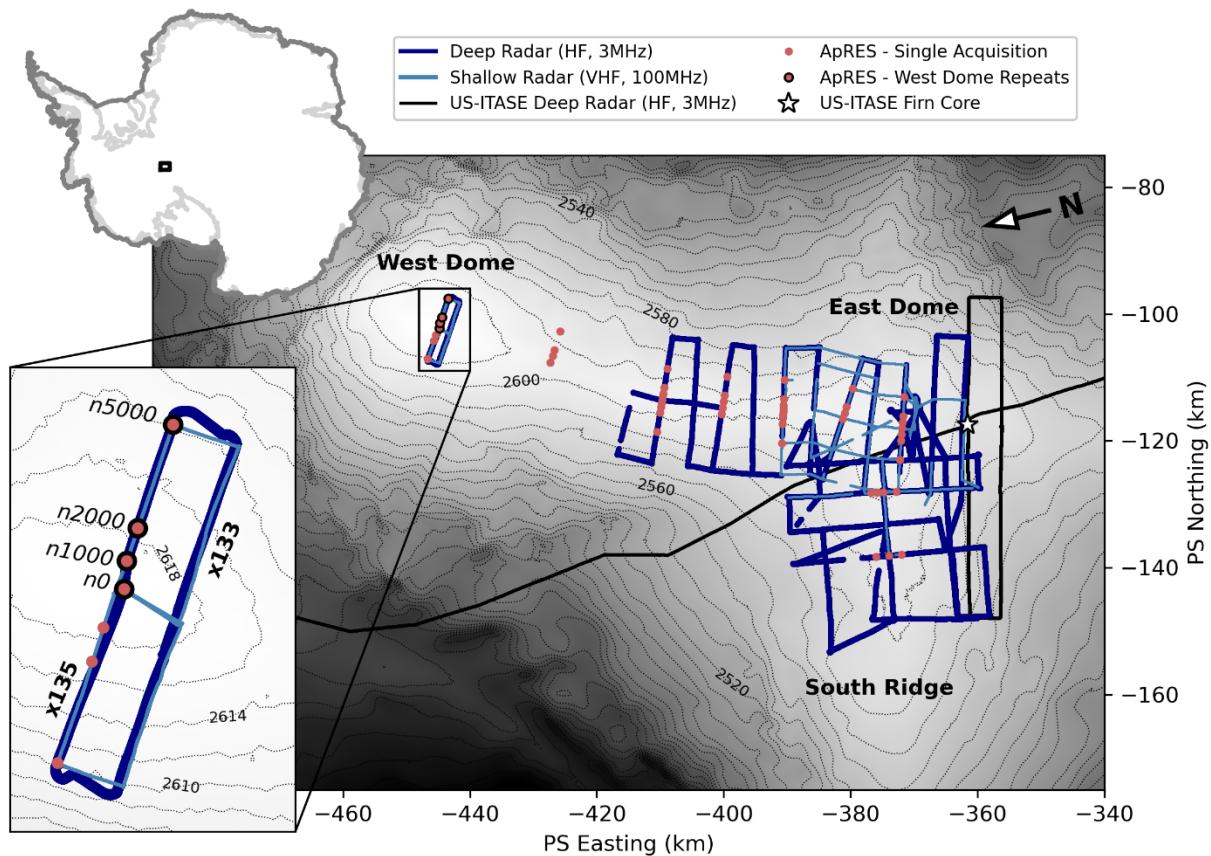
10 4 School of Earth and Atmospheric Sciences, Georgia Tech

11 5 University of Texas Institute of Geophysics

12
13 Keywords: Antarctic glaciology; Ice core; Radio-echo sounding

14
15 **ABSTRACT**

16 Hercules Dome, Antarctica, has long been identified as a prospective deep ice core site due to
17 the undisturbed internal layering, climatic setting, and potential to obtain proxy records from the
18 last interglacial period when the West Antarctic Ice Sheet may have collapsed. We performed a
19 geophysical survey using multiple ice-penetrating radar systems to identify potential locations
20 for a deep ice core at Hercules Dome. The surface topography, as revealed with recent satellite
21 observations, is more complex than previously recognized. The most prominent dome, which
22 we term “West Dome”, is the most promising region for a deep ice core for the following
23 reasons: (1) bed-conformal radar reflections indicate minimal layer disturbance and extend to
24 within tens of meters of the ice bottom; (2) the bed is likely frozen, as evidenced by both the
25 shape of the measured vertical ice velocity profiles beneath the divide and modeled ice
26 temperature using three remotely-sensed estimates of geothermal flux; and (3) models of layer
27 thinning have 132 ka old ice at 45 to 90 m above the bed with an annual layer thickness of ~1
28 mm, satisfying the resolution and preservation needed for detailed analysis of the last
29 interglacial period.


30
31 **1. INTRODUCTION**

32 The West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat because it is
33 grounded below sea level (e.g. Mercer, 1968; Bamber and others, 2009), and has collapsed at

34 least once in the Pleistocene (Scherer and others, 1998). During the last interglacial (LIG, 116-
35 132 ka), global eustatic sea level was higher than today, though the timing and magnitude of the
36 sea level highstand remain uncertain. Estimates of the upper limit of sea level during the LIG
37 range from 4 m (Dyer and others, 2021) to 9 m higher than today (Dutton and others, 2015). A
38 collapse of the WAIS would help explain the LIG sea level, but there is no unequivocal evidence
39 this occurred.

40 Ice core records provide one possible means to obtain information about past changes
41 in the WAIS. Existing ice core records from West Antarctica either do not contain ice dating to
42 the LIG (e.g. WAIS Divide, Buizert and others, 2015) or, if they do, the ice is very near the bed
43 and is difficult to interpret (e.g. Siple Dome, Brook and others, 2005; Roosevelt Island, Lee and
44 others, 2020; Skytrain Ice Rise, Mulvaney and others, 2020). An ice core site from a location
45 that would be sensitive to the climatic changes induced by WAIS collapse, but where the ice
46 flow would not be directly affected, has the potential to elucidate the size and rate of change of
47 the WAIS during the LIG.

48 Hercules Dome (86°S, 105°W) is located in East Antarctica approximately 400 km from
49 the South Pole towards the Horlick and Thiel ranges in the Transantarctic Mountains. The
50 primary moisture source region for snowfall at Hercules Dome is the Pacific sector, such that
51 the moisture pathway passes over the WAIS; in contrast, the moisture pathways for existing
52 East Antarctic ice cores that preserve LIG records do not pass over the WAIS (Sodeman and
53 Stall, 2009; Nicolas and Bromwich, 2011). Hercules Dome is not likely to have changed
54 elevation significantly in elevation from the LIG to present even in scenarios of WAIS collapse
55 (Sutter et al., 2016), with changes of less than 75 meters in models (e.g. Pollard and DeConto,
56 2016; Garbe et al., 2020). On the other hand, the composition of snowfall at Hercules Dome
57 should be sensitive to changes in the elevation of the WAIS (Steig and others, 2015).
58 Simulations with multiple atmospheric models show that a lowered WAIS topography would
59 cause a cyclonic anomaly which changes regional atmospheric circulation, bringing a greater
60 flow of warm, moist air across the WAIS toward the South Pole (Steig and others, 2015;
61 Holloway and others, 2016). Based on these simulations, an ice core from Hercules Dome
62 would provide a climate record that is influenced by the size and extent of the WAIS.

63

64 **Fig. 1:** Overview map of the Hercules Dome geophysical survey in polar stereographic (PS)
 65 coordinates. The directions in the PS projection are used in the remainder of the paper. Arrow
 66 indicates direction of geographic North. Inset shows the two radar lines, x135 and x133, at West
 67 Dome. Surface elevation contours from the Reference Elevation Model of Antarctica (REMA,
 68 Howat et al., 2019) are shown at 10-m spacing for the overview and 2-m spacing for the inset.
 69

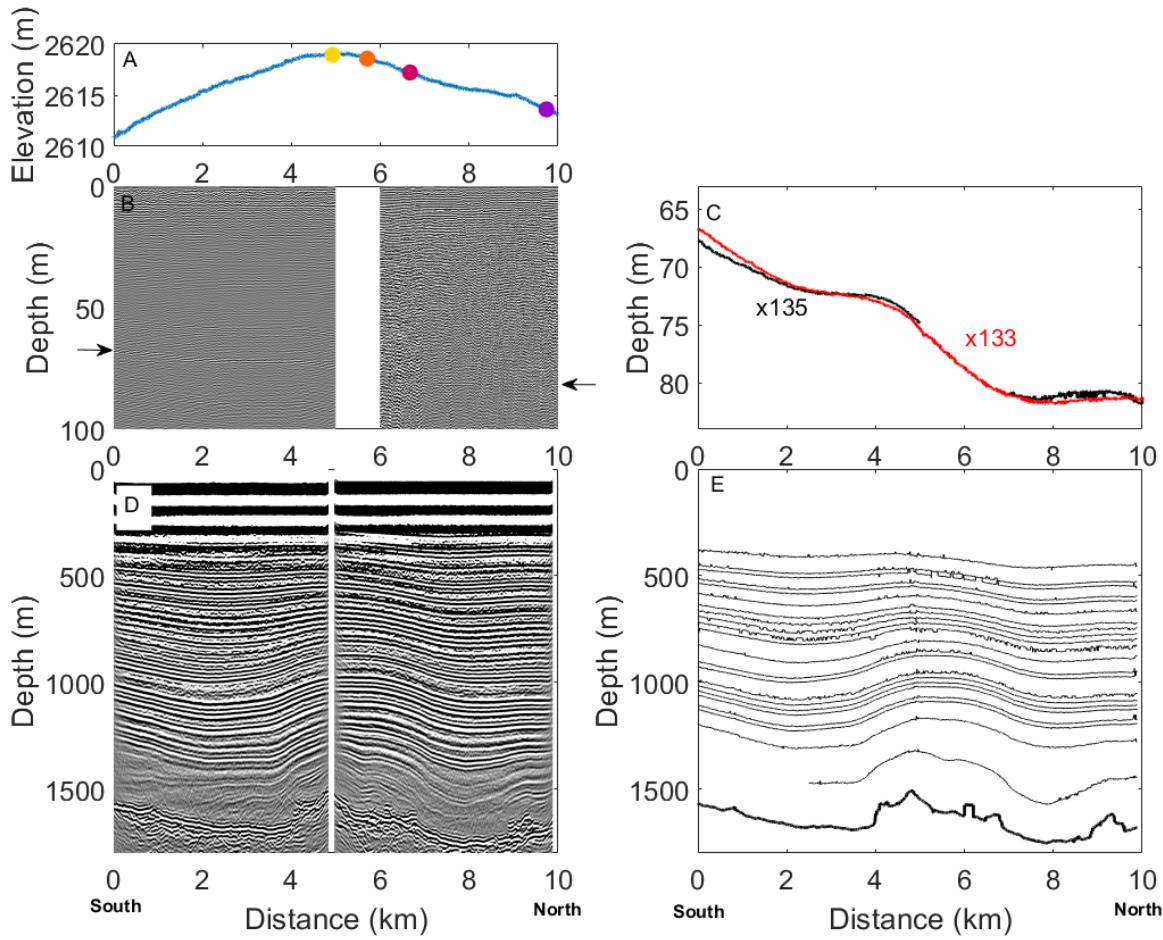
70 Climate records from a deep ice core at Hercules Dome could be used in conjunction with
 71 other paleoclimate records to constrain the size and rate of change of the WAIS during the LIG.
 72 Indicators of past ice-sheet extent, such as subglacial bedrock exposure (e.g. Hein et al., 2015;
 73 Spector and others, 2018), lack information on the rate of change which is likely preserved in ice
 74 core records. A record from Hercules Dome would complement other ice core records both
 75 directly affected by WAIS topography changes, such as Skytrain Ice Rise (Mulvaney et al.,
 76 2020), and indirectly affected, such as Mt. Moulton (Korotkih and others, 2012). Indeed, Steig
 77 and others (2015) showed if the WAIS collapsed, surface temperatures at Mt. Moulton would
 78 have warmed less, and Hercules Dome would have warmed more, than sites farther inland on

79 the East Antarctic plateau. Therefore, existing ice core records from the East Antarctic plateau
80 provide independent information against which the Hercules Dome record could be compared.

81 Hercules Dome was first identified as a promising location for a deep ice core during the
82 2001-2002 US-ITASE traverse from West Antarctica to South Pole (Jacobel and others, 2005).
83 Ice-penetrating radar was collected along the main traverse route as well as two perpendicular
84 50-km-long tracks. The radar revealed clear internal layering with ice thicknesses that ranged
85 from approximately 1500 m to 2800 m. A 72-m firn core was also recovered. Analyses of the firn
86 core show that annual layering and volcanic signals are well preserved and the 400-year
87 average accumulation rate was 0.12 m a^{-1} ice equivalent (Dixon and others, 2013).

88 We conducted a geophysical survey across the Hercules Dome region during the
89 2018/2019 and 2019/2020 austral summers. Recent satellite observations (Cryosat-2, ICESat2,
90 and Maxar Imagery) revealed a complex surface topography (Fig. 1). There are three local
91 surface divides, which we refer to here by their relative positions in polar-stereographic space
92 with respect to grid north (Fig. 1). “West Dome” (85.8°S , 102.9°W) lies furthest to the true north,
93 and is connected to “East Dome” by a \sim 70 km ridge. A secondary ridge extends approximately
94 grid south from East Dome that we term “South Ridge”. East Dome, where the US-ITASE
95 traverse visited, has large variations in bedrock topography and lacks a clear dome summit;
96 East Dome is the current source region for South Ridge. We therefore focus on West Dome
97 where our geophysical data suggest a simple flow regime and small bedrock topography
98 variations (Fig. 2), and assess the suitability of West Dome as a site for recovering a deep ice
99 core that preserves LIG ice. We focus on a 10-km long radar line (named x135 within our grid)
100 which nearly transects the dome summit, and describe the results of ice-flow modeling
101 constrained by near-surface, deep-profiling, and phase-sensitive radar.

102


103 **2. GEOPHYSICAL DATA AND MODEL SETUP**

104 The three radar systems used at Hercules Dome in the 2018/2019 and 2019/2020 field seasons
105 as well as the kinematic model setup used to help interpret the observations are described in
106 this section; Section 3 will present the results. The extent of each survey is indicated by Fig. 1.
107 We use stereographic grid directions, following the orientation of Fig. 1, in the remainder of the
108 paper. This paper focuses on the radar data collected near the West Dome summit. Two 10-km
109 long lines across the divide were collected (Fig. 1 inset); x135 is closest to the dome summit
110 and x133 is 2 km to the east.

111

112 **2.1 Deep (HF) Radio-Echo Sounding Surveys**

113 Radio-echo sounding (RES) has been used to map ice thickness and bed elevation, and
 114 ice-sheet internal stratigraphy along two 10-km lines at West Dome (x135 shown in Fig. 2). We
 115 used a custom high-frequency (HF, 3 MHz) monopulse radar system (Welch and others, 2003,
 116 2009; Christianson and others, 2012; 2016). The RES data were processed using standard
 117 techniques, including horizontal stacking, bandpass filtering, correction for antenna separation,
 118 geolocation from contemporaneous kinematic Global Navigation Satellite System (GNSS) data,
 119 interpolation to standard trace spacing, and time-wavenumber migration using the open-source
 120 radar-processing and interpretation toolbox ImpDAR (Lilien and others, 2020). Englacial
 121 reflections were picked through the semi-automated digitization routine in ImpDAR. The two-
 122 way travel times (TWTT) were then converted to depth using a spatially uniform firn-density
 123 profile (ITASE 02-4, Dixon and others, 2013) and a Looyenga and others (1965) mixing model
 124 (Fig. 2D). There is a ~100m data gap at 4.9 km on x135. The noise on the picked layers in Fig.
 125 2E is due to sample resolution and the picking algorithm in ImpDAR.
 126

127

128 **Fig. 2:** A) GNSS derived surface elevation along x135 with ApRES sites shown by colored dots:
129 n0 (yellow), n1000 (orange), n2000 (pink), n5000 (purple). B) VHF radar of line x135 with
130 arrows pointing to bright layer identifiable throughout survey. Data quality is lower to the north.
131 C) The depth of the bright layer on x135 agrees well with x133, which does not have the data
132 gap or quality issues. VHF data along x133 is used for the accumulation forcing in the kinematic
133 model. D) HF radar of x135 showing internal layer and bed reflections. E) Traced internal layers
134 of x135 radargram shown in D). <Note that panel B is difficult to render properly at low
135 resolution which we will work on in a final figure>

136

137 **2.2 Shallow (VHF) Radio-Echo Sounding Surveys**

138 To image the upper 20-200 m of the ice sheet, we used a Pulse-EKKO Pro radar system
139 with very high frequency (VHF, 100 MHz) antennas. Our VHF data-processing flow is similar to
140 that described for the HF radar and includes bandpass filtering, correction for antenna
141 separation, geolocation from contemporaneous kinematic GNSS data, interpolation to standard
142 trace spacing, and exponential range gain to increase the relative amplitude of deeper
143 reflections. Englacial reflectors were traced using the semi-automated reflection digitization
144 routine in ImpDAR. A distinct high-amplitude reflector at ~75 m depth (Fig. 2b), observed in all
145 the shallow RES profiles, is used to infer the spatial pattern of accumulation at West Dome.

146 We convert the TWTT to depth with a depth-density profile based on the firn core density
147 measurements; we fit a Herron and Langway (1980) model to the firn core measurements to
148 produce a smooth depth-density profile. The bright layer is at 73.5 m depth at the closest
149 intersection (within 1 km) of our VHF profiles and the US-ITASE 02-4 core (Dixon and others,
150 2013; Fig. 1). The core extends to 72-m depth and was collected 17 years prior to our VHF
151 survey. The age at 73.5 m depth is 1600 CE, or 420 years before the VHF radar data was
152 collected, where we have assumed a steady-state firn column and determined the additional
153 age in the bottom 1.5 m from the same model fit used for the TWTT conversion.

154 For the x133 and x135 radar lines, the conversion of TWTT for the bright layer to depth
155 (Fig. 2C) and the inference of accumulation rate from the layer depth both depend on the
156 density profile. Because there is no firn core at West Dome, we use a Herron and Langway
157 (1980) firn model to estimate the depth-density profile. We use fixed inputs of 370 kg m^{-3} for the
158 surface density and -40°C for the surface temperature; we start with an initial value of 0.13 m a^{-1}
159 for the accumulation rate (all accumulation rates are given in ice equivalent and can be
160 converted to $\text{kg m}^{-2} \text{ yr}^{-2}$ using a density of 917 kg m^{-3}), which is greater than the value inferred
161 from the ITASE core because the average bright layer depth at West Dome is deeper than at

162 the ITASE core site. We then infer the accumulation rate from the layer depth and the modeled
163 density profile. To find a self-consistent solution, we iterate by calculating a new density profile
164 along the radar line with the inferred accumulation rate at each trace, convert TWTT to depth,
165 and infer the updated accumulation rate with the new density profile. The solution becomes self-
166 consistent within three iterations.

167

168 **2.3 Automated phase-sensitive radio echo sounding (ApRES)**

169 Acquisitions of autonomous phase-sensitive radio-echo sounding (ApRES; Nicholls and
170 others, 2015) were performed at four locations along the x135 line in the 2018-2019 season,
171 and repeated in 2019-2020. ApRES measurements are used to determine the relative phase
172 offset of englacial reflectors between the two acquisitions. ApRES processing is implemented in
173 ImpDAR (Lilien and others, 2020) and follows the processing flow described by Brennan and
174 others (2014). The wave speed is not corrected for the density variations of the firn and we do
175 not interpret the data in the upper 150 m. The phase offset is converted to a relative range offset
176 which determines a depth-velocity averaged over the period between the two measurements.
177 Since phase is relative, the phase offset profile is unwrapped against a point of known velocity
178 such as the bed or surface which then can shift the velocity profile by a constant.

179

180 **2.4 Kinematic model setup**

181 We employ a kinematic model to help interpret the internal structure of West Dome. In
182 this section we describe the model setup and the application of the model follows in Section 4.
183 The kinematic model uses inputs of the accumulation rate, bed topography, and prescribed
184 shape functions for the horizontal and vertical velocities (Nereson and others, 2002;
185 Waddington and others, 2007; Koutnik and others, 2012). These model inputs are based on the
186 geophysical observations described in Section 3. The ability to fit the measured layers provides
187 information about the stability of the current flow regime near the divide and about the
188 appropriate forcing for depth-age modeling.

189 We choose a kinematic model for two primary reasons. First, the existing radar coverage
190 is limited. The primary radar line is 10 km in length, which results in a distance of only ~3 ice
191 thicknesses between the divide and downstream boundary. Using dynamic models requires
192 extending the lower boundary to approximately 10 ice thicknesses from the divide, so that the
193 area of interest is not affected by the edge boundary (Martín and others, 2006). Second,
194 dynamic models have difficulty reproducing divide flow, particularly in areas with variations in

195 bed topography (Goel and others, 2018). Therefore, we use a kinematic model where we can
196 specify the shape of the englacial velocity profiles and the position of the divide.

197 The horizontal velocities, u , are calculated as:

198
$$u(x, \hat{z}, t) = \bar{u}(x, t)\phi(x, \hat{z}, t) \quad (1)$$

199 where \bar{u} is the depth-average velocity, x is the distance along the flow line, \hat{z} is the relative
200 height above the bed, t is time, and ϕ is the horizontal velocity shape function. We use the
201 Lliboutry (1979) approximation:

202

203
$$\phi(\hat{z}) = \frac{p+2}{p+1}(1 - (1 - \hat{z})^{p+1}) \quad (2)$$

204 where p is the shape factor. The corresponding vertical velocity shape function is:

205
$$\psi(\hat{z}) = \left(1 - \frac{p+2}{p+1}(1 - \hat{z}) + \frac{1}{p+1}(1 - \hat{z})^{p+2}\right). \quad (3)$$

206

207 The depth-averaged horizontal velocity is calculated from the ice flux from upstream, based on
208 the accumulation rate and ice thickness. We assume no divergence in the ice flow (i.e., the
209 flowband width is constant) based on comparisons with the measured surface velocities along
210 x135 (Fig. S1). The vertical velocity is calculated as

211
$$w = (\dot{b} - \dot{S})\psi - \bar{u}\phi\left(\frac{\partial B}{\partial x} + \hat{z}\frac{\partial H}{\partial x}\right) - \bar{u}H\int_0^{\hat{z}} \frac{\partial \phi}{\partial x} d\hat{z} \quad (4)$$

212 where

213 w, ψ, ϕ vary in x, \hat{z} , and t

214 $\dot{b}, \dot{S}, \bar{u}$ vary in x and t ,

215 B and H vary in x

216 and \dot{b} is the accumulation rate, \dot{S} is the change in surface elevation, B is the bed elevation, and
217 H is the ice thickness.

218 An example of the modeled velocity field is shown in Fig. 3. The details of our model
219 results are presented in section 4, but we present the individual velocity components, the three
220 terms on the right-hand side of Eq. 4, to aid in visualizing the model construction. By
221 representing the velocity field with these three terms, we can separate the influence of the bed
222 from dynamics within the ice column to better understand the cause of variability in ice-flow
223 along profile.

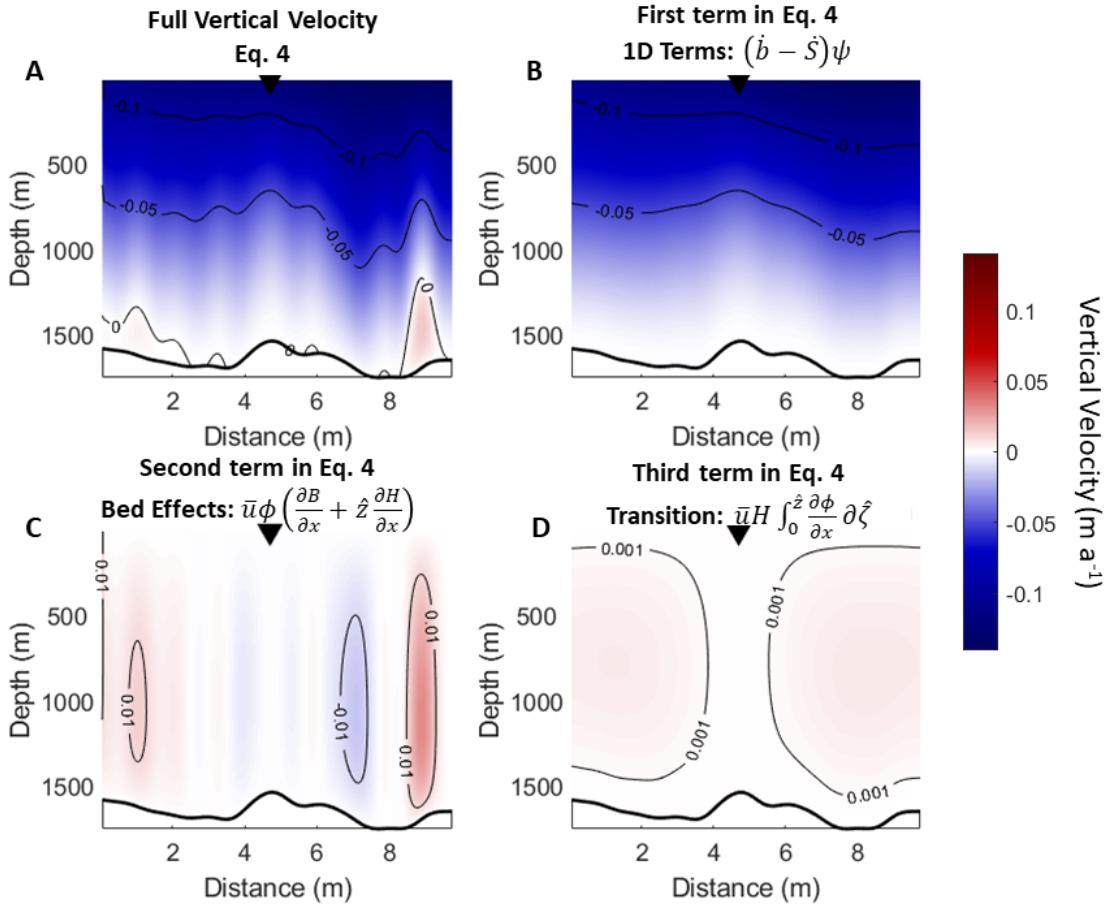
224 We refer to the first term on the right-hand side of Eq. 4 as the one-dimensional term,
225 which is governed by the surface vertical velocity. The surface vertical velocity (w_s) is given by

226 the difference between the accumulation rate (\dot{b}) and the change in the surface elevation (\dot{S}):
227 $w_s = \dot{b} - \dot{S}$. We do not consider basal melt (see sections 3.4 and 4.4).

228 We refer to the second term on the right-hand side of Eq. 4 as the two-dimensional term
229 since it ensures bed and surface parallel flow.

230 The third term on the right in Eq. 4 accounts for variations in the shape of the horizontal
231 vertical velocity, which in our case is the transition from divide to flank flow.

232 The bed elevation and ice thickness (section 3.2) as well as the accumulation rate
233 (section 3.3) used in the kinematic model are derived from the radar data. The prescribed shape
234 functions are based on vertical velocity profiles fit to the ApRES data (see section 3.4). The
235 ApRES measurements are at only four locations and we must define the vertical velocity
236 continuously along the flowline. To do so, we define one shape function for the divide and one
237 for the flank, and prescribe a smooth transition between them. We follow Nereson and
238 Waddington (2002) and assume the width of divide flow influence can be approximated as:


239
$$\beta(x) = \exp\left(-\frac{x^2}{2\sigma^2}\right) \quad (5)$$

240 where σ is the half-width of the divide zone for the vertical velocity and the transition for the
241 horizontal velocity is then:

242
$$\alpha(x) = \frac{\sqrt{2\pi}\sigma}{2x} \operatorname{erf}\left(\frac{x}{\sqrt{2}\sigma}\right) \quad (6)$$

243 The transition in the vertical velocity occurs in one to two ice thicknesses from the divide, based
244 on modeling studies (Raymond, 1983) and observations of the width of Raymond arches (e.g.,
245 Matsuoka and others, 2015). The transition in horizontal velocity occurs over a longer distance.
246 The value of p for the shape functions (Eq. 3) are 0.3 for the divide and 7 for the flank. The
247 divide-zone half-width is 2800 m, approximately 1.5 ice thicknesses.

248

249

250 **Fig. 3:** A) Modeled vertical velocity field using Eq. 4 with the divide at 4.7 km (black triangle). B)
 251 First term of Eq. 4, which has the one-dimensional effects and is set by the accumulation rate
 252 and shape function. C) second term of Eq. 4, which expresses the vertical velocity for bed-
 253 parallel horizontal flow. D) third term of Eq. 4, which expresses the impact of the varying
 254 horizontal shape function. All figures use the same color scale to show the relative importance
 255 of the terms but have contours of different values to emphasize the magnitude of the terms.

256

257 3. GEOPHYSICAL OBSERVATIONS

258 The geophysical observations reveal the internal structure and bed of West Dome and
 259 provide inputs and constraints for the kinematic model. We first determine the internal
 260 stratigraphy from the HF radar reflections. Second, we use the HF radar to determine the bed
 261 elevation and assess ambiguities in the bed picks using the kinematic model and measured
 262 internal layers. Third, we find the accumulation rate across the dome using a bright layer in the
 263 VHF radar which can be dated to 420 years before 2020, when the data were collected, near

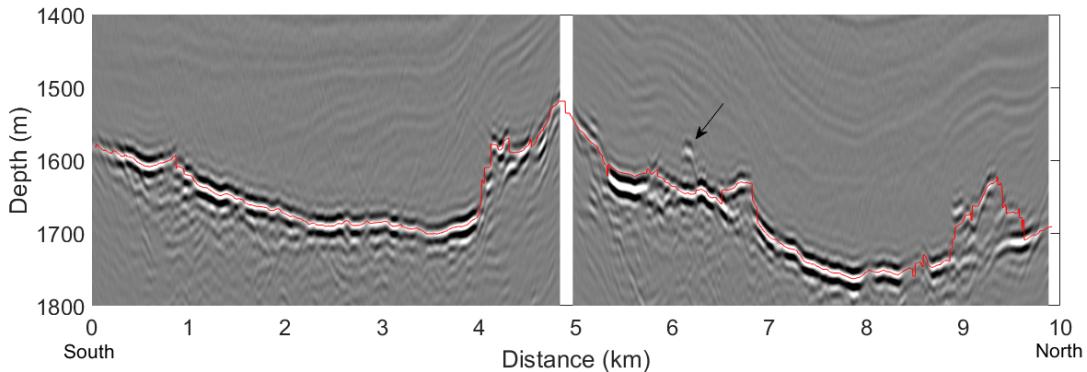
264 the US-ITASE shallow core. Finally, we assess the englacial vertical velocity profiles and
265 identify a change in shape with distance from the present ice divide.

266

267 **3.1 Internal Layer Geometry**

268 We traced 22 internal layers from approximately 400 m below the surface to 200 m
269 above the bed (Fig. 2d,e). Layers are consistent and traceable along the full profile to within 400
270 m of the bed. Below 400 m, there is a difference in the character of the layers on the north and
271 south sides of the divide. To the north, there is a bed-conformal and traceable layer between
272 100 and 200 m above the bed that extends to the northern end of the profile. Between that layer
273 and the ice bottom, there appears to be coherent layering just north of the divide, but that signal
274 is lost as the ice thickens along the profile. The lack of continuous layering in this interval is not
275 surprising given the challenges of resolving deep layers (e.g., Drews and others, 2009): returns
276 from the deep layers are weaker due to greater attenuation; the layers vary more in depth as
277 they drape the irregular bedrock; and the relatively long wavelength (~55 m) of the HF system
278 integrates a larger number of small-scale electrical contrasts which can cause more complex
279 reflections. To the south, there is a package of layers that diverge from the traced layer at 400
280 m, indicating a local thickening of the layer package that sits between 200 and 400 m above the
281 bed at the divide as you move south along the profile. These layers lose coherence as they
282 approach the ice bottom.

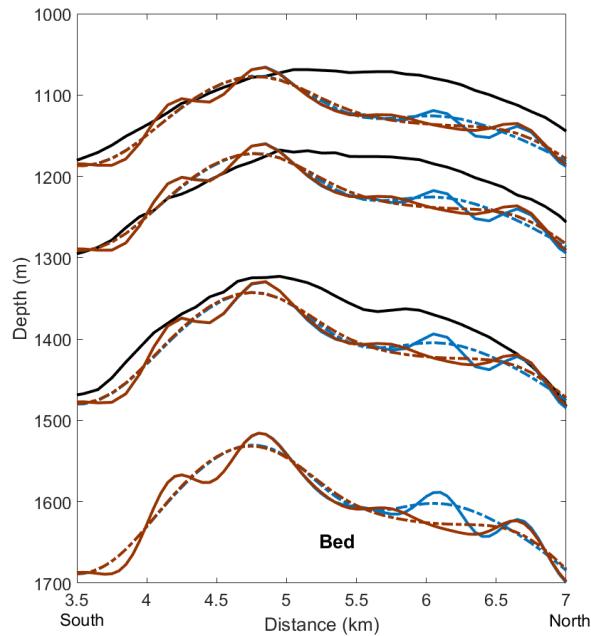
283 The internal layers cannot be dated with existing information from ice cores because
284 there are no continuous radar profiles between the two West Dome radar profiles and the
285 ITASE ground-based or airborne radar data sets. The only layer that can be dated is the bright
286 reflector in the VHF data (section 2.2, Fig. 2b) because it can be unambiguously matched by
287 correlation to a radar line within 1 km of the dated ITASE core despite the lack of a continuous
288 link. The internal reflectors of the HF radar profiles at West Dome are not distinct enough to be
289 matched to the East Dome and South Ridge HF radar profiles.


290

291 **3.2 Bed Topography**

292 We imaged the bed of West Dome along the x135 and x133 radar lines using the HF
293 radar. The current surface divide is located above a bedrock high (Fig. 2). The ice thickness
294 along x135 ranges from 1510 m below the divide summit to 1750 m at approximately 8 km
295 along the radar line. The bed topography is smoother than at East Dome (Jacobel and others,
296 2005). The bed reflection is visible along the full profile (Fig. 4), although there are two locations
297 where the bed reflection is ambiguous. The most important of these is at 6 km along the radar

298 line. The brightest reflection is at 1640 m depth; however, there is also a weaker return from
299 1580 m depth. This smaller amplitude reflection is likely an off-nadir return and may indicate a
300 decameter-scale bump at the bed close to the profile.


301

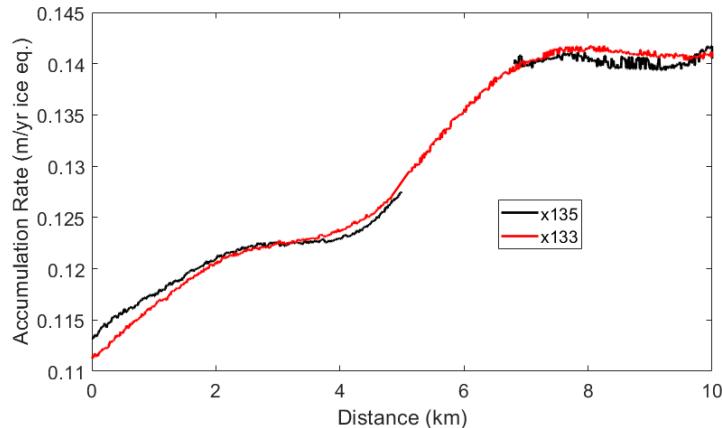
302 **Fig. 4:** The interpreted bed location is shown (red). There is an ambiguity in the bed reflection at
303 6 km (arrow).
304

305

306 To evaluate the significance of such a feature on the internal layering, we run the
307 kinematic model with bed topographies based on both the original pick and by picking the
308 decameter-scale bump at ~6 km. We also use two different low-pass filters of 500 m and 1000
309 m, resulting in four different potential boundary conditions. The observed layers (and the
310 associated model-predicted layers) deeper than 1000 m are shown in Fig. 5 because they are
311 the most affected by the bed boundary condition. The age of the internal layers is unknown so
312 we cannot compare the modeled and measured layers based on age; instead, we compare the
313 observed layers to a modeled layer with the same average depth. The modeled layers produced
314 using the 500-m filtered beds show greater variability than the observed layers while the 1000-m
315 filtering produces internal layering with smoothness comparable to the measured layers. Using
316 the bed with 1000-m filtering and the decameter-scale bump, the model is able to reproduce the
317 slight dip in the deepest layer at 5.5 km along the radar line. Therefore, we use the 1000-m
318 filtered bed with the bump in all of the model runs used to help interpret the internal layering
319 (section 4).

320

321 **Fig. 5.** Black lines are observed internal layers. The bottom layers are the four different beds
 322 used in the kinematic model. The two brown lines have no bump at 6km; the two blue lines have
 323 the bump added. Low pass filtering of 500 m is shown as solid lines and 1000 m is shown as
 324 dash dot. The modeled internal layers have line color and type that match the bed.


325

326 **3.3 Accumulation Rate**

327 The accumulation rates inferred from the VHF radar profiles along x135 and x133 are
 328 shown in Fig. 6. There is a ~2 km gap in the x135 line because of poor radar quality. The
 329 inferred accumulation rates are similar between the two lines. The highest accumulation rates of
 330 0.14 m a^{-1} are in the north and are relatively constant from 7 km to 10 km along the radar lines.
 331 The accumulation rates decrease by about 25% to less than 0.115 m a^{-1} at the south end of the
 332 radar line. Because the data from x133 is of higher quality and agrees well with the high-quality
 333 portions of x135, we use the accumulation rate inferred from x133 as the forcing for the model
 334 runs used to help interpret the internal layering (section 4).

335

336

337

338 **Fig. 6:** Accumulation rate inference from the bright layer dated to an age of 420 years (1600
 339 CE). Profile x135 has poor data quality in the center so x133 is used for model forcing given the
 340 close agreement between the two. Note that the x133 profile is slightly offset at 5km (Fig. 1,
 341 inset) such that we interpolate linearly from 4.8 to 5.1 km.

342

343 3.4 Englacial Vertical Velocities

344 Divides with frozen beds have vertical strain rates which are greater near the surface
 345 and smaller near the bed compared with locations of larger surface slopes and shear strain
 346 rates. We refer to this characteristic shape of the vertical velocity near divides as divide-flow,
 347 and the more linear vertical velocity away from divides as flank-flow. The difference in the
 348 vertical velocity patterns yields Raymond arches (Raymond, 1983) when the divide position is
 349 stable. Englacial vertical velocities were derived using ApRES acquisitions in the 2018/19 and
 350 2019/20 field seasons at four sites shown in Fig. 2A with the goal to 1) identify whether the
 351 shape of the vertical velocity is characteristic of those with a frozen bed, and 2) provide
 352 constraints for kinematic modeling of internal layers.

353 The vertical velocity profiles are plotted by relative height above the bed in Fig. 7A
 354 (where 0 represents the bed and 1 the ice surface) and by absolute height above the bed in Fig.
 355 7B. A useful way to visualize whether divide flow is occurring is to perform a linear fit of the
 356 upper portion of the vertical velocities and to compare the extension of the linear fit to the bed
 357 with the measured vertical velocities (Fig. 7A). The fit is calculated by linear regression between
 358 a relative height of 0.5 to 0.9. The near-surface portion is excluded because of the influence of
 359 firn compaction on the velocity profile above 0.9. For n5000, approximately 5 km north of the
 360 divide, the linear fit matches well for all velocities except for those below 0.05. This near-linear
 361 increase of vertical velocity with height above bed is typical of ice away from a divide (Kingslake

362 and others, 2014). At sites n0 and n1000, there is a noticeable divergence from the linear fit, as
363 the vertical velocities show little change below 0.3.

364 The four sites were revisited in the 2021/22 field season. Sites n0, n1000, and n5000
365 showed nearly identical vertical velocities for the 19/20-21/22 period as the 18/19-19/20 period;
366 however, n2000 did not (Fig. S2-5). Therefore, we focus our discussion on the differences
367 between n0 and n1000 near the present divide and n5000, which is outside the divide region. A
368 discussion of the vertical velocities using the 2021/22 field data are in given in the
369 Supplementary Information.

370 To quantitatively describe the vertical velocity profiles, we fit the vertical velocities using
371 two simplified versions of Eq. 4. First, we follow Kingslake and others (2014) and fit with the
372 following one-dimensional term,

373 $w(\hat{z}) = w_s \psi \quad (7)$

374 The value of p in the calculation of ψ (Eq. 4) is a useful measure of the shape of the vertical
375 velocity and can be used to characterize the influence of the divide. Small values of p indicate
376 divide-like flow, with increased vertical strain near the surface and reduced vertical strain near
377 the bed. Higher p values indicate more uniform vertical strain with depth.

378 Since the ApRES measures phase, we can only infer a relative velocity, and we must
379 specify one absolute velocity. We assume no motion at the bed and set the average of the
380 velocities within 100 m of the bed to zero. This allows an estimate of the surface vertical
381 velocity, excluding firn compaction, which should be similar to the ice-equivalent accumulation
382 rate. The best-fit values of p and w_s are given in Table 1; the velocities within 100 m of the bed
383 and within 150 m of the surface are not used in the fit. The inferred surface vertical velocity
384 exceeds the inferred 420-year average accumulation rates from the VHF radar data, except at
385 n2000. The inferred surface vertical velocity at n5000 is 0.17 m a^{-1} , nearly 0.04 m a^{-1} (30%)
386 greater than the 420-year average accumulation rate of 0.13 m a^{-1} . We suspect that this is
387 because n5000 has the greatest horizontal velocity ($\sim 0.5 \text{ m a}^{-1}$) and is expected to have the
388 largest component of the vertical velocity due to horizontal flow over the bedrock.

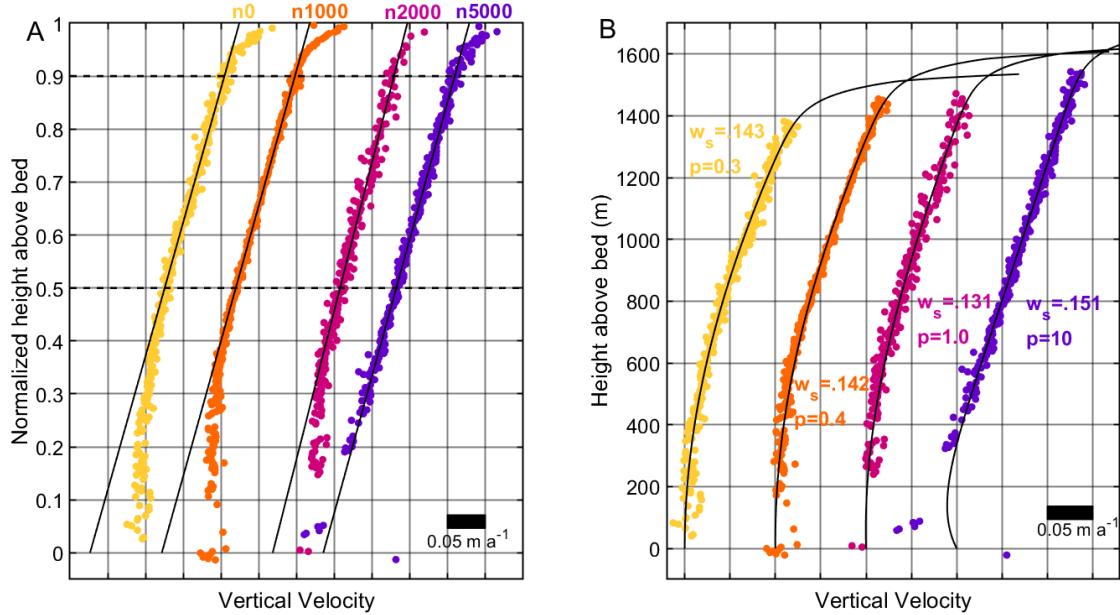
389 To account for ice flow over an irregular bed, we also fit the vertical velocities with

390 $w(\hat{z}) = w_s \psi + \bar{u} \phi \frac{\partial B}{\partial x} \quad (8)$

391 We neglect the component of the vertical velocity due to lateral variation in the shape of the
392 horizontal velocity profile because it is the smallest term (Fig. 3). We estimate the depth-
393 averaged horizontal velocity from the balance velocity. The bed slopes are calculated on a 200
394 m length scale using the unfiltered bed (Fig. S6).

395 In the fit using Eq. 8, the surface vertical velocity is constrained to within 0.02 m a^{-1} of
396 the measured accumulation rate. In addition, the fit finds a uniform shift of the vertical velocity
397 profile since the velocities are relative; this relaxes the constraint we applied when using Eq. 7,
398 where the average velocity in the bottom 100 m was set to 0, and allows us to determine if the
399 vertical velocities are consistent with the glaciological setting. The fit values are also shown in
400 Table 1.

401 The largest difference in the fit parameters between Eq. 7 and Eq. 8 is at n5000, where
402 a reasonable fit with a surface vertical velocity of 0.151 m a^{-1} is possible because of the
403 negative (upward) vertical velocities near the bed caused by flow up the bedrock slope (e.g.
404 Hills and others, 2022). The two measurements closest to the divide, n0 and n1000 are similar
405 to each other with the value of p being indicative of divide-flow; n5000 has a large p value
406 indicative of flank-flow. Because of the uncertainty in the measurements at n2000 and the lack
407 of measurements in between n2000 and n5000, it is difficult to determine the width of the divide
408 zone.


409

410

411 Table 1: Fits to ApRES vertical velocities

			Fit 1D only			Fit 1D and 2D				
	Accumulation rate		w_s	p	rms	w_s	p	rms	Horizontal balance velocity (\bar{u})	bed slope
	$m\ a^{-1}$		$m\ a^{-1}$		$m\ a^{-1}$	$m\ a^{-1}$	$m\ a^{-1}$	$m\ a^{-1}$		
n0	0.123		0.145	-0.2	8.2	0.143	0.3	4.4	0	-0.21
n1000	0.127		0.145	-0.2	7.7	0.141	0.4	3.5	0.056	0.04
n2000	0.131		0.135	2.0	9.5	0.131	1.0	9.0	0.127	0.04
n5000	0.131		0.170	4.5	7.3	0.151	10	8.6	0.350	0.07

412

413

414 **Fig. 7:** Modeled and measured vertical velocity profiles for the four ApRES locations labeled by
415 their approximate distance in meters from the divide. The horizontal spacing of the vertical lines
416 in both panels is $0.05\ m\ a^{-1}$. The positions are shown in Fig. 1 and 2, with n0 in yellow, n1000 in
417 orange, n2000 in pink, and n5000 in purple. A) ApRES vertical velocities; black lines are a linear
418 fit to the interval of $0.5H$ to $0.9H$. B) shows Lliboutry fits to the vertical velocities where the

419 surface vertical velocity (excluding firn compaction) is required to be within 0.02 m a^{-1} of the
420 420-year average accumulation rate, the vertical component of ice flow over uneven bedrock is
421 included, and a constant shift for the vertical velocity profile is a free parameter. The transition
422 from divide-flow with low p values to flank-flow with high p values occurs with increasing
423 distance from the divide (see section 2.4).

424

425

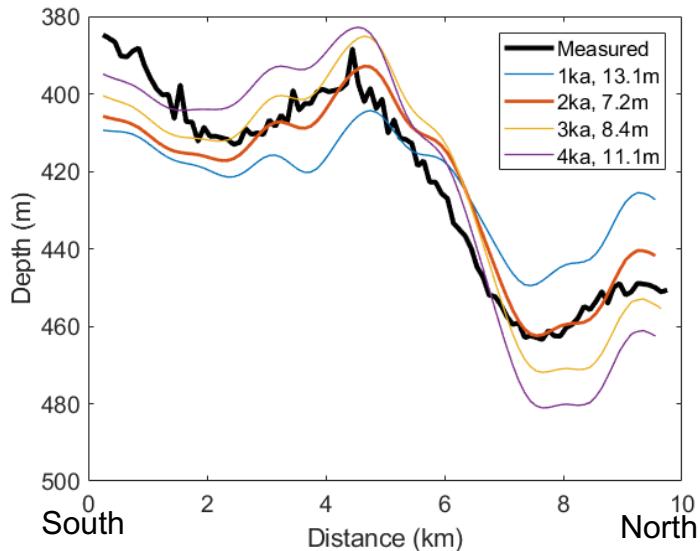
426 **4. KINEMATIC MODEL RESULTS**

427 Our kinematic model and data comparison focuses on five objectives: 1) fit the
428 shallowest layer using the kinematic model to determine how well the modern observations
429 reflect late Holocene dynamics and forcing; 2) assess differences in layer depths in the divide
430 region to evaluate the presence of a Raymond arch; 3) fit all layers across the full radar profile
431 to evaluate the likelihood of divide migration within our domain; 4) determine the likelihood of
432 basal melt; and 5) use our best fit model to produce a depth-age scale that captures the annual-
433 layer thickness near the bed.

434

435 **4.1 Fit to shallowest layer**

436 Before examining the model fit for all of the internal layers, we focus on the shallowest
437 HF radar layer which has a depth of ~430 m and a modeled age of ~4 ka. We assess whether
438 the modern observations of accumulation and vertical velocity are likely to have been constant
439 for the past ~4 ka. The accumulation rate pattern is a 420-year average while the measured
440 vertical velocities are a snapshot over one year.


441 Using the modern patterns of accumulation and vertical velocity for the past 4 ka
442 produces a layer which is too shallow beneath the divide and too deep north of the divide (Fig.
443 8). This suggests that the modern accumulation and vertical velocity patterns have not been
444 constant for the past 4 ka, which may indicate that the divide has not been stable at its current
445 position. To evaluate this possibility, we test scenarios of divide onset occurring in 1 ka
446 increments. Prior to the divide onset, we assume spatially uniform flank-flow vertical velocities
447 and uniform accumulation. The modeled layers and the misfit is shown in Figure (8). The
448 modeled layers fit the measured layer best with a 2 ka onset of modern conditions although
449 there is still a significant discrepancy on the south edge of the profile.

450 For these tests, we have assumed that the divide in the surface topography causes both
451 the vertical velocity pattern and the accumulation pattern. The vertical velocity pattern is
452 primarily caused by the low deviatoric stress beneath the divide although the development of ice
453 fabric may also play a role (Pettit and others, 2007; Martin and others, 2009); however, it is less
454 clear how closely the surface topography of the divide and the accumulation pattern are
455 coupled. More complicated temporal and spatial variations in the accumulation pattern and
456 divide position can improve the fit; however, without evidence to guide *a priori* expectations for
457 how the patterns should develop in time, the improvements would not necessarily be
458 meaningful. An improved fit with more complicated variations in the forcings would reinforce the
459 primary conclusion that the modern conditions are unlikely to have been stable for the past ~4

460 ka. In the following sections, we explore the fit to all of the internal layers to extend our
461 understanding of the divide position and accumulation pattern to older ages.

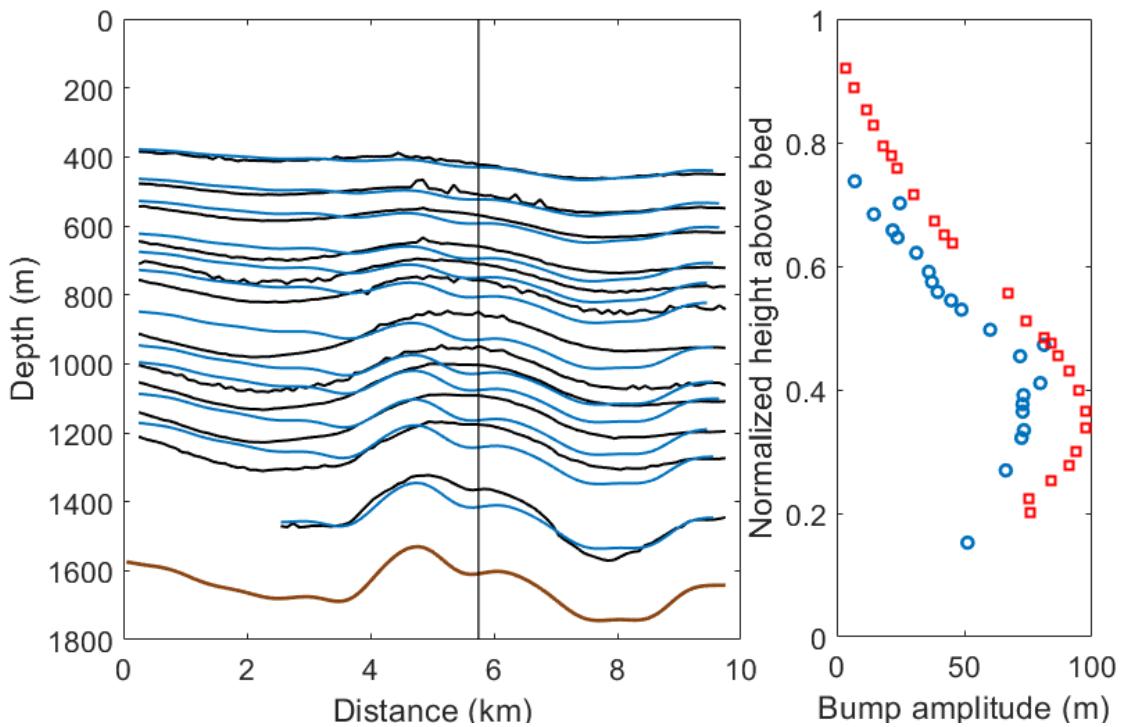
462

463

464

465 **Fig. 8:** Model fit to the shallowest HF (deep) radar layer. The legend gives the spatially
466 averaged misfit to the measured layer (in m) and the age at which the modern vertical velocity
467 and accumulation rate patterns are applied (in ka). The divide zone has a width of $1.5H$. The
468 modeled age of the layer is about 4 ka.

469


470 4.2 Evaluating the presence of a Raymond Arch

471 Although the ApRES vertical velocities indicate that divide-flow is occurring, there is not
472 an obvious Raymond Arch beneath the divide. However the measured internal layers are
473 shallower in the ice column at ~ 6 km than might be expected based on the bed topography (Fig.
474 2D). In areas of flat bedrock, the amplitude of a Raymond arch can be determined by comparing
475 the depth of an internal layer beneath the divide to the depth on the flank outside of the divide
476 region (e.g. Roosevelt Island, Conway and others, 1999), but the identification of Raymond
477 arches is challenging in areas with greater ice thickness, lower accumulation rates, and without
478 smooth bedrock (e.g. Goel and others, 2018). Since the irregular bedrock at our site does not
479 allow a simple comparison between the depth of a layer beneath the divide and on the flank, we
480 use the kinematic model.

481 We compare the height of the measured layer to one from the kinematic model forced
482 with a spatially constant vertical-velocity shape function ($p=4$, Fig. 9). The difference between

483 the measured and modeled layers at 5.5 km along the radar line has both similarities and
 484 differences to the Raymond arch amplitude at Roosevelt Island (Fig. 9b). The Raymond arch at
 485 Roosevelt Island began forming about 3 ka (Conway et al., 1999; Martin et al., 2006). The onset
 486 of a layer mismatch begins deeper in the ice column, at a normalized height of about 0.7 at
 487 West Dome compared to 0.9 at Roosevelt Island. There are also large misfits in the layer
 488 depths outside of the divide zone at West Dome, particularly to the south (Fig. 9A). Thus, the
 489 existence of a Raymond arch is uncertain. In the following section (4.3), we model the full set of
 490 internal layers to better understand the observed layering.

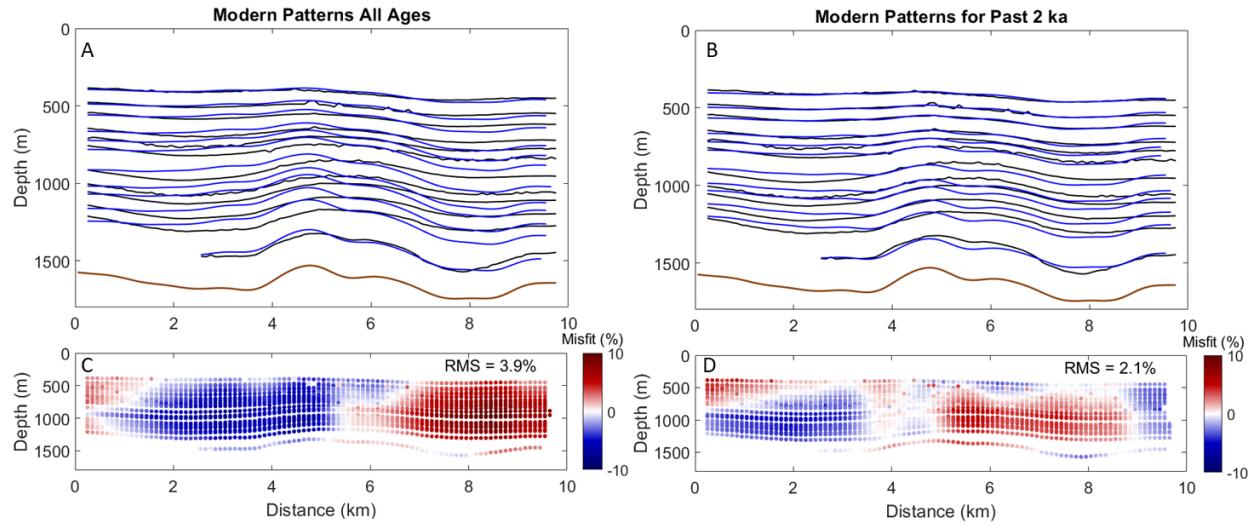
491

492
 493 **Fig. 9:** A) Modeled internal layers (blue) assuming uniform flank flow ($p=4$) compared to
 494 measured layers (black). The bed is shown in brown. B) The difference between modeled and
 495 measured layers (blue circles) at 5.75 km (black vertical line) compared to the Raymond arch
 496 amplitude of Roosevelt Island (red squares) (Conway and others, 1999).

497

498 4.3 Model fit to all layers

499 The kinematic model fit to the shallowest layer (section 4.1) suggested that the modern
 500 divide and accumulation pattern have not been stable for more than a couple of thousands of
 501 years while the possibility of a Raymond arch exists (Section 4.2) offset to north from the
 502 present divide. Here we evaluate the fit to all the layers for test scenarios of divide migration and

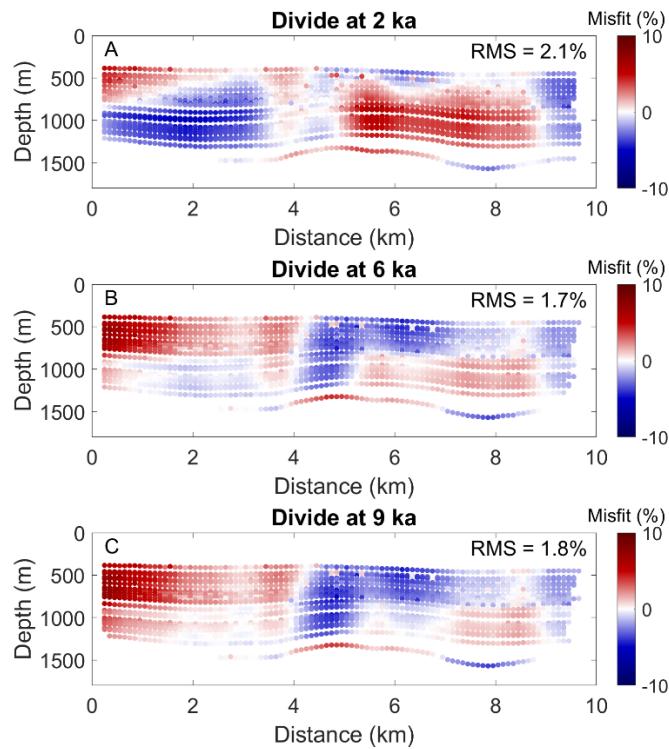

503 variations in the accumulation pattern. The primary goals are to evaluate the likelihood of divide
504 migration within our domain and identify the appropriate forcings for the thermal and depth-age
505 modeling.

506 The kinematic model fit to the full depth of measured layers is shown in Fig. 10 for two
507 scenarios: A) using the measured accumulation and vertical velocity forcings for all ages and B)
508 using the measured forcings for only the past 2 ka (i.e. divide onset at 2 ka, see section 4.1) and
509 spatially uniform patterns of accumulation and vertical velocity for ages older than 2 ka. The root
510 mean square error, calculated as fraction of layer depth offset, is improved by about a factor of
511 2 when the modern patterns are used for only the past the 2 ka. The resulting misfit shows a
512 pattern of the modeled layers being too deep to the north of the divide, and too shallow to south.

513 There are two primary changes in the model forcing that will yield deeper layers to the
514 south, shallower layers to the north, and thereby improve the fit: 1) Move the region of divide
515 flow to the north; and 2) reverse the accumulation gradient such that there is more accumulation
516 to the south and less to the north.

517 We performed model runs with the divide shifted north to 6 km along the flowline for
518 different ages prior to 2 ka. The divide then migrates from 6 km to 4.7 km (the modern divide
519 position) between 2.5 and 2 ka. The best fit occurs with a divide onset at 6 km at 6 ka. In Fig.
520 11, we show the misfit for divide onset at 6 ka as well as for 9 ka; the misfit for the base
521 scenario (Fig. 10B) of divide onset at 2 ka at 4.7 km along the flowline is also shown. In the
522 scenarios with divide onset prior to 2 ka, the modeled layers are shallower to the north because
523 of the increased layer thinning in the upper portion of the ice sheet. The modeled layers are also
524 deeper to the south, better matching the measured layers, because the average depth of the
525 modeled layer is constrained to match the average depth of the measured layer. Divide onset at
526 6 ka results in better fits from 5 to 7 km and from 0 to 4 km along the flowline throughout most
527 the depth; however, the misfit increases from 4 to 5 km, the modern divide region. The scenario
528 with divide onset at 9 ka further increases the misfit beneath the modern divide, which drives an
529 overall increase in the misfit for the full flowline. The timing of the divide onset should be
530 interpreted with caution because the layers are not dated and the improvement in fit is modest.
531 These tests with the kinematic model indicate that the divide is unlikely to have been

532 established prior to the mid-Holocene.



533
534 **Fig. 10:** A and B) Bed (brown), measured internal layers (black) and modeled internal layering
535 (blue) using the modern spatial patterns of vertical velocity and accumulation rate for all ages
536 (A) and only the past 2 ka (B, uniform vertical velocity and accumulation rate before 2 ka). C,D)
537 Relative misfit (measured depth – modeled depth)/measured depth. Panels A) and B) show only
538 13 of the 22 measured layers for clarity while panels C) and D) show all 22 layers.

539
540 To assess the impact of the spatial pattern of accumulation, we performed two tests to
541 compare with the base scenario in Fig. 10B. In both scenarios, the modern pattern of vertical
542 velocities began at 2 ka with uniform flank-flow for older ages. The first scenario kept the
543 modern accumulation gradient fixed for all ages; the second scenario flipped the modern
544 accumulation gradient for ages older than 2 ka (Fig. S7). Using the modern accumulation
545 gradient for all ages increases the relative misfit from 2.1% to 3.2%, while using a flipped
546 accumulation gradient increases the relative misfit from 2.1% to 2.2%. As indicated above, a
547 reversal in the accumulation gradient results in deeper layers to the south and shallower layers
548 to the north, yielding a similar misfit as the base scenario. Different accumulation gradients
549 and/or timing of changes in the past accumulation gradients can yield better fits. This issue of
550 non-uniqueness is inherent in inferring accumulation rates from deep internal layers near ice
551 divides (e.g. Koutnik et al., 2016), and is more challenging when the layers have not been
552 dated. Scenarios with an onset of the flipped accumulation gradient in the Holocene, and
553 uniform accumulation for older ages, produce a worse fit than when the flipped gradient is
554 applied for all ages. We have no *a priori* expectation that a reversal in the gradient should have
555 occurred during the early-to-mid Holocene when West Antarctic climate was relatively stable.

556 While past changes in the accumulation gradient cannot be well constrained, it is unlikely that
557 the modern pattern has persisted for more than a few thousand years.

558 Overall, the kinematic modeling shows that the divide position was unlikely to be stable
559 before the mid-Holocene and that the pattern of accumulation is difficult to constrain. A key
560 conclusion for the depth-age relationship is that because the divide is unlikely to have been
561 stable, a flank-flow vertical velocity is most appropriate for modeling the depth of the older ice.
562

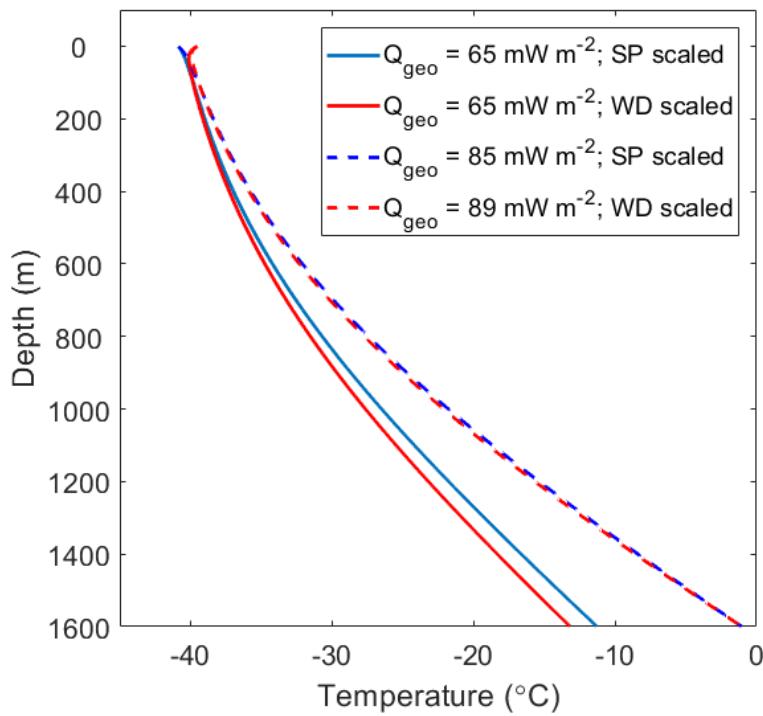
563
564 **Fig. 11:** Relative misfit as calculated in Figure 10E,F for kinematic model scenarios with no
565 divide onset prior to 2 ka (A), divide onset at 6 ka at 6 km (B), and divide onset at 9 ka at 6 km
566 (C).

567
568 **4.4 Temperature modeling and basal thermal state**
569 We use a 1-D ice-and-heat flow model to estimate the internal and basal temperature at
570 West Dome. The model is described in Fudge and others (2019) and Buijzer and others (2021).
571 We take two approaches. First, we estimate the internal temperature based on the 65 mW m^{-2}
572 average of three recent remotely-sensed estimates of geothermal flux which are tightly
573 clustered: $62 \pm 10 \text{ mW m}^{-2}$ (Shen and others, 2020), $68 \pm 25 \text{ mW m}^{-2}$ (Stal and others, 2020), and

574 66±11 mW m⁻² (Martos and others, 2017). This provides a prior estimate for the temperature
575 profile for use in planning ice core drilling and analyses. Second, we find the minimum
576 geothermal flux at which melting begins (e.g. Fudge and others, 2019).

577 The ice-and-heat flow model is forced by time-varying surface temperature,
578 accumulation rate, and vertical velocity shape factor histories. We use an ice thickness of 1600
579 m, which is held constant. The histories are based on the two closest deep ice cores, the WAIS
580 Divide ice core (WDC) and the South Pole ice core (SPICEcore); these histories are extended
581 through the LIG using the EPICA Dome C core (EPICA, 2004; Veres et al., 2013). The
582 temperature histories is found using:

583
$$T(t)_{Model} = T(0)_{Herc} + (T(t)_{core} - T(0)_{core}) \quad (12)$$


584

585 Where $T(t)_{Model}$ is the surface temperature forcing for the thermo-mechanical model, $T(0)_{Herc}$
586 is the modern temperature at Hercules Dome and is -41°C based on a 10-m firn temperature
587 measurement in 2019, $T(t)_{core}$ is the inferred temperature history from the one of the ice cores,
588 $T(0)_{core}$ is the modern surface temperature of the ice core site, and t is model time. The LGM-
589 modern change is -11°C for WDC (Cuffey and others, 2016) and -6°C for SPICEcore (Kahle and
590 others, 2021). The accumulation rate histories are calculated as

591
$$\dot{b}(t)_{model} = \dot{b}(0)_{Herc} \times \frac{\dot{b}(t)_{core}}{\dot{b}(0)_{core}} \quad (13)$$

592

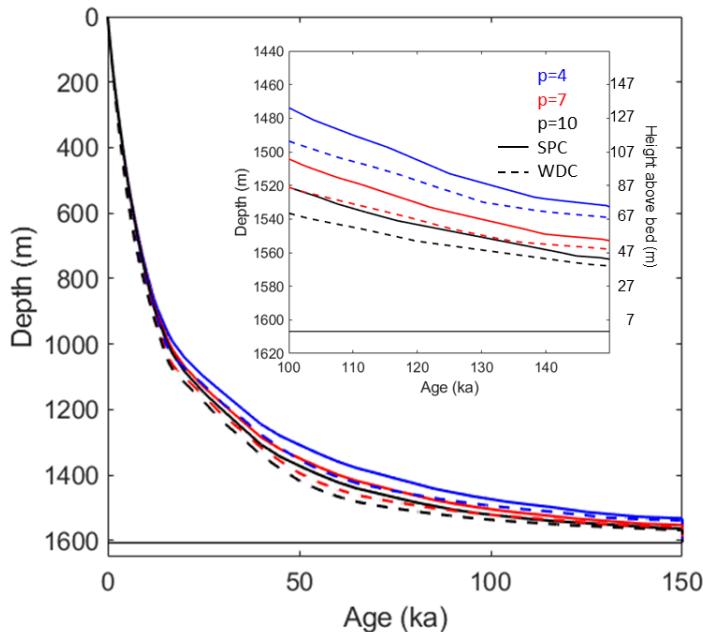
593 Using the same notation as for the surface temperature in Eq. 12. The modern accumulation
594 rate at Hercules Dome, $\dot{b}(0)_{Herc}$, is 0.13 m a⁻¹. Both WDC (Fudge and others, 2016) and
595 SPICEcore (Kahle and others, 2021) have inferred LGM accumulation rates of about 40% of
596 modern.

597

598

599 **Fig. 12:** Temperature profiles for West Dome. Solid lines use the average of the remotely
 600 sensed geothermal flux estimates (65 mW m^{-2}); dashed lines assume the bed is at the pressure
 601 melting point. The surface temperature and accumulation rate histories are scaled from values
 602 at SPICEcore (blue) and WAIS Divide (red) using modern values of -41°C and 0.13 m a^{-1} .
 603

604 The englacial temperature profiles are shown in Fig. 12. The geothermal flux necessary
 605 for melting at present is $85 \pm 7 \text{ mW m}^{-2}$ using the SPICEcore scaling and $89 \pm 7 \text{ mW m}^{-2}$ using the
 606 WDC scaling. The uncertainty was calculated assuming an end-member modern surface
 607 temperature of -39°C (2°C warmer) and modern accumulation rate of 0.11 m a^{-1} (0.02 m a^{-1}
 608 lower). The minimum geothermal flux to produce melting is considerably larger than the
 609 remotely sensed estimates inferred by three different studies. Our estimated range of the
 610 geothermal flux necessary for basal melting overlaps with the uncertainty of only one of these
 611 estimates, Stal and others (2020), and only because of its large (25 mW m^{-2}) uncertainty.
 612


613 **4.5 Depth-Age Relationship**

614 Because the measured internal layers cannot be dated, preliminary depth-age
 615 relationships must be assessed from modeling. We use the onset of the divide at 2 ka (sections
 616 4.1 and 4.3) and three different choices for the vertical velocity shape factor (4, 7, and 10) for

617 ages prior to 2 ka. We use the two accumulation histories described in section 4.4 which are
618 based on WDC and SPICEcore. For the kinematic model forcing, the fractional accumulation is
619 multiplied by the modern spatial accumulation-rate pattern.

620 The resulting depth-age relationships at 5.5 km along the x135 flowline are shown in Fig.
621 13. The choice of vertical-velocity shape factor has a larger influence than the choice of
622 accumulation history. Ice of 132 ka age, the start of the LIG, ranges from 47 m to 87 m above
623 the bed. The average LIG annual-layer thickness is approximately 1 mm.

624

625

626

627 **Fig. 13:** Depth-age relationships at 5.5 km along the flow line. Accumulation forcing is scaled to
628 SPC (SPICEcore, solid) or WDC (WAIS Divide, dashed). Three different vertical velocity profiles
629 for flank flow ($p=4$, 7, or 10) are shown for each accumulation forcing. The height above the bed
630 for ice of 132 ka age ranges from 47 to 87 m.

631

632 **5. DISCUSSION**

633 **5.1 Potential for a deep ice core**

634 One goal of drilling a deep ice core at Hercules Dome is to recover ice that includes the
635 onset of the LIG (132 ka), and preferable Termination II (the transition into the LIG from the
636 previous glacial maximum) as well. To preserve ice of this age, there must be limited or zero
637 basal melt and no more than minor disturbances to the stratigraphy. The current pattern of

638 vertical velocity across the divide at West Dome suggests the ice is frozen to the bed. This is
639 supported by the ice-and-heat flow modeling (section 4.4). With a geothermal flux of 65 mW m^{-2} ,
640 the ice at the bed is approximately -10°C , which would allow subglacial bedrock drilling after
641 completion of the ice core.

642 The presence of a frozen bed today also implies no significant impact from basal melt at
643 older ages, even if the bed is near the pressure melting point. In the model runs where we found
644 the maximum geothermal flux before basal melt occurred, the bed remains frozen at all ages
645 with the WAIS Divide forcing. For the SPICEcore scenario, there is a ~ 3000 -year period of basal
646 melt that occurs at the end of the last glacial maximum (i.e., from ~ 25 to 22 ka). The maximum
647 melt rate is 0.04 mm a^{-1} , and the total predicted melt is 80 mm . While these two scenarios do
648 not encompass the full range of possibilities, they indicate that significant basal melt is unlikely
649 to impact the age of the basal ice.

650 The impact of changes in ice thickness are difficult to evaluate because it is not clear if
651 Hercules Dome was thicker or thinner at the Last Glacial Maximum. A thicker ice sheet at the
652 LGM would cause a warmer basal temperature and likely increased basal melt, while a thinner
653 ice sheet would have the opposite effect. The modest amount of basal melt would not remove
654 ice from the LIG. In fact, basal melt rates up to $\sim 0.8 \text{ mm a}^{-1}$ would preserve thicker packets of
655 ice from the LIG, although the ice would be closer to the bed. While the evidence for a frozen
656 bed and limited basal melt may not be as definitive as a measured basal temperature, our work
657 suggests that basal melt is unlikely to have removed ice older than 132 ka from the West Dome
658 site.

659 The preservation of stratigraphic order is more difficult to assess. The layering at West
660 Dome is resolvable until just a few tens of meters above the bed, but the deepest layer that is
661 traceable along the full radar profile is $\sim 400 \text{ m}$ meters above the bed. Ice from the start of the
662 LIG (132 ka) is likely between 47 m and 87 m above the bed, and thus continuity of the deep
663 stratigraphy is important for recovering ice of this age. The deep internal reflectors are coherent
664 all the way to the ice bottom just north of the divide, with more bed conformal layering on the
665 north side of the divide generally, suggesting the north is the preferable location for a core.

666 The internal layers suggest that the current divide position has not been stable beyond
667 the mid-Holocene; however, the internal layers alone are not enough to constrain the extent of
668 divide migration. Modest variations in the divide position of a few kilometers are enough to
669 prevent the development of a clear Raymond Arch above an irregular bed. The lack of a clear
670 Raymond arch at West Dome is not surprising because the characteristic time of $\sim 13 \text{ ka}$, $(\frac{H}{b})$, is

671 substantially larger than for the thinner and higher accumulation coastal domes where Raymond
672 Arches are widely observed (Matsuoka and others, 2015).

673 Our best-fit models indicate that average annual layer thicknesses are about 1 mm
674 during the LIG. With continuous-flow analysis methods that are able to make measurements
675 with ~0.5 cm resolution (e.g., Röhlisberger, 2000; Osterberg and others, 2006; Gkinis and
676 others, 2010; Sigl and others, 2016; Jones and others, 2017), measurements of the chemistry
677 and isotopes during the interglacial will have approximately decadal resolution. For gas
678 sampling with a typical sample length of ~10 cm, this translates to a maximum of centennial
679 resolution. The largest challenge from thin annual layering will not be resolution but the limited
680 ice availability for ice of older ages. One approach to overcome the challenge of a thinner
681 packet of LIG ice is to drill one or multiple replicate cores with a deviation from the main
682 borehole.

683 One limitation of the shallower ice at West Dome is that borehole thermometry (e.g.
684 Cuffey and others, 2016) to constrain the magnitude of the glacial-interglacial temperature
685 change becomes increasingly difficult. However, new techniques such as water isotope diffusion
686 lengths, and firn thickness and gas-age ice-age difference (Δ age) constraints, have been
687 pioneered to provide alternate ways of addressing this question (e.g. Gkinis and others, 2014;
688 Holme and others, 2018; Kahle and others, 2021; Buizert and others, 2021).

689 The geophysical survey at Hercules Dome indicates that a continuous climate record
690 through the LIG could likely be obtained at West Dome. West Dome is the highest elevation
691 portion of Hercules Dome, and is the most pronounced dome with the simplest ice-flow setting.
692 The ice thickness varies relatively little at West Dome, with a mean depth of ~1600 m, which
693 minimizes the risk of disrupted layering from complicated ice flow. The ice temperature at the
694 bed is likely below freezing, preserving old ice near the bed.

695

696 **5.2 Future Plans**

697 A full field season focused on the West Dome region is planned for 22/23. Future
698 measurements will include more extensive HF and VHF surveys. Additional ApRES
699 measurements will be made to both more fully characterize the englacial vertical velocities and
700 to constrain ice fabric variations. These future measurements will improve both the spatial
701 resolution and coverage of the data to more precisely define the best ice core site within the
702 West Dome region. Other locations at Hercules Dome are less promising for a deep ice core,
703 and are not prioritized for future work. At East Dome, where the US-ITASE traverse visited
704 (Jacobel and others, 2005), the basal topography and ice flow appears prohibitively complex.

705 South Ridge has moderately thicker ice but the ice flow is from East Dome and over complex
706 bedrock topography.

707

708 **6. CONCLUSIONS**

709 The surface elevation of Hercules Dome is not defined by a single topographic high, but
710 rather three features with local divides. We have focused on West Dome, which is at the highest
711 elevation in the Hercules Dome region and has the simplest ice-flow regime. Coherent internal
712 layers are imaged to within tens of meters of the bed. The ice is of moderate thickness (~1600
713 m) and the bed is likely frozen; a geothermal flux \sim 20 mW m⁻² greater than suggested by
714 regional estimates would be required to produce melting. The internal layer pattern cannot be
715 well fit with a kinematic ice-flow model if modern accumulation and vertical velocity patterns are
716 held constant in the past; the lack of fit indicates that the modern divide position has likely been
717 established during the Holocene. As with other inland divides in Greenland and Antarctica,
718 modest variations in divide position would prevent the development of a prominent Raymond
719 arch. Our best-fit modeled depth-age relationship suggests ice from the LIG is between 45 m
720 and 90 m above the bed, and that the average annual layer thickness for that time period is
721 about 1 mm. The modeled depth-age relationship is insensitive to the Holocene flow history
722 because the age of the deep ice depends primarily on the average shape of the vertical velocity
723 profile for the last glacial-interglacial cycle. The lack of modern basal melt implies no significant
724 melt in the past and therefore ice from the LIG should not have been removed. In conclusion,
725 West Dome is a promising location for a deep ice core that will preserve a climate record
726 sensitive to the size of WAIS during the LIG.

727

728 **AUTHOR CONTRIBUTION**

729 TJF, KC, and EJS conceived of the study. AOH, ANH, BH, EJS, GKO, JEC, KC, and
730 NH collected the geophysical data. AOH, ANH, BH, KC, LD, NH, and TJF contributed to the
731 data processing, analysis and interpretation. BH and TJF conducted ApRES interpretation in
732 this manuscript. ANH, LD, and TJF inferred the snow-accumulation record for this manuscript.
733 NH contributed insight to layer and bed interpretations. TJF performed the kinematic and
734 temperature modeling. All authors contributed to the manuscript.

735

736 **ACKNOWLEDGEMENTS**

737 This work was supported by NSF-OPP awards 1744649 and 1841844. We thank the Antarctic
738 Support Contractor and the Air National Guard for logistical support. We also thank Erika
739 Schreiber for conducting ApRES measurements in the 2021/22 season.

740

741 **DATA AVAILABILITY:** Radar data is available at <https://www.usap-dc.org/view/project/p0010359>

743

744 REFERENCES

745

746 Bamber, J. L., R. E. M. Riva, B. L. A. Vermeersen, and A. M. LeBrocq, 2009. Reassessment of
747 the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet, *Science*, 324,
748 900-903.

749

750 Brennan, P. V., Lok, L.B., Nicholls, K., Corr, H., 2014. Phase-sensitive FMCW radar system for
751 high-precision antarctic ice shelf profile monitoring. *IET Radar, Sonar Navig.* 8, 776–786.
752 <https://doi.org/10.1049/iet-rsn.2013.0053>

753 Brook, E.J., J.W.C. White, A.S.M. Schilla, M.L. Bender, B. Barnett, J.P. Severinghaus, K.C.
754 Taylor, R.B. Alley and E.J. Steig 2005. Timing of millennial-scale climate change at Siple Dome,
755 West Antarctica, during the last glacial period. *Quaternary Science Reviews*, **24**(12-13): 1333-
756 1343.

757 Buizert, C., 16 others, 2015. The WAIS Divide deep ice core WD2014 chronology - Part 1:
758 Methane synchronization (68-31 kaBP) and the gas age-ice age difference. *Climate of the Past*,
759 **11**(2): 153-173.

760 Buizert, C., and 40 others, 2021. Antarctic surface temperature and elevation during the Last
761 Glacial Maximum. *Science*, **372**(6546): 1097-+.

762 Christianson, K., R.W. Jacobel, H.J. Horgan, R.B. Alley, S. Anandakrishnan, D.M. Holland and
763 K.J. DallaSanta 2016. Basal conditions at the grounding zone of Whillans Ice Stream, West
764 Antarctica, from ice-penetrating radar. *Journal of Geophysical Research-Earth Surface*, **121**(11):
765 1954-1983.

766 Christianson, K., R.W. Jacobel, H.J. Horgan, S. Anandakrishnan and R.B. Alley 2012.

767 Subglacial Lake Whillans --- Ice-penetrating radar and GPS observations of a shallow active

768 reservoir beneath a West Antarctic ice stream. *Earth and Planetary Science Letters*, **331-332**:

769 237--245.

770 Conway, H., B.L. Hall, G.H. Denton, A.M. Gades and E.D. Waddington 1999. Past and future

771 grounding-line retreat of the West Antarctic Ice Sheet. *Science*, **286**(5438): 280-283.

772 Cuffey, K.M., G.D. Clow, E.J. Steig, C. Buzert, T.J. Fudge, M. Koutnik, E.D. Waddington, R.B.

773 Alley and J.P. Severinghaus 2016. Deglacial temperature history of West Antarctica.

774 *Proceedings of the National Academy of Sciences of the United States of America*, **113**(50):

775 14249-14254.

776 DeConto, R.M. and D. Pollard 2016. Contribution of Antarctica to past and future sea-level rise.

777 *Nature*, **531**(7596): 591-597.

778 Dixon, D.A., P.A. Mayewski, E. Korotkikh, S.B. Sneed, M.J. Handley, D.S. Introne and T.A.

779 Scambos 2013. Variations in snow and firn chemistry along US ITASE traverses and the effect

780 of surface glazing. *Cryosphere*, **7**(2): 515-535.

781 Drews, R., O. Eisen, I. Weikusat, S. Kipfstuhl, A. Lambrecht, D. Steinhage, F. Wilhelms, and H.

782 Miller, 2009. Layer disturbances and the radio-echo free zone in ice sheets, *The Cryosphere*, **3**

783 195-203.

784 Dutton, A., A.E. Carlson, A.J. Long, G.A. Milne, P.U. Clark, R. DeConto, B.P. Horton, S.

785 Rahmstorf and M.E. Raymo 2015. Sea-level rise due to polar ice-sheet mass loss during past

786 warm periods. *Science*, **349**(6244).

787 Dyer, B., J. Austermann, W.J. D'Andrea, R.C. Creel, M. R. Sandstrom, M. Cashman, A. Rovere,

788 and M. E. Raymo, 2021. Sea-level trends across The Bahamas constrain peak last interglacial

789 ice melt, *Proceedings of the National Academy of Sciences*, **118**(13), 10.1073/pnas.2026839118

790 EPICA community members, 2004. Eight glacial cycles from an Antarctic ice core, *Nature*, **429**,

791 623-628.

792 Fudge, T.J., S.C. Biyani, D. Clemens-Sewall and R.L. Hawley 2019. Constraining Geothermal
793 Flux at Coastal Domes of the Ross Ice Sheet, Antarctica. *Geophysical Research Letters*,
794 **46**(22): 13090-13098.

795 Fudge, T.J., B.R. Markle, K.M. Cuffey, C. Buzert, K.C. Taylor, E.J. Steig, E.D. Waddington, H.
796 Conway and M. Koutnik 2016. Variable relationship between accumulation and temperature in
797 West Antarctica for the past 31,000 years. *Geophysical Research Letters*, **43**(8): 3795-3803.

798 Garbe, J. T. Albrecht, A. Levermann, J. F. Donges, and R. Winkeelmann, 202. The hysteresis of
799 the Antarctic Ice Sheet, *Nature* 585, 538-544, doi.org/10.1038/s41586-020-2727-5

800 Gkinis, V. S.B. Simonsen, S.L. Buchardt, J.W.C. White, and B.M. Vinther, 2014. Water isotope
801 diffusion rates from the NorthGRIP ice core for the last 16,000 years – Glaciological
802 paleoclimatic implications, *Earth and Planetary Science Letters*, 405, 132-141.

803 Gkinis, T.J. Popp, S.J. Johnsen, T. Blunier, 2010. A continuous stream flash evaporator for the
804 calibration of an IR cavity ring-down spectrometer for the isotopic analysis of water, *Isotopes in
805 Environmental and Health Studies*, 46(4), 463-475.

806 Goel, V., C. Martin and K. Matsuoka 2018. Ice-rise stratigraphy reveals changes in surface
807 mass balance over the last millennia in Dronning Maud Land. *Journal of Glaciology*, **64**(248):
808 932-942.

809 Herron, M.M. and C.C. Langway 1980. Firn densification - an empirical model. *Journal of
810 Glaciology*, **25**(93): 373-385.

811 Hein, A and 9 others, 2016. Evidence for the stability of the West Antarctic Ice Sheet divide for
812 1.4 million years. *Nature Communications* **7**, 10325 (2016).
813 <https://doi.org/10.1038/ncomms10325>

814 Hills, B. H., and 10 others (2022). Geophysics and thermodynamics at South Pole Lake indicate
815 stability and a regionally thawed bed. *Geophysical Research Letters*, **49**, e2021GL096218.
816 <https://doi.org/10.1029/2021GL096218>

817 Holloway, M.D., L.C. Sime, J.S. Singarayer, J.C. Tindall, P. Bunch and P.J. Valdes 2016.
818 Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse.
819 *Nature Communications*, **7**.

820 Holme, C., V. Gkinis, and B.M. Vinther, 2018. Molecular diffusion of stable water isotopes in
821 polar firn as a proxy for past temperatures, *Geochimica et cosmochimica acta*, **225**, 128-145.

822 Howat, I.M., C. Porter, B. E. Smith, M.-J. Noh, and P. Morin, 2019. The Reference Elevation
823 Model of Antarctica, *The Cryosphere*, **13**, 665-674, doi.org/10.5194/tc-13-665-2019

824 Jacobel, R.W. and B.C. Welch 2005. Glaciological and climatic significance of Hercules Dome,
825 Antarctica: An optimal site for deep ice core drilling. *Journal of Geophysical Research*, **110**:
826 F01015.

827 Jones, T.J., J.W.C. White, E.J. Steig, B.H. Vaughn, V. Morris, V. Gkinis, B.R. Markle, S.W.
828 Schoenemann, 2017. Improved methodologies for continuous-flow analysis of stable water
829 isotopes in ice cores, *Atmospheric Measurement Techniques*, **10**(2), 617-632.

830 Kahle, E.C., and 13 others, 2021. Reconstruction of Temperature, Accumulation Rate, and
831 Layer Thinning From an Ice Core at South Pole, Using a Statistical Inverse Method. *Journal of*
832 *Geophysical Research-Atmospheres*, **126**(13).

833 Kingslake, J., R.C.A. Hindmarsh, G. Aoalgeirsottir, H. Conway, H.F.J. Corr, F. Gillet-Chaulet,
834 C. Martin, E.C. King, R. Mulvaney and H.D. Pritchard 2014. Full-depth englacial vertical ice
835 sheet velocities measured using phase-sensitive radar. *Journal of Geophysical Research-Earth*
836 *Surface*, **119**(12): 2604-2618.

837 Korotkikh, E.V., P.A. Mayewski, M.J. Handley, S.B. Sneed, D.S. Introne, A.V. Kurbatov, N.W.
838 Dunbar and W.C. McIntosh 2011. The last interglacial as represented in the glaciochemical
839 record from Mount Moulton Blue Ice Area, West Antarctica. *Quaternary Science Reviews*,
840 **30**(15-16): 1940-1947.

841 Koutnik, M.R. and E.D. Waddington 2012. Well-posed boundary conditions for limited-domain
842 models of transient ice flow near an ice divide. *Journal of Glaciology*, **58**(211): 1008-1020.

843 Koutnik, M.R. and 7 others, 2016. Holocene accumulation and ice flow near the West Antarctic
844 Ice Sheet Divide ice core site, *Journal of Geophysical Research: Earth Surface*,
845 10.1002/2015JF003668

846 Lee, J.E., and 16 others, 2020. An 83 000-year-old ice core from Roosevelt Island, Ross Sea,
847 Antarctica. *Climate of the Past*, **16**(5): 1691-1713.

848 Lilien, D.A., B.H. Hills, J. Driscol, R. Jacobel and K. Christianson 2020. ImpDAR: an open-
849 source impulse radar processor. *Annals of Glaciology*, **61**(81): 114-123.

850 L. Lliboutry, A critical review of analytical approximate solutions for steady state velocities and
851 temperatures in cold ice-sheets. *Gletscherkd. Glazialgeol.* **15**, 135–148 (1979).

852 Looyenga, H. 1965. DIELECTRIC CONSTANTS OF HOMOGENEOUS MIXTURES. *Molecular
853 Physics*, **9**(6): 501-&.

854 Martín, C., R.C.A. Hindmarsh, and F.J. Navarro, 2006. Dating ice flow change near the flow
855 divide at Roosevelt Island, Antarctica, by using a thermomechanical model to predict radar
856 stratigraphy, *Journal of Geophysical Research*, 11(F01011).

857 Martín, C., G.H. Gudmundsson, H. D. Pritchard, and O. Gagliardini, 2009. On the effects of
858 anisotropic rheology on ice flow, internal structure, and the age-depth relationship at ice divides,
859 *Journal of Geophysical Research*, 114(F04011).

860 Martos, Y.M., M. Catalan, T.A. Jordan, A. Golynsky, D. Golynsky, G. Eagles and D.G. Vaughan
861 2017. Heat Flux Distribution of Antarctica Unveiled. *Geophysical Research Letters*, **44**(22):
862 11417-11426.

863 Matsuoka, K. and 18 others, 2015. Antarctic ice rises and ripples: Their properties and
864 significance for ice-sheet dynamics and evolution. *Earth-Science Reviews*, **150**: 724-745.

865 Mercer, J. H., 1978. West Antarctic ice sheet and CO₂ greenhouse effect: a threat of disaster,
866 *Nature*, 271, 321-325.

867 Mulvaney, R., M. M. Grieman, H. Hoffman, J. Humby, C. Martin, F. Parrenin, C. Nehrbass-
868 Ahles, R. Rhodes, I. Rowell, and E.W. Wolff, 2020. WACSWAIN project: does the preliminary

869 timescale suggest we have captured the ice from the Last Interglacial period in the Skytrain ice
870 core? AGU Fall Meeting, <https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/744866>

871 Nereson, N.A. and E.D. Waddington 2002. Isochrones and isotherms beneath migrating ice
872 divides. *Journal of Glaciology*, **48**(160): 95-108.

873 Nicholls, K.W., H.F.J. Corr, C.L. Stewart, L.B. Lok, P.V. Brennan and D.G. Vaughan 2015. A
874 ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice
875 sheets and shelves. *Journal of Glaciology*, **61**(230): 1079-1087.

876 Nicolas, J. P. and D. H. Bromwich, 2011. Climate of West Antarctica and Influence of Marine Air
877 Instrusions, *Journal of Climate*, 24, 49-67, 10.1175/2010JCLI3522.1

878 Osterberg, E.C., M.J. Handley, S.B. Sneed, P.A. Mayewski, and K.J Kreutz, 2006. Continuous
879 ice core meltersystem with discrete sampling for major ion, trace element, and stable isotope
880 analyses, *Environmental Science and Technology*, 40(1), 3355-3361.

881 Pettit, E.C., T. Thorsteinsson, H.P. Jacobson, E.D. Waddington, 2007. The role of crystal fabric
882 in flow near an ice divide. *Journal of Glaciology*, 54(181), 277-288.

883 Raymond, C.F. 1983. Deformation in the vicinity of ice divides. *Journal of Glaciology*, **29**(103):
884 357--373.

885 Rothlisberger, R., M. Bigler, M. Hutterli, S. Sommer, B. Stauffer, H.G. Junghans, and D.
886 Wagenbach, 2000. Technique for continuous high-resolution analysis of trace substances in firn
887 and ice cores, *Environmental Science and Technology*, 34(2), 338-342.

888 Scherer, R.P., A. Aldahan, S. Tulaczyk, G. Possnert, H. Engelhardt and B. Kamb 1998.
889 Pleistocene collapse of the West Antarctic ice sheet. *Science*, **281**(5373): 82-85.

890 Shen, W.S., D.A. Wiens, A.J. Lloyd and A.A. Nyblade 2020. A Geothermal Heat Flux Map of
891 Antarctica Empirically Constrained by Seismic Structure. *Geophysical Research Letters*, **47**(14).

892 Spector, P., J. Stone, D. Pollard, T. Hillebrand, C. Lewis and J. Gombiner 2018. West Antarctic
893 sites for subglacial drilling to test for past ice-sheet collapse. *Cryosphere*, **12**(8): 2741-2757.

894 Sigl, M., and 26 others, 2016. The WAIS Divide deep ice core WD2014 chronology – Part 2:
895 Annual-layer counting (0-31 ka BP), *Climate of the Past*, 12, 769-786.

896 Sodeman, H. and A. Stohl, 2009. Asymmetries in the moisture origin of Antarctic precipitation,
897 *Geophysical Research Letters*, 36(L22803).

898 Stal, T., A.M. Reading, J.A. Halpin and J.M. Whittaker 2021. Antarctic Geothermal Heat Flow
899 Model: Aq1. *Geochemistry Geophysics Geosystems*, 22(2).

900 Steig, E.J., K. Huybers, H.A. Singh, N.J. Steiger, Q.H. Ding, D.M.W. Frierson, T. Popp and
901 J.W.C. White 2015. Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate.
902 *Geophysical Research Letters*, 42(12): 4862-4868.

903 Sutter, J., Paul Glerz, K. Grosfeld, M. Thoma, and G. Lohman, 2016. Ocean temperature
904 thresholds for the Last Interglacial West Antarctic Ice Sheet Collapse, *Geophysical Research
905 Letters*, 43, 2675-2682, doi:10.1002/2016GL067818.

906 Veres, D., and 15 others, 2013. The Antarctic ice core chronology (AICC2012): an optimized
907 multi-parameter and multi-site dating approach for the last 120 thousand years. *Climate of the
908 Past*, 9(4): 1733-1748.

909 Waddington, E.D., T.A. Neumann, M.R. Koutnik, H.P. Marshall and D.L. Morse 2007. Inference
910 of accumulation-rate patterns from deep layers in glaciers and ice sheets. *Journal of Glaciology*,
911 53(183): 694-712.

912 Welch, B.C. and R.W. Jacobel 2003. Analysis of deep-penetrating radar surveys of West
913 Antarctica, US-ITASE 2001. *Geophysical Research Letters*, 30(8): 1444.

914 Welch, B.C., R.W. Jacobel and S.A. Arcone 2009. First results from radar profiles collected
915 along the US-ITASE traverse from Taylor Dome to South Pole (2006-2008. *Annals of
916 Glaciology*, 50(51): 35--41.