Sequence-to-sequence AMR Parsing with Ancestor Information

Chen Yu and Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

AMR parsing is the task of mapping a sen-
tence to an AMR semantic graph automat-
ically. The difficulty comes from generat-
ing the complex graph structure. The pre-
vious state-of-the-art method translates the
AMR graph into a sequence, then directly
fine-tunes a pretrained sequence-to-sequence
Transformer model (BART). However, purely
treating the graph as a sequence does not take
advantage of structural information about the
graph. In this paper, we design several strate-
gies to add the important ancestor informa-
tion into the Transformer Decoder. Our ex-
periments' show that we can improve the per-
formance for both the AMR 2.0 and AMR
3.0 dataset and achieve new state-of-the-art re-
sults.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a graph that encodes the
semantic meaning of a sentence. In Figure 1a, we
show the AMR of the sentence: You fold me to
wash the dog. AMR has been widely used in many
NLP tasks (Liu et al., 2015; Hardy and Vlachos,
2018; Mitra and Baral, 2016).

AMR parsing is the task of mapping a sentence
to an AMR semantic graph automatically. A graph
is a complex data structure which is composed of
multiple vertices and edges. There are roughly four
types of parsing strategies in previous work:

* Two-Stage Parsing (Flanigan et al., 2014;
Lyu and Titov, 2018; Zhang et al., 2019a;
Zhou et al., 2020): first produce vertices, and
produce edges after that.

* Transition-Based Parsing (Damonte et al.,
2016; Ballesteros and Al-Onaizan, 2017; Guo
and Lu, 2018; Wang and Xue, 2017; Naseem

"https://github.com/lukecyu/
amr-parser—s2s—ancestor

tell-01

:ARGO :ARG1

wash-01 (<R0> tell-01 :ARGO (<R1> you)

:ARG2 (<R2> I)):ARG1 (<R3> wash-01
:ARGO <R2> :ARG1 (<R4> dog)) }}

(a) (b)

:ARGO :ARG1

Figure 1: AMR Graph and linerization for the Sen-
tence: You told me to wash the dog.

et al., 2019; Astudillo et al., 2020; Zhou et al.,
2021): process the sentence from left to right,
and produce vertices and edges based on the
current focused word.

* Graph-Based Parsing (Zhang et al., 2019b;
Cai and Lam, 2019, 2020): produce vertices
and edges based on a graph traversal order,
such as DFS or BFS.

* Sequence-to-Sequence Parsing (Konstas
et al., 2017; van Noord and Bos, 2017; Peng
et al., 2017, 2018; Xu et al., 2020; Bevilacqua
et al., 2021): this method linearizes the AMR
graph to a sequence, then uses a sequence-to-
sequence model to do the parsing.

Bevilacqua et al. (2021) achieved the state-of-
the-art performance by using the last seq-to-seq
strategy. They linearized the AMR graph (see Fig-
ure 1b) and fine-tuned BART (Lewis et al., 2020), a
denoising sequence-to-sequence pretrained model
based on Transformer (Vaswani et al., 2017), for
the parsing. We briefly show the method in Fig-
ure 2. During training, they linearize all the AMR
graphs in the training dataset into sequences, then
they can fine-tune the BART model in this new
sequence-to-sequence dataset. At inference time,
they first generate the AMR sequence using the
BART model, then they recover the AMR graph
from this sequence.

However, purely treating the graph as a sequence
may not take advantage of important information

/
ARGO ‘ARG
/ \
¥ :ARG2 wabh-01
~
"ARGO ‘ARG1
/ |
| dog
AMR
1, Linearize
the AMR into
a sequence
(<R0> tell-01 :ARGO (<R1> you)
You told me to wash the dog. > /ARG2 (<R2> 1) ;ARG (<R3> wash-01
2, Finetune ARGO <R2> :ARG1 (<Rd4> dog)) }}
Source Sentence BART Linearized AMR
(@)
(<RO> tell-01 :ARGO (<R1> you)
You told me to wash the dog. ARG2 (<R2> 1) YARGT (<R3> wash-01
1, Generate ARGO <R2> :ARG1 (<Rd>dog))]}
Source Sentence Linearized ineari
AMR Using Linearized AMR
the Model 2, Recover the
AMR from the
linearized AMR
sequence
tell-01
ARGO | ARG
/
¥ ARG2 wash-01
J N\
ARGD ARG
L |
| doy
AMR

Figure 2: AMR Graph and linerization for the Sen-
tence: You told me to wash the dog.

about the structure of the graph. When generating
the last token dog in Figure 1b, for example, the dot-
product attention layer in the Transformer Decoder
attends to all the previous tokens and lets the model
learn the weight of these tokens. However, if we
can tell the model which tokens are its ancestors,
like its parent is wash-01 and its grand-parent is
tell-01 (see Figure 1a), it will make this token much
easier to generate. Adding graph structure has been
demonstrated to be useful for the AMR-to-text task
(Zhu et al., 2019; Yao et al., 2020; Wang et al.,
2020). These approaches added the graph structure
to the Transformer Encoder. Therefore, we expect
that adding structure in Transformer Decoder for
AMR parsing task will also be helpful.

In this paper, we base our work on the seq-to-seq
model of Bevilacqua et al. (2021) with the AMR
linearized by DFS traversal order. We introduce
several strategies to add ancestor information into
the Transformer Decoder layer. We also propose a
novel strategy, which consists of setting parameters
in the mask matrix for those ancestor tokens and
tuning them. We find that this new strategy makes
the largest improvement.

2 Add Ancestors Information into Model

2.1 DFS linearization and Ancestors

The DFS linearization of Bevilacqua et al. (2021)
used pairs of parentheses to indicate the start and

tell-01

:ARGO

you ‘ARG2 (<R0> tell-01 :ARGO (<R1> you)
‘ARG2 (<R2> 1)
(@ (b)

Figure 3: Example of finding Ancestors.

tell-01
(<R0> tell-01 :ARGO (<R1>you)
ARGO e :ARG2 (<R2> |) ARGT (<R3> wash-01
you :ARG2 wash-01 -ARGO <R2>
{ ARGO
I
(@ (b)
Figure 4: Example of finding ancestors with re-

entrancy.

the end of exploring a node in the DFS traversal
order. The readers can use Figure 1 as an example
and are referred to Bevilacqua et al. (2021) for
more details.

This means when generating the next token, we
can construct the partial graph from previous to-
kens and determine the ancestors tokens among
them. In Figure 3b, for example, when we generate
the token /, we can construct the partial graph in
Figure 3a and find its ancestors (tell-0] —> :ARG2
—>).

If AMR were a tree, then the ancestors of each
token would be clear to define. However, since
AMR is a graph, one node may be visited multiple
times (which is called re-entrancy), which brings
ambiguity to find the ancestors. For example, in
Figure 4, when we generate the last token <R2>, it
is actually the re-entrancy of the token / generated
before. Under this circumstance, we will use the
tokens in the new path (tell-01 —> :ARGI —> wash-
01 —> :ARGO —>) as its ancestors. We cannot use
tokens from the old path (tell-01 —> :ARG2 —>),
since we cannot know it is a re-entrancy before we
have actually generated it.

2.2 Transformer Background

The original Transformer (Vaswani et al., 2017)
used scaled dot-product self-attention. Typically,
the input of the attention consists of a query ma-
trix (), a key matrix K and a value matrix V, the
columns of which represent the query vector, the

key vector and the value vector of each token. The
attention matrix can be caculated as follows:

S
Attention(Q), K, V, M) = Softmax (| —= + M | V,
@) <¢d >

S=QKT,

where Q, K,V € RV*? N is the length of the
sequence, d is the dimension of the model, and M
is the mask matrix to control which tokens in the
sequence are attended for a given token.

A typical Transformer module consists of several
layers. In each layer it uses MultiHead attention.
For each head, it calculates attention as above, and
then averages the results.

In the Encoder self-attention and Encoder-
Decoder attention layers, the mask matrix is the
same across all the heads and all the layers, and
all the elements in the matrix are 0, meaning all
the tokens are attended. But in the Decoder self-
attention layers, the elements denoting the attention
to the future token (M; ; with i < 7) are set to —oo,
meaning that they have no effect when calculating
the weighted sum.

2.3 Add Ancestor Information into Model

We focus on the mask matrix M in the Trans-
former Decoder self-attention layers to add the
ancestor information during the parsing. We in-
troduce two strategies: a hard strategy and a novel
soft strategy.

Hard Strategy Under this strategy, we set ele-
ments denoting the ancestors to 0, and the elements
denoting the non-ancestors to —oo in M, such that
only the ancestor tokens are attended. We will ex-
plore the influence by using the new mask matrix
only on some decoder layers or on some heads.

Soft Strategy Under this novel strategy, we will
not mask the non-ancestor tokens and abandon
them in a hard way. Instead, what we do is only
telling the model which are the ancestor tokens
and letting the model learn the weights by itself.
Specifically, we use three different values in the
mask matrix: —oo for all future tokens; O for all
non-ancestor previous tokens; parameter « for all
ancestor tokens. We let the model learn the weight
a to control how much it should focus on the an-
cestor tokens. Similar to the hard strategy, we will
also explore the influence by setting different pa-
rameters on different layers or on different heads.

2.4 Inference

During the inference stage, the input of the de-
coder is no longer the complete linearized AMR
sequence. Instead, it is dynamically extended, and,
at each step, the input is the tokens that have been
generated during the previous steps. A natural ques-
tion is: how can we find the ancestors of a token
when we don’t yet have a complete sequence (and
therefore can’t convert it to a graph to find its an-
cestors).

Fortunately, the DFS linearization uses several
special tokens to denote the graph structure. We
can rely on two special tokens to find the ancestors
of a token: relation tokens (e.g. :ARGO) and the
parentheses. The basic idea is: we maintain an
ancestor stack for the token that will be generated,
and adjust it according to the generated token. If
a relation token is generated, we know that the
previous siblings have been completely explored,
so we will remove all the tokens of that sibling
from the ancestor stack. If a right parenthesis is
generated, we know that a token has been explored
and we should return to its parent token, so we will
remove it and all its descendants from the ancestor
stacks. We always add the generated token (except
the right parenthesis) into the ancestor stack after
these special operations.

In Figure 5, we give an example of how to find
the ancestor tokens during inference. In 1), the last
token is the right parenthesis, meaning the last to-
ken you has been explored completely and should
be removed from the ancestor token list. Therefore,
we remove the tokens in the ancestor list backwards
until we encounter a left parentheses. In 2), the last
token is a relation token, meaning the previous sib-
ling has been explored completely, so we remove
the tokens in the ancestor list backwards until we
encounter a previous relation token, then add the
current relation token in the list. The steps 3), 4)
and 5) are following the same rule.

3 Experiments

3.1 Setup

Dataset We use the AMR 2.0 (LDC2017T10)
and AMR 3.0 (LDC2020T02) dataset. The AMR
2.0 includes 39,260 manually-created graphs, and
the AMR 3.0 includes 59,255. The AMR 2.0 is
a subset of AMR 3.0. Both datasets are split into
training, development and test datasets.

1)

(<R0> tell-01 :ARGO
(<R1> you)

(<R0> tell-01 :ARGO
(<R1>you)

tell-01

ARGO

2)

(<R0> tell-01 :ARGO
(<R1> you) :ARG2

(<RO> tell-01 :ARGO
(<R1>you) :ARG2

tell-01

:ARGO :ARG2

you

(<R0> tell-01 :ARGO (<R1>
you) :ARG2 (<R2>

1) :ARG1 (<R3>
wash-01 :ARGO <R2> :ARG1

(<R0> tell-01 :ARGO (<R1>
you) :ARG2 (<R2>
1) :ARGT (<R3>
wash-01 :ARGO <R2> :ARG1

tell-01

SN

ARGO :ARG2 ARG1

you wash-01

4)

(<R0> tell-01 :ARGO
‘ARG2 (<R2> 1)) :ARG1 (

:ARGO <R2> :ARG1
(<Rd> dog)

(<RO> tell-01 :ARGO
(<R1>you)

)) :ARG1
> wash-01

{ARG2 (<!
(<R3:

‘ARGO <R2> ARG1
(<Ré> dog)

tell-01

ARGO :ARG2 ARG1

vou wash-01
—
:ARGO ARGT

1

dog

5)

(<R0> tell-01 :ARGO
(<R1>you)

‘ARG2 (<R2> 1)) ARG (
<R3> wash-01
:ARGO <R2> :ARG1
(<Rd>dog))

(<RO> tell-01 :ARGO
(<R1>you)

{ARG2 (<R2> 1)) :ARG1 (
<R3> wash-01

:ARGO <R2> :ARG1
(<Rd>dog))

tell-01

e

:ARGO :ARG2 ARGT

vou wash-01
— 1
ARGO :ARG1
1

dog

Figure 5: An example of how to find ancestors during
inference. The red tokens are the ancestor tokens. The
left column represents the ancestor tokens for the last
blue tokens. The middle column represents the change
of the ancestor tokens according to the last tokens. The
right column represents the ancestors in the AMR of
the middle columns.

Pre-processing and Post-processing We use
the same DFS-based linearization technique as
Bevilacqua et al. (2021). We omit the detail here,
but the reader can refer to Figure 1 as an example.
In the pre-processing step, the AMR graph is lin-
earized into a sequence, and in the post-processing
step, the generated sequence is translated back to
an AMR graph.

Recategorization Recategorization is a widely
used technique to handle data sparsity. With re-
categorization, specific sub-graphs of a AMR graph
(usually corresponding to special entities, like
named entities, date entities, etc.) are treated as
a unit and assigned to a single vertex with a new
content. We experiment with a commonly-used
method in AMR parsing literature (Zhang et al.,
2019a,b; Zhou et al., 2020; Bevilacqua et al., 2021).
The readers are referred to Zhang et al. (2019a) for
further details. Notice that this method uses heuris-
tic rules designed and optimized for AMR 2.0, and
is not able to scale up to AMR 3.0 (the performance
dropped substantially for AMR 3.0 with recatego-
rization in Bevilacqua et al. (2021)). Therefore, we
will not conduct the recategorization experiment
on AMR 3.0.

Model and Baseline We use the model in
Bevilacqua et al. (2021) as our baseline. That
model was initialized by BART pretraining and

fine-tuned on the AMR dataset. We will do the
same thing, except that we design a different mask
matrix in the Transformer Decoder layers. We will
introduce these differences in detail in Section 3.2.

Training and Evaluation We use one 1080Ti
GPU to fine-tune the model. Training takes about
13 hours on AMR 2.0 and 17 hours on AMR 3.0.
We use the development dataset to select the best
hyperparameters. At inference time, we set the
beam size to 5 following common practice in neural
machine translation (Yang et al., 2018).

For evaluation, we use Smatch (Cai and Knight,
2013) as the metric. For some experiments, we
also report fine-grained scores on different aspects
of parsing, such as wikification, concept identifica-
tion, NER, and negations using the tool released by
Damonte et al. (2017).

3.2 Experiments and Results

As indicated in Section 2.3, we study the effect of
the hard and soft strategy. We explore the influence
of these two strategies on different layers or on
different heads. Due to space limitation, we only
show the Smatch score of AMR 2.0 with the re-
categorization preprocessing, since it had the high-
est performance (84.5 Smatch score) as far as we
know.

Once we get the best result among these se-
tups, we will conduct experiments on AMR 2.0
and AMR 3.0 without recategorization (we have
discussed why we don’t conduct experiments for
AMR 3.0 with recategorizaiton before). We will
also report fine-grained results for these experi-
ments.

3.2.1 Experiments for Different Number of
Heads for the Hard Strategy

In the baseline model (Bevilacqua et al., 2021),
there are 16 heads in each layer. We conduct exper-
iments with 0, 2, 4, ..., 8, 10 heads in each layer
attending to ancestors only. Note that the 0-head
model equals the baseline model. We show the
result in Table 2.

We can see that, up to 4 and 6 heads, the perfor-
mance increases along with the number of heads
increasing, showing the importance of telling the
model what the ancestors are. But then, the per-
formance decreases as the number of heads in-
creases, showing that we cannot ignore other non-
ancestor tokens, which still play important roles in
the model.

Dataset | GR.][Smatch [[Unlabeled | NO WSD [Concept | SRL | Reent. | Neg. | NER | wiki |
AMR 2.0 (baseline) v 84.5 86.7 84.9 89.6 797] 723 [79.9] 837873
AMR 2.0 (our method) [| v/ 85.2 88.2 85.6 90.3 [832] 754 | 830] 857 [864
AMR 2.0 (baseline) x 83.8 86.1 84.4 902 [796] 708 | 744] 90.6 | 84.3
AMR 2.0 (our method) [|x 84.8 88.1 853 90.5 [834] 751 | 740 | 91.8 [84.1
AMR 3.0 (baselinc) X 83.0 85.4 835 89.8 [789 704 [73.0] 872 [827
AMR 3.0 (our method) || x 83.5 86.6 84.0 805 [822] 742 | 726 | 889 [815

Table 1: The smatch and fine grained scores of AMR 2.0 and AMR 3.0 datasets without recategorization using the

optimal setup.

| number of heads | Smatch |

0 (baseline) 84.5
2 84.5
4 84.9
6 84.9
8 84.8
10 84.3

Table 2: The influence of different number of heads
attended to the ancestors only for AMR 2.0 with recat-
egorization

| different layers | Smatch |

baseline 84.5

bottom 4 84.6
Medium 4 84.8
top 4 84.3

Table 3: The influence of different layers attended to
the ancestors only for AMR 2.0 with recategorization

3.2.2 Experiments for Different Layers for
the Hard Strategy

In the baseline model (Bevilacqua et al., 2021),
there are 12 layers in the Transformer decoder. Un-
like the heads, the order of layers matters. The
upper layers use information from the lower lay-
ers. Therefore, we conduct experiments with the
bottom, the medium, and the top 4 layers attending
to ancestors. The mask matrix for each head is the
same within a single layer. We show the result in
Table 3.

We can see that, putting the medium 4 layers
focusing on the ancestors has the best performance.
But when we put the top 4 layers focusing on them,
the performance decreases a lot. One possible rea-
son is that, when it comes to near the final output
(the top layers), the model needs to use the infor-
mation from all tokens.

3.2.3 Experiments of Soft Strategy

In this section, we will tune the mask matrix and
use the soft strategy to add the ancestors informa-

different setups Smatch
baseline 84.5
different parameters for layers and heads 84.8
different parameters only for layers 84.7
different parameters only for heads 85.2

Table 4: The influence of tuning the mask matrix for
AMR 2.0 with recategorization

tion. We conduct three experiments: different pa-
rameters for every layer and head combination;
different parameters for different layers only; dif-
ferent parameters for different heads only. We show
the results in Table 4. We can see that when we
only use different parameters for every head, we
achieve a new state-of-the-art result.

3.2.4 Results for Other Datasets

We have conducted different experiments for AMR
2.0 with recategorization, and we found that when
we set different parameters for different heads only
and tune these parameters, we get the best perfor-
mance. Therefore, we apply this setup for other
datasets: AMR 2.0 and AMR 3.0 without recate-
gorization. We show the Smatch scores as well as
other fine-grained scores in Table 1. The results are
improved for all the datasets. The AMR 2.0 with-
out recategorization even obtains an improvement
of 1.0 Smatch point.

4 Conclusion

In this paper, we focus on the DFS linearization
and introduce several strategies to add ancestor in-
formation into the model. We conduct experiments
to show the improvement for both AMR 2.0 and
AMR 3.0 datasets. Our method achieves new state-
of-the-art performances for the AMR parsing task.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. Research supported by NSF
awards I1S-1813823 and CCF-1934962.

References

Ramén Fernandez Astudillo, Miguel Ballesteros,
Tahira Naseem, Austin Blodgett, and Radu Flo-
rian. 2020. Transition-based parsing with stack-
transformers. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing: Findings, pages 1001-1007.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1269-1275.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178—186, Sofia, Bulgaria.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both:
Symmetric AMR semantic parsing and generation
without a complex pipeline. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for AMR parsing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3790-3800.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290-1301, Online. As-
sociation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (ACL-13), pages
748-752.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2016. An incremental parser for abstract meaning
representation. CoRR, abs/1608.06111.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (EACL), pages 536546,
Valencia, Spain.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (ACL-14), pages 1426-1436, Baltimore,
Maryland.

Zhijiang Guo and Wei Lu. 2018. Better transition-
based AMR parsing with a refined search space.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1712-1722, Brussels, Belgium. Association
for Computational Linguistics.

Hardy Hardy and Andreas Vlachos. 2018. Guided neu-
ral language generation for abstractive summariza-
tion using abstract meaning representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 768—
773.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146—157, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1077-1086.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing
as graph prediction with latent alignment. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 397-407. Association for Computa-
tional Linguistics.

Arindam Mitra and Chitta Baral. 2016. Addressing a
question answering challenge by combining statisti-
cal methods with inductive rule learning and reason-
ing. In AAAI, pages 2779-2785.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu Flo-
rian, Salim Roukos, and Miguel Ballesteros. 2019.
Rewarding Smatch: Transition-based AMR parsing
with reinforcement learning. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4586—4592.

Xiaochang Peng, Linfeng Song, Daniel Gildea, and
Giorgio Satta. 2018. Sequence-to-sequence models
for cache transition systems. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (ACL-18), pages 1842—-1852.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017. Addressing the data sparsity is-
sue in neural AMR parsing. In Proceedings of the
European Chapter of the ACL (EACL-17).

Rik van Noord and Johan Bos. 2017. Neural semantic
parsing by character-based translation: Experiments
with abstract meaning representations. Computa-
tional Linguistics in the Netherlands Journal, 7:93—
108.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998-6008.

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of AMR parsing. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1257-1268, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020.
AMR-to-text generation with Graph Transformer.
Transactions of the Association for Computational
Linguistics, 8:19-33.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020. Improving AMR parsing
with sequence-to-sequence pre-training. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2501-2511.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018.
Breaking the beam search curse: A study of (re-)
scoring methods and stopping criteria for neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3054-3059.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for graph-
to-sequence learning. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL-20), pages 7145-7154.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80-94, Florence, Italy.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786-3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Jiawei Zhou, Tahira Naseem, Ramén Fernandez As-
tudillo, and Radu Florian. 2021. AMR parsing with
action-pointer transformer. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585-5598.

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang.
2020. AMR parsing with latent structural infor-
mation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4306-4319, Online. Association for Computa-
tional Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in Transformer for better AMR-to-text gen-
eration. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP-
19), pages 5462-5471.

A Hyperparameters and Training
Details

We use cross-entropy loss and RAdam optimizer
during the training. We use Cosine learning rate
schedular with about 1000 warm-up steps and
20000 maximum steps. The selected value of the
learning rate is 3 x 107°. There are around 80
sentences in each batch. We set the weight decay
rate of 0.004. In order to prevent over-fitting, we
use Dropout with probability 0.25, as well as label
smoothing with value 0.1. To select the best model
checkpoint, we use the development dataset and
search for the model with the best Smatch score.

