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Abstract

AMR parsing is the task of mapping a sen-

tence to an AMR semantic graph automat-

ically. The difficulty comes from generat-

ing the complex graph structure. The pre-

vious state-of-the-art method translates the

AMR graph into a sequence, then directly

fine-tunes a pretrained sequence-to-sequence

Transformer model (BART). However, purely

treating the graph as a sequence does not take

advantage of structural information about the

graph. In this paper, we design several strate-

gies to add the important ancestor informa-

tion into the Transformer Decoder. Our ex-

periments1 show that we can improve the per-

formance for both the AMR 2.0 and AMR

3.0 dataset and achieve new state-of-the-art re-

sults.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-

narescu et al., 2013) is a graph that encodes the

semantic meaning of a sentence. In Figure 1a, we

show the AMR of the sentence: You told me to

wash the dog. AMR has been widely used in many

NLP tasks (Liu et al., 2015; Hardy and Vlachos,

2018; Mitra and Baral, 2016).

AMR parsing is the task of mapping a sentence

to an AMR semantic graph automatically. A graph

is a complex data structure which is composed of

multiple vertices and edges. There are roughly four

types of parsing strategies in previous work:

• Two-Stage Parsing (Flanigan et al., 2014;

Lyu and Titov, 2018; Zhang et al., 2019a;

Zhou et al., 2020): first produce vertices, and

produce edges after that.

• Transition-Based Parsing (Damonte et al.,

2016; Ballesteros and Al-Onaizan, 2017; Guo

and Lu, 2018; Wang and Xue, 2017; Naseem

1https://github.com/lukecyu/

amr-parser-s2s-ancestor
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Figure 1: AMR Graph and linerization for the Sen-

tence: You told me to wash the dog.

et al., 2019; Astudillo et al., 2020; Zhou et al.,

2021): process the sentence from left to right,

and produce vertices and edges based on the

current focused word.

• Graph-Based Parsing (Zhang et al., 2019b;

Cai and Lam, 2019, 2020): produce vertices

and edges based on a graph traversal order,

such as DFS or BFS.

• Sequence-to-Sequence Parsing (Konstas

et al., 2017; van Noord and Bos, 2017; Peng

et al., 2017, 2018; Xu et al., 2020; Bevilacqua

et al., 2021): this method linearizes the AMR

graph to a sequence, then uses a sequence-to-

sequence model to do the parsing.

Bevilacqua et al. (2021) achieved the state-of-

the-art performance by using the last seq-to-seq

strategy. They linearized the AMR graph (see Fig-

ure 1b) and fine-tuned BART (Lewis et al., 2020), a

denoising sequence-to-sequence pretrained model

based on Transformer (Vaswani et al., 2017), for

the parsing. We briefly show the method in Fig-

ure 2. During training, they linearize all the AMR

graphs in the training dataset into sequences, then

they can fine-tune the BART model in this new

sequence-to-sequence dataset. At inference time,

they first generate the AMR sequence using the

BART model, then they recover the AMR graph

from this sequence.

However, purely treating the graph as a sequence

may not take advantage of important information



tell-01

:ARG0

you

dog

:ARG0

:ARG1

:ARG2

I

:ARG1

wash-01

( <R0> tell-01 :ARG0 ( <R1> you )


 :ARG2 ( <R2> I ) ):ARG1 ( <R3> wash-01


 :ARG0 <R2> :ARG1 ( <R4> dog ) ) }}

You told me to wash the dog.

AMR

Source Sentence Linearized AMR

1, Linearize 

the AMR into 

a sequence

2, Finetune 

BART

(a)

tell-01

:ARG0

you

dog

:ARG0

:ARG1

:ARG2

I

:ARG1

wash-01

( <R0> tell-01 :ARG0 ( <R1> you )


 :ARG2 ( <R2> I ) ):ARG1 ( <R3> wash-01


 :ARG0 <R2> :ARG1 ( <R4> dog ) ) }}

You told me to wash the dog.

AMR

Source Sentence Linearized AMR

2, Recover the 

AMR from the 

linearized AMR 

sequence

1, Generate 

Linearized 

AMR Using 

the Model

(b)

Figure 2: AMR Graph and linerization for the Sen-

tence: You told me to wash the dog.

about the structure of the graph. When generating

the last token dog in Figure 1b, for example, the dot-

product attention layer in the Transformer Decoder

attends to all the previous tokens and lets the model

learn the weight of these tokens. However, if we

can tell the model which tokens are its ancestors,

like its parent is wash-01 and its grand-parent is

tell-01 (see Figure 1a), it will make this token much

easier to generate. Adding graph structure has been

demonstrated to be useful for the AMR-to-text task

(Zhu et al., 2019; Yao et al., 2020; Wang et al.,

2020). These approaches added the graph structure

to the Transformer Encoder. Therefore, we expect

that adding structure in Transformer Decoder for

AMR parsing task will also be helpful.

In this paper, we base our work on the seq-to-seq

model of Bevilacqua et al. (2021) with the AMR

linearized by DFS traversal order. We introduce

several strategies to add ancestor information into

the Transformer Decoder layer. We also propose a

novel strategy, which consists of setting parameters

in the mask matrix for those ancestor tokens and

tuning them. We find that this new strategy makes

the largest improvement.

2 Add Ancestors Information into Model

2.1 DFS linearization and Ancestors

The DFS linearization of Bevilacqua et al. (2021)

used pairs of parentheses to indicate the start and
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Figure 3: Example of finding Ancestors.
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Figure 4: Example of finding ancestors with re-

entrancy.

the end of exploring a node in the DFS traversal

order. The readers can use Figure 1 as an example

and are referred to Bevilacqua et al. (2021) for

more details.

This means when generating the next token, we

can construct the partial graph from previous to-

kens and determine the ancestors tokens among

them. In Figure 3b, for example, when we generate

the token I, we can construct the partial graph in

Figure 3a and find its ancestors (tell-01 –> :ARG2

–>).

If AMR were a tree, then the ancestors of each

token would be clear to define. However, since

AMR is a graph, one node may be visited multiple

times (which is called re-entrancy), which brings

ambiguity to find the ancestors. For example, in

Figure 4, when we generate the last token <R2>, it

is actually the re-entrancy of the token I generated

before. Under this circumstance, we will use the

tokens in the new path (tell-01 –> :ARG1 –> wash-

01 –> :ARG0 –>) as its ancestors. We cannot use

tokens from the old path (tell-01 –> :ARG2 –>),

since we cannot know it is a re-entrancy before we

have actually generated it.

2.2 Transformer Background

The original Transformer (Vaswani et al., 2017)

used scaled dot-product self-attention. Typically,

the input of the attention consists of a query ma-

trix Q, a key matrix K and a value matrix V , the

columns of which represent the query vector, the



key vector and the value vector of each token. The

attention matrix can be caculated as follows:

Attention(Q,K, V,M) = Softmax

(

S
√
d
+M

)

V,

S = QK⊤,

where Q,K, V ∈ R
N×d, N is the length of the

sequence, d is the dimension of the model, and M

is the mask matrix to control which tokens in the

sequence are attended for a given token.

A typical Transformer module consists of several

layers. In each layer it uses MultiHead attention.

For each head, it calculates attention as above, and

then averages the results.

In the Encoder self-attention and Encoder-

Decoder attention layers, the mask matrix is the

same across all the heads and all the layers, and

all the elements in the matrix are 0, meaning all

the tokens are attended. But in the Decoder self-

attention layers, the elements denoting the attention

to the future token (Mi,j with i < j) are set to −∞,

meaning that they have no effect when calculating

the weighted sum.

2.3 Add Ancestor Information into Model

We focus on the mask matrix M in the Trans-

former Decoder self-attention layers to add the

ancestor information during the parsing. We in-

troduce two strategies: a hard strategy and a novel

soft strategy.

Hard Strategy Under this strategy, we set ele-

ments denoting the ancestors to 0, and the elements

denoting the non-ancestors to −∞ in M , such that

only the ancestor tokens are attended. We will ex-

plore the influence by using the new mask matrix

only on some decoder layers or on some heads.

Soft Strategy Under this novel strategy, we will

not mask the non-ancestor tokens and abandon

them in a hard way. Instead, what we do is only

telling the model which are the ancestor tokens

and letting the model learn the weights by itself.

Specifically, we use three different values in the

mask matrix: −∞ for all future tokens; 0 for all

non-ancestor previous tokens; parameter α for all

ancestor tokens. We let the model learn the weight

α to control how much it should focus on the an-

cestor tokens. Similar to the hard strategy, we will

also explore the influence by setting different pa-

rameters on different layers or on different heads.

2.4 Inference

During the inference stage, the input of the de-

coder is no longer the complete linearized AMR

sequence. Instead, it is dynamically extended, and,

at each step, the input is the tokens that have been

generated during the previous steps. A natural ques-

tion is: how can we find the ancestors of a token

when we don’t yet have a complete sequence (and

therefore can’t convert it to a graph to find its an-

cestors).

Fortunately, the DFS linearization uses several

special tokens to denote the graph structure. We

can rely on two special tokens to find the ancestors

of a token: relation tokens (e.g. :ARG0) and the

parentheses. The basic idea is: we maintain an

ancestor stack for the token that will be generated,

and adjust it according to the generated token. If

a relation token is generated, we know that the

previous siblings have been completely explored,

so we will remove all the tokens of that sibling

from the ancestor stack. If a right parenthesis is

generated, we know that a token has been explored

and we should return to its parent token, so we will

remove it and all its descendants from the ancestor

stacks. We always add the generated token (except

the right parenthesis) into the ancestor stack after

these special operations.

In Figure 5, we give an example of how to find

the ancestor tokens during inference. In 1), the last

token is the right parenthesis, meaning the last to-

ken you has been explored completely and should

be removed from the ancestor token list. Therefore,

we remove the tokens in the ancestor list backwards

until we encounter a left parentheses. In 2), the last

token is a relation token, meaning the previous sib-

ling has been explored completely, so we remove

the tokens in the ancestor list backwards until we

encounter a previous relation token, then add the

current relation token in the list. The steps 3), 4)

and 5) are following the same rule.

3 Experiments

3.1 Setup

Dataset We use the AMR 2.0 (LDC2017T10)

and AMR 3.0 (LDC2020T02) dataset. The AMR

2.0 includes 39,260 manually-created graphs, and

the AMR 3.0 includes 59,255. The AMR 2.0 is

a subset of AMR 3.0. Both datasets are split into

training, development and test datasets.
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Figure 5: An example of how to find ancestors during

inference. The red tokens are the ancestor tokens. The

left column represents the ancestor tokens for the last

blue tokens. The middle column represents the change

of the ancestor tokens according to the last tokens. The

right column represents the ancestors in the AMR of

the middle columns.

Pre-processing and Post-processing We use

the same DFS-based linearization technique as

Bevilacqua et al. (2021). We omit the detail here,

but the reader can refer to Figure 1 as an example.

In the pre-processing step, the AMR graph is lin-

earized into a sequence, and in the post-processing

step, the generated sequence is translated back to

an AMR graph.

Recategorization Recategorization is a widely

used technique to handle data sparsity. With re-

categorization, specific sub-graphs of a AMR graph

(usually corresponding to special entities, like

named entities, date entities, etc.) are treated as

a unit and assigned to a single vertex with a new

content. We experiment with a commonly-used

method in AMR parsing literature (Zhang et al.,

2019a,b; Zhou et al., 2020; Bevilacqua et al., 2021).

The readers are referred to Zhang et al. (2019a) for

further details. Notice that this method uses heuris-

tic rules designed and optimized for AMR 2.0, and

is not able to scale up to AMR 3.0 (the performance

dropped substantially for AMR 3.0 with recatego-

rization in Bevilacqua et al. (2021)). Therefore, we

will not conduct the recategorization experiment

on AMR 3.0.

Model and Baseline We use the model in

Bevilacqua et al. (2021) as our baseline. That

model was initialized by BART pretraining and

fine-tuned on the AMR dataset. We will do the

same thing, except that we design a different mask

matrix in the Transformer Decoder layers. We will

introduce these differences in detail in Section 3.2.

Training and Evaluation We use one 1080Ti

GPU to fine-tune the model. Training takes about

13 hours on AMR 2.0 and 17 hours on AMR 3.0.

We use the development dataset to select the best

hyperparameters. At inference time, we set the

beam size to 5 following common practice in neural

machine translation (Yang et al., 2018).

For evaluation, we use Smatch (Cai and Knight,

2013) as the metric. For some experiments, we

also report fine-grained scores on different aspects

of parsing, such as wikification, concept identifica-

tion, NER, and negations using the tool released by

Damonte et al. (2017).

3.2 Experiments and Results

As indicated in Section 2.3, we study the effect of

the hard and soft strategy. We explore the influence

of these two strategies on different layers or on

different heads. Due to space limitation, we only

show the Smatch score of AMR 2.0 with the re-

categorization preprocessing, since it had the high-

est performance (84.5 Smatch score) as far as we

know.

Once we get the best result among these se-

tups, we will conduct experiments on AMR 2.0

and AMR 3.0 without recategorization (we have

discussed why we don’t conduct experiments for

AMR 3.0 with recategorizaiton before). We will

also report fine-grained results for these experi-

ments.

3.2.1 Experiments for Different Number of

Heads for the Hard Strategy

In the baseline model (Bevilacqua et al., 2021),

there are 16 heads in each layer. We conduct exper-

iments with 0, 2, 4, . . . , 8, 10 heads in each layer

attending to ancestors only. Note that the 0-head

model equals the baseline model. We show the

result in Table 2.

We can see that, up to 4 and 6 heads, the perfor-

mance increases along with the number of heads

increasing, showing the importance of telling the

model what the ancestors are. But then, the per-

formance decreases as the number of heads in-

creases, showing that we cannot ignore other non-

ancestor tokens, which still play important roles in

the model.



Dataset G.R. Smatch Unlabeled NO WSD Concept SRL Reent. Neg. NER wiki

AMR 2.0 (baseline) X 84.5 86.7 84.9 89.6 79.7 72.3 79.9 83.7 87.3

AMR 2.0 (our method) X 85.2 88.2 85.6 90.3 83.2 75.4 83.0 85.7 86.4

AMR 2.0 (baseline) × 83.8 86.1 84.4 90.2 79.6 70.8 74.4 90.6 84.3

AMR 2.0 (our method) × 84.8 88.1 85.3 90.5 83.4 75.1 74.0 91.8 84.1

AMR 3.0 (baseline) × 83.0 85.4 83.5 89.8 78.9 70.4 73.0 87.2 82.7

AMR 3.0 (our method) × 83.5 86.6 84.0 89.5 82.2 74.2 72.6 88.9 81.5

Table 1: The smatch and fine grained scores of AMR 2.0 and AMR 3.0 datasets without recategorization using the

optimal setup.

number of heads Smatch

0 (baseline) 84.5

2 84.5

4 84.9

6 84.9

8 84.8

10 84.3

Table 2: The influence of different number of heads

attended to the ancestors only for AMR 2.0 with recat-

egorization

different layers Smatch

baseline 84.5

bottom 4 84.6

Medium 4 84.8

top 4 84.3

Table 3: The influence of different layers attended to

the ancestors only for AMR 2.0 with recategorization

3.2.2 Experiments for Different Layers for

the Hard Strategy

In the baseline model (Bevilacqua et al., 2021),

there are 12 layers in the Transformer decoder. Un-

like the heads, the order of layers matters. The

upper layers use information from the lower lay-

ers. Therefore, we conduct experiments with the

bottom, the medium, and the top 4 layers attending

to ancestors. The mask matrix for each head is the

same within a single layer. We show the result in

Table 3.

We can see that, putting the medium 4 layers

focusing on the ancestors has the best performance.

But when we put the top 4 layers focusing on them,

the performance decreases a lot. One possible rea-

son is that, when it comes to near the final output

(the top layers), the model needs to use the infor-

mation from all tokens.

3.2.3 Experiments of Soft Strategy

In this section, we will tune the mask matrix and

use the soft strategy to add the ancestors informa-

different setups Smatch

baseline 84.5

different parameters for layers and heads 84.8

different parameters only for layers 84.7

different parameters only for heads 85.2

Table 4: The influence of tuning the mask matrix for

AMR 2.0 with recategorization

tion. We conduct three experiments: different pa-

rameters for every layer and head combination;

different parameters for different layers only; dif-

ferent parameters for different heads only. We show

the results in Table 4. We can see that when we

only use different parameters for every head, we

achieve a new state-of-the-art result.

3.2.4 Results for Other Datasets

We have conducted different experiments for AMR

2.0 with recategorization, and we found that when

we set different parameters for different heads only

and tune these parameters, we get the best perfor-

mance. Therefore, we apply this setup for other

datasets: AMR 2.0 and AMR 3.0 without recate-

gorization. We show the Smatch scores as well as

other fine-grained scores in Table 1. The results are

improved for all the datasets. The AMR 2.0 with-

out recategorization even obtains an improvement

of 1.0 Smatch point.

4 Conclusion

In this paper, we focus on the DFS linearization

and introduce several strategies to add ancestor in-

formation into the model. We conduct experiments

to show the improvement for both AMR 2.0 and

AMR 3.0 datasets. Our method achieves new state-

of-the-art performances for the AMR parsing task.
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A Hyperparameters and Training

Details

We use cross-entropy loss and RAdam optimizer

during the training. We use Cosine learning rate

schedular with about 1000 warm-up steps and

20000 maximum steps. The selected value of the

learning rate is 3 × 10−5. There are around 80

sentences in each batch. We set the weight decay

rate of 0.004. In order to prevent over-fitting, we

use Dropout with probability 0.25, as well as label

smoothing with value 0.1. To select the best model

checkpoint, we use the development dataset and

search for the model with the best Smatch score.


