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Abstract

AMR parsing is the task of mapping a sen-
tence to an AMR semantic graph automat-
ically. The difficulty comes from generat-
ing the complex graph structure. The pre-
vious state-of-the-art method translates the
AMR graph into a sequence, then directly
fine-tunes a pretrained sequence-to-sequence
Transformer model (BART). However, purely
treating the graph as a sequence does not take
advantage of structural information about the
graph. In this paper, we design several strate-
gies to add the important ancestor informa-
tion into the Transformer Decoder. Our ex-
periments' show that we can improve the per-
formance for both the AMR 2.0 and AMR
3.0 dataset and achieve new state-of-the-art re-
sults.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a graph that encodes the
semantic meaning of a sentence. In Figure 1a, we
show the AMR of the sentence: You fold me to
wash the dog. AMR has been widely used in many
NLP tasks (Liu et al., 2015; Hardy and Vlachos,
2018; Mitra and Baral, 2016).

AMR parsing is the task of mapping a sentence
to an AMR semantic graph automatically. A graph
is a complex data structure which is composed of
multiple vertices and edges. There are roughly four
types of parsing strategies in previous work:

* Two-Stage Parsing (Flanigan et al., 2014;
Lyu and Titov, 2018; Zhang et al., 2019a;
Zhou et al., 2020): first produce vertices, and
produce edges after that.

* Transition-Based Parsing (Damonte et al.,
2016; Ballesteros and Al-Onaizan, 2017; Guo
and Lu, 2018; Wang and Xue, 2017; Naseem
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Figure 1: AMR Graph and linerization for the Sen-
tence: You told me to wash the dog.

et al., 2019; Astudillo et al., 2020; Zhou et al.,
2021): process the sentence from left to right,
and produce vertices and edges based on the
current focused word.

* Graph-Based Parsing (Zhang et al., 2019b;
Cai and Lam, 2019, 2020): produce vertices
and edges based on a graph traversal order,
such as DFS or BFS.

* Sequence-to-Sequence Parsing (Konstas
et al., 2017; van Noord and Bos, 2017; Peng
et al., 2017, 2018; Xu et al., 2020; Bevilacqua
et al., 2021): this method linearizes the AMR
graph to a sequence, then uses a sequence-to-
sequence model to do the parsing.

Bevilacqua et al. (2021) achieved the state-of-
the-art performance by using the last seq-to-seq
strategy. They linearized the AMR graph (see Fig-
ure 1b) and fine-tuned BART (Lewis et al., 2020), a
denoising sequence-to-sequence pretrained model
based on Transformer (Vaswani et al., 2017), for
the parsing. We briefly show the method in Fig-
ure 2. During training, they linearize all the AMR
graphs in the training dataset into sequences, then
they can fine-tune the BART model in this new
sequence-to-sequence dataset. At inference time,
they first generate the AMR sequence using the
BART model, then they recover the AMR graph
from this sequence.

However, purely treating the graph as a sequence
may not take advantage of important information
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Figure 2: AMR Graph and linerization for the Sen-
tence: You told me to wash the dog.

about the structure of the graph. When generating
the last token dog in Figure 1b, for example, the dot-
product attention layer in the Transformer Decoder
attends to all the previous tokens and lets the model
learn the weight of these tokens. However, if we
can tell the model which tokens are its ancestors,
like its parent is wash-01 and its grand-parent is
tell-01 (see Figure 1a), it will make this token much
easier to generate. Adding graph structure has been
demonstrated to be useful for the AMR-to-text task
(Zhu et al., 2019; Yao et al., 2020; Wang et al.,
2020). These approaches added the graph structure
to the Transformer Encoder. Therefore, we expect
that adding structure in Transformer Decoder for
AMR parsing task will also be helpful.

In this paper, we base our work on the seq-to-seq
model of Bevilacqua et al. (2021) with the AMR
linearized by DFS traversal order. We introduce
several strategies to add ancestor information into
the Transformer Decoder layer. We also propose a
novel strategy, which consists of setting parameters
in the mask matrix for those ancestor tokens and
tuning them. We find that this new strategy makes
the largest improvement.

2 Add Ancestors Information into Model

2.1 DFS linearization and Ancestors

The DFS linearization of Bevilacqua et al. (2021)
used pairs of parentheses to indicate the start and
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Figure 3: Example of finding Ancestors.
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the end of exploring a node in the DFS traversal
order. The readers can use Figure 1 as an example
and are referred to Bevilacqua et al. (2021) for
more details.

This means when generating the next token, we
can construct the partial graph from previous to-
kens and determine the ancestors tokens among
them. In Figure 3b, for example, when we generate
the token /, we can construct the partial graph in
Figure 3a and find its ancestors (tell-0] —> :ARG2
—>).

If AMR were a tree, then the ancestors of each
token would be clear to define. However, since
AMR is a graph, one node may be visited multiple
times (which is called re-entrancy), which brings
ambiguity to find the ancestors. For example, in
Figure 4, when we generate the last token <R2>, it
is actually the re-entrancy of the token / generated
before. Under this circumstance, we will use the
tokens in the new path (tell-01 —> :ARGI —> wash-
01 —> :ARGO —>) as its ancestors. We cannot use
tokens from the old path (tell-01 —> :ARG2 —>),
since we cannot know it is a re-entrancy before we
have actually generated it.

2.2 Transformer Background

The original Transformer (Vaswani et al., 2017)
used scaled dot-product self-attention. Typically,
the input of the attention consists of a query ma-
trix (), a key matrix K and a value matrix V, the
columns of which represent the query vector, the



key vector and the value vector of each token. The
attention matrix can be caculated as follows:

S
Attention(Q), K, V, M) = Softmax (| —= + M | V,
@ ) <¢d >

S=QKT,

where Q, K,V € RV*? N is the length of the
sequence, d is the dimension of the model, and M
is the mask matrix to control which tokens in the
sequence are attended for a given token.

A typical Transformer module consists of several
layers. In each layer it uses MultiHead attention.
For each head, it calculates attention as above, and
then averages the results.

In the Encoder self-attention and Encoder-
Decoder attention layers, the mask matrix is the
same across all the heads and all the layers, and
all the elements in the matrix are 0, meaning all
the tokens are attended. But in the Decoder self-
attention layers, the elements denoting the attention
to the future token (M; ; with i < 7) are set to —oo,
meaning that they have no effect when calculating
the weighted sum.

2.3 Add Ancestor Information into Model

We focus on the mask matrix M in the Trans-
former Decoder self-attention layers to add the
ancestor information during the parsing. We in-
troduce two strategies: a hard strategy and a novel
soft strategy.

Hard Strategy Under this strategy, we set ele-
ments denoting the ancestors to 0, and the elements
denoting the non-ancestors to —oo in M, such that
only the ancestor tokens are attended. We will ex-
plore the influence by using the new mask matrix
only on some decoder layers or on some heads.

Soft Strategy Under this novel strategy, we will
not mask the non-ancestor tokens and abandon
them in a hard way. Instead, what we do is only
telling the model which are the ancestor tokens
and letting the model learn the weights by itself.
Specifically, we use three different values in the
mask matrix: —oo for all future tokens; O for all
non-ancestor previous tokens; parameter « for all
ancestor tokens. We let the model learn the weight
a to control how much it should focus on the an-
cestor tokens. Similar to the hard strategy, we will
also explore the influence by setting different pa-
rameters on different layers or on different heads.

2.4 Inference

During the inference stage, the input of the de-
coder is no longer the complete linearized AMR
sequence. Instead, it is dynamically extended, and,
at each step, the input is the tokens that have been
generated during the previous steps. A natural ques-
tion is: how can we find the ancestors of a token
when we don’t yet have a complete sequence (and
therefore can’t convert it to a graph to find its an-
cestors).

Fortunately, the DFS linearization uses several
special tokens to denote the graph structure. We
can rely on two special tokens to find the ancestors
of a token: relation tokens (e.g. :ARGO) and the
parentheses. The basic idea is: we maintain an
ancestor stack for the token that will be generated,
and adjust it according to the generated token. If
a relation token is generated, we know that the
previous siblings have been completely explored,
so we will remove all the tokens of that sibling
from the ancestor stack. If a right parenthesis is
generated, we know that a token has been explored
and we should return to its parent token, so we will
remove it and all its descendants from the ancestor
stacks. We always add the generated token (except
the right parenthesis) into the ancestor stack after
these special operations.

In Figure 5, we give an example of how to find
the ancestor tokens during inference. In 1), the last
token is the right parenthesis, meaning the last to-
ken you has been explored completely and should
be removed from the ancestor token list. Therefore,
we remove the tokens in the ancestor list backwards
until we encounter a left parentheses. In 2), the last
token is a relation token, meaning the previous sib-
ling has been explored completely, so we remove
the tokens in the ancestor list backwards until we
encounter a previous relation token, then add the
current relation token in the list. The steps 3), 4)
and 5) are following the same rule.

3 Experiments

3.1 Setup

Dataset We use the AMR 2.0 (LDC2017T10)
and AMR 3.0 (LDC2020T02) dataset. The AMR
2.0 includes 39,260 manually-created graphs, and
the AMR 3.0 includes 59,255. The AMR 2.0 is
a subset of AMR 3.0. Both datasets are split into
training, development and test datasets.
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Figure 5: An example of how to find ancestors during
inference. The red tokens are the ancestor tokens. The
left column represents the ancestor tokens for the last
blue tokens. The middle column represents the change
of the ancestor tokens according to the last tokens. The
right column represents the ancestors in the AMR of
the middle columns.

Pre-processing and Post-processing We use
the same DFS-based linearization technique as
Bevilacqua et al. (2021). We omit the detail here,
but the reader can refer to Figure 1 as an example.
In the pre-processing step, the AMR graph is lin-
earized into a sequence, and in the post-processing
step, the generated sequence is translated back to
an AMR graph.

Recategorization Recategorization is a widely
used technique to handle data sparsity. With re-
categorization, specific sub-graphs of a AMR graph
(usually corresponding to special entities, like
named entities, date entities, etc.) are treated as
a unit and assigned to a single vertex with a new
content. We experiment with a commonly-used
method in AMR parsing literature (Zhang et al.,
2019a,b; Zhou et al., 2020; Bevilacqua et al., 2021).
The readers are referred to Zhang et al. (2019a) for
further details. Notice that this method uses heuris-
tic rules designed and optimized for AMR 2.0, and
is not able to scale up to AMR 3.0 (the performance
dropped substantially for AMR 3.0 with recatego-
rization in Bevilacqua et al. (2021)). Therefore, we
will not conduct the recategorization experiment
on AMR 3.0.

Model and Baseline We use the model in
Bevilacqua et al. (2021) as our baseline. That
model was initialized by BART pretraining and

fine-tuned on the AMR dataset. We will do the
same thing, except that we design a different mask
matrix in the Transformer Decoder layers. We will
introduce these differences in detail in Section 3.2.

Training and Evaluation We use one 1080Ti
GPU to fine-tune the model. Training takes about
13 hours on AMR 2.0 and 17 hours on AMR 3.0.
We use the development dataset to select the best
hyperparameters. At inference time, we set the
beam size to 5 following common practice in neural
machine translation (Yang et al., 2018).

For evaluation, we use Smatch (Cai and Knight,
2013) as the metric. For some experiments, we
also report fine-grained scores on different aspects
of parsing, such as wikification, concept identifica-
tion, NER, and negations using the tool released by
Damonte et al. (2017).

3.2 Experiments and Results

As indicated in Section 2.3, we study the effect of
the hard and soft strategy. We explore the influence
of these two strategies on different layers or on
different heads. Due to space limitation, we only
show the Smatch score of AMR 2.0 with the re-
categorization preprocessing, since it had the high-
est performance (84.5 Smatch score) as far as we
know.

Once we get the best result among these se-
tups, we will conduct experiments on AMR 2.0
and AMR 3.0 without recategorization (we have
discussed why we don’t conduct experiments for
AMR 3.0 with recategorizaiton before). We will
also report fine-grained results for these experi-
ments.

3.2.1 Experiments for Different Number of
Heads for the Hard Strategy

In the baseline model (Bevilacqua et al., 2021),
there are 16 heads in each layer. We conduct exper-
iments with 0, 2, 4, ..., 8, 10 heads in each layer
attending to ancestors only. Note that the 0-head
model equals the baseline model. We show the
result in Table 2.

We can see that, up to 4 and 6 heads, the perfor-
mance increases along with the number of heads
increasing, showing the importance of telling the
model what the ancestors are. But then, the per-
formance decreases as the number of heads in-
creases, showing that we cannot ignore other non-
ancestor tokens, which still play important roles in
the model.



Dataset | GR. ][ Smatch [[ Unlabeled | NO WSD [ Concept | SRL | Reent. | Neg. | NER | wiki |
AMR 2.0 (baseline) v 84.5 86.7 84.9 89.6 797 ] 723 [79.9] 837873
AMR 2.0 (our method) [| v/ 85.2 88.2 85.6 90.3 [832] 754 | 830 ] 857 [ 864
AMR 2.0 (baseline) x 83.8 86.1 84.4 902 [796] 708 | 744 ] 90.6 | 84.3
AMR 2.0 (our method) [|x 84.8 88.1 853 90.5 [834] 751 | 740 | 91.8 [ 84.1
AMR 3.0 (baselinc) X 83.0 85.4 835 89.8 [ 789 704 [73.0] 872 [827
AMR 3.0 (our method) || x 83.5 86.6 84.0 805 [822] 742 | 726 | 889 [ 815

Table 1: The smatch and fine grained scores of AMR 2.0 and AMR 3.0 datasets without recategorization using the

optimal setup.

| number of heads | Smatch |

0 (baseline) 84.5
2 84.5
4 84.9
6 84.9
8 84.8
10 84.3

Table 2: The influence of different number of heads
attended to the ancestors only for AMR 2.0 with recat-
egorization

| different layers | Smatch |

baseline 84.5

bottom 4 84.6
Medium 4 84.8
top 4 84.3

Table 3: The influence of different layers attended to
the ancestors only for AMR 2.0 with recategorization

3.2.2 Experiments for Different Layers for
the Hard Strategy

In the baseline model (Bevilacqua et al., 2021),
there are 12 layers in the Transformer decoder. Un-
like the heads, the order of layers matters. The
upper layers use information from the lower lay-
ers. Therefore, we conduct experiments with the
bottom, the medium, and the top 4 layers attending
to ancestors. The mask matrix for each head is the
same within a single layer. We show the result in
Table 3.

We can see that, putting the medium 4 layers
focusing on the ancestors has the best performance.
But when we put the top 4 layers focusing on them,
the performance decreases a lot. One possible rea-
son is that, when it comes to near the final output
(the top layers), the model needs to use the infor-
mation from all tokens.

3.2.3 Experiments of Soft Strategy

In this section, we will tune the mask matrix and
use the soft strategy to add the ancestors informa-

different setups Smatch
baseline 84.5
different parameters for layers and heads 84.8
different parameters only for layers 84.7
different parameters only for heads 85.2

Table 4: The influence of tuning the mask matrix for
AMR 2.0 with recategorization

tion. We conduct three experiments: different pa-
rameters for every layer and head combination;
different parameters for different layers only; dif-
ferent parameters for different heads only. We show
the results in Table 4. We can see that when we
only use different parameters for every head, we
achieve a new state-of-the-art result.

3.2.4 Results for Other Datasets

We have conducted different experiments for AMR
2.0 with recategorization, and we found that when
we set different parameters for different heads only
and tune these parameters, we get the best perfor-
mance. Therefore, we apply this setup for other
datasets: AMR 2.0 and AMR 3.0 without recate-
gorization. We show the Smatch scores as well as
other fine-grained scores in Table 1. The results are
improved for all the datasets. The AMR 2.0 with-
out recategorization even obtains an improvement
of 1.0 Smatch point.

4 Conclusion

In this paper, we focus on the DFS linearization
and introduce several strategies to add ancestor in-
formation into the model. We conduct experiments
to show the improvement for both AMR 2.0 and
AMR 3.0 datasets. Our method achieves new state-
of-the-art performances for the AMR parsing task.
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A Hyperparameters and Training
Details

We use cross-entropy loss and RAdam optimizer
during the training. We use Cosine learning rate
schedular with about 1000 warm-up steps and
20000 maximum steps. The selected value of the
learning rate is 3 x 107°. There are around 80
sentences in each batch. We set the weight decay
rate of 0.004. In order to prevent over-fitting, we
use Dropout with probability 0.25, as well as label
smoothing with value 0.1. To select the best model
checkpoint, we use the development dataset and
search for the model with the best Smatch score.



