
A Comprehensive Analysis of Chaos-based
Secure Systems

Ava Hedayatipour∗, Ravi Monani, Amin Rezaei, Mehrdad Aliasgari, and
Hossein Sayadi

College of Engineering, California State University Long Beach
∗ava.hedayatipour@csulb.edu

Abstract. Chaos is a deterministic phenomenon that emerges under
certain conditions in a nonlinear dynamic system when the trajectories
of the state variables become periodic and highly sensitive to the ini-
tial conditions. Chaotic systems are flexible, and it has been shown that
communication is possible using parametric feedback control. Chaos syn-
chronization is the basis of using chaos in communication. Chaos synchro-
nization refers to the characteristic that the trajectories of two identical
chaotic systems, each with its own unique initial conditions, converge
over time.

In this paper, data extraction is performed on different chaotic equations
implemented as circuits. Lorenz is the base system implemented in this
paper, followed by Modified Lorenz, Chua’s, Lü’s, and Rössler systems.
Additionally, more recent systems (e.g., SprottD Attractor) are included
in the data extraction process. The robust system implementations pro-
vide an alternative to software chaos and architectures, and will further
reduce the required power and area. These chaotic systems serve as alter-
natives for quantum era computing, which will cause synchronous and
asynchronous techniques to fail. The data extracted organize different
modes of chaos implementation based on the ease of their fabrication in
integrated circuits. Performance metrics including power consumption,
area, design load, noise, and robustness to process and temperature vari-
ant are extracted for each system to demonstrate a figure of merit. The
figure of merit showcases chaos equations fitting to be implemented as a
transmitter/receiver with a mode of chaotic ciphering in communication.

Keywords: Chaos · Synchronization · Lorenz · CMOS · Gm-C filter.

1 Introduction

Chaos is a deterministic phenomenon that emerges under certain conditions in
a nonlinear dynamic system when the trajectories of the state variable/variables
become aperiodic and highly sensitive to the initial conditions. In 1963, Lorenz
presented the first well known chaotic system, marking the beginning of chaos
theory, a branch of non-linear system theory which has been studied intensively
in recent years [1].
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Fig. 1: Data is encrypted and transmitted over a public channel to the receiver,
where it is decrypted before further processing.

Chaos can be defined as the unpredictability of a deterministic system which
is highly dependent on its initial conditions. Chaos synchronization refers to the
characteristic that the trajectories of two identical chaotic systems, each with
its own unique initial condition, converge over time. Fig. 1 shows an overview of
a chaotic encryption system. The input signal is the raw unencrypted data that
is scrambled by the chaotic transmitter before being transmitted over the public
channel. The public channel can be wireless as in body sensor networks or wired
as in a power grid.

Chaotic systems are flexible and can be utilized for communication using
parametric feedback control [2]. Lorenz-based chaotic circuits can be synchro-
nized for communication [1]. Instead of conventional frequency synthesizers,
chaos generators can be used as communication carriers. Here, the digital infor-
mation modulates the chaotic signal causing the digital signal to be transmitted
as a chaotic spectral signal that looks like noise to a third party.

In this paper, different modes of chaotic equations suitable for communica-
tion are implemented and simulated. The robustness of system implementations
are examined and their reduction of power and area compared to software im-
plementation is explored. The data extracted organizes these different modes of
chaos implementation based on the ease of fabrication in integrated circuits. For
the purpose of comprehensive analysis, various performance metrics including
power consumption, area, design load, frequency range, noise, and robustness to
process and temperature variant are extracted and compared for each system to
demonstrate a figure of merit.

2 Chaotic Ciphering of Communication

Though chaotic communication has been known for decades, with the commer-
cialization of computers, asymmetric and symmetric key encryption Cryptogra-
phy has become a fundamental part of communication between devices such as
cars, implanted medical devices, and internet of things devices (IoTs). However,
commonly used cryptosystems that are used in our everyday devices are expected
to fail once large quantum computers exist. Quantum computing, first proposed
based on a model of the Turing machine [3], originated in the 1980s based on
complex phenomenons relating to quantum-mechanical physics such as super-
position, the uncertainty principle, wave particle duality, and entanglement to
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perform computation. Later, it was suggested that computers performing quan-
tum computation should be known as quantum computers. In October 2019,
Google in partnership with NASA, claimed they achieved quantum computing
[4]; though this claim raised some dispute [5, 6], it is still one of the most im-
pressive milestones in quantum computing. Quantum computers can break sym-
metric and asymmetric cryptography keys quickly by exhaustively trying long
bits of all secret keys. Therefore, methods of encryption other than symmetric
and asymmetric security are gaining more importance and quickly becoming
necessary.

Chaotic secure communication is advantageous in terms of having a strong
real time performance, but real world implementation of these systems is still
scarce. Research studies illustrate that the implementation of chaos theory in
numerical simulations do not always perform well or expected for real world im-
plementations. Therefore, in this paper, we focus on systems that can be imple-
mented in hardware for various applications. Hardware based chaotic platforms
can minimize area and power for a more efficient system implementation.

The Lorenz attractor, with its butterfly-like projection, is one of the first and
most well-known chaotic attractors, though it has a complex equation. The main
disadvantage of this system, however, lies in the necessity of using multipliers
in realization of Lorenz equations, which is hard to implement. The modified
Lorenz system proposed by Elwakil et al. [7] captures the essential behavior of
Lorenz attractor with three differential equations and no multipliers. Notably,
the Modified Lorenz system projects the ”butterfly effect” and unsymmetrical
Lorenz systems. As an example, to improve the stability or predictability of
the Lorenz system, Stenflo and Leonov derived the following four-dimensional
Lorenz–Stenflo system with four parameters. Another well-known chaos gener-
ator is Chua’s chaotic system, which consists of multi-scroll chaotic oscillators
derived from Chua’s double-scroll equation.

Chua’s equation has been implemented on a CMOS chip using gm −C mod-
ulators and non-linear resistors for the third order non linear differential equa-
tions. [8, 9]. The area and power consumption were very large and the design
is complex. A double scroll like chaotic oscillator was implemented using the
non-linearity of CMOS inverters [10].

Current conveyor based oscillators using commercially available devices im-
plemented Chua’s equations for a master-slave communication system have been
used [11]. 3-, 5-, and n-scroll attractors parameters have been approximated us-
ing real devices and integrated circuits [12, 13]. Multi-scroll chaotic designs im-
plemented using discrete components have the significant drawback of needing
many external bias currents; however, V to I inverter cells which take advantage
of the gate capacitance sizing can be used to address this. [14].

Other than Chua’s based attractors, the Lorenz equations are an alternative
method of signal ciphering for communication security. The voltage equivalant of
the chaotic equations, a Lorenz chaotic oscillator was fabricated back in 1999 [15],
and more recently a modified Lorenz-Stnflow with reduced power consumption
was implemented as an encryption system [16]. Active control methods may be
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used in the system to reduce synchronization error and can be implemented
using multipliers, opamps and passive components [17].

Analog circuits exhibit process, temperature, and age variations and thus
present some challenges when used to implement chaotic systems. In particular,
the components must have significant degrees of matching in the transmitter
and receiver. It may be possible to mitigate matching issues through feedback
and techniques such as using floating gates. In recent years, neural networks
have been used to eliminate unwanted noise and error and train the receiver to
generate the expected outputs of chaotic systems [18, 19].

Chaotic generators can also be implemented using digital systems which elim-
inate the matching issues found in analog circuits. However, channel noise is still
a significant issues in these implementations. FPGAs have also been widely used
for the implementation of chaotic systems such as Chua’s system, Lü’s system,
Rössler’s system, Chen’s system, etc [20]. However, the area and power consump-
tion are high when using FPGA’s and the implementations of these designs on
integrated chips is rather rare. As the security we are targeting here mostly tar-
get portable and wearable and generally resource limited devices, use of FPGA
to implement security will not be viable.

3 Design of Chaos for Integrated Circuits

Chaotic equations have been an appealing area of research for many mathemati-
cians for more than three decades. They tried to simplify the chaotic behaviors
as simple equations in order to analyze and study these behaviors. These equa-
tions aim to answer this basic question: What is the necessary and sufficient
conditions for the differential equations to become chaotic?

3.1 Continuous Time

Continuous-time chaos generators are systems that can be described by nonlin-
ear differential equations. These equations can be either differential equations
(ODEs) or delay-differential equations. The positive entropy in these chaotic
dynamical systems leads to continuous instability and the output being unpre-
dictable at all times.

Chaos can be implemented using various equations. In case of all these equa-
tions, the most important block is the nonlinear element that has multiple equi-
librium points, hence though the system output is unpredictable, it is bounded
to “attractive regions”. Integrators, sinusoidal waveform generators, delay based
systems, and polynomial forms, and piecewise-linear (PWL) functions are among
these non linear elements. In Table.1, different equations produce continuous
chaos, along with references implementing them and their implementation based
on attracting or type and function.
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Table 1: Examples of continues time chaotic systems

Name References Equation Scroll Type Function

Lorenza [21], [22], [23] x′ = λσ(y − x) Double Scroll OTA, Multiplier

y′ = λ((β − z)x− y) Multi Scroll

z′ = λ(xy − ρz)

Modified Lorenzb [7], [24], [25] x′ = σ(y − x) Double Scroll OTA

y′ = K(β − z) +m Multi Scroll

z′ = (|x| − ρz)

Lorenz– Stenfloc [26], [27] x′ = σ(y − x) + λω Double Scroll OTA, Product

y′ = (β − z)x− θy)

z′ = xy − ϵz

ω′ = −x− ρω

Chuad [8], [9] x′ = σ(y − x− f(x)) Multi Scroll PWL

y′ = x− y + z

z′ = −βy

Rösslere [28] x′ = −y − z Double Scroll OTA, Product

y′ = x+ σy

z′ = β + z(x− ρ)

Lü f [29] x′ = σ(y − x) Multi Scroll OTA, Product

y′ = βy − xz

z′ = −ρz + xy

SprottD [30] x′ = −y Multi Scroll OTA, Product

y′ = x+ z

z′ = 2y2 + xz − a

a: λ, σ, β, and ρ are parameters whose choice of value results in a chaotic system.

b: σ, β, and ρ are parameters whose choice of value results in a chaotic system.

K is a bipolar switching constant which is 1 for x ≥ 0 and -1 for x < 0.

c: λ, σ, β, ϵ, θ and ρ are parameters whose choice of value results in a chaotic system.

d: σ, and β are parameters whose choice of value results in a chaotic system and

f(x) is a nonlinear element.

e: σ, β, and ρ are parameters whose choice of value results in a chaotic system.

f: σ, β, and ρ are parameters whose choice of value results in a chaotic system.
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3.2 Discrete Time

Discrete systems can also be used to generate chaos. A discrete system is ex-
pressed as xn+1 = f(C, xn) that shows the next state of the system, xn+1 is a
function of the present state, xn, and the control parameter, C. Same as contin-
uous time chaos, nonlinear functions are also essential here to create a chaotic
map. Depending on the number of the state variables, chaotic maps are of two
kinds: 1) One-dimensional maps, where deterministic equations are the only el-
ement responsible for the evolution of a single state variable, with functions
such as sine map, tent map, and logistic map and 2) Multi-dimensional chaotic
maps where more than one deterministic equation is needed to define the evo-
lution of multiple state variables. In particular, Hénon map is a good example
of this second category. These common functions are showcased in Table. 2 as
commonly used mathematical chaotic maps. Their simple mathematical expres-
sions can be suitable for applications like FPGA-based image encryption [31].
However, it is reported that the CMOS-based compact implementation of clas-
sic chaotic maps including logistic map [32], sine map [33], and tent map [34],
becomes highly hardware-hungry. As a solution to this issue, researchers have
been exploring to leverage the built-in non-linearity in transistors to design sim-
ple, hardware-effective discrete maps with good chaotic properties [35], [36], [37].
Though discrete time chaos has a great potential as a base of a chaotic com-
munication system, we will not be discussing them, as continuous time chaos
is a better fit for using chaos ciphering in wearable and other resource limited
systems.

Table 2: Examples of some familiar mathematical chaotic maps
Name Mathematical expression Parameter bounds

Logistic map [38] xn+1 = Cxn(1− xn) xn = [0, 1]
C = [0, 4]

Hénon map [39]

{
xn+1 = 1− Cax

2
n + yn

yn+1 = Cbxn

xn = [0, 1.4]

Ca = [0, 1.4]
Cb = [0, 0.3]

Sine map [40] xn+1 = Csin(πxn) xn = [0, 1]
C = [0, 1]

Tent map [38] xn+1 =

{
Cxn , xn < 0.5

C(1− xn) , xn ≥ 0.5
xn = [0, 1]

C = [0, 2]

4 On-Chip Chaos Implementation and Simulation

Here we discuss continuous-time chaotic equations that can be described by
non-linear differential equations. The steps to implement chaos as an integrated
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Fig. 2: The flow of implementing chaotic synchronization on chip (a) Implement-
ing the chaotic equations in MATLAB and extracting the initial conditions and
parameters needed to achieve chaos (b) Implementing the equations as MAT-
LAB simulink block diagram (c) Simulating the chaotic equations to confirm
the bounded chaos needed for ciphering of signals using chaotic synchronization
(d) Implementing Simulink blocks as integrated circuits using 65nm MOSFET
technology, the block showed in the picture is an n-W powered integrator.

circuit are shown in Fig.2. The first step is implementation of these equations in
MATLAB, after simulations and confirmation of chaos, parameters and initial
conditions that satisfy chaos are extracted. The equations are then translated
to a block diagram implemented in MATLAB Simulink. The transformation
from MATLAB Simulink to circuit block diagram requires implementing each
block in the diagram to a low power circuit. Simulation results for each type
of our equation is seen in Fig.3. The building blocks of these systems as seen
from the equations listed in Table. 3 are multipliers, integrators, amplifiers, and
PieceWise-Linear (PWL) functions. To extract performance parameters of each
chaotic equation as an integrated chip, each block used in the chaotic system is
implemented using 65nm CMOS technology and simulated.

The first building block implemented and simulated is a low power integrator.
The integrator is based on Rieger et. al [41]. This integrator, consuming power
in range of nano-watts, has a very large tunable time constant without using
area consuming resistors or a big capacitor. The nominal value of the time con-
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Fig. 3: Simulation results for (a) Lorenz System (b) Lü’s system (c) Rössler
system (d) SprottD system and (e) Chua system, The axes in the pictures are
x, y and z showing the 3 states of the system.

stant with a 2pF capacitor is 5s which can also be useful for slower signals. The
integrator is based on cascading of basic transconductance and transimpedance
(gm- 1/gm chain). The gm blocks implemented here are 4 operational transcon-
ductance amplifiers (OTAs) with a bias current injected to them from VDD. The
1/g blocks are grounded transistors acting as voltage attenuator resistances. A
chain of two gm and two 1/gm blocks, alternating, are used as an attenuator
to drive the OTA and the capacitor (OTA-C). The OTA-C section consists of a
current source biasing a PMOS OTA, which regulates the NMOS mirror tran-
sistors (M5-M10). This integrator is a good fit for resource limited applications
that are required to consume low power and low area. Since there will be process,
temperature, and voltage variations leading to an output offset on the capacitor
nodes, a current source to eliminate the offset can be implemented on the last
1/gm block. The diode connected M11 is used to achieve better-balanced dc con-
ditions. The circuit implementation of the integrator along with the simulation
is seen in Fig. 4. The integrator output voltage (Vo) in this picture is simulated
by extracting the response versus an square pulse as slow as 4Hz for the input.
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(a)

(b)

Fig. 4: (a) Circuit diagram of an integrator (b) Simulation results shown for an
input pulse.

Gilbert cell typologies are good topologies to be used as multipliers. Gilbert
cells are mixers with output signals that are proportional to the product of two
input signals. This cell, depicted in Fig.5 uses eight NMOS transistors and two
active loads, all are working in saturation region. There are 2 sets of differential
input fed to the circuit and the top 4 transistors work as a switch that source
the current in the lower part of the circuit. In the lower circuit, the signal is
multiplied by the signal fed into M1-M4, and the output obtained is a differential
output. To simulate this block, a sinusoidal wave and a square pulse are given as
the two sets of input and as shown in the Gilbert cell simulation, the output is
the multiplication of two signals. The power consumption of Gilbert cells is two
orders of magnitude higher than the integrator and around 200-500µW based
on the gain implemented.

Chua’s or Lü’s circuit can use a CMOS implementation of the PWL as the
nonlinear element of chaos. This function is constructed of various straight line
segments connecting points creating custom wave-forms. PWLs are integral parts
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(a)

(b)

Fig. 5: (a) Circuit diagram of a multiplexer (b) Simulation results shown for
multiplication of a pulse and a sinusoidal wave.

in achieving chaos since they are the limiting components when it comes to fre-
quency. A convenient way to implement these line segments is to have a summa-
tion of simple functions. The topology shown in Fig.6, based on Carbajal-Gomez
et. al [42], can be programmed to have a break-point set by Ioffin and Ioffout
and a slope that can be set by Isat. This implementation is also advantageous
in terms of stability since it has a current mode open loop configuration. The
circuit, implemented in current mode shows a better frequency response than
voltage mode and is easy to implement with only few transistors.

Apart from these introduced blocks, amplifiers to determine the coefficients
of the equations through gain blocks, and passive elements like resistors are
common in the chaos generator circuits. It must be noted that not all the chaotic
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circuits discussed in literature use these blocks exclusively, but use of these blocks
in this paper is to extract performance parameters using common blocks.

(a) (b)

Fig. 6: (a) Circuit diagram of implementation of a piece wise-linear circuit (b)
Simulation results showing the current output of a piece wise-linear circuit.

5 Discussion

To implement chaotic synchronization, different blocks introduced in the pre-
vious sections are used. In this section, performance of these equations based
on their area and power consumption, sensitivity, and robustness is discussed.
Chaotic synchronization is very sensitive to initial conditions, in this sense, mak-
ing a small change in the initial condition of this complex, nonlinear system, pro-
duces a huge change in the behavior of the system. With slightly different initial
conditions, we start with a slight difference in the results, then beyond a certain
time, the system would no longer be predictable. The sensitivity of Rössler, Lü
and SprottD systems can be seen in Fig.7. Though having a big change in output
with a slight change in initial conditions seems desirable as it provides better
ciphering, there is indeed a trade off. Systems more sensitive toward initial con-
ditions are also more sensitive toward process, voltage, and temperature (PVT)
variations. The small changes formed in the fabrication process of the integrated
chip, makes the more sensitive implementations almost impossible to synchro-
nize as two identical systems implemented on chip will still be slightly different
and posing an extremely different output. To eliminate these PVT variations,
considerations for tuning circuit and post-fabrication processing are needed to
contribute towards power and area consumption. Lü’s system is seen to be more
sensitive toward initial conditions as seen in the simulation.

Lorenz was the main equation to implement chaos for decades. This set of
equations, however, needs two multipliers which are power and area consum-
ing to be implemented on chip and can contribute to a significant DC offset.
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Fig. 7: Sensitivity of (a) Rössler, (b) Lü and (c) SprottD systems to initial con-
dition.

Modified Lorenz eliminates the multipliers which will reduce the power and area
consumption. Chua’s design also eliminates the multipliers, replacing them with
a PWL circuit. The power consumption is hence proportional to the number of
multipliers in the circuit as the power consummation of the Gilbert cells is 2
order of magnitude higher than that of amplifiers, PWLs and integrators.

These data are utilized to come up with a Figure of Merit (FOM), that
is smaller for a better design as shown in equation 1. The design performance
improves as we use less power and area consumption (proportional to the number
of multipliers), fewer blocks (using only primitive blocks, such as amplifiers,
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integrators, multipliers, etc. for design purposes), and reduced noise sensitivity
(the FOM is designed to be proportional with these parameters). The design
will improve if we are robust to PVT variation (or if the design is easily tunable
after fabrication). For the design load of Lorenz, Lü, Rössler, and SprottD, they
are estimated as 1 since they can be implemented using the integrators and
multipliers and the design load of Modified Lorenz and Chua’s are estimated as
2 because of need to design specialty blocks. Lorenz– Stenflo requires 4 equations
to be implemented and it’s design load is estimated as 2. Chua’s robustness to
PVT is estimated as 2 because of ease of tuning the PWL currents after the
process. The detailed comparison of these systems in terms of performance is
shown in Table. 3.

FOM =
Power&AreaConsumption×#ofblocks×DesignLoad×Noise

Robustness
(1)

Table 3: Comparison table with state-of-the-art chaotic communication

Name Based on # of main blocks # of multipliers FOM

Lorenz [23] 5 2 15

Modified Lorenz [25] 4 0 8

Lorenz– Stenflo a [26] 6 2 18

Chua [8], [9] 4 0 4

Rössler [28] 4 1 8

Lü b [29] 5 0-2 10

SprottD c [30] 5 2 7.5

a: This design has more output states leading to a more robust ciphering.

b: Various alternatives exist to implement Lü’s system with one or no multiplier.

c: This design has no equilibria leading to a more robust ciphering.

6 Conclusion

In this paper Multiple Lorenz, Chua’s, Lü’s, and Rössler, and sprottD systems
are implemented and simulated. The system implementations are considered as
alternatives to the software chaos and architectures which can further reduce
the power and the area overheads. Reducing power and area of these systems
pave the way for the effective utilization of security at chip level for resource lim-
ited applications such as wearables, implantable devices, and Internet-of-Things
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(IoT) devices where security has been overlooked even in regularly used de-
vices. Various performance metrics including power consumption, area, design
load, noise, and and robustness are extracted and compared for each system to
demonstrate a figure of merit. The figure of merit shows the importance of re-
ducing the use of multipliers by introducing chaotic equations that avoid using
multipliers.
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