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Abstract—Deep Neural Networks (DNNs) have performed
admirably in classification tasks. However, the characterization
of their classification uncertainties, required for certain applica-
tions, has been lacking. In this work, we investigate the issue by
assessing DNNs’ ability to estimate conditional probabilities and
propose a framework for systematic uncertainty characterization.
Denoting the input sample as x and the category as y, the
classification task of assigning a category y to a given input
x can be reduced to the task of estimating the conditional
probabilities p(y|x), as approximated by the DNN at its last
layer using the softmax function. Since softmax yields a vector
whose elements all fall in the interval (0, 1) and sum to 1, it
suggests a probabilistic interpretation to the DNN’s outcome.
Using synthetic and real-world datasets, we look into the impact
of various factors, e.g., probability density f(x) and inter-
categorical sparsity, on the precision of DNNs’ estimations of
p(y|x), and find that the likelihood probability density and the
inter-categorical sparsity have greater impacts than the prior
probability to DNNs’ classification uncertainty.

Index Terms—Deep Neural Networks, Uncertainty, Bayesian
Inference, Generative Model, Density and Sparsity

I. INTRODUCTION

The potential of deep neural networks (DNNs) has been
amply demonstrated with classification. If we denote the
input sample as a vector x and an L-category vector as
y = (y1, ..., yL), a classification task can be viewed as taking
the following two steps: 1) it first predicts the conditional
probability p(y|x), and then 2) makes a decision on the
category an input sample belongs to based on some specific
criteria, such as y = argmaxy p(y|x), i.e. identifying with the
largest element of y. Although the final classification result is
of primary interest, the intermediate result p(y|x) is necessary
for scientific applications, in which the characterization of
classification uncertainties is desired. However, there is a lack
of systematic investigations into this characterization.

A DNN often uses softmax on the output of its last layer.
Since softmax yields a vector whose elements all fall in the
interval (0,1) and sum to 1, it suggests a probabilistic inter-
pretation of the DNN’s outcome and is used to approximate
the probability of the categorical variable y. Typically during
training, the labels of all input samples fed into the DNN
are in the one-hot format (i.e., each sample is associated
with a single category). The DNN learns p(y|x) implicitly by
minimizing the cross-entropy between the output and the one-
hot label without revealing p(y|x). The main mechanism for
the DNN to capture p(y|x) is through relating local samples
of x and the frequencies of y. The (local) sparsity of x in the

training dataset, therefor, may limit the capability of the DNN
to capture p(y|x).

We are interested in assessing the quality of the prediction
of p(y|x) and exploring potential factors that may impact the
performance metric. However, the lack of ground truth makes
it difficult to assess the prediction of p(y|x) generated by
DNNs. In this paper, we address these challenges with the
following main contributions:
• We propose an innovative generative framework with

two paths: one for directly inferring p(y|x) assuming
Gaussian probability density functions (pdf’s) and one for
generating and training a DNN to approximate p(y|x).

• We conduct extensive and systematic experiments for
both 1-D and high-dimensional inputs to gain insights
that suggest the likelihood probability density and the
inter-categorical sparsity are the more influential factors
on the performance metric than the prior probability.

II. RELATED WORK

We describe works related to ours in this section. We
note that the sample labeling process naturally biases the
distribution because, under the one-hot convention, existing
works tend to ignore the samples that are unsure of. We
cannot uncritically assume that the distributions of the labeled
samples, regardless of training or testing, accurately represent
those of the population in the real world.

A. Estimating Probability using DNNs

Substantial work has been conducted to estimate the under-
lying probability in training data using DNNs. Based on how
the actual probability (density) function is approximated, we
may categorize the existing work into two categories: implicit
and explicit estimations.

When a model uses implicit estimation, it does not approx-
imate the distribution in a closed form but usually generates
samples subject to the distribution. Generative Adversary
Network (GAN) [7] consists of a generator and a discrimi-
nator, which co-evolve to achieve the best performance. The
generator implicitly models the distribution of training data,
and the discriminator attempts to differentiate between the
true distribution and the synthesized distribution from the
generator. The generator, however, has not been leveraged to
generate samples with prescribed distributions for uncertainty
characterization. Ever since its invention, GAN has evolved
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into a large family of architectures [2], [5], [11], [13], [20],
[22], [27]–[29].

Explicit estimation attempts to learn the distribution p(x|y)
in a closed form. Some pioneering studies [1], [17], [19]
discuss the capability of DNNs to approximate probability
distributions. Mixture Density Network (MDN) [3] predicts
not only the expected value of a target but also the underlying
probability distribution. Given an input, MDN extends maxi-
mum likelihood by substituting Gaussian pdf with the mixture
model. Probabilistic Neural Network (PNN) [24] uses a Parzen
window to estimate the probability density for each category
p(x|y) and then uses Bayes’ rule to calculate the posterior
p(y|x). PNN is non-parametric in the sense that it does not
need any learning process, and at each inference, it uses all
training samples as its weights. These techniques do not seem
to consider the possibility that the distributions of the labeled
samples may deviate from those of the population.

B. Approximate Inference
As the inference process for complex models is usually

computationally intractable, one cannot perform inference ex-
actly and must resort to approximation. Approximate inference
methods may also be categorized into two categories: sampling
and variational inference.

Sampling is a common method to address intractable mod-
els. One can draw samples from a model and fit an approxi-
mate probabilistic model from the samples. There are classic
sampling methods, such as inverse sampling, rejection sam-
pling, and Gibbs sampling, as well as more advanced sampling
methods, such as Markov chain Monte Carlo (MCMC) [6].
Our framework is similar to the sampling method in the sense
that it generates samples for training and testing a DNN model.

Variational inference is an alternative to sampling methods.
It approximates the original distribution p(x|y) with a fit
q(x|y), turning it into an optimization problem. Accordingly,
variational autoencoder [15] approximates the conditional dis-
tribution p(z|x) of latent variables z given an input x using a
function q(z|x) by reducing the KL-Divergence between the
two distributions. This results in an additional loss component
and a specific estimator for the training algorithm called
the Stochastic Gradient Variational Bayes (SGVB) estimator.
Researchers have incorporated some more sophisticated poste-
riors q(z|x) to extend variational autoencoder [14], [21], [23].

C. Bayesian Neural Networks
Since deep learning methods typically operate as black

boxes, the uncertainty associated with their predictions is
challenging to quantify. Bayesian statistics offer a formalism
to understand and quantify the uncertainty associated with
DNN predictions. Differing from point estimation used in a
typical training process such as Stochastic Gradient Descent,
Bayesian neural networks learn a probability distribution over
the weights [9], [12], [18], [25].

D. Calibration method
Guo et al. [8] translates the problem of calibrating the

prediction made by a neural network into counting how many

Fig. 1: Two paths of our assessment framework. A dataset generator
is constructed and used to generate synthetic samples. Along the
fristpath of Bayesian inference, it is easy to infer the posterior p(y|x)
from prescribed prior p(y) and likelihood p(x|y). Along the path of
sampling and training, it first samples the class label y = yi based
on a prescribed discrete distribution of y. For 1-D, xi is sampled
according to a prescribed likelihood f(x|y = yi) = N (µ(yi), σ(yi)).
For d > 1 dimension, we first sample a vector v according to
a prescribed Gaussian pdf f(v|y = yi) = N (µ(yi),Σ(yi)) in
the reduced dimension, which is 2-D for the case of this study.
We then map this 2-D vector v to a d-dimensional vector x using
our reconstructive mapping and add the (xi, yi) pair to the training
dataset. Repeating this n times, we generate a training dataset D
containing n data samples, which we feed into the DNN for training.
When the DNN is fully trained, its predicted probability q(y|x) given
any input x can be compared with the ground truth p(y|x).

correct predicted samples are made. Their calibration depends
on specific dataset whereas we adopt a different calibration
mechanism in which our generative model can generate train-
ing datasets according to different hyper parameters.

III. FRAMEWORK

To assess how well a DNN captures the posterior pdf
p(y|x) embedded in a dataset, we must first know the “truth”
of the dataset. Yet, given an arbitrary dataset for a typical
classification task, it is challenging to estimate the ground truth
of the conditional relationship. We end up with a chicken-
and-egg situation: We need the “ground truth” to evaluate an
estimate, but we can only approximate the ground truth with
an estimate. It thus becomes impossible to characterize the
classification uncertainty with confidence.

To address this problem, we introduce a new assessment
framework to systematically characterize DNNs’ classification
uncertainty, as illustrated in Fig. 1. The key idea of our frame-
work is to construct a data generative model by specifying
all the information required for the estimation, including the
prior distribution p(y) and the dependency of x on y, thus
establishing the ground truth. We then proceed along two
paths: 1) The first path is through Bayesian inference, in
which we directly calculate p(y|x) through Bayes theorem,
i.e. p(y|x) ∝ p(x|y)p(y); and 2) the second path is through
generating a dataset using the aforementioned generative
model and then training a DNN-based classifier q(y|x) as
an approximation to the “true” p(y|x) and evaluated for its
probability approximation ability. The second path is similar
to approximate inference by sampling. After the DNN is fully
trained, we can compare how close the results of these two
paths are, or to say, we can compare the prediction made by
the DNN and the “ground truth” from our dataset generator.



In practice, it is non-trivial to directly estimate high-
dimensional distributions for many real-world cases. To tackle
these cases, we first apply a dimensionality reduction tech-
nique, if necessary, to map the high-dimensional input samples
to a more manageable low-dimensional space, from which
we construct a generative model to generate an extensive
set of synthetic samples by densely sampling the reduced-
dimensionality space and inversely mapping back to the
original high-dimensional space (aka reconstructive mapping).
We can thus now sample this extensive dataset of synthetic
samples according to prescribed prior p(y) and likelihood
p(x|y) to serve as ground truth.

A. Framework Formalization

A generative model produces an extensive dataset of syn-
thetical samples, which we sample according to some pre-
scribed prior p(y) and likelihood p(x|y) to serve as “ground
truth”. For 1-D, the likelihood p(x|y) is represented by a
Gaussian pdf f(x|y) = N (µ(y), σ(y)). For d > 1 dimension,
we assume x is embedded in a lower dimensional manifold
for many real world datasets. Thus, the likelihood can be
represented by a composite of lower-dimensional Gaussian
pdf’s f(v|y) = N (µ(y),Σ(y)) and through a reconstructive
mapping function fre.

For the real-world MNIST dataset studied (see Section
IV-B), we find that x stays essentially on a 2-D manifold,
so we have v ∈ R2 and a reconstructive mapping function
fre : V ⊂ R2 → X ⊂ Rd. Here any bijective function that
maps a 2-D vector v back to a d-dimensional vector x will
work as a reconstructive mapping and fre can be seen as a
decoding mapping. We detail our investigations into both the
1-D and high-dimensional cases in Section IV.

B. Two Paths

We detail the two paths of inference used in our framework
in the following subsections.

1) Bayesisan Inference: Since the synthetic samples pro-
duced by the generative model are constrained by prescribed
prior p(y) and likelihood p(x|y), we can easily infer p(y|x)
based on Bayesian rule for the 1-D case:

p(y|x) = f(x|y)p(y)
f(x)

=
f(x|y)p(y)∑
y f(x|y)p(y)

(1)

For d-dimension (d > 1), we may use f(v|y) and p(y) to
infer p(y|x):

p(y|x) = p(y|v) = f(v|y)p(y)
f(v)

(2)

Appendix A gives the detailed mathematical proof.
2) Data Sampling and Training: We sample, in both 1D

and d¿1, class labels based on a prescribed prior of p(y). A
1-D training dataset is generated according to a prescribed
likelihood f(x|y = yi), where yi is a sample of y, with
the likelihood assumed to be Gaussian, i.e., f(x|y = yi) =
N (µ(yi), σ(yi)). For d-dimension, we first sample, accord-
ing to a 2-D Gaussian pdf distribution f(v|y = yi) =

N (µ(yi),Σ(yi)), a 2-D vector vi which we map to a d-
dimensional vector xi. Subsequently, we add (xi, yi) to the
training dataset. Repeating this n times, we generate a training
dataset D containing n data samples, which are then fed into a
DNN for training. When the DNN is fully trained, we compare
the predicted probability q(y|x) of any given input x with the
ground truth p(y|x).

C. Comparison

For each configuration of the generative model, we have
an inferred p(y|x) and a trained (predicted) q(y|x). We can
compare these two conditional probabilities at each sampled
point of x. More importantly, we can systematically explore
all possible configurations of the generative model and find the
main factors affecting the approximation precision of q(y|x).
Given the complexity of this exploration, here we report more
comprehensively on only 1-D cases. For d-dimensional cases,
we use the MNIST dataset, fit its 2-D representation as a
Gaussian mixture, and explore this specific configuration.

IV. EXPERIMENT AND EVALUATION

We use Google Colab [4] with Nvidia T4 and P100 GPUs to
run our experiment. We discuss below the experiment setups
and results for 1-D and high dimensional cases, respectively.

A. One Dimensional Case

To simplify our experiment without loss of generality, we
use a mixture of two Gaussian pdf’s as our data generator.
Here, we call each Gaussian pdf a cluster. The 1-D generative
model can be parameterized as f(x) =

∑2
k=1 p(y = k)φk(x),

where
∑2
k=1 p(y = k) = 1, φk(x) = N (µk, σk), and p(y =

k), µk, and σk are the generative model parameters.
1) Systematic Analysis:

a) Grid Search in Parametric Space: To explore how
each parameter would influence the DNN prediction, we first
conduct a grid search in the parametric space p(y = k), µk,
and σk of the generative model, where each grid point is a
combination of different values of p(y = k), µk, and σk. Here,
we sample p(y = 1) ∈ [0.1, 0.9] with step size of 0.1, and
µ1 ∈ [0, 9] with a step size of 1 subject to the condition µ1 +
µ2 = 0. We also sample both σ1 and σ2 ∈ [1, 10] with a step
size of 1. Therefore, our parametric space is essentially a space
containing 9× 10× 10× 10 = 9000 grid points, which means
we generate a training set and then train a fully connected
DNN 9000 times. For each grid point (i.e., a configuration
of the generative model), we generate 10000 data samples
and labels in a stochastic (random) manner. After the DNN
is fully trained, we get the prediction precision of the trained
DNN at the sampled x ∈ [−35, 35] with a step size 0.5. We
choose 35 as it is slightly larger than max(µ) + 2.5max(σ)
and can cover the majority area of non-trivial density f(x),
where max(µ) = 9 and max(σ) = 10 are the maximum
values of µ and σ, respectively. Then, we calculate the mean
prediction precision at these 142 sampled points. When we
plot the prediction precision as a function of each of these
three factors, we marginalize the other two factors.



(a) (b)

(c) (d)

(e) (f)
Fig. 2: Prediction precision as the function of various factors. (a)
plots the prediction precision in KL-Divergence as the function of
the mixing coefficient p(y = 1). (c) plots the prediction precision in
KL-Divergence as the function of the mean value of cluster 1, µ1.
(e) plots the prediction precision in KL-Divergence as the function
of variances σ1 and σ2. (b), (d), and (f) plot the counterparts of (a),
(c), and (e) in Absolute Difference, respectively.

To measure the prediction precision, we use two metrics,
KL-Divergence:

DKL(p(y|x)||q(y|x)) = −
2∑

k=1

p(y = k) log(
q(y = k|x)
p(y = k|x) ) (3)

and Absolute Difference:

DABS(p(y|x), q(y|x)) = |p(y = 1|x)− q(y = 1|x)| (4)

Fig. 2 shows the prediction precision as the function of
mixing coefficient p(y = 1), the mean value of cluster 1
µ1, and the variances of two clusters σ1 and σ2. We can
conclude from Fig. 2 that there is only a marginal relationship
between the mixing coefficient and the prediction precision.
Increasing the distance between the cluster mean values can
improve the prediction precision, which we discuss below. The
impact of variances is relatively complex. Generally, we see
two trends: prediction accuracy decreases with both smaller
variance values and with decreasing distance between the two

(a) (b)

(c) (d)
Fig. 3: Prediction precision as the function of the marginal density
and sparsity. Each point represents the situation for one sampled point
x, among all the sampled points and all the parametric configurations
of our generative model. (a) plots the prediction precision in KL-
Divergence as the function of density. (b) plots the prediction preci-
sion in Absolute Difference as the function of density. (c) plots the
prediction precision in KL-Divergence as the function of sparsity. (d)
plots the prediction precision in Absolute Difference as the function
of sparsity. For each figure, we also divide the x axis into several
bins and calculate the average value for each bin. Then we overlay
the average values as the function of sampled bins on each figure.

variances. The only exception for the second trend is that,
when both variances are equal, the prediction is more accurate
than expected from the second trend.

b) Considering Density and Sparsity as Influencing Fac-
tors: Second, for a grid point (i.e., a parametric config-
uration), we record the prediction precision, together with
f(x) and p(y = k)φk(x) (k = 1, 2) sampled from
x ∈ [−35, 35] with a step size of 0.5. Thus, we col-
lect 9000 × 142 = 1278000 points in total. As we de-
fine the prediction precision at each sampled x using KL-
Divergence and Absolute Difference, we can plot the scat-
tered points illustrating the relationship between the prediction
precision and two extra potential influencing factors: density
and sparsity, which are defined as Density(x) = f(x) and
Sparsity(x) = |p(y=1)φ1(x)−p(y=2)φ2(x)|

p(y=1)φ1(x)+p(y=2)φ2(x)
, respectively. Spar-

sity measures how much each cluster relatively contributes to
the whole density. Fig. 3 illustrates the prediction precision
as the function of density and sparsity. We can see that
the prediction precision roughly obeys the power-law with a
large exponent for both density and sparsity. The prediction
precision decreases drastically as the density increases while
it increases drastically as the sparsity increases. This means
that most prediction failures are observed when the density



(a) (b)

(c) (d)

(e) (f)
Fig. 4: Large prediction error, configurations, and results. (a) and
(b) plot the probability density of clusters 1 and 2: f(x|y = 1)
and f(x|y = 2), respectively. (c) and (d) plot the predicted and
true p(y|x) for clusters 1 and 2, respectively. We can see a large
discrepancy happens when x < −10. (e) plots the density, sparsity,
and generated training dataset for both clusters. (f) plots the prediction
precision in KL-Divergence and Absolute Difference. (e) shows the
density drops and the sparsity increases drastically when x < −10,
coinciding with the sudden increase of the prediction error in (f).

is low AND the sparsity is high. This condition is usually
satisfied at the far outer side of both clusters or in between two
clusters when their variances are low. With this observation
and revisiting Fig. 2 (c) and (d), we can see that when µ1

increases, the mean µ2 = −µ1 of cluster 2 decreases. Thus,
as these two clusters’ distance increases, it becomes easier to
satisfy the failure condition at a certain sampled x. Similarly,
in Fig. 2 (e) and (f), when the variances of both clusters are
small, the failure condition tends to happen more frequently.

2) Example Cases with Specific Configurations: To further
illustrate our observation in Section IV-A1, we select two
specific configurations with large and small prediction errors
from the results in Fig. 3. For each configuration, we follow
our assessment framework: generate a training dataset, train a
DNN-based classifier, and compare the prediction made by the
trained classifier with the truth induced by our data generator.

a) Configuration with Large Prediction Error: In this
configuration, for cluster 1, we have its mean as −7, variance
as 1, and mixing coefficient as 0.6. For cluster 2, we have its
mean as 7, variance as 8, and mixing coefficient as 0.4. Fig.
4 shows the parametric configurations and experiment results

(a) (b)

(c) (d)

(e) (f)
Fig. 5: Small prediction error: configurations and results. (a) and
(b) plot the probability density of clusters 1 and 2: f(x|y = 1)
and f(x|y = 2), respectively. (c) and (d) plot the predicted and
true p(y|x) for clusters 1 and 2, respectively. (e) plots the density,
sparsity, and generated training dataset for both clusters. (f) plots
the prediction precision in KL-Divergence and Absolute Difference.
(c) shows the sparsity is high and density is low for x < −20 and
x > 20, but the prediction error in (f) stays low for all x.

for this setting. We can see that large prediction errors occur
when x < −10, which coincides with low density and high
sparsity. This observation is in accordance with the results
from our grid search, which showed most prediction failures
are observed with low density and high sparsity.

b) Configuration with Small Prediction Error: In this
configuration, we have the mean values of two clusters at
−2 and 2, respectively. Each cluster has a variance of 5
and a mixing coefficient of 0.5. Fig. 5 shows the parametric
configurations and experiment results for this setting. We can
see that even though the regions of x < −20 and x > 20
satisfy low density and high sparsity, the prediction error
stays low. This observation does not, however, contradict the
experiment results from our grid search, because low density
and high sparsity are necessary but not sufficient conditions
for high prediction errors.

B. Pseudo High Dimensional Case

To investigate whether these conclusions continue to hold
in high dimensional cases, we start as in the 1-D case but
using mixture of ten 2-D Gaussians as the data generator. After
the random samples on the 2-D plane are acquired, we use a



(a) (b) (c)
Fig. 6: 2-D data and digit planes. (a) shows the t-SNE dimension reduction result of the MNIST training dataset on a 2-D plane where
a elliptical circle surrounds each category and shows the area covered by 2σ of the data samples for each digit. (b) shows the synthetic
training data for each category on the 2-D plane. (c) shows the corresponding digit for each grid point on the 2-D plane.

Fig. 7: f(v|y), true p(y|v), and predicted p(y|v) shown on 2-D plane. The first row shows the distribution density f(v|y) for each digit
category. The second and third rows illustrate the true posterior probability p(y|v) and the predicted p(y|v), respectively. The last row shows
the pixel-wise absolute difference between the second and third rows.

reconstructing mapping function fre : V ⊂ R2 → X ⊂ Rd
to map a 2-D random sample v to a d-dimensional sample x.
The high dimensional generative model can be parameterized
similar to the 1-D case in Section IV-A: f(v) =

∑9
k=0 p(y =

k)φk(v), where
∑9
k=0 p(y = k) = 1, φk(v) = N (µk,Σk),

and x = fre(v).

We get fre by reversing the t-SNE [26] dimension reduction
of the MNIST dataset [16]. We first apply t-SNE on the
MNIST dataset to obtain a set of data samples on a 2-D
manifold and train a DNN to map these 2-D samples back
to the original MNIST images. Thus, this DNN acts as our
fre. We illustrate the training process of fre in more detail in
Appendix A. Since we consider the MNIST dataset embedded
in a 2-D manifold and the DNN is continuous, we assume
our fre is smooth and bijective. Here, we could also use
other generative functionsm, such as the decoder part of an
autoencoder or GAN, as fre. Still, as shown in Fig. 6 (a), a
single Gaussian pdf for each digit category on the 2-D plane

acquired by the t-SNE reduction is adequate. The first row
of Fig. 7 illustrates the conditional distribution f(v|y) for
each categorical variable y. In our experiment, we set each
p(y = k) = 0.1. Thus, we can see that the marginal density
function f(v) in Fig. 8 (a) is a simple addition of the first row
of Fig. 7 (a). Once we calculate all the parameters for each
Gaussian pdf, we can generate our training dataset as shown
in Fig. 6 (b), and use fre to map the 2-D samples back to the
original image space. Fig. 6 (c) shows how each 2-D point
maps to the original image space.

After generating the synthetic training dataset with 60000
samples, we train a convolutional neural network to classify
the digits. The second and third rows of Fig. 7 show the true
p(y|v) and the predicted p(y|v) on the 2-D plane, respectively.
From the last row of Fig. 7, we can see that the prediction is
generally accurate from the shape of the light colored area for
each digit.

Similarly to Section IV-A, we want to find the influencing



(a) (b) (c) (d)
Fig. 8: Density, sparsity, and prediction precision on 2-D plane. (a) shows the probability density f(v). (b) shows the sparsity for each 2-D
data point v. (c) and (d) show the prediction error in KL-Divergence and Absolute Difference on the 2-D plane, respectively.

(a) (b) (c) (d)
Fig. 9: Prediction precision as the function of density and sparsity. (a) and (b) show the density’s impact on the prediction precision in terms
of KL-Divergence and Absolute Difference. (c) and (d) show the sparsity’s influence on the prediction precision in terms of KL-Divergence
and Absolute Difference. For each plot, we also divide the x axis into several bins and calculate the average value for each bin. Then, we
overlay the average values as the function of sampled bins on each figure.

factors of prediction precision. Here, we focus on density and
sparsity. As it is difficult to estimate the actual f(x) and
f(x|y) when considering density and sparsity, we use f(v)
and f(v|y) instead. Thus, the density is f(v) and we adopt
HG sparsity [10]:

HG(v) = −
∑
k

log(p(y = k) ∗ φk(v)) (5)

We still use KL-Divergence and Absolute Difference as the
metrics of prediction precision. Fig. 8 shows density, sparsity,
and prediction precision on the 2-D plane, and their corre-
lation. Generally speaking, the areas of high prediction error
(i.e., the light-colored area in (c) and (b)) correspond to the
areas of low density and high sparsity. Fig. 9 further shows
the prediction precision as the function of density and sparsity.
Again, we get a similar conclusion as 1-D cases that the
prediction precision follows the power law as the function of
density and sparsity. We choose three 1-D paths on the 2-D
plane to illustrate our conclusion in detail in Appendix A.

V. CONCLUSION

We design an innovative framework for characterizing the
uncertainty associated with a DNN’s approximation to the
conditional distribution of its underlying training dataset.
We develop a two-path evaluation paradigm in that we use
Bayesian inference to obtain the theoretical ground truth based
on a generative model and use the sampling and training to
acquire a DNN based classifier. We compare the prediction

made by the fully trained DNN with the theoretical ground
truth and evaluate its capability as a probability distribution
estimator. We conduct extensive experiments for 1-D and
high-dimensional cases. For both cases, we come to similar
conclusions that most prediction failures made by DNN
are observed when the (local) data density is low and the
inter-categorical sparsity is high, and the prior probability
has less impacts to DNNs’ classification uncertainty. This
insight may help delineate the capability of DNNs as prob-
ability estimators and aid the interpretation of the inference
produced by various deep models. Interesting areas for future
research include the application of our framework to more
complex categorization scenarios requiring more sophisticated
generative models and remappings.
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APPENDIX A

Proof for Section III-B1: As we need to map a 2-D
vector v to d-dimensional vector x using a reconstructing
mapping, we assume fre is a composite mapping function:
fre = fbi ◦ fiso : V ⊂ R2 → X ⊂ Rd, which is composed
of a continuous bijective function fbi : V ⊂ R2 → V′ ⊂ R2



and a locally isometric function fiso : V′ ⊂ R2 → X ⊂ Rd.
First, we can infer p(y|v) as

p(y|v) = f(v|y)p(y)
f(v)

=
f(v|y)p(y)∑
y f(v|y)p(y)

(6)

Then, for the continuous bijection fbi : V→ V′, similarly to
Eq. 6 we have

p(y|v′) =
f(v′|y)p(y)

f(v′)
(7)

where v′ ∈ R2. As fbi is continuous and bijective, we have
f(v′|y) = f(v|y) ∗ |J | and f(v′) = f(v) ∗ |J |, where J is a
Jaccobian determinant of fbi. Therefore, according to Eq. 6
and 7 we have:

p(y|v) = p(y|v′) (8)

Again, for the locally isometric mapping fiso : V′ → X, for
a d-dimensional vector x, we have:

p(y|x) = f(x|y)p(y)
f(x)

(9)

As fiso is locally isometric, all probability density functions
on x and v′ should change proportionally. Hence, we have
f(v′|y) = f(x|y) ∗ (dx)d−2 and f(v′) = f(x) ∗ (dx)d−2,
where dx is one dimensional differential and d is the
dimension of x. Again, according to Eq. 7 and 9 we have

p(y|x) = p(y|v′) (10)

Thus, we have p(y|x) = p(y|v) = f(v|y)p(y)
f(v) based on Eq. 8,

10, and 6, meaning we can make use of f(v|y) and p(y) to
infer p(y|x).

Fig. 10: Three example paths.

1-D Paths for High Di-
mensional Case: To illus-
trate the conclusion about
how density and spar-
sity correlate with predic-
tion precision in more de-
tail, we can select any
path on the 2-D plane
for high dimensional cases
and show the digit-wise
prediction, density, spar-
sity, and prediction preci-
sion along each path. Fig.
10 shows three example
paths on the 2-D digit
plane. Fig. 11 shows the statistics for Path C. From the
second last row in Fig. 11, we can see that the density
usually correlates with sparsity, while we assume density and
sparsity should be independent of each other. We observe
this phenomenon also along other paths and attribute it to
the specific configuration of our 2-D Gaussian Mixture (In
Section III-C, we explain the reason why we only consider a
specific configuration for the high dimensional case). For 1-D,
when we conduct systematical grid search in the parametric
space, we remove this unwanted correlation between density
and sparsity (see Fig. 4 (e), in which there is no correlation
between density and sparsity).

Fig. 11: Path C goes from 6 to 1 through 5 and 8 on the digit
plane with 16 sampled images. The prediction and the theoretical
truth for p(y|v) are plotted digit-wisely. The probability p(y = 6|v)
gradually decreases from 1 to 0 and p(y = 1|v) has an opposite
trend. From Image 4 to 8, the probability of p(y = 5|v) rises and
falls. From Image 7 to 13, the probability of p(y = 8|v) rises and
falls. From Image 11 to 13, the probability of p(y = 2|v) fluctuates
slightly, indicating these images somewhat resemble 2. The second
last row plots the density and the sparsity along this path and the last
row plots the prediction precision in KL-Divergence and Absolute
Difference. Three error peaks at Images 5, 8, and 13, coinciding
with three valleys of the density and the peaks of sparsity.

(a) (b)
Fig. 12: (a) Mean square error for training and validation of fre for
1000 iterations. (b) Comparison of the original MNIST digits and
reconstructed digits by fre, where the examples of original MNIST
digits and the reconstructed ones are illustrated in alternating rows
starting with the original.

Training of fre: We first apply t-SNE on the MNIST
dataset to get a set of 2-D data samples and then train a fully
connected DNN to map these 2-D samples back to the original
MNIST images. We show the training of fre in Fig. 12 (a)
and the efficacy of the reconstruction mapping in Fig. 12 (b).
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