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It is challenging to interpret hyperspectral images in an intuitive and meaningful
way, as they usually contain hundreds of dimensions. We develop a visualization
tool for hyperspectral images based on neural networks, which allows a user to
specify the regions of interest, select bands of interest, and obtain hyperspectral
classification results in a scatterplot generated from hyperspectral features. A
cascade neural network is trained to generate a scatterplot that matches the
cluster centers labeled by the user. The inferred scatterplot not only shows the
clusters of points, but also reveals relationships of substances. The trained neural
network can be reused for time-varying hyperspectral data analysis without
retraining. Our visualization solution can keep domain experts in the analytical loop
and provide an intuitive analysis of hyperspectral images while identifying different
substances, which are difficult to be realized using existing hyperspectral image

analysis techniques.

hyperspectral camera takes images of
Aobjects at different wavelengths' and can
provide abundant spectral information about
different objects, thereby being widely applied in
many disciplines, such as remote sensing and plant
science. Hyperspectral images can be modeled as a
hyperspectral cube (Figure 1). However, they are dif-
ferent from traditional volume data, where the spa-
tial dimensions and the spectral dimension have
different physical meanings. The = and 3 dimensions
are the spatial axes of the objects in the images. The
z or )\ axis is the spectral axis, which contains spec-
tral information of substances. Here we define sub-
stances as objects that have the same spectral
characteristics. Each 2-D position in the zy-plane
corresponds to a hyperspectral curve that is formed
by a series of pixels from the same 2-D position of all
images along the z or ) axis.

Many existing studies investigate how to identify
substances from hyperspectral images through clus-
tering, classification, or image fusion techniques,>®
but could not meet emerging requirements on finer
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grained analysis. For example, in our collaboration
with plant scientists, we have collected time-varying
hyperspectral images of plants. Our collaborators,
who are domain experts in the field of agronomy and
horticulture, want to study how to differentiate vari-
ous parts of an object with different bands, leading to
new analysis requirements:

» Extract essential hyperspectral features that can
well represent the hyperspectral images.

» Support interactive exploration of substances
with classification or image fusion results.

However, most traditional methods®*® act as
black boxes and generate one-time results from all
the bands of a whole image, which are less intuitive
and flexible for further investigating hyperspectral fea-
tures. Meanwhile, these methods often lack a support
of interactive exploration.

Through detailed discussions with our domain
experts, several challenges have been identified to meet
these requirements. First, domain experts want to inter-
actively select regions of interest (ROls) and bands of
interest (BOIs). While it is relatively easy for users to
define ROIs on a 2-D image, it is nontrivial to develop an
intuitive visualization interface to select BOls from
hundreds or thousands of bands with significant inten-
sity variations. Second, the colors of image fusion
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FIGURE 1. lllustration of hyperspectral images. Hyperspectral
images (right) of a rice plant are taken over a series of bands
and a fused image (left) is usually generated as the final result.

results often change according to different user selec-
tions of regions or bands, making it challenging for users
to identify and track the same substances, particularly
with time-varying data. Third, it is difficult for users to
characterize features from a large number of hyperspec-
tral bands and identify the correspondence between
hyperspectral features and image fusion results.

To address these challenges, we advocate combin-
ing classification and visualization to develop an inter-
active analytics pipeline for hyperspectral images. Our
work makes the following major contributions.

» We explore and identify appropriate hyperspec-
tral information to support interactive selections
of ROIs and BOls.

» We devise a new neural network based approach
to generate a scatterplot and facilitate users to

interactively examine the correspondence
between hyperspectral features and substances
by brushing the scatterplot.

» We use the neural network to generate pseudo-
colors and lead to stable image fusion results for
identifying and tracking substances.

We have demonstrated the effectiveness of our
approach using datasets from remote sensing and
plant phenotyping. Our visualization solution keeps
domain experts in the analytical loop. It can facilitate
scientists from different domains to effectively study
hyperspectral images and gain new discoveries that
are not conveyed with existing techniques.

RELATED WORK

Hyperspectral images have been studied using differ-
ent approaches. We categorize the existing hyper-
spectral image analysis methods into three groups,
clustering methods, classification methods, and visu-
alization methods, and summarize the existing work
as follows.

|EEE Computer Graphics and Applications

Clustering Methods

As substances are characterized by different hyper-
spectral curves, an intuitive solution is to cluster
hyperspectral curves according to their hyperspectral
shapes. The most commonly used clustering methods
include k-means clustering, hierarchical clustering,
and mean-shift clustering. Euclidean distance, pro-
crustes analysis, spectral angular mapping have been
used as distance measures for these clustering meth-
ods. However, hyperspectral images can be affected
by uneven illumination,® where hyperspectral curves
that belong to the same substance can have the same
hyperspectral shape but different scales. Thus, clus-
tering methods often incorrectly classify the hyper-
spectral curves with small scales. In this work, we
advocate a combination of neural networks and visu-
alization methods instead of clustering methods to
identify substances with uneven illumination.

Classification Methods

Classification determines which substance a pixel
belongs to and usually requires training labels.
Machine learning has been widely used for classifica-
tion of pixels in hyperspectral images. Maximum likeli-
hood classification, support vector machine, and
convolutional neural network (CNN) are commonly
used methods for classification.? Neural networks can
handle the problem of uneven illumination as they can
be trained to recognize scaled hyperspectral curves of
the same substance. However, classification methods
only give users inferred labels and most act as black
boxes. It is difficult for users to observe the distribu-
tion of the hyperspectral features or examine how
substances are similar or different in terms of hyper-
spectral characteristics. To address these issues, we
develop new visualization capacities to enable an
interactive exploration of hyperspectral features and
substances.

Visualization Methods

Visualization is used to find a representation that keeps
or enhances hyperspectral information in images. Image
fusion is a widely used method for hyperspectral images,
where the original multidimensional hyperspectral
images are fused into one color image after dimension
reduction and mapping of pseudo colors.® Some useful
dimension reduction methods” include principal com-
ponent analysis (PCA), independent component analy-
sis (ICA), linear discriminant analysis (LDA), and t-
distributed stochastic neighbor embedding (t-SNE).
However, if the differences between two substances are
relatively small compared with the global maximum
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FIGURE 2. The pipeline of our tool. Orange blocks indicate
user interaction. The dashed arrows mean the steps that are
followed once.

differences, these substances will be very close in the
projection. Hence, image fusion can also suffer from
uneven illumination. Image fusion with pseudocolors
can only be treated as a basic type of visualization.
Many other visualization techniques remain to be
applied on hyperspectral images.

Cui et al.? developed a visualization tool for image
fusion using convex optimization. Kim et al® devel-
oped an interactive visualization tool for hyperspectral
images of historical documents based on image
fusion. Some work attempted to generate fused
images ready to be visualized on a display,'® but did
not directly deal with the visualization of hyperspec-
tral images.

One key issue in the existing work is that the color
of the same substance can be changed with different
user selections in hyperspectral images. We want the
visualization results to be stable where the same sub-
stance always has the same color. This is especially
desired for the study of time-varying hyperspectral
images. We also want to create a correspondence
between a feature space and an image space, which is
not conveyed in the current visualization methods. In
our design, instead of inferring labels, we use a neural
network to infer the positions of hyperspectral fea-
tures in a scatterplot. The neural network is no longer
used for classification but visualization. The neural
network can create stable visualization results once it
is trained. The inferred scatterplot helps users observe
the distribution of hyperspectral features and under-
stand the similarities among substances. The selec-
tion of points in the scatterplot is used to generate
corresponding image fusion results where the pseudo-
colors are generated by the neural network and are
resistant to uneven illumination.

RATIONALE

We develop an interactive visualization tool to help sci-
entists study hyperspectral images. We summarize how
we can make use of the global statistics and visualiza-
tion of dimension reduction to design an interface. We
first allow a user to interactively select ROls and BOls.
Then, we calculate the hyperspectral features and use
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these features to generate an initial scatterplot. Num-
bered circles are shown at the center of each cluster of
labeled data in the scatterplot. As the initial scatterplot
may not be optimal, users will define a target scatterplot
by leveraging their domain knowledge to drag numbered
circles to new positions interactively. After user defini-
tion, a neural network will be trained to generate an
inferred scatterplot that matches the user-defined scat-
terplot Finally, the user can interactively and intuitively
select substances in the inferred scatterplot and obtain
corresponding image fusion results for substances in
the hyperspectral images. Figure 2 shows the pipeline of
ourinteractive tool.

Region and Band Selection

In the traditional methods, all the bands and the whole
image are usually used for image fusion. However,
analysis of the whole image may shadow local details
and the selection of all the bands may be redundant.
Thus, it is necessary for users to interactively select
ROls and BOls.

ROIs can be easily defined by users selecting
regions on a 2-D image. However, the selection of
BOls is less intuitive. In order to guide a user in the
selection, we want to extract certain global informa-
tion of hyperspectral images by deriving metrics to
evaluate each image. After consulting with our collab-
orators who are the domain experts in agronomy and
horticulture, we noticed that the bands that are usu-
ally interested in correspond to images with high
contrast. Such an image usually contains more infor-
mation than images with low contrast. Thus, we
choose image entropy and intensity mean as two met-
rics for identifying images with appropriate contrast.
Entropy H of an image can be defined as H =
2.:50 pilog(p;), where p; is the probability of an inten-
sity value i € [0255] in an image. As the user usually
tends to select the peaks in a curve,'? the entropy
curve is effective in helping users select BOls.

Other metrics can also be used to evaluate an
image. For example, the variance can be used to eval-
uate the distribution of pixel values in an image.
Cross-correlation and mutual information can be used
to evaluate the change of consecutive images. In our
design, we choose entropy empirically to guide users
in the BOI selection.

Feature Derivation

To help users observe the correspondence between
hyperspectral features and image fusion results, we
map the hyperspectral curve of each pixel to a point
in an inferred scatterplot using neural networks.
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Although neural networks can extract important fea-
tures from original hyperpsectral data, we found that
better results can be obtained with extra predefined
statistical features in our experiment.

To evaluate hyperspectral curves, many statistical
metrics can be used. These metrics can also be
applied for the original data or derivatives of hyper-
spectral curves. The empirically selected metrics and
derivatives are listed as follows.

» Metrics: mean, variance, skewness, and kurtosis.
» Derivatives: first and second derivatives.

These derived features can be used with the origi-
nal data to characterize the spectral curves in a non-
linear way.® The calculation of hyperspectral features
can be done in parallel due to independence of pixels.
Thus, GPUs can be used to accelerate the computa-
tion. We allow the user to choose the hyperspectral
features that will be used as the input of a neural net-
work. Although we provide many features and some of
them may be redundant, the neural network can find
important features by assigning different weights to
them during training, which will be discussed in the
“Network Training” section.

Scatterplot Definition

We want the points in a scatterplot to form distinct
clusters so that the user can easily select the clusters
to study different substances. However, such a scat-
terplot may not be readily available until the neural
network is trained. We want the user to specify the
locations of the clusters and use the locations as the
training target.

We provide an initial 2-D scatterplot using PCA. For
each group of labeled data, we draw a numbered circle
indicating the cluster center in the scatterplot. Users
can then drag the circles interactively based on their
domain knowledge to sparsely distribute these circles
in the scatterplot. The positions of the user-defined
circles will be used as the target for training a neural
network that will infer a new scatterplot.

As the input to the neural network is the features
of each pixel, we empirically chose to use a fully con-
nected cascade neural network.” Skip connections are
used in the cascade neural network. The same kind of
idea has been widely adopted in many CNNs to
improve the results.

Network Training
The network has two hidden layers, and the numbers
of units are empirically set as ten and three for the
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first and second hidden layers, respectively. The input
of the network will be the derived hyperspectral fea-
tures at each 2-D position, and the output of the net-
work will be a 2-D position in the inferred scatterplot.
The training target is the corresponding cluster center,
which is defined by the user after repositioning the
circles in the initial scatterplot. The maximum number
of epochs for training is set to 2000. The actual num-
ber of epochs that the network is trained for may be
less, as the training will stop early if the result does
not significantly improve anymore. To reduce overfit-
ting, the input data are split so that 70% is used for
training, 15% for validation, and 15% for testing. The
features extracted in the last hidden layer of the neu-
ral network will be used as the pseudocolors of the
inferred scatterplot and the final visualized image.

INTERFACE DESIGN

We have designed our interface using MATLAB that
supports user interactions in multiple steps. Figure 3
illustrates the interface and windows of the steps,
where a public dataset Kennedy Space Center (KSC)
is used as an example.

A user can select one of the hyperspectral images
to be shown in a window, where the user can draw
rectangular boxes to select ROIs. After the selection
of ROIs, the corresponding entropy curve is shown in
a plot, where the user can select BOls. Note that a
selected range of the entropy curve corresponds to a
selection of the original hyperspectral images. After
the selection of ROIs and BOls, a set of hyperspectral
features selected by the user will be calculated for
BOls. An initial scatterplot is generated using PCA. In
the initial scatterplot, circles are drawn for individual
groups of labeled data, where the center of a circle is
the mean position of the group of points. In an ideal
scatterplot, different clusters should be well distin-
guished, while the points in each cluster should be as
close to the cluster center as possible. However, the
initial scatterplot may not be desired as some circles
overlap others, as illustrated in Figure 3. Users can
leverage their domain knowledge to drag the circles to
new positions. The new positions of the clusters are
used as the training target for the neural network.
When the cascade neural network is trained, a scatter-
plot can be inferred, which has a better separation of
different clusters than the initial scatterplot. An exam-
ple is shown in Figure 3.

The user can freely select points in the scatterplot
by drawing polygons, and the corresponding hyper-
spectral pixels are visualized as shown in Figure 3. For
image visualization, we also use the features of the
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FIGURE 3. The design of our interface. Each image corresponds to one step in the pipeline. Dashed arrows mean that the steps

are followed only once.

last hidden layer as the pseudocolors. Based on the
correspondence between the scatterplot and the visu-
alized image, the user can interactively and intuitively
explore substances and study their details. To help
the user obtain consistent results, we allow the user
to define ROIs, BOIs, and polygons using parameters
and load predefined scatterplots and pretrained
networks.

RESULTS

In this section, we show how our interface can be used
to explore hyperspectral images interactively. We have
tested our tool on a set of datasets from several
domains, including the public datasets in remote sens-
ing and the datasets collected by our domain experts
in plant science. The image sizes and the number of
labeled pixels of three datasets are listed in Table 1.
The results of other datasets are not shown due to
the page limit.

Remote Sensing

Hyperspectral images have been widely studied in
remote sensing. These hyperspectral images are usu-
ally taken by satellites or high-flying aircraft, and

TABLE 1. The sizes of different datasets.

Dataset Image Sizes #Labeled Pixels
PaviaU 610*340*103 42776
Sorghum 420*320*244 144 551
Maize 420*320*243 107 319

MNote that not all the pixels are labeled.
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regions in the groundtruths are manually labeled. The
labels may not be completely correct in terms of
hyperspectral characteristics as one region may not
be homogeneous and can contain many substances.
Thus, it is challenging to cluster the pixels of each
labeled region correctly.

Figure 4® shows the result of a public dataset Pavia
University with nine labels: Asphalt, Meadows, Gravel,
Trees, Painted metal sheets, Bare soil, Bitumen, Self-
blocking bricks, and Shadows. Figure 4(a) is one of the
original hyperspectral images. Figure 4(b) is the
groundtruth with pseudocolors. The colorbar in the
image shows the correspondence between the labels
and pseudocolors. In this and following examples, the
whole images are selected as the ROls. Figure 4(c)
shows the selection of three BOIs using our interface.

Figure 4(d), (e), and (f) are the initial scatterplot,
the user-defined scatterplot, and the inferred scatter-
plot, respectively. The colors in Figure 4(f) are obtained
using the features of the last hidden layer of the cas-
cade neural network to show the correspondence
between points in different scatterplots. Our design
can allow a user to select different substances to gain
intuitive visualization results. It can be seen that the
inferred scatterplot shows distinct clusters of points
that match the numbered circles defined by the users
in the user-defined scatterplot. The points scattered
between clusters are usually boundaries between sub-
stances in the original hyperspectral images.

*Figures 4, 6, and 7 use the same layout. Without specifica-
tion, the scatterplots in our examples only contain the points
corresponding to labeled pixels.
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FIGURE 4. The result of Pavia University.

The scatterplot generated in Figure 4(f) clearly
shows these nine substances based on domain knowl-
edge. Clusters four, two, and six are labeled as Trees,
Meadows, and Bare soil, respectively. In our common
sense, the region of Trees contains more leaves while
the region of Meadow contains partially leaves and
partially soil. Thus, Trees should be close to Meadows,
and Meadows should be close to Bare soil. This knowl-
edge is revealed in Figure 4(f), where cluster four con-
nects cluster two and cluster two connects cluster
six. Similarly, Gravel, Self-block bricks, Asphalt, and
Bitumen are all products made from rocks and should
have similar characteristics. Thus, clusters three,
eight, one, and seven are relatively close to each other
in Figure 4(f). We define the relationship as the relative
positions of different substances. To the best of our
knowledge, this type of relationship between substan-
ces in hyperspectral images has never been presented
in the previous work.

Figure 4(g), (h), and (i) are the results generated
using ICA, LDA, and t-SNE, respectively. Similar to
Figure 4(f), their colors are obtained using the features
of the last hidden layer of the cascade neural network.
We can see that Figure 4(g), (h), (i) cannot clearly reveal
clusters of points. The existing machine-leaming-based
methods? can generate labels similar to Figure 4(b).
However, they cannot tell the user if two labels are
similar or not in terms of hyperspectral characteristics.

With our tool, the user can further generate a
fused image interactively by selecting points in the
inferred scatterplot. For example, three different clus-
ters are selected in Figure 5(a). Figure 5(b), (c), and (d)
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(a) (b) (c) (d)

FIGURE 5. Selections of points in the inferred scatterplot of
dataset Pavia University. (a) The inferred scatterplot where
the user has made three different selections. (b), (c), (d) are
the image fusion results corresponding to the points in the

red, green, and blue rectangles in (a).

show the visualization of Trees, Meadows, and Bare
soil, respectively. The shape of each classified region
is close to the groundtruth.

Plant Science

Hyperspectral imaging techniques for plants have
been available in recent years. Figure 6 shows the
result of a sorghum plant. Here, two BOls are selected
empirically, as shown in Figure 6(c). Five different sub-
stances are labeled in this dataset, including stem,
leaves, background, pot, and frame. In the inferred
scatterplot in Figure 6(f), five clusters of points can be
easily located, which correspond very well to the five
different substances in the groundtruth. The spatial
relationship between the real objects can be inferred
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FIGURE 6. The result of a sorghum plant.
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FIGURE 7. The result of a maize plant.

from the scatterplot. In Figure 6(f), cluster one con-
nects to cluster two, cluster two connects to cluster
three, and so on. In the original images, the stem is in
contact with the leaves, and the leaves are in contact
with the background. However, as the leaves are not
in contact with the frame, there is no connection
between cluster two and cluster five. Figure 6(g), (h),
and (i) are the results generated using ICA, LDA, and t-
SNE, respectively. Compared to the result from these
traditional methods, our inferred scatterplot not only
clearly separates different substances but also pre-
serves their relationship.

Figure 7 shows the result of a maize plant. The five
labels are the same as those of the sorghum plant.
Similar to the result of the sorghum plant, the inferred
scatterplot in Figure 7(f) can also show five clusters of
points clearly and reveal the relationship among these
clusters, compared to the traditional methods in
Figure 7(g), (h), (i).

Our colleagues in agronomy and horticulture com-
mend that our tool has facilitated them to identify dif-
ferent parts of the plant, and these results could not
be obtained in the existing work of plant hyperspectral
image analysis.

DISCUSSION

In this section, we compare the performance of results
generated using different features for the neural net-
work. We also show how we can transfer the network
trained for one dataset to another dataset without
retraining the network.
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TABLE 2. The MSE (10-%) of the inference using different
inputs.

Feature Type Org. 1st 2nd | Org.+lst

+2nd
HyperCurve 4909 | 7.795 | 10576 0.526
HyperMetrics 5102 | 13268 | 29418 | 0440
HyperCurve+ 4421 | 7306 | 10.14 0.426
HyperMetrics

Input Selection

In the existing methods based on neural networks,
usually all hyperspectral images are directly fed into a
neural network. In our work, we have chosen to use
the derived hyperspectral features based on statistical
metrics and derivatives for the input of the neural net-
work. As there are several combinations to choose, it
is worth discussing how these selected hyperspectral
features would impact the generation of a scatterplot.
Thus, we compute the mean square error (MSE) of the
scatterplot generated using an individual combination
of hyperspectral features with the scatterplot gener-
ated using original hyperspectral images.

Table 2 shows the MSE of the inferred scatterplot
with different inputs. Org. represents the original data.
First and second mean the first and second deriva-
tives. HyperCurve means the original intensity data of
hyperspectral images. HyperMetrics means all the sta-
tistical metrics. Thus, each entry in the table is the
MSE value corresponding to a hyperspectral feature
generated by a different combination. For example,
the entry of first and HyperCurve corresponds to the
first derivative of the original intensity data, and the
entry of second and HyperMetrics corresponds to all
the statistical metrics applied on the second deriva-
tive of the original intensity data. The + operator
means the concatenation of features. We can see that
the MSE of the inferred scatterplot generally
decreases with more features used.

Network Transfer

In our work, a neural network is trained to generate a
scatterplot. If a set of hyperspectral images have simi-
lar spectral ranges and substances as another set, the
network trained for one dataset can be directly used
for another. We call this process network transfer.

As shown in Figure 8, a sorghum plant and a maize
plant are imaged each day over eight days. Then, we
calculate the hyperspectral features using the same
BOls as in Figures 6(c) or 7(c). Finally, we reuse the
same neural network trained in Figure 6 or Figure 7 to
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FIGURE 8. The result of a sorghum (maize) plant over eight days. First (fourth) row: one of the original hyperspectral images of

each day. Second (fifth) row: scatterplots generated using a pretrained network. Third (sixth) row: selected leaves corresponding

to the points in the blue rectangles in the scatterplots in the second (fifth) row. All the blue rectangles are located at exactly the

same position.

infer the scatterplots for different sets of hyperspec-
tral images. The first and fourth rows in Figure 8 are
samples of the original hyperspectral images and the
second and fifth rows in Figure 8 are the correspond-
ing scatterplots. Here all the pixels are used to gener-
ate the scatterplot. The distribution of points in the
scatterplots is slightly different from that in Figure 6(f)
or Figure 7(f) as more points (most corresponding to
pixels on the boundaries between objects) are
included. It can be seen from these scatterplots that,
although the sizes of the plants change over time, the
positions of the clusters remain roughly the same in
the scatterplots. Thus, this can facilitate a plant scien-
tist to compare datasets from different time points.
For example, if the scientist wants to examine how
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the leaves change over time, the clusters on the lower
left corner can be selected from these scatterplots.
For sorghum or maize, there is one blue rectangle at
the same location in the scatterplots. If the points in
the blue rectangles are selected, the corresponding
leaves can be visualized, as shown in the third and
sixth rows of Figure 8.

If the scatterplots are stacked together, a 3-D scat-
terplot can be obtained. A 2-D rectangle in the zy view
of the stacked scatterplot corresponds to a 3-D
cuboid in the original stacked scatterplot. For exam-
ple, the 2-D selections in Figure 9(a) and (c) corre-
spond to the 3-D selections in Figure 9(b) and (d) that
further correspond to the leaves of sorghum and
maize in Figure 8, respectively. Our collaborators have

September/October 2021



[FTTIRRR

(a)

(b)

POWERING VISUALIZATION WITH DEEP LEARNING-

F=

(©)

(d)

FIGURE 9. Cluster selection in 3-D stacked scatterplots. A 2-D rectangle in the zy view of the stacked scatterplot corresponds to

a 3-D cuboid in the original stacked scatterplot. (a) and (c) are the xy views. (b) and (d) are the 3-D views. (a) and (b) show the

selection of sorghum leaves. (c) and (d) show the selection of maize leaves.

commended that network transfer and batch selec-
tion greatly simplify the process of studying different
parts of the plant in a time-varying situation, and pro-
vide an easier and more robust means to identify indi-
vidual plant components and track their dynamics.

CONCLUSION

Our solution keeps users in the analytical loop and
facilitates them to interactively explore different sub-
stances from hyperspectral images. We also show that
once a network is trained, it can be easily transferred
to other datasets with similar hyperspectral contents.
This can greatly help scientists study large sets of
time-varying hyperspectral images with simple selec-
tions. We have demonstrated the effectiveness of our
techniques with the examples in remote sensing and
plant science. Our analytical pipeline and visual
designs could be generalized and applied to other simi-
lar applications involving hyperspectral images.

We note that in an initial scatterplot, for the same
substance, the points are usually close to each other
and the colors are also similar, which provides a good
indication for a domain expert to define cluster cen-
ters. If needed, the user can adjust cluster centers to
improve image fusion results. While this is conducted
in a trial-and-error manner, our domain experts usually
can generate desired results with a few iterations,
given that they have substantial knowledge of hyper-
spectral images and image fusion results, and also
there are a limited number of substances. However,
with an increasing number of substances and less
experienced users, it can become difficult for users to
manually identify and drag the circles to new posi-
tions. We are improving the scalability of our approach
by exploiting automatic or semiautomatic methods (e.
g the force-directed method') and facilitating users
to select and separate the circles. We plan to continue
this study and report corresponding findings in our
future work. In addition, the features and neural
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networks are selected empirically in our current solu-
tion, and we would like to explore more hyperspectral
features and more types of neural networks to
increase the quality of the scatterplot.
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