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Private Sampling: A Noiseless Approach for Generating Differentially Private
Synthetic Data\ast 
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Abstract. In a world where artificial intelligence and data science become omnipresent, data sharing is in-
creasingly locking horns with data-privacy concerns. Differential privacy has emerged as a rigorous
framework for protecting individual privacy in a statistical database, while releasing useful statistical
information about the database. The standard way to implement differential privacy is to inject a
sufficient amount of noise into the data. However, in addition to other limitations of differential
privacy, this process of adding noise will affect data accuracy and utility. Another approach to
enable privacy in data sharing is based on the concept of synthetic data. The goal of synthetic
data is to create an as-realistic-as-possible dataset, one that not only maintains the nuances of the
original data, but does so without risk of exposing sensitive information. The combination of dif-
ferential privacy with synthetic data has been suggested as a best-of-both-worlds solutions. In this
work, we propose the first noisefree method to construct differentially private synthetic data; we do
this through a mechanism called ``private sampling."" Using the Boolean cube as benchmark data
model, we derive explicit bounds on accuracy and privacy of the constructed synthetic data. The key
mathematical tools are hypercontractivity, duality, and empirical processes. A core ingredient of our
private sampling mechanism is a rigorous ``marginal correction"" method, which has the remarkable
property that importance reweighting can be utilized to exactly match the marginals of the sample
to the marginals of the population.
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1. Introduction. In a world where artificial intelligence and data science are penetrating
more and more aspects of our life, data sharing is increasingly locking horns with data-privacy
concerns. This conflict is playing out around the globe, as private and public organizations
are trying to find ways to share data without compromising sensitive personal information.

There exist various attempts to protect sensitive information in data. Historically the
way to share private information without betraying privacy was through anonymization [46],
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i.e., by stripping away enough identifying information from a dataset, so that the so-modified
data could be shared freely. Anonymization, however, proved to be a fragile means to protect
data privacy. In actuality, identifying individuals using seemingly nonunique identifiers is
far easier than proponents of data anonymization expected. For instance, Netflix and AOL
customers were all accurately identified from purportedly anonymized data. Deidentification
requires precise definitions of ``unique identifiers."" Furthermore, deidentification suffers from
an aging problem: it is already quite difficult enough to determine exactly what data identifies
information that needs to be protected (say, the identity of individuals), but it is even more
difficult to accurately predict what potential auxiliary information could be available in the
future. This leads to an arms race between deidentification and reidentification.

The well-documented failures of anonymization have prompted aggressive research on
data sanitization, ranging from k-anonymity [39, 5] to today's highly acclaimed differential
privacy [21]. The concept of k-anonymity was introduced to address the risk of reidentification
of anonymized data through linkage to other datasets. The idea behind k-anonymity is to
maintain privacy by guaranteeing that for every record in a database there are k indistin-
guishable copies.

Differential privacy is a framework to quantify the extent to which individual privacy
in a statistical database is preserved while releasing useful statistical information about the
database [21]. Differential privacy is a popular and robust method that comes with a rigorous
mathematical framework and provable guarantees. Differential privacy can protect aggregate
information, but not sensitive information in general. Also, if enough identical queries are
asked, the protection provided by differential privacy is diluted. Additionally, if the query
being asked requires high specificity, then it is more difficult to uphold differential privacy.
In any case, in all the aforementioned methods the basic tradeoff between utility and privacy
represents a serious limitation.

Synthetic data provide a promising concept to solve this conundrum [7]. The goal of
synthetic data is to create an as-realistic-as-possible dataset, one that not only maintains
the nuances of the original data, but does so without risk of exposing sensitive information.
Synthetic datasets are generated from existing datasets and maintain the statistical properties
of the original dataset. Since (ideally) synthetic data contain no protected information, the
datasets can be shared freely among investigators in academia or industry, without security
and privacy concerns.

It has been frequently recommended that synthetic data may be combined with differential
privacy to achieve a best-of-both-worlds scenario [23, 7, 27, 29, 10]. As observed in [7], ``The
most ideal data to use in any analysis will always be original data. But when that option is
not available, synthetic data plus differential privacy offers a great compromise."" Synthetic
data are not only a succinct way of representing the answers to large numbers of queries, but
they also permit one to carry out other data analysis tasks, such as visualization or regression.

On a high level, differential privacy is achieved via randomness. The standard way to
introduce randomness in differential privacy is to add noise, either to the data queries, the
data themselves, or in case of synthetic data during the data generation process. For a small
sample of work; see, e.g., [21, 23, 24, 3, 29, 16]. Unfortunately, noise will negatively affect
utility and can inject systematic errors---hence bias---into the data [37, 48, 22]. To illustrate
these issues, assume the dataset under consideration consists of images, each depicting the
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face of a person. We can attempt to generate a differentially private synthetic dataset by
adding a sufficient amount of noise to each image (e.g., by adding random noise [33] or by
distorting or blurring the images [38, 45]), such that the persons in the images can no longer
be identified. Ignoring for the moment the possibility of reidentifying a person by applying
denoising or deblurring techniques to the distorted images, it is clear that utility of this dataset
can decrease significantly during this process of adding noise, perhaps to the point that many
of the nuances one might be interested in are no longer present.

To illuminate the effect of introducing systematic error when adding noise to ensure dif-
ferential privacy, we just need to look at the issues reported with differentially private U.S.
Census 2020 demonstration data, which have resulted in diminished quality of statistics for
small populations such as tribal nations [43, 37, 22].

These considerations raise a fundamental question:

Can we generate differentially private synthetic data without adding noise?

In this paper, we give a positive and constructive answer. Using the Boolean cube as our
data model, we will develop a noiseless method to generate synthetic data, which approxi-
mately preserve low-dimensional marginals of the original dataset. Our method is based on
a private sampling framework and comes with explicit bounds on privacy and accuracy. The
key mathematical tools are hypercontractivity, duality, and empirical processes. A core ingre-
dient of our private sampling framework is a rigorous ``marginal correction"" method, which
has the remarkable property that importance reweighting can be utilized to exactly match the
marginals of the sample to the marginals of the population.

There exist other methods to generate differentially private synthetic data without adding
noise, such as those based on generative adversarial networks [30, 1, 12, 47, 17]. However, these
methods are just empirical and do not come with any rigorous bounds regarding accuracy or
privacy. Those deep learning based methods that do come with privacy guarantees---but still
without any accuracy guarantees---require injecting noise into the synthetic data generation
process [44, 26, 6].

2. Synthetic data and differential privacy. Differential privacy has emerged as the de
facto standard for guaranteeing privacy in data sharing. Recall the definition of differential
privacy.

Definition 2.1 (differential privacy [21]). A randomized mechanism \scrM : \scrS N \rightarrow \scrR satisfies
\varepsilon -differential privacy if for any two adjacent datasets X1, X2 \in \scrS N differing by one element,
and any output subset \scrO \in \scrR it holds that

\BbbP [\scrM (X1) \in \scrO ] \leq e\varepsilon \cdot \BbbP [\scrM (X2) \in \scrO ].

Numerous techniques have been proposed for generating privacy-preserving synthetic data
(e.g., [2, 13, 1, 15, 32]), but without providing formal privacy guarantees. Almost all existing
mechanisms to implement differential privacy inject some sort of noise into the data or the
data queries; see, e.g., the Laplacian mechanism [19]. This is also the case for differentially
private synthetic data; see, for instance, [28, 4].

Obviously, we want our synthetic data to be similar to the original data. To that end
we need some metrics to measure similarity. A common and natural choice is to try to
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(approximately) preserve low-dimensional marginals [4, 40]. A marginal of the data X is the
fraction of the elements xi with specified values of specified parameters. On the one hand,
marginals are important in their own right as a tool of statistical analysis. On the other hand,
if the synthetic data preserve, e.g., two-dimensional marginals (i.e., covariance matrices) with
sufficient accuracy, the synthetic dataset is expected to inherit other significant properties
from the original dataset, such as similar behavior with respect to clustering, classification,
or regression.1

However, we are immediately met with a remarkable no-go theorem due to Ullman and
Vadhan [41]. They proved the surprising result that (under standard cryptographic as-
sumptions) there is no polynomial-time differentially private algorithm that takes a dataset
X \in (\{ 0, 1\} p)n and outputs a synthetic dataset Y \in (\{ 0, 1\} p)k such that all two-dimensional
marginals of Y are approximately equal to those of X.

There is an extensive literature on privately releasing answers to linear queries, but without
producing synthetic data; see, e.g., [4, 25, 24, 23, 40, 9, 34, 20] for a small sample. The paper [9]
gives an \epsilon -differentially private synthetic data algorithm whose accuracy scales logarithmically
with the number of queries, but the complexity scales exponentially with p. In [4], Barak et
al. derive a method for producing accurate and private synthetic Boolean data based on
contingency table releases and linear programming; their method scales with 2p, and thus is
exponential in p. In [24, 23] the authors propose methods for producing private synthetic
data with an error bound of about \~\scrO (

\surd 
np1/4) per query. However, the associated algorithms

have a running time that is at least exponential in p. This computational inefficiency is not
surprising in light of [41].

Already, a slightly relaxed formulation of the worst-case no-go result in [41] leads to com-
putationally feasible algorithms. For example, if we relax ``all marginals"" to ``most marginals,""
it is shown in [10] that there exists a polynomial-time differentially private algorithm gener-
ating synthetic data Y \in (\{ 0, 1\} p)k such that the error between the marginals of Y and X
is small. Remarkably, the result does not only hold for two-dimensional marginals, but for
marginals of all dimensions. The downside is that the guaranteed accuracy is rather low
(although it is essentially optimal for microaggregation-based methods). If we relax ``worst
data"" to ``typical data,"" generating accurate differentially private synthetic Boolean (or other
domain constrained) data becomes tractable [29, 11].

The paper [40] proposes an algorithm with complexity np\scrO (
\surd 
d) that returns \epsilon -differentially

private d-dimensional marginals under the assumption n \geq p\scrO (
\surd 
d). However, that algorithm

does not yield synthetic data, in contrast to the algorithm proposed in this paper.
Another line of important work deals with privacy-preserving data analysis in a statistical

framework [18, 14], but these works are also not concerned with synthetic data.
Yet, in all of the aforementioned papers differential privacy is achieved by adding noise

during the data generation process. In this paper we propose an alternative, noise-free,
mechanism called private sampling.

1So far this expectation has only been verified empirically in various papers, while a rigorous mathematical
verification is an important open problem.
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3. Main result. We model the true data X = (x1, . . . , xn) as a sequence of n points from
the Boolean cube \{ 0, 1\} p, which is a standard benchmark data model [4, 41, 23, 36, 29, 8]. For
example, X might represent the health records of n patients, where each health record consists
of p parameters. These parameters are 0/1 numbers that represent the answers to questions
about the standard health history questionnaire, such as ``does the patient smoke?"" or ``does
the patient have diabetes?"" We can also represent categorical data (gender, occupation, etc.)
or numerical data (by splitting them into intervals) on the Boolean cube via binary or one-hot
encoding.

We would like to manufacture a synthetic dataset Y = (y1, . . . , yk), another sequence of
k elements of the cube. Our two desiderata are privacy and accuracy. Specifically, we would
like the synthetic data to be differentially private, and all low-dimensional marginals of Y to
exactly or approximately match those of X.

In our derivations it is more convenient to work on the Boolean cube \{  - 1, 1\} p instead of
\{ 0, 1\} p. Note that it is straightforward to translate our results from one cube to the other.
We recall that on the Boolean cube, a marginal of a function f : \{  - 1, 1\} p \rightarrow \BbbR is defined as a
sum of values of f on the points of the cube that have specified values of specified parameters.
For example, a two-dimensional marginal of f is

\sum 
x\in \{  - 1,1\} p f(x)1\{ x(1)=x(2)=1\} (x). If f is a

density, a marginal can be interpreted as the probability that a random point Z drawn from
the cube according to f has specified values of specified parameters; in the example below it is
\BbbP 
\bigl\{ 
Z(1) = Z(2) = 1

\bigr\} 
. Marginals of the data X = (x1, . . . , xn) can be interpreted as marginals

of the uniform density fn = 1
n

\sum n
i=1 1xi onX. An example of a two-dimensional marginal is the

fraction of elements xi whose first and second parameters equal 1, i.e., 1
n

\sum n
i=1 1\{ xi(1)=xi(2)=1\} .

This could represent, for example, the number of patients who smoke and have diabetes.
Here we explore a new noiseless approach: take a new sample S = (s1, . . . , sm) uniformly

from the cube, reweight S to make the marginals match those of the true dataX, and resample
from the weighted sample S.

But is this even possible? Let us assume the dataset X = (x1, . . . , xn) is drawn from
the cube independently and according to some unknown density. Draw a new sample S =
(s1, . . . , sm) according to some known density, for example, uniformly from the cube.2 Can we
reweight S so that the reweighted sample has approximately the same marginals as X? Note
that there are precisely

\bigl( 
p
\leq d

\bigr) 
marginals of degree at most d, where

\bigl( 
p
\leq d

\bigr) 
:=
\bigl( 
p
0

\bigr) 
+
\bigl( 
p
1

\bigr) 
+ \cdot \cdot \cdot +

\bigl( 
p
d

\bigr) 
.

Surprisingly, we can even match all marginals exactly.
Let us state this result informally; a rigorous, nonasymptotic, and more general statement

is given in Theorem 8.1.

Theorem 3.1 (matching marginals). Consider two regularly varying densities3 on the cube
\{ 0, 1\} p, and draw two independent samples X and S from the cube according to these two
distributions. If min(| X| ,| S| ) \gg e2d

\bigl( 
p
\leq d

\bigr) 
, then with probability 1  - o(1) there exists a density

on S that has exactly the same marginals up to dimension d as the uniform distribution on
X.

2Since the cardinality of S will be chosen to be smaller than that of the dataset X, we also call S the
reduced space.

3A density f is regularly varying if sup f(x)/f(y) = O(1), where the supremum is over all points x and y in
the cube. Our results are more general; as we will see shortly, the regularity assumption can be relaxed.
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Remark 3.2. To match all
\bigl( 

p
\leq d

\bigr) 
marginals of dimension at most d, it makes sense to have

at least as many data points. This explains the requirement on n in the theorem heuristically
(but not rigorously). The prefactor e2d is negligible compared to

\bigl( 
p
\leq d

\bigr) 
if d \ll p.

The path towards proving (a rigorous version of) Theorem 3.1 leads through Lemma 3.3,
which introduces the concept of private sampling. The main technical challenges---which
occupy most of this paper---is then to show that the assumptions of Lemma 3.3 can be
satisfied under competitive conditions on the sample complexity, cardinality of X and S, and
the number of queries, while still maintaining high accuracy.

As a ``nonexample"" for Theorem 3.1, consider a probability measure supported on the set
of patients whose first parameter equals 0, and a different probability measure supported on
the set of patients whose first parameter equals 1. Then even a one-dimensional marginal---
the distribution of the first parameter---will be different for X and Y , no matter how Y is
reweighted. This example shows that some form of regularity assumption will be required in
the theorem.

The density h\ast on S that is guaranteed by Theorem 3.1 can be computed efficiently.
Indeed, this task can be set up as a linear program with | S| variables (the values of the density
on S),

\bigl( 
p
\leq d

\bigr) 
linear equations (to match the marginals to those of X), and | S| linear inequalities

(to ensure the density is nonnegative on S).
Once this density h\ast is computed, we can generate synthetic data Y = (y1, . . . , yk) by

drawing independent points from S according to the density h\ast .

3.1. Private sampling. Is such synthetic data Y private? Here is a general tool that
basically says the following: yes, Y is private as long as the density h\ast has bounded sensitivity.

Lemma 3.3 (private sampling). Let \Omega be a finite set. Let f be a mapping that takes a
dataset X as input and returns a probability mass function f(X) on \Omega . Suppose \varepsilon > 0 and
k \in \BbbN are chosen so that \bigm\| \bigm\| f(X1)/f(X2)

\bigm\| \bigm\| 
\infty \leq exp(\varepsilon /k)

for all datasets X1 and X2 that differ on a single element. Then the algorithm that takes X
as input and returns a sample of k points drawn from \Omega independently and according to the
distribution f(X) is \varepsilon -differentially private.

Proof. The probability that a given k-tuple of points \omega 1, . . . , \omega k \in \Omega is drawn when sam-
pled from distribution f(X1) equals

\prod k
i=1 f(X1)(\omega i). Similarly, the probability that this same

tuple is drawn when sampled from distribution f(X2) equals
\prod k

i=1 f(X2)(\omega i). If the databases
X1 and X2 differ on a single element, the assumption implies that the ratio of these proba-
bilities is bounded by

\prod k
i=1 exp(\varepsilon /k) = exp(\varepsilon ). This means that the sampling mechanism is

\varepsilon -differentially private.

3.2. Difficulties and their resolution. Unfortunately, the density h\ast guaranteed by The-
orem 3.1 is too sensitive. Indeed, the sensitivity bound in Lemma 3.3 needs to be proved for
arbitrary input data, while Theorem 3.1 only works with high probability. For some input
data X, a suitable density exists, and for another input data Z, no suitable density exists.
Moving from X toward Z by changing one data point at a time, we can find a pair of datasets
X1 and X2 that differ in a single data point so that the algorithm succeeds to find a density



PRIVATE SAMPLING 7

for X1 and fails for X2. This means that the algorithm is nonprivate.
The other issue is that there can be (and usually are) many suitable densities h\ast . Which

one to chose? How to devise a selection rule that upholds privacy?
In other words, we need to work around the possible nonexistence and nonuniqueness of

the solution. We resolve both issues here. To ensure existence, we employ shrinking: we
move the solution space (the set of all functions on S, possibly negative-valued, that have
the same marginals as X) toward the uniform density on S until the resulting set contains a
nonnegative function (thus a density). For the selection rule, we choose the closest solution
to the uniform density on S in the L2 metric.

Furthermore, while S is chosen randomly, we do need S to be well conditioned in a sense
that will be discussed in detail in section 9. At this point suffice to say that (i) the well-
conditionedness of S can be expressed in terms of a bound on the smallest singular value
\sigma \mathrm{m}\mathrm{i}\mathrm{n}(M) of the m\times 

\bigl( 
p
\leq d

\bigr) 
matrix M with entries w(s), where s \in S and w is a Walsh function4

of degree at most d; (ii) the well-conditionedness of M can be easily achieved and easily
verified.

This leads us to the algorithm outlined in the next subsection.

3.3. Algorithm. We provide a high-level description of our proposed method in Algo-
rithm 3.1. See Remark 12.1 regarding the computational complexity of this algorithm.

Algorithm 3.1 Private sampling synthetic data algorithm.

Input: a sequence X of n points in \{  - 1, 1\} p (true data); m: cardinality of S; d: the degree
of the marginals to be matched; parameters \delta ,\Delta with \Delta > \delta > 0.

1. Draw m points from \{  - 1, 1\} p independently and uniformly, and call this set S
(reduced space).

2. Form the m \times 
\bigl( 

p
\leq d

\bigr) 
matrix M with entries w(s), where s \in S and w is a Walsh

function of degree at most d. If the smallest singular value of M is bounded below
by

\surd 
m/2ed, call S well conditioned and proceed. Otherwise, return ``Failure"" and

stop.
3. Consider the affine space H consisting of all densities on S that have exactly the

same marginals up to dimension d as the true data X.
4. If necessary, shrink H toward the uniform density on S just so the resulting affine

space \~H contains a density that is lower bounded by 2\delta /m and upper bounded by
(\Delta  - \delta )/m.

5. Among all densities in \~H that are lower bounded by \delta /m and upper bounded by
\Delta /m, pick one closest to the uniform density in the L2 norm.

Output: a sequence Y of k points from S according to this density.

The well-conditionedness of S in Algorithm 3.1 defined via the condition \sigma \mathrm{m}\mathrm{i}\mathrm{n}(M) >\surd 
m/2ed essentially says that the subsampled Walsh basis is almost orthogonal. The scaling\surd 
m is natural: the entries of M all have absolute value 1, hence the columns of M have

Euclidean norm
\surd 
m. If we had \sigma \mathrm{m}\mathrm{i}\mathrm{n}(M) =

\surd 
m, this would imply that the columns of M

4See section 4 for basic definitions related to Fourier analysis of the Boolean cube.
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(the subsampled Walsh functions) are mutually orthogonal. We require a relaxed (by a factor
2ed) version of this orthogonality.

What if S fails the desired condition? We can simply resample S until it is well conditioned.
But this is only a useful strategy if the chances of success are sufficiently high. Under some
mild conditions (see section 9) success happens with probability > 1/2, hence the expected
number or trials until success is \leq 2. This way Algorithm 3.1 succeeds deterministically, but
its running time becomes random (albeit with the rather modest expected overhead time \leq 2).

Definition 3.4. We say that the synthetic dataset Y is \delta -accurate if each of its marginals
up to degree (or dimension) d is within \delta from the corresponding marginal of the true dataset
X.

The following theorem guarantees the accuracy and privacy of the algorithm. We state it
informally here, and more accurately in Theorems 12.3 and 12.5.

Theorem 3.5 (privacy and accuracy). Let the size of the reduced space S satisfy m \asymp 
e2d
\bigl( 

p
\leq d

\bigr) 
.

(a) Algorithm 3.1 succeeds (i.e., does not return ``Failure"") with high probability.
(b) If the size of the synthetic data satisfies k \ll 

\surd 
n/m, then Algorithm 3.1 is o(1)-

differentially private.
(c) Suppose n \gg e2d

\bigl( 
p
\leq d

\bigr) 
, k \gg log

\bigl( 
p
\leq d

\bigr) 
, and the true data points X are sampled indepen-

dently from some density that is upper bounded by \Delta /2p. Then, with high probability,
the synthetic data generated via Algorithm 3.1 is o(1)-accurate up to dimension d.

For a more formal presentation of Algorithm 3.1, see Algorithm 12.1 below. A formal ver-
sion of part (a) of Theorem 3.5 is shown in Proposition 9.3; part (b) is shown in Theorem 12.3
and Remark 12.4; part (c) is shown in Theorem 12.5. The mathematical techniques to prove
these results revolve around Fourier analysis of Boolean functions and empirical processes; see
sections 4--7.

In case the true data X is sampled form a regular density, the algorithm will not apply any
shrinkage, since in this case Theorem 3.1 guarantees the existence of a solution. (We make
this rigorous in Remark 12.6.) In this case, the private synthetic data Y will be sampled in
an unbiased way from the density h\ast that has exactly the same marginals as the true data X.

3.4. Further remarks. There is a one-sample version of Theorem 3.1. Let us state it here
informally; a more accurate statement is given in Theorem 8.2.

Theorem 3.6 (marginal correction). Consider a regularly varying density f on the cube
\{ 0, 1\} p and draw an independent sample S from the cube according to this distribution. If
| S| \gg e2d

\bigl( 
p
\leq d

\bigr) 
, then with probability 1  - o(1) there exists a density h on S that has exactly

the same marginals as f up to dimension d. Moreover, h is within a 1 + o(1) factor of the
uniform density on S.

The law of large numbers tells us that the sample S must have approximately the same
marginals as the density f from which S was drawn. Theorem 3.6 tells us that we can make
the marginals exactly the same by a slight reweighting of S, i.e., by weights that are all 1+o(1).

4. Fourier analysis. The proof of Theorem 3.1 is based on hypercontractivity, duality,
and empirical processes.
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Let us start by recalling the basic Fourier analysis on the Boolean cube \{  - 1, 1\} p [35].
The Walsh functions wJ : \{  - 1, 1\} p \rightarrow \{  - 1, 1\} are indexed by subsets J \subset [p] and are

defined as

(4.1) wJ(x) =
\prod 
j\in J

x(j),

with the convention w\emptyset = 1.
The canonical inner product on the space of real-valued functions on \{  - 1, 1\} p is defined

as

\langle f, g\rangle L2 =
1

2p

\sum 
x\in \{  - 1,1\} p

f(x) g(x).

This inner product defines the space L2 = L2(\{  - 1, 1\} p). More generally, for 1 \leq q < \infty , the
Lq = Lq(\{  - 1, 1\} p) is the space of real-valued functions on the cube with the norm

\| f\| Lq =
\Bigl( 1

2p

\sum 
x\in \{  - 1,1\} p

\bigm| \bigm| f(x)\bigm| \bigm| q \Bigr) 1/q.
Walsh functions form an orthonormal basis of L2, so any function f : \{  - 1, 1\} p \rightarrow \BbbR admits

a Fourier expansion

f =
\sum 
J\subset [p]

\^fJwJ , where \^fJ = \langle f, wJ\rangle are Fourier coefficients.

Thus, any function f on the cube can be orthogonally decomposed into low and high frequen-
cies:

f = f\leq d + f>d,

where
f\leq d =

\sum 
J\subset [p],| J | \leq d

\langle f, wJ\rangle wJ and f>d =
\sum 

J\subset [p],| J | >d

\langle f, wJ\rangle wJ .

Clearly, the function f\leq d is determined by the Fourier coefficients of f up to dimension d, and
vice versa.

We say that a function f on the cube has degree at most d if f = f\leq d. Such functions
form the ``low-frequency"" space

W\leq d =
\Bigl\{ 
f : f = f\leq d

\Bigr\} 
= span\{ wJ : | J | \leq d\} ,

which has dimension
\bigl( 

p
\leq d

\bigr) 
. The orthogonal complement to this subspace in L2 is the ``high-

frequency"" subspace

W>d =
\Bigl\{ 
f : f = f>d

\Bigr\} 
= span\{ wJ : | J | > d\} .

The following result is well known; see [35, Theorem 9.22].

Theorem 4.1 (hypercontractivity). For any d \leq p and any function f : \{  - 1, 1\} p \rightarrow \BbbR of
degree at most d, we have

\| f\| L2 \leq ed\| f\| L1 .
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4.1. Connection to marginals. The low-degree Fourier coefficients of f : \{  - 1, 1\} p \rightarrow \BbbR 
determine the low-dimensional marginals of f . More precisely, f\leq d determines the values of
all marginals of f up to dimension (or degree) d.

To see this, consider the example of the two-dimensional marginal in which the first
parameter is set to 1 and the second is set for  - 1. The value of such a marginal of f is\sum 

x\in \{  - 1,1\} p f(x)1\{ x(1)=1, x(2)= - 1\} . Now,

1\{ x(1)=1, x(2)= - 1\} (x) = 1\{ x(1)=1\} (x)1\{ x(2)= - 1\} =
\Bigl( 1 + x(1)

2

\Bigr) \Bigl( 1 - x(2)

2

\Bigr) 
,

so expanding the right-hand side and using the definition of Walsh functions, we see that

1\{ x(1)=1, x(2)= - 1\} =
1

4

\Bigl( 
w\emptyset + w\{ 1\}  - w\{ 2\}  - w\{ 1,2\} 

\Bigr) 
.

Thus, the marginal can be written as\sum 
x\in \{  - 1,1\} p

f(x)1\{ x(1)=1, x(2)= - 1\} =
1

4

\Bigl( 
\^f\emptyset + \^f\{ 1\}  - \^f\{ 2\}  - \^f\{ 1,2\} 

\Bigr) 
,

and so it depends only on the Fourier coefficients on f up to degree 2, or equivalently only on
f\leq 2.

5. Empirical processes. Let \mu be a probability measure on \{  - 1, 1\} p, and let

\mu m =
1

m

m\sum 
i=1

\delta \theta i

be the corresponding (random) empirical measure, i.e., the uniform probability measure on the
sample \{ \theta 1, . . . , \theta m\} of points drawn from the cube independently according to the distribution
\mu . These two measures define the population and empirical Lq norms of functions on the cube:

(5.1) \| F\| qLq(\mu )
:= \BbbE 

\bigm| \bigm| F (\theta 1)
\bigm| \bigm| q ; \| F\| qLq(\mu m)

:=
1

m

m\sum 
i=1

\bigm| \bigm| F (\theta i)
\bigm| \bigm| q .

We clearly have \BbbE \| F\| L1(\mu m) = \| F\| L1(\mu ). The following result provides a uniform deviation
inequality.

Proposition 5.1 (deviation of the empirical L1 norm). Let \mu be a probability measure on
\{  - 1, 1\} p, and let \mu m be the empirical counterpart. Then

\BbbE sup
F\in W\leq d,\| F\| L2=1

\bigm| \bigm| \bigm| \| F\| L1(\mu m)  - \| F\| L1(\mu )

\bigm| \bigm| \bigm| \leq 2

\sqrt{} 
1

m

\biggl( 
p

\leq d

\biggr) 
.

The L2 norm on the left side is with respect to the uniform probability measure on the
cube.
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Proof. Any function F \in W\leq d is a linear combination of low-degree Walsh functions,

F =
\sum 
| J | \leq d

aJwJ .

Without loss of generality (by rescaling), we can assume that

(5.2) \| F\| 2L2 =
\sum 
| J | \leq d

a2J = 1.

By definition of the L1(\mu ) norm in (5.1), we have

\| F\| L1(\mu ) = \BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| J | \leq d

aJwJ(\theta 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = \BbbE 
\bigm| \bigm| \langle w(\theta 1), a\rangle \bigm| \bigm| ,

where for every \theta in the cube, w(\theta ) :=
\bigl( 
wJ(\theta )

\bigr) 
| J | \leq d

is a vector in \BbbR (
p
\leq d), and similarly, a =

(aJ)| J | \leq d denotes the coefficient vector in \BbbR (
p
\leq d). By (5.2), a is a unit vector, i.e., a \in S(

p
\leq d) - 1

.

In a similar way, the definition of the empirical L1 norm in (5.1) yields

\| F\| L1(\mu m) =
1

m

m\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| J | \leq d

aJwJ(\theta i)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = 1

m

m\sum 
i=1

\bigm| \bigm| \langle w(\theta i), a\rangle \bigm| \bigm| .
Then

E := \BbbE sup
F\in W\leq d,\| F\| L2=1

\bigm| \bigm| \bigm| \| F\| L1(\mu m)  - \| F\| L1(\mu )

\bigm| \bigm| \bigm| 
= \BbbE sup

a\in S(
p
\leq d) - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m
m\sum 
i=1

\bigm| \bigm| \langle w(\theta i), a\rangle \bigm| \bigm|  - \BbbE 
\bigm| \bigm| \langle w(\theta 1), a\rangle \bigm| \bigm| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Applying a symmetrization inequality for empirical processes (see, e.g., [42, Exercise 8.3.24]),
we get

E \leq 2\BbbE sup

a\in S(
p
\leq d) - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1m
m\sum 
i=1

\varepsilon i
\bigm| \bigm| \langle w(\theta i), a\rangle \bigm| \bigm| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ,
where (\varepsilon i)

m
i=1 denote i.i.d. Rademacher random variables, which are independent of the sample

points (\theta i)
m
i=1.

The exterior absolute value can be removed using the symmetry of the Rademacher ran-
dom variables, and the interior absolute values can be removed using Talagrand's contraction
principle (see [42, Exercise 6.7.7]), thus continuing our bound as

E \leq 2\BbbE sup

a\in S(
p
\leq d) - 1

1

m

m\sum 
i=1

\varepsilon i\langle w(\theta i), a\rangle 

= 2\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| 1

m

m\sum 
i=1

\varepsilon iw(\theta i)

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 2

m

\Biggl( 
\BbbE 
\bigm\| \bigm\| \bigm\| \bigm\| m\sum 
i=1

\varepsilon iw(\theta i)

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\Biggr) 1/2

=
2

m

\Biggl( 
m\sum 
i=1

\BbbE 
\bigm\| \bigm\| w(\theta i)\bigm\| \bigm\| 22

\Biggr) 1/2

,
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where the last step follows by conditioning on (\theta i). Since all
\bigl( 

p
\leq d

\bigr) 
coordinates of all vectors

w(\theta i) equal \pm 1, we have
\bigm\| \bigm\| w(\theta i)\bigm\| \bigm\| 22 =

\bigl( 
p
\leq d

\bigr) 
deterministically. Substituting this bound, we

complete the proof.

6. Enforcing a uniform bound and sparsity. We will now prove that for any function F on
the Boolean cube, there is another function that simultaneously satisfies the three desiderata:
(a) it has the same marginals (or Fourier coefficients) as F up to dimension d; (b) it is very
sparse---in fact, it is supported on a random set of a given cardinality; and (c) it is uniformly
bounded. The following result guarantees the existence of such function F  - w.

Theorem 6.1. Let \mu be a probability measure on the cube \{  - 1, 1\} p whose density is bounded
below by \alpha /2p, and let \mu m be the empirical counterpart. If m \geq 16(\alpha \gamma ) - 2e2d

\bigl( 
p
\leq d

\bigr) 
, then the

following holds with probability at least 1 - \gamma . For any function F : \{  - 1, 1\} p \rightarrow \BbbR , we have

inf
\Bigl\{ 
\| F  - w\| \infty : w \in W>d, F  - w \subset S\mu m

\Bigr\} 
\leq 2ed2p

\alpha m

\bigm\| \bigm\| \bigm\| F\leq d
\bigm\| \bigm\| \bigm\| 
L2

,

where S\mu m denotes the set of the functions supported on supp(\mu m).

Throughout the proof, let us denote

S := supp(\mu m).

The L1 norm of any function F : \{  - 1, 1\} p \rightarrow \BbbR naturally decomposes as

\| F\| L1 =\| F1S\| L1 +\| F1Sc\| L1 ,

where 1S denotes the indicator function of S. Given \delta > 0, consider the weighted space L1
\delta 

where the norm is defined by

\| F\| L1
\delta 
:=\| F1S\| L1 + \delta \| F1Sc\| L1 .

Lemma 6.2. Consider the subspace (W\leq d, \| \| L1
\delta 
) of L1

\delta . With probability at least 1 - \gamma , for
every \delta > 0 we have \bigm\| \bigm\| \bigm\| Id : (W\leq d, \| \| L1

\delta 
) \rightarrow L2

\bigm\| \bigm\| \bigm\| \leq 2ed2p

\alpha m
.

Proof. Proposition 5.1 combined with Markov's inequality and rescaling implies that, with
probability 1 - \gamma , the following holds for all F \in W\leq d:

\bigm| \bigm| \bigm| \| F\| L1(\mu )  - \| F\| L1(\mu m)

\bigm| \bigm| \bigm| \leq 2

\gamma 

\sqrt{} 
1

m

\biggl( 
p

\leq d

\biggr) 
\| F\| L2 \leq \alpha 

2ed
\| F\| L2 ,

where in the last step we used the assumption on m.
Applying hypercontractivity (Theorem 4.1), the regularity assumption of \mu , and the bound

above, we obtain

1

ed
\| F\| L2 \leq \| F\| L1 \leq 1

\alpha 
\| F\| L1(\mu ) \leq 

1

\alpha 
\| F\| L1(\mu m) +

1

2ed
\| F\| L2 .
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Rearranging the terms, we obtain

1

2ed
\| F\| L2 \leq 1

\alpha 
\| F\| L1(\mu m) =

2p

\alpha m
\| F1S\| L1 \leq 2p

\alpha m
\| F\| L1

\delta 

where in the middle step we used the definitions of S and of the norms in L1(\mu ) and L1(\mu m).
Multiplying both sides by 2ed completes the proof.

Proof of Theorem 6.1. Let us dualize Lemma 6.2 with respect to the inner product on L2.
The identity operator is self-adjoint, and the adjoint operator has the same norm. So, with
probability at least 1 - \gamma , for every \delta > 0 we have\bigm\| \bigm\| \bigm\| Id :

\bigl( 
L2
\bigr) \ast \rightarrow \bigl( 

W\leq d, \| \| L1
\delta 

\bigr) \ast \bigm\| \bigm\| \bigm\| \leq 2ed2p

\alpha m
=: B.

The Hilbert space L2 is self-dual. The dual to the weighted space L1
\delta is the weighted space

L\infty 
1/\delta defined as

(6.1) \| F\| L\infty 
1/\delta 

:=\| F1S\| L\infty \vee 1

\delta 
\| F1Sc\| L\infty .

The dual of a subspace is a quotient space of the dual:\bigl( 
W\leq d, \| \| L1

\delta 

\bigr) \ast 
=
\bigl( 
L1
\delta 

\bigr) \ast 
/(W\leq d)\bot = L\infty 

\delta /W>d.

Putting these considerations together, we get\bigm\| \bigm\| \bigm\| Id : L2 \rightarrow L\infty 
\delta /W>d

\bigm\| \bigm\| \bigm\| \leq B.

By definition of the quotient norm, this bound means that for every function F : \{  - 1, 1\} p \rightarrow \BbbR 
there exists w \in W>d such that

\| F  - w\| L\infty 
\delta 

\leq B\| F\| L2 .

By definition (6.1) of the weighted norm, this means that

(6.2)
\bigm\| \bigm\| (F  - w)1S

\bigm\| \bigm\| 
\infty \leq B\| F\| L2 and

\bigm\| \bigm\| (F  - w)1Sc

\bigm\| \bigm\| 
\infty \leq \delta B\| F\| L2 .

Since the second bound holds for arbitrary \delta > 0, it follows that
\bigm\| \bigm\| (F  - w)1Sc

\bigm\| \bigm\| 
\infty = 0, i.e.,

supp(F  - w) \subset S

as claimed in the theorem. Together with the first bound in (6.2), this proves that

\| F  - w\| \infty \leq B\| F\| L2 .

Thus, we showed every function F : \{  - 1, 1\} p \rightarrow \BbbR satisfies

inf
\Bigl\{ 
\| F  - w\| \infty : w \in W>d, F  - w \subset S\mu m

\Bigr\} 
\leq B\| F\| L2

Finally, note that the term \| F\| L2 on the right-hand side can automatically be improved to\bigm\| \bigm\| F\leq d
\bigm\| \bigm\| 
L2 . To see this, apply the above bound for F\leq d and absorb the term F>d into w.

Theorem 6.1 is proved.
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7. Low-degree projections of empirical measures. Consider two probability measures \nu 
and \mu on \{  - 1, 1\} p, and let f and g denote their densities (or probability mass functions):

f(z) = \nu (\{ z\} ) and g(z) = \mu (\{ z\} ), z \in \{  - 1, 1\} p.

The densities of the empirical probability measures \nu n and \mu m are

(7.1) fn =
1

n

n\sum 
i=1

1xi and gm =
1

m

m\sum 
i=1

1yi

where x1, . . . , xn and y1, . . . , ym are i.i.d. points drawn from the cube according to the densities
f and g, respectively. The functions fn and gm provide unbiased estimators of f and g:

\BbbE fn = f, \BbbE gm = g.

Assume that f(z) = 0 whenever g(z) = 0. Consider the function

(7.2) \~gm := (f/g)gm.

Although \~gm is supported on the sample drawn from density g, it provides an unbiased
estimator of f :

\BbbE \~gm = (f/g)\BbbE gm = (f/g)g = f.

This property will be crucial in the proof of Theorem 3.1.
Let us look at the low-degree projections of fn and \~gm and try to bound their mean

magnitude and deviation from the mean. Toward this end, note that

(7.3) \forall x \in \{  - 1, 1\} p,
\bigm\| \bigm\| (1x)\leq d

\bigm\| \bigm\| 
L2 =

\biggl( 
p

\leq d

\biggr) 1/2 1

2p
.

Indeed, to see this, use Parseval's identity\bigm\| \bigm\| (1x)\leq d
\bigm\| \bigm\| 2
L2 =

\sum 
| J | \leq d

\langle 1x, wJ\rangle 2L2 =
\sum 
| J | \leq d

\Bigl( 1

2p
wJ(x)

\Bigr) 2
and recall that the Walsh function wJ takes \pm 1 values. Furthermore, by definition of fn and
the triangle inequality, (7.3) yields

(7.4)
\bigm\| \bigm\| (fn)\leq d

\bigm\| \bigm\| 
L2 \leq 

\biggl( 
p

\leq d

\biggr) 1/2 1

2p
deterministically.

Lemma 7.1 (deviation). We have\Bigl( 
\BbbE 
\bigm\| \bigm\| (fn  - f)\leq d

\bigm\| \bigm\| 2
L2

\Bigr) 1/2
\leq 
\biggl( 

p

\leq d

\biggr) 1/2 1\surd 
n2p

.

Moreover, if
\bigm\| \bigm\| f/g\bigm\| \bigm\| 

L2 \leq \kappa , then we have

\Bigl( 
\BbbE 
\bigm\| \bigm\| (\~gm  - f)\leq d

\bigm\| \bigm\| 
L2

\Bigr) 1/2
\leq 
\biggl( 

p

\leq d

\biggr) 1/2 \kappa \surd 
m2p

.
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Proof. By Parseval's identity,

(7.5)
\bigm\| \bigm\| (fn  - f)\leq d

\bigm\| \bigm\| 2
L2 =

\sum 
| J | \leq d

\langle fn  - f, wJ\rangle 2L2 .

By definition (7.1) of fn, each term of this sum can be expressed as

\langle fn  - f, wJ\rangle L2 =
1

n

n\sum 
i=1

\langle 1xi  - f, wJ\rangle L2 .

The terms on the right-hand side are i.i.d. mean zero random variables, so

\BbbE \langle fn  - f, wJ\rangle 2L2 =
1

n
\BbbE \langle 1x1  - f, wJ\rangle 2L2

\leq 1

n
\BbbE \langle 1x1 , wJ\rangle 2L2 (the variance is bounded by the second moment)

=
1

n
\BbbE 
\Bigl( 1

2p
wJ(x1)

\Bigr) 2
=

1

n22p
,

since the Walsh function wJ takes \pm 1 values. Substitute this bound into Parseval's identity
(7.5) to get

\BbbE 
\bigm\| \bigm\| (fn  - f)\leq d

\bigm\| \bigm\| 2
L2 \leq 

\biggl( 
p

\leq d

\biggr) 
\cdot 1

n22p
.

This proves the first part of the lemma.
The second part of the lemma can be derived similarly. Indeed,

(7.6)
\bigm\| \bigm\| (\~gm  - f)\leq d

\bigm\| \bigm\| 2
L2 =

\sum 
| J | \leq d

\langle \~gm  - f, wJ\rangle 2L2 .

By definition (7.1) of gm and (7.2) of \~gm, each term of this sum can be expressed as

\langle \~gm  - f, wJ\rangle L2 =
1

m

m\sum 
i=1

\Bigl\langle f(yi)
g(yi)

\cdot 1yi  - f, wJ

\Bigr\rangle 
L2
.

The terms on the right hand side are i.i.d. mean zero random variables, so

\BbbE \langle \~gm  - f, wJ\rangle 2L2 =
1

m
\BbbE 
\Bigl\langle f(y1)
g(y1)

\cdot 1y1  - f, wJ

\Bigr\rangle 2
L2

\leq 1

m
\BbbE 
\Bigl\langle f(y1)
g(y1)

\cdot 1y1 , wJ

\Bigr\rangle 2
L2

(the variance is bounded by the second moment)

=
1

m
\BbbE 
\Bigl( 1

2p
f(y1)

g(y1)
wJ(y1)

\Bigr) 2
=

1

m22p
\bigm\| \bigm\| f/g\bigm\| \bigm\| 2

L2 \leq \kappa 2

m22p
,

where in the last line we used the fact that the Walsh function wJ takes \pm 1 values and the
assumption on f/g. Substitute this bound into Parseval's identity (7.6) to get

\BbbE 
\bigm\| \bigm\| (\~gm  - f)\leq d

\bigm\| \bigm\| 2
L2 \leq 

\biggl( 
p

\leq d

\biggr) 
\cdot \kappa 2

m22p
.

This proves the second part of the lemma.
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8. Proof of Theorem 3.1. The following master theorem is a more general version of
Theorem 3.1, as we will see shortly. Recall that gm, \mu m, \~gm are defined in (7.1).

Theorem 8.1. Let f and g be densities on the cube \{  - 1, 1\} p, and let fn and gm be their
empirical counterparts. Assume that

\bigm\| \bigm\| f/g\bigm\| \bigm\| 
L2 \leq \kappa for some \kappa \geq 1 and that g is bounded below

by \alpha /2p. If

(8.1) n \geq 16(\alpha \delta ) - 2\gamma  - 1e2d
\biggl( 

p

\leq d

\biggr) 
and m \geq 16(\alpha \delta ) - 2\gamma  - 1\kappa 2e2d

\biggl( 
p

\leq d

\biggr) 
,

then the following holds with probability 1 - 2\gamma . There exists h : \{  - 1, 1\} p \rightarrow \BbbR that satisfies

h\leq d = f\leq d
n , supp(h) \subset supp(gm),

\bigm\| \bigm\| h - (f/g)gm
\bigm\| \bigm\| 
\infty \leq \delta 

m
.

Proof. Let \~gm = (f/g)gm and apply Theorem 6.1 for the function F = fn  - \~gm. With
probability 1 - \gamma , there exists w \in W>d such that

(8.2) fn  - \~gm  - w \in S\mu m and \| fn  - \~gm  - w\| \infty \leq 2ed2p

\alpha m

\bigm\| \bigm\| (fn  - \~gm)\leq d
\bigm\| \bigm\| 
L2 .

Set
h = fn  - w.

Since w \in W>d, we have h\leq d = f\leq d
n as claimed. Since both \~gm and h - \~gm = fn  - \~gm  - w lie

in S\mu m , so does h, as claimed.
Furthermore, combining both bounds of Lemma 7.1 via the Minkowski inequality, we get\Bigl( 

\BbbE 
\bigm\| \bigm\| (fn  - \~gm)\leq d

\bigm\| \bigm\| 2
L2

\Bigr) 1/2
\leq 
\biggl( 

p

\leq d

\biggr) 1/2\Bigl( 1\surd 
n
+

\kappa \surd 
m

\Bigr) 1

2p
.

By Chebyshev's inequality, with probability at least 1 - \gamma we have

\bigm\| \bigm\| (fn  - \~gm)\leq d
\bigm\| \bigm\| 
L2 \leq \gamma  - 1/2

\biggl( 
p

\leq d

\biggr) 1/2\Bigl( 1\surd 
n
+

\kappa \surd 
m

\Bigr) 1

2p
.

We substitute this into (8.2) and get

\| h - \~gm\| L\infty (\nu m) \leq 
2ed2p

\alpha m
\cdot \gamma  - 1/2

\biggl( 
p

\leq d

\biggr) 1/2\Bigl( 1\surd 
n
+

\kappa \surd 
m

\Bigr) 1

2p
\leq \delta 

m
,

where we used the assumption on n and m in the last bound.

8.1. Proof of Theorem 3.1. Let us explain how Theorem 8.1 is a more general form
of Theorem 3.1. Let f and g be the densities of the two distributions in the statement of
Theorem 3.1, X = (x1, . . . , xn) and S = (y1, . . . , ym) be the samples drawn according to
these densities, and fn = 1

n

\sum n
i=1 1xi and gm = 1

m

\sum m
i=1 1yi be the empirical densities. The

regularity assumption implies that

(8.3) f/g \asymp 1 pointwise,
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and in particular the requirement
\bigm\| \bigm\| f/g\bigm\| \bigm\| 

L2 = O(1) holds in Theorem 8.1. The function h we
obtain from that result is supported on S = supp(gm) and satisfies

h \geq (f/g)gm  - \delta 

m
\gtrsim 

1

m
everywhere on S.

(In the last step we used (8.3) that gm = 1
m

\sum m
i=1 1yi is lower bounded by 1/m on S.) In

particular, h is positive on S. The condition h\leq d = f\leq d
n means that h has exactly the same

marginals up to dimension d as fn, the uniform probability distribution on X. Since fn is a
density, the sum of all of its values equals 1. The same must be true for h, since the sum of
the values can be expressed as the zero-dimensional marginal, which must be the same for h
and fn. In other words, h must be a density, too. Theorem 3.1 is proved.

8.2. A one-sample version. Here is a one-sample version of Theorem 8.1. It is a rigorous
version of Theorem 3.6 that we stated informally in the introduction.

Theorem 8.2. Let f be a density on the cube \{  - 1, 1\} p that is bounded below by \alpha /2p, and
let fm be its empirical counterpart. If m \geq 16(\alpha \delta ) - 2\gamma  - 1e2d

\bigl( 
p
\leq d

\bigr) 
, then the following holds with

probability 1 - 2\gamma . There exists a density h on supp(fm) that satisfies

h\leq d = f\leq d, \| h - fm\| \infty \leq \delta 

m
.

Proof. The proof is similar to that of Theorem 3.1 above. Choose g = f , n = m; hence
\~gm = (f/g)gm = fm, and use F = f  - \~gm. Apply only the first bound in Lemma 7.1.

Note that the bound in the conclusion and the fact that fm = 1/m on its support implies
that h \geq 1/m - \delta /m > 0 on supp(fm), and thus h is a density.

We leave the details to the reader.

9. Solution space. Our next focus is on proving Theorem 3.5, which gives guarantees for
privacy and accuracy of the synthetic data created by Algorithm 3.1.

Let us formally introduce the solution space---the space of all functions on the reduced
sample space S that have the same marginals as a given function u.

Definition 9.1 (solution space). Let \mu be a probability measure on the cube \{  - 1, 1\} p, and
\mu m be its empirical counterpart. For any function u : \{  - 1, 1\} p \rightarrow \BbbR , consider the affine
subspace H(u) of all functions supported on supp(\mu m) and that have the same marginals up
to dimension d as the function u, i.e.,

H(u) :=
\Bigl\{ 
h \in S\mu m

: h\leq d = u\leq d
\Bigr\} 
=
\Bigl( 
u - W>d

\Bigr) 
\cap S\mu m ,

where S\mu m, as before, denotes the linear space of all functions supported on the reduced space
S = supp(\mu m).

9.1. Success with high probability. Algorithm 3.1 succeeds, i.e., does not return ``Fail-
ure,"" when the reduced space S = \{ \theta 1, . . . , \theta m\} is well conditioned. By definition, this happens
if

(9.1) s\mathrm{m}\mathrm{i}\mathrm{n}(M) \geq 
\surd 
m

2ed
,
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where s\mathrm{m}\mathrm{i}\mathrm{n} denotes the smallest singular value, and M is the m\times 
\bigl( 

p
\leq d

\bigr) 
matrix whose entries

are wJ(\theta i) for | J | \leq d, i.e., the matrix whose rows are indexed by the points \theta i \in S, and whose
columns are indexed by Walsh functions wJ of degree at most d.

Let us reformulate the condition (9.1) in the dual form, and then deduce from Theorem 6.1
that it holds with high probability.

Lemma 9.2 (well conditioned reduced space). The reduced space S is well conditioned if
and only if any function F : \{  - 1, 1\} p \rightarrow \BbbR satisfies

(9.2) inf
\Bigl\{ 
\| F  - w\| L2(\mu m) : w \in W>d, F  - w \in S\mu m

\Bigr\} 
\leq 2ed2p

m

\bigm\| \bigm\| \bigm\| F\leq d
\bigm\| \bigm\| \bigm\| 
L2

.

Proof. Decomposing F = F\leq d+F>d, we see that F\leq d in the right-hand side of (9.2) may
be replaced by F without loss of generality. Furthermore, since\| f\| L2(\mu m) =

\sqrt{} 
2p/m\| f\| L2 for

any f \in S\mu m , we can rewrite condition (9.2) equivalently as

(9.3) inf
\Bigl\{ 
\| F  - w\| L2 : w \in W>d, F  - w \in S\mu m

\Bigr\} 
\leq B\| F\| L2 ,

where

B = 2ed
\sqrt{} 

2p

m
.

We will employ a duality argument similar to the one we used in the proof of Theorem 6.1.
Given \delta > 0, consider the weighted Hilbert space L2

\delta where the norm is defined by

\| F\| 2L2
\delta 
:=\| F1S\| 2L2 + \delta \| F1Sc\| 2L2 ,

where 1S denotes the indicator function of S. Then (9.3) is equivalent to

inf

\biggl\{ 
\| F  - w\| L2

1/\delta 
: w \in W>d

\biggr\} 
\leq B\| F\| L2 \forall \delta > 0.

(To see this, note that taking \delta \rightarrow 0+ enforces F  - w1Sc = 0, or equivalently F  - w \in S\mu m .)
This can be interpreted as a bound on the norm of the quotient map Q:\bigm\| \bigm\| \bigm\| Q : L2 \rightarrow L2

1/\delta /W
>d
\bigm\| \bigm\| \bigm\| \leq B \forall \delta > 0.

Let us dualize this bound. The adjoint operator has the same norm, so\bigm\| \bigm\| \bigm\| Q\ast :
\bigl( 
L2
\bigr) \ast \rightarrow \bigl( 

L2
1/\delta /W

>d
\bigr) \ast \bigm\| \bigm\| \bigm\| \leq B \forall \delta > 0.

The adjoint of the quotient map is the canonical (identity) embedding; the Hilbert space L2

is self-dual, and the dual of a quotient space is a subspace of the dual, i.e.,\bigl( 
L2
1/\delta /W

>d
\bigr) \ast 

= ((W>d)\bot , \| \| (L2
1/\delta 

)\ast ) = (W\leq d, \| \| L2
\delta 
).

Thus, the bound is equivalent to\bigm\| \bigm\| \bigm\| Id : (W\leq d, \| \| L2
\delta 
) \rightarrow L2

\bigm\| \bigm\| \bigm\| \leq B \forall \delta > 0.
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By definition of the operator norm and the norm in L2
\delta , this bound is equivalent to saying

that
\| F\| 2L2 \leq B2

\Bigl( 
\| F1S\| 2L2 + \delta \| F1Sc\| 2L2

\Bigr) 
\forall F \in W\leq d, \forall \delta > 0.

Taking \delta \rightarrow 0+, we see that this is equivalent to

\| F\| 2L2 \leq B2\| F1S\| 2L2 =
B2

2p
\| F1S\| 2\ell 2 =

4e2d

m
\| F1S\| 2\ell 2 \forall F \in W\leq d.

Expressing F through its orthogonal decomposition F =
\sum 

| J | \leq d aJwJ , we can rewrite the
latter condition as\sum 

| J | \leq d

a2J \leq 4e2d

m

\bigm\| \bigm\| \bigm\| \bigm\| \sum 
| J | \leq d

aJwJ1S

\bigm\| \bigm\| \bigm\| \bigm\| 2
\ell 2

=
4e2d

m

m\sum 
i=1

\Bigl( \sum 
| J | \leq d

aJwJ(\theta i)
\Bigr) 2

\forall choice of coefficients aJ .

This, in turn, is equivalent to

\| a\| 2\ell 2 \leq 4e2d

m
\| Ma\| 2\ell 2 ,

which is finally equivalent to (9.1).

Proposition 9.3 (success with high probability). If m \geq 16\gamma  - 2e2d
\bigl( 

p
\leq d

\bigr) 
, then Algorithm 3.1

succeeds (i.e., does not return ``Failure"") with probability at least 1 - \gamma .

Proof. By definition, Algorithm 3.1 succeeds if the reduced space S is well conditioned.
Then the conclusion immediately follows from Theorem 6.1 for the uniform density \mu , Lemma
9.2, and the fact that the L2(\mu m) norm is bounded by the sup-norm.

9.2. All solution spaces are translates of each other. First, let us show that with high
probability in \mu m, all solution spaces H(u) are nonempty and are translates of each other.
The following elementary lemma will help us.

Proposition 9.4. If the reduced space S is well conditioned, then the solution spaces H(u)
for all u : \{  - 1, 1\} p \rightarrow \BbbR are nonempty and are translates of each other.

Proof. Let F : \{  - 1, 1\} p \rightarrow \BbbR be an arbitrary function. If S is well conditioned, Lemma 9.2
for F = u yields the existence of w \in W>d and s \in S\mu m such that u = s + w. This implies
that u - W>d = s - W>d. Hence

H(u) =
\Bigl( 
u - W>d

\Bigr) 
\cap S\mu m =

\Bigl( 
s - W>d

\Bigr) 
\cap S\mu m = s - 

\Bigl( 
W>d \cap S\mu m

\Bigr) 
.

The linear subspace W>d \cap S\mu m is nonempty as it contains the origin. Therefore, all solution
spaces H(u) are translates of this linear space, and thus of each other.

9.3. Sensitivity of the solution space. Next, we will check that the map u \mapsto \rightarrow H(u) is
Lipschitz in the Hausdorff metric. Recall that the Hausdorff distance between two subsets A
and B of a normed space X is defined as

dX(A,B) = max

\Biggl\{ 
sup
a\in A

inf
b\in B

\| a - b\| X , sup
b\in B

inf
a\in A

\| a - b\| X

\Biggr\} 
.
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When A and B are affine subspaces that are translates of each other, we have

dX(A,B) = inf
b\in B

\| a - b\| X = distX(a,B) for any a \in A.

When the norm is clear from the context, we skip the subscript X. When X = Lq we simply
write dq(A,B).

Lemma 9.5 (sensitivity of the solution space). If the reduced space S is well conditioned,
then any pair of functions u1, u2 : \{  - 1, 1\} p \rightarrow \BbbR satisfies

(9.4) d\infty 
\bigl( 
H(u1), H(u2)

\bigr) 
\leq 2ed2p\surd 

m

\bigm\| \bigm\| (u1  - u2)
\leq d
\bigm\| \bigm\| 
L2 .

Proof. Since, by Proposition 9.4, the affine subspaces H(u1) and H(u2) are translates of
each other, it suffices to bound infs2\in H(u2)\| s1  - s2\| \infty for any s1 \in H(u1).

Pick any s1 \in H(u1). Since H(u1) = (u1  - W>d)\cap S\mu m , there exists w1 \in W>d such that
s1 = u1 - w1 \in S\mu m . Apply the bound in Lemma 9.2 for F = s1 - u2. There exists w2 \in W>d

such that s1  - u2  - w2 \in S\mu m and

(9.5) \| s1  - u2  - w2\| \infty \leq 
\surd 
m\| s1  - u2  - w2\| L2(\mu m) \leq 

2ed2p\surd 
m

\bigm\| \bigm\| (s1  - u2  - w2)
\leq d
\bigm\| \bigm\| 
L2 .

Since both s1 and s1 - u2 - w2 lie in the linear subspace S\mu m , it must be that s2 := u2+w2 \in S\mu m

as well. Since w2 \in W>d, it follows that s2 \in (u2 +W>d) \cap S\mu m = H(u2).
Furthermore,

(s1  - u2  - w2)
\leq d = (u1  - w1  - u2  - w2)

\leq d = (u1  - u2)
\leq d.

(In the last step, we used that w1 and w2 are in W>d and so (w1)
\leq d = (w2)

\leq d = 0.)
Therefore, we can rewrite (9.5) as

\| s1  - s2\| \infty \leq 2ed2p\surd 
m

\bigm\| \bigm\| (u1  - u2)
\leq d
\bigm\| \bigm\| 
L2 .

The proof is complete.

9.4. Changing a single data point. The Sensitivity Lemma, Lemma 9.5, will be applied
in the situation where u1 and u2 are the uniform densities on the two datasets X1 and X2

that are different by a single element. Let us specialize the bound (9.4) to this case.
Suppose X1 = (x1, . . . , xn) and X2 = (x1, . . . , xn, xn+1). Here, in our discussion of privacy,

we allow xi be arbitrary points drawn from \{  - 1, 1\} p; they do not need to be random. The
corresponding densities are

fn =
1

n

n\sum 
i=1

1xi and fn+1 =
1

n+ 1

n+1\sum 
i=1

1xi .

A direct calculation yields

fn+1  - fn =
1

n+ 1

\bigl( 
1xn+1  - fn

\bigr) 
.
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Using the triangle inequality and then (7.3) and (7.4), we get

(9.6)
\bigm\| \bigm\| (fn+1  - fn)

\leq d
\bigm\| \bigm\| 
L2 \leq 1

n+ 1

\Bigl( \bigm\| \bigm\| (1xn+1)
\leq d
\bigm\| \bigm\| 
L2 +

\bigm\| \bigm\| (fn)\leq d
\bigm\| \bigm\| 
L2

\Bigr) 
\leq 2

n

\biggl( 
p

\leq d

\biggr) 1/2 1

2p
.

10. Selection rule. Next, we want to extend sensitivity to the selection rule. Can we pick
one point from a solution space in such a way that a small change in the solution space always
leads to a small change in the selected point?

10.1. \bfitL \bftwo sensitivity. We do not know the best selection rule in the L\infty metric. The
problem is simpler for the L2 metric: the proximal point (to a given reference point) is a good
selection rule.

Lemma 10.1 (sensitivity of the closest point in the Hilbert space). Consider a Hilbert space
X and a reference point r \in X. Let x(K) denote a point in a nonempty closed set K \subset X
that is closest to r, i.e.,

xr(K) = argmin
\bigl\{ 
\| x - r\| : x \in K

\bigr\} 
.

Then, for any two nonempty closed convex sets K1,K2 \subset X, we have\bigm\| \bigm\| xr(K1) - xr(K2)
\bigm\| \bigm\| 2 \leq 4max

\bigl( 
dist(r,K1),dist(r,K2)

\bigr) 
\cdot d(K1,K2).

In order to prove this lemma, we first observe the following.

Lemma 10.2. Suppose that K is a nonempty closed convex subset of a Hilbert space X.
Let r \in X. Let x0 = argmin

\bigl\{ 
\| x - r\| : x \in K

\bigr\} 
. Then

\| x0  - y\| 2 \leq 2
\Bigl( 
\| y  - r\| 2  - \| x0  - r\| 2

\Bigr) 
for all y \in K.

Proof. Without loss of generality, assume that r = 0. Let y \in K. Since x0+y
2 \in K, we

have
\bigm\| \bigm\| \bigm\| x0+y

2

\bigm\| \bigm\| \bigm\| \geq \| x0\| , so\bigm\| \bigm\| \bigm\| \bigm\| x0  - y

2

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \| x0\| 2 \leq 
\bigm\| \bigm\| \bigm\| \bigm\| x0  - y

2

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \bigm\| \bigm\| \bigm\| \bigm\| x0 + y

2

\bigm\| \bigm\| \bigm\| \bigm\| 2 = 1

2
(\| x0\| 2 + \| y\| 2).

Thus, \| x0  - y\| 2 \leq 2(\| y\| 2  - \| x0\| 2).
Proof of Lemma 10.1. If d(K1,K2) \geq d(r,K1) + d(r,K2), then we are done, since

\| xr(K1) - xr(K2)\| \leq \| xr(K1) - r\| + \| xr(K2) - r\| 
= d(r,K1) + d(r,K2) \leq 

\sqrt{} 
(d(r,K1) + d(r,K2))d(K1,K2).

Thus, we may assume that d(K1,K2) \leq d(r,K1) + d(r,K2). Without loss of generality, we
may also assume that d(r,K2) \leq d(r,K1). By Lemma 10.2,

\| xr(K1) - y\| 2 \leq 2(\| y  - r\| 2  - d(r,K1)
2)
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for all y \in K1. Note that we can write xr(K2) = y + d(K1,K2)z for some y \in K1 and z \in X
with \| z\| \leq 1. Since

\| y  - r\| \leq \| xr(K2) - r\| + d(K1,K2) = d(r,K2) + d(K1,K2),

it follows that

\| xr(K1) - y\| 2

\leq 2[(d(r,K2) + d(K1,K2))
2  - d(r,K1)

2]

= 2[d(r,K2) + d(K1,K2) + d(r,K1)][d(r,K2) + d(K1,K2) - d(r,K1)]

\leq 2[d(r,K2) + d(K1,K2) + d(r,K1)]d(K1,K2)

\leq 4(d(r,K1) + d(r,K2))d(K1,K2),

where the second inequality follows from the assumption that d(r,K2) \leq d(r,K1) and the last
inequality follows from the assumption that d(K1,K2) \leq d(r,K1) + d(r,K2).

10.2. Restriction onto the cube. Functions that comprise the solution space H(u) may
take negative values, hence not all of H(u) consists of densities. So, our next goal is to restrict
the affine space H(u) to the positive orthant [0,\infty )m and check that sensitivity still holds.
Our Algorithm 3.1 makes a more aggressive restriction onto the cube [2\delta /m, (\Delta  - \delta )/m]m.
This is what we will analyze now.

Lemma 10.3 (restriction onto a cube). Let H1 and H2 be a pair of parallel affine subspaces
of \BbbR m with equal dimensions. Assume that for some scalars a < b, we have

Hi \cap [a, b]m \not = \emptyset , i = 1, 2.

Fix any \lambda > 0 and consider the cube Q = [a - \lambda , b+ \lambda ]m. Then

d\infty (H1 \cap Q, H2 \cap Q) \leq 
\Bigl( b - a

\lambda 
+ 2
\Bigr) 
d\infty (H1, H2) .

Proof. Due to symmetry, it is enough to bound the quantity

sup
h1\in H1\cap Q

inf
h2\in H2\cap Q

\| h1  - h2\| \infty .

So let us fix any h1 \in H1 \cap Q and find h2 \in H2 \cap Q for which \| h1  - h2\| \infty is small. To this
end, fix a vector

(10.1) x1 \in H1 \cap [a, b]m,

which exists by assumption. Due to the definition of Hausdorff distance, we can find x2 \in H2

such that

(10.2) \| x2  - x1\| \infty \leq d\infty (H1, H2) =: \delta .

Consider the vector

y := x1 +
\lambda 

\delta 
(x2  - x1)
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and set h2 to be the following convex combination of h1 and y:

h2 :=
\Bigl( 
1 - \delta 

\lambda 

\Bigr) 
h1 +

\delta 

\lambda 
y.

(Here we assume that \delta \leq \lambda . Otherwise, the result follows immediately, since the diameter of
Q in L\infty norm is b - a+ 2\lambda .) Figure 1 might help to visualize our construction.

Figure 1. Construction in the proof of Lemma 10.3.

Let us check that the vector h2 constructed this way satisfies all the required properties.
First, we claim that

y \in Q.

Indeed, the definition of y combined with (10.1) and (10.2) yields

y \in [a, b]m +
\lambda 

\delta 
[ - \delta , \delta ]m = [a - \lambda , b+ \lambda ]m = Q.

We claim that
h2 \in H2.

Indeed, substituting the definition of y into the expression for h2, we get

(10.3) h2 =
\Bigl( 
1 - \delta 

\lambda 

\Bigr) \Bigl( 
h1  - x1

\Bigr) 
+ x2.

By the assumption, H1 andH2 are translates of the same linear subspace. This linear subspace
can be expressed as H1  - x1, or equivalently as H2  - x2 since x1 \in H1 and x2 \in H2. In
particular, we have t(H1 - x1) = H2 - x2 for any t \in \BbbR , or equivalently H2 = t(H1 - x1)+x2.
Since h1 \in H1, it follows from (10.3) that h2 \in H2 as claimed.

Next, since both h1 and y lie in Q, their convex combination must lie there, too, so

h2 \in Q.

Finally, using the definition of h2 and recalling that h1 and y lie in Q, we get

h1  - h2 =
\delta 

\lambda 
(h1  - y) \in \delta 

\lambda 
(Q - Q) =

\delta 

\lambda 

\bigl[ 
 - (b - a+ 2\lambda ), b - a+ 2\lambda 

\bigr] m
.

Thus

\| h1  - h2\| \infty \leq \delta 

\lambda 
(b - a+ 2\lambda ) =

\Bigl( b - a

\lambda 
+ 2
\Bigr) 
\delta .

The proof is complete.
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10.3. \bfitL \infty sensitivity of the selection rule. We are ready to analyze the sensitivity of the
L2-proximal selection rule.

Lemma 10.4 (L\infty sensitivity of the selection rule). Let 0 < a < c < (a+ b)/2. Let H1 and
H2 be a pair of parallel affine subspaces of \BbbR m with equal dimensions. Assume that

Hi \cap [a, b]m \not = \emptyset , i = 1, 2.

Let
hi = argmin

\bigl\{ 
\| x - c \cdot 1m\| 2 : x \in Hi \cap [a - \lambda , b+ \lambda ]m

\bigr\} 
, i = 1, 2.

Then

\| h1  - h2\| 2\infty \leq 4m(b - c)
\Bigl( b - a

\lambda 
+ 2
\Bigr) 
d\infty (H1, H2) .

Proof. Lemma 10.3 gives

(10.4) d\infty (K1,K2) \leq 
\Bigl( b - a

\lambda 
+ 2
\Bigr) 
d\infty (H1, H2) ,

where Ki = Hi \cap [a - \lambda , b+ \lambda ]m. Let us apply Lemma 10.1 for r = c \cdot 1m and the L2 norm on
\BbbR m. Note that

distL2(r,Ki) \leq max
h\in [a,b]m

\| r  - h\| L2 \leq max
h\in [a,b]m

\| r  - h\| \infty = max
\bigl\{ 
| a - c| ,| c - b| 

\bigr\} 
= b - c.

Thus, Lemma 10.1 yields

\| h1  - h2\| 2L2 \leq 4(b - c) \cdot dL2(K1,K2) \leq 4(b - c) \cdot d\infty (K1,K2).

To complete the proof, use (10.4) and note that \| h1  - h2\| 2\infty \leq m\| h1  - h2\| 2L2 .

11. Shrinkage. Another step of Algorithm 3.1 we need to control is shrinkage. We will
check here that shrinkage onto a cube is Lipschitz in the L\infty -Hausdorff metric. Let us start
with a general observation.

Lemma 11.1 (shrinkage). Let X be a normed space, and let z \in X be a point such that
\| z\| \leq 1 - \beta for some \beta \in (0, 1). Let r : X \rightarrow X be the retraction map onto the unit ball of X
toward z, i.e.,

r(x) = (1 - \lambda )x+ \lambda z,

where \lambda = \lambda (x) is the minimal number in [0, 1] such that
\bigm\| \bigm\| r(x)\bigm\| \bigm\| \leq 1. Then the Lipschitz norm

of the map \lambda (\cdot ) is at most 1/\beta , and the Lipschitz norm of the map r(\cdot ) is at most 2/\beta .

Proof. Fix any pair of vectors x1, x2 \in X and denote

\lambda 1 = \lambda (x1), \lambda 2 = \lambda (x2), \mu =\| x1  - x2\| /\beta .

The claim about the Lipschitz norm of \lambda (\cdot ) can be stated as | \lambda 1  - \lambda 2| \leq \mu . By symmetry, it
suffices to show that

(11.1) \lambda 1 \leq \lambda 2 + \mu .
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This bound is trivial if \lambda 2 + \mu > 1 since we always have \lambda 1 \leq 1. So we can assume from now
on that \lambda 2 + \mu \in [0, 1].

Due to the minimality property in the definition of \lambda 1 = \lambda (x1), in order to prove (11.1) it
suffices to show that

(11.2)
\bigm\| \bigm\| (1 - \lambda 2  - \mu )x1 + (\lambda 2 + \mu )z

\bigm\| \bigm\| \leq 1.

By the triangle inequality, the left-hand side is bounded by \| A\| +\| B\| where

A = (1 - \lambda 2  - \mu )x2 + (\lambda 2 + \mu )z, B = (1 - \lambda 2  - \mu )(x1  - x2).

Rearranging the terms, we can rewrite

A = (1 - a)
\bigl[ 
(1 - \lambda 2)x2 + \lambda 2z

\bigr] 
+ az, where a =

\mu 

1 - \lambda 2
.

By assumption, a \in [0, 1]. Then A is a convex combination of the vector (1  - \lambda 2)x2 + \lambda 2z
whose norm is bounded by 1 by definition of \lambda 2 = \lambda (x2) and the vector z whose norm is
bounded by 1 - \beta by assumption. Hence, by the triangle inequality and definition of a and \mu ,
we have

\| A\| \leq (1 - a) \cdot 1 + a \cdot (1 - \beta ) = 1 - a\beta \leq 1 - \mu \beta = 1 - \| x1  - x2\| .

Furthermore, the assumption 1 - \lambda 2  - \mu \in [0, 1] yields

\| B\| \leq \| x1  - x2\| .

Hence we showed that \| A\| +\| B\| \leq 1, establishing (11.2) and completing the first part of the
proof (about the Lipschitz norm of \lambda ).

To prove the second part of the lemma, we need to show that

(11.3)
\bigm\| \bigm\| r(x1) - r(x2)

\bigm\| \bigm\| \leq (2/\beta )\| x1  - x2\| .

Let us first prove this inequality assuming that \| x1\| \leq 1 or \| x2\| \leq 1. Without loss of
generality, assume \| x1\| \leq 1. Denoting \mu 1 = 1  - \lambda 1 and \mu 2 = 1  - \lambda 2 and using the triangle
inequality, we obtain

(11.4)
\bigm\| \bigm\| r(x1) - r(x2)

\bigm\| \bigm\| =\| \mu 1x1 + \lambda 1z  - \mu 2x2  - \lambda 2z\| \leq \| \mu 1x1  - \mu 2x2\| +| \lambda 1  - \lambda 2| \| z\| .

By the first part of the lemma and since \| z\| \leq 1 - \beta , we have

(11.5) | \lambda 1  - \lambda 2| \| z\| \leq 1

\beta 
\| x1  - x2\| (1 - \beta ) = (1/\beta  - 1)\| x1  - x2\| .

Furthermore, adding and subtracting the cross term \mu 2x1 and using the triangle inequality,
we get

\| \mu 1x1  - \mu 2x2\| \leq | \mu 1  - \mu 2| \| x1\| + \mu 2 \| x1  - x2\| .

Now, | \mu 1  - \mu 2| = | \lambda 1  - \lambda 2| \leq \| x1  - x2\| /\beta by the first part of the lemma, \| x1\| \leq 1 by the
standing assumption, and \mu 2 \leq 1. Hence

(11.6) \| \mu 1x1  - \mu 2x2\| \leq (1/\beta + 1)\| x1  - x2\| .
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Substitute (11.5) and (11.6) into (11.4). We conclude the claim (11.3).
Finally, consider the remaining case where both \| x1\| \geq 1 and \| x2\| \geq 1. Without loss of

generality, \lambda 1 \leq \lambda 2, so the vectors

\~x1 := (1 - \lambda 1)x1 + \lambda 1z and \~x2 := (1 - \lambda 1)x2 + \lambda 1z

satisfy

\| \~x1\| = 1 and \| \~x2\| \geq 1.

Definition of retraction yields r(\~x1) = r(x1) and r(\~x2) = r(x2). Thus, applying (11.3) for \~x1
and \~x2, we get \bigm\| \bigm\| r(x1) - r(x2)

\bigm\| \bigm\| =
\bigm\| \bigm\| r(\~x1) - r(\~x2)

\bigm\| \bigm\| \leq (2/\beta )\| \~x1  - \~x2\| 
= (2/\beta )(1 - \lambda 1)\| x1  - x2\| \leq (2/\beta )\| x1  - x2\| .

The lemma is proved.

Now we extend our analysis of shrinkage for affine subspaces.

Lemma 11.2 (shrinkage for subspaces). Let K be the unit ball of a finite-dimensional
normed space X. Let z, z0 \in X be points such that z \in z0 + (1  - \beta )K for some \beta \in (0, 1).
Given an affine subspace H in X, define the affine subspace \~H by moving H toward z until it
intersects the ball z0 +K, i.e.,

\~H = (1 - \lambda )H + \lambda z,

where \lambda = \lambda (H) is the minimal number in [0, 1] such that \~H \cap (z0+K) \not = \emptyset . Then for any two
affine subspaces H1 and H2 that are translates of each other, the Hausdorff distance satisfies

dX( \~H1, \~H2) \leq 
2

\beta 
dX(H1, H2).

Proof. By translation, we can assume without loss of generality that z0 = 0. The affine
subspaces H1 and H2 are translates of some common linear subspace H0. Apply Lemma 11.1
for the quotient space X/H0 instead of X and for Hz := z +H0 instead of z.

The requirement of that lemma is satisfied since

(11.7) \| Hz\| X/H0
= inf

h\in Hz

\| h\| X \leq \| z\| X \leq 1 - \beta .

Indeed, the equality here is the definition of the norm in the quotient space, the first inequality
holds since z \in Hz, and the last inequality is an equivalent form of the assumption z \in 
(1 - \beta )K.

We claim that the retraction map r(\cdot ) in Lemma 11.1 satisfies

r(H) = \~H for any translate H of H0.

Indeed, by definition we have

r(H) = (1 - \lambda )H + \lambda Hz,
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where \lambda is the minimal number in [0, 1] such that
\bigm\| \bigm\| r(H)

\bigm\| \bigm\| 
X/H0

\leq 1. Since \| Hz\| X/H0
< 1 by

(11.7), continuity shows that \lambda < 1 and hence

r(H) = (1 - \lambda )H + \lambda z.

Moreover, the condition that
\bigm\| \bigm\| r(H)

\bigm\| \bigm\| 
X/H0

\leq 1 is equivalent to r(H) \cap K \not = \emptyset . Hence the

definitions of r(H) and \~H are equivalent as we claimed.
Lemma 11.1 yields \bigm\| \bigm\| \~H1  - \~H2

\bigm\| \bigm\| 
X/H0

\leq 2

\beta 
\| H1  - H2\| X/H0

.

It remains to note that, by definition,

\| H1  - H2\| X/H0
= inf

h1\in H1, h2\in H2

\| h1  - h2\| X = dX(H1, H2),

and similarly for the distance between \~H1 and \~H2. The proof is complete.

Finally, we specialize our analysis to the shrinkage onto the cube.

Lemma 11.3 (shrinkage onto a cube). Let 0 < a < c < (a+ b)/2. Given an affine subspace
H in \BbbR m, define the affine subspace \~H by moving H toward d1m until it intersects the cube
[a, b]m, i.e.,

\~H = (1 - \lambda )H + \lambda \cdot c1m,

where \lambda = \lambda (H) is the minimal number in [0, 1] such that \~H \cap [a, b]m \not = \emptyset . Then for any two
affine subspaces H1 and H2 that are translates of each other, the Hausdorff distance in the
L\infty norm satisfies

d\infty ( \~H1, \~H2) \leq 
b - a

c - a
d\infty (H1, H2).

Proof. Apply Lemma 11.2 for

z = c1m, z0 =
a+ b

2
1m, K =

\Bigl[ 
 - b - a

2
,
b - a

2

\Bigr] m
so that z0 is the center of the cube [a, b]m, K is the centered cube, and z0 +K = [a, b]m.

Now,

z  - z0 =
\Bigl( 
c - a+ b

2

\Bigr) 
1m

and

0 \leq a+ b

2
 - c = (1 - \beta )

b - a

2
for \beta =

2(c - a)

b - a

so z  - z0 \in (1 - \beta )K as required in Lemma 11.2. The conclusion of this lemma is that

dX( \~H1, \~H2) \leq 
2

\beta 
dX(H1, H2).

Since the unit ball K of X is the cube [ - 1, 1]m scaled by the factor (b  - a)/2, the norm in
X is the L\infty norm scaled by that factor. Therefore, the conclusion holds for the L\infty norm as
well.
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12. Privacy and accuracy of the algorithm. We are ready to analyze the privacy and
accuracy of Algorithm 3.1.

12.1. Algorithm. For convenience we rewrite Algorithm 3.1; see Algorithm 12.1 below.
Note that in step 5 of Algorithm 12.1, the L2(S) norm is defined as\| h\| 2L2(S) =

1
m

\sum m
i=1 h(si)

2.

Algorithm 12.1 Private sampling synthetic data algorithm.

Input: A sequence X of n points in \{  - 1, 1\} p (true data); m: cardinality of S; d: the degree
of the marginals to be matched; parameters \delta ,\Delta with \Delta > \delta > 0.

1. Draw a sequence S = (\theta 1, . . . , \theta m) of m points in the cube independently and uni-
formly (reduced space).

2. Form the m \times 
\bigl( 

p
\leq d

\bigr) 
matrix M with entries wJ(\theta i), i.e., the matrix whose rows are

indexed by the points of the reduced space S and whose columns are indexed by the
Walsh functions of degree at most d. If the smallest singular value of M is bounded
below by

\surd 
m/2ed, call S well conditioned and proceed. Otherwise, return ``Failure""

and stop.
3. Let fn be the uniform density on true data: fn = 1

n

\sum n
i=1 1xi . Consider the solution

space

H = H(fn) =
\Bigl\{ 
h : \{  - 1, 1\} p \rightarrow \BbbR : supp(h) \subset S, h\leq d = (fn)

\leq d
\Bigr\} 
.

4. Shrink H toward the uniform density um = 1
m

\sum m
i=1 1si on S: let

\~H = (1 - \lambda )H + \lambda um,

where \lambda \in [0, 1] is the minimal number such that \~H \cap [2\delta /m, (\Delta  - \delta )/m]S \not = \emptyset .
5. Pick a proximal point

h\ast = argmin
\Bigl\{ \bigm\| \bigm\| \~h - um

\bigm\| \bigm\| 
L2(S)

: \~h \in \~H \cap [\delta /m,\Delta /m]S
\Bigr\} 
.

Output: a sequence Y = (y1, . . . , yk) of k independent points drawn from S according to
density h\ast .

Remark 12.1. The computational complexity of Algorithm 12.1 is governed by the linear
program in step 3 to compute the density h on S that is guaranteed by Theorem 8.1, which
dominates the cost of the simple ``line-search"" optimization in step 4 and the linear least
squares problem in step 5. The associated linear program has | S| \leq m variables (the values of
the density on S),

\bigl( 
p
\leq d

\bigr) 
linear equations (to match the marginals to those of X), and | S| \leq m

linear inequalities (to ensure the density is nonnegative on S), where m \geq e2d
\bigl( 

p
\leq d

\bigr) 
. The

complexity of solving general linear programs is polynomial in the number of variables; see,
e.g., [31]. Hence (for fixed d) the complexity of Algorithm 12.1 is polynomial in p.

As already discussed in section 3.3, if S fails the well-conditionedness condition in step 2,
we can simply resample S until it is well conditioned. Since the expected number or trials
until success is \leq 2 (under some mild conditions), Algorithm 3.1 succeeds deterministically,
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but its running time becomes random (with expected overhead time \leq 2).

The standing assumption in this section is that the reduced space S = (s1, . . . , sm) is
random, and consists of points si drawn independently and uniformly from the cube. We
would like to show that with high probability over S, the algorithm is differentially private.

12.2. Sensitivity of density. The privacy guarantee will be achieved via the Private Sam-
pling lemma, Lemma 3.3. To apply it, we need to bound the sensitivity of the density h\ast 

computed by the algorithm.

Lemma 12.2. Suppose the reduced space S is well conditioned. Then, for any pair of input
datasets X1 and X2 that consist of at least n elements each and differ from each other by a
single element, the densities h\ast 1 and h\ast 2 computed by the algorithm satisfy\bigm\| \bigm\| h\ast 1  - h\ast 2

\bigm\| \bigm\| 
\infty \leq 4

\surd 
2\Delta 3/2ed/2\surd 
\delta nm1/4

\biggl( 
p

\leq d

\biggr) 1/4

.

Proof. By Proposition 9.4, the solution subspaces

H1 = H(fn) and H2 = H(fn+1)

are translates of each other. The ambient space consists of all functions supported on an
m-element set S, and thus can be identified with \BbbR m. Let \~Hi be the result of shrinkage of the
subspaces Hi toward the uniform distribution as specified in the algorithm, i.e., the shrinkage
onto the cube [\delta /m,\Delta /m]m and toward the uniform distribution um. The selection rule for
h\ast specified in the algorithm is stable in the L\infty metric. Indeed, Lemma 10.4 applied for the
subspaces \~Hi and for

a =
2\delta 

m
, b =

\Delta  - \delta 

m
, c =

1

m
, \lambda =

\delta 

m
yields \bigm\| \bigm\| h\ast 1  - h\ast 2

\bigm\| \bigm\| 2
\infty \leq 4\Delta 2

\delta 
\cdot d\infty ( \~H1, \~H2).

Next, recall that the shrinkage map is stable. Indeed, Lemma 11.3 applied for the same a, b, c
yields

d\infty ( \~H1, \~H2) \leq 2\Delta \cdot d\infty (H1, H2).

Furthermore, the solution space is stable. Indeed, Lemma 9.5 for the uniform density \mu on
the cube yields

d\infty (H1, H2) \leq 
2ed2p\surd 

m

\bigm\| \bigm\| (fn  - fn+1)
\leq d
\bigm\| \bigm\| 
L2 .

Finally, recall from (9.6) that\bigm\| \bigm\| (fn+1  - fn)
\leq d
\bigm\| \bigm\| 
L2 \leq 2

n

\biggl( 
p

\leq d

\biggr) 1/2 1

2p
.

Combining all of these bounds, we conclude that\bigm\| \bigm\| h\ast 1  - h\ast 2
\bigm\| \bigm\| 2
\infty \leq 4\Delta 2

\delta 
\cdot 2\Delta \cdot 2e

d2p\surd 
m

\cdot 2
n

\biggl( 
p

\leq d

\biggr) 1/2 1

2p
\leq 32\Delta 3ed

\delta n
\surd 
m

\biggl( 
p

\leq d

\biggr) 1/2

.

The proof is complete.
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12.3. Privacy guarantee. Finally, we are ready to give the privacy guarantee of our
algorithm.

Theorem 12.3 (privacy). If k \leq 1
4
\surd 
2
\varepsilon 
\bigl( 
\delta 
\Delta 

\bigr) 3/2
e - d/2

\bigl( 
p
\leq d

\bigr)  - 1/4\surd 
n/m3/4, then Algorithm 12.1

is \varepsilon -differentially private.

Proof. Since the reduced space S is drawn independently of the input data X, we can
condition on S. If S is ill conditioned, the algorithm returns ``Failure"" regardless of the input
data, so the privacy holds trivially. Suppose S is well conditioned.

Let X1 and X2 be a pair of datasets that consist of at least n elements each and differ
from each other by a single element. By the choice made in the algorithm and by sensitivity
of density (Lemma 12.2), we have

h\ast 2 \geq 
\delta 

m
and

\bigm| \bigm| h\ast 1  - h\ast 2
\bigm| \bigm| \leq 4

\surd 
2\Delta 3/2ed/2\surd 
\delta nm1/4

\biggl( 
p

\leq d

\biggr) 1/4

=: \eta 

pointwise. Therefore \bigm| \bigm| h\ast 1/h\ast 2\bigm| \bigm| \leq 1 +
\eta m

\delta 
\leq exp

\Bigl( \eta m
\delta 

\Bigr) 
\leq exp

\Bigl( \varepsilon 
k

\Bigr) 
pointwise, where the last inequality indeed holds due to our assumption on k. The Private
Sampling lemma, Lemma 3.3, completes the proof.

Remark 12.4. Suppose we chose the size m of the reduced space S so that m \asymp e2d
\bigl( 

p
\leq d

\bigr) 
.

Simplifying the condition in Theorem 12.3, we conclude that if k \ll 
\surd 
n/m, then Algo-

rithm 12.1 is o(1)-differentially private.

12.4. Accuracy guarantee. The following is the accuracy guarantee of our algorithm.

Theorem 12.5 (accuracy). Assume the true data X = (x1, . . . , xn) is drawn independently
from the cube according to some density f , which satisfies \| f\| \infty \leq \Delta /2p. Assume that n \geq 
16\delta  - 2\gamma  - 1e2d

\bigl( 
p
\leq d

\bigr) 
, 16\delta  - 2\gamma  - 1\Delta 2e2d

\bigl( 
p
\leq d

\bigr) 
\leq m \leq 2p/4, and k \geq 4\delta  - 2(log(2/\gamma ) + log

\bigl( 
p
\leq d

\bigr) 
). Then,

with probability at least 1 - 4\gamma  - 1\surd 
2p
, the algorithm succeeds, and all marginals of the synthetic

data Y up to dimension d are within 4\delta from the corresponding marginals of the true data X.

Proof. Proposition 9.3 and the choice of m guarantee that the algorithm succeeds with
probability at least 1 - \gamma .

Furthermore, the uniform density on the cube g = 2 - p satisfies
\bigm\| \bigm\| f/g\bigm\| \bigm\| 

L2 \leq 
\bigm\| \bigm\| f/g\bigm\| \bigm\| \infty =

\| f\| \infty \cdot 2p \leq \Delta . Therefore, Theorem 8.1 implies that with probability at least 1  - 2\gamma , there
exists h \in H = H(fn) such that

(12.1)
\bigm\| \bigm\| h - (f/g)gm

\bigm\| \bigm\| 
\infty \leq \delta 

m
.

Since (f/g)gm is a nonnegative function, it follows that

h \geq  - \delta 

m
pointwise.

The assumption m \leq 2p/4 implies that with probability 1  - 1\surd 
2p

there are no repetitions

in y1, . . . , ym, which in turn implies that with probability 1  - 1\surd 
2p

we have \| gm\| \infty \leq 1/m

(otherwise \| gm\| \infty would scale with the number of repetitions in y1, . . . , ym).
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In the following we condition on the event that there are no repetitions in y1, . . . , ym.
Since

\bigm\| \bigm\| f/g\bigm\| \bigm\| \infty \leq \Delta by above and \| gm\| \infty \leq 1/m, we have
\bigm\| \bigm\| (f/g)gm\bigm\| \bigm\| \infty \leq \Delta /m, so

h \leq \Delta + \delta 

m
pointwise.

A combination of these two bounds on h implies that

2\delta 

m
\leq (1 - 3\delta )h+

3\delta 

m
\leq \Delta  - \delta 

m
pointwise,

as long as \Delta \geq 5/3. Since h \in H, it follows that the affine subspace (1  - 3\delta )H + 3\delta um
has a nonempty intersection with [2\delta /m, (\Delta  - \delta )/m]m. The minimality property of \lambda in the
algorithm yields

(12.2) \lambda \leq 3\delta .

Recall that a marginal of a function f : \{  - 1, 1\} p \rightarrow \BbbR that corresponds to a subset J \subset [p]
of parameters and values \theta j \in \{  - 1, 1\} for j \in J is defined as

P (f) =
\sum 

x\in \{  - 1,1\} p
f(x)v(x),

where v(x) = 1\{ x(j)=\theta j \forall j\in J\} .
Recall that the solution h\ast of the algorithm satisfies

h\ast \in \~H = (1 - \lambda )H + \lambda um

and, by definition of H, all members of H have the same marginals up to dimension d as fn.
This and linearity implies that for any marginal up to dimension d,

P (h\ast ) = (1 - \lambda )P (fn) + \lambda P (um).

Hence \bigm| \bigm| P (h\ast ) - P (fn)
\bigm| \bigm| \leq \lambda 

\bigm| \bigm| P (um) - P (fn).
\bigm| \bigm| 

Since um and fn are densities, all of their marginals must be within [0, 1], so
\bigm| \bigm| P (um) - P (fn)

\bigm| \bigm| \leq 
1. Combining this with (12.2), we get

(12.3)
\bigm| \bigm| P (h\ast ) - P (fn)

\bigm| \bigm| \leq 3\delta 

for all marginals up to dimension d, with probability at least 1 - 2\gamma .
Now we compare the marginals of the density h\ast and its empirical counterpart h\ast k. We

can express

P (h\ast k) - P (h\ast ) =
1

k

k\sum 
i=1

\bigl( 
v(Yi) - \BbbE v(Yi)

\bigr) 
,
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where Yi are i.i.d. random variables drawn according to the density h\ast . Thus, we have a
normalized and centered sum of i.i.d. Bernoulli random variables, so Bernstein's inequality
(see, e.g., [42, Theorem 2.8.4]) yields

\BbbP 
\bigl\{ \bigm| \bigm| P (h\ast k) - P (h\ast )

\bigm| \bigm| > \delta 
\bigr\} 
\leq 2 exp( - \delta 2k/4) \leq \gamma 

\biggl( 
p

\leq d

\biggr)  - 1

if k \geq 4\delta  - 2(log(2/\gamma ) + log
\bigl( 

p
\leq d

\bigr) 
). Thus, by a union bound, we have\bigm| \bigm| P (h\ast k) - P (h\ast )

\bigm| \bigm| \leq \delta ,

simultaneously for all marginals up to dimension d, with probability at least 1 - \gamma .
Combining this with (12.3) via the triangle inequality, we conclude that\bigm| \bigm| P (h\ast k) - P (fn)

\bigm| \bigm| \leq 4\delta 

for all marginals up to dimension d, with probability at least 1  - 3\gamma . Recalling that we
conditioned on an event with probability 1 - 1/

\surd 
p, applying the union bound completes the

proof.

Remark 12.6 (no shrinkage for regular densities). If the density f from which the true data
X is drawn is regular, specifically if 3\delta /2p \leq f \leq (\Delta  - 2\delta )/2p pointwise for some positive
numbers \delta and \Delta , the algorithm does not apply any shrinkage. Indeed, in this case we have
3\delta /m \leq (f/g)gm \leq (\Delta  - 2\delta )m, so it follows from (12.1) that 2\delta /m \leq h \leq (\Delta  - \delta )m, and thus
H has a nonempty intersection with [2\delta /m, (\Delta  - \delta )m]S , hence \lambda = 0.
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