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Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their
species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and
cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the
Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow
and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some
sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and
stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on

forest and freshwater ecosystems.
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Forest and freshwater ecosystems are intimately
connected, and the ecological integrity of each depends on
underlying processes and functions that the other provides.
Forest ecosystems, dominated by trees and other woody veg-
etation, typically occur in the headwaters of many freshwater
ecosystems (e.g., streams, rivers, ponds, lakes), and forest
species composition, structure, and function strongly influ-
ence aquatic habitat and the quantity and quality of water
resources (e.g., Ellison et al. 2012, Creed et al. 2019). Together,
forests and associated freshwater ecosystems supply a myriad
of goods and services that are essential for human well-being.
Forests cover approximately 30% of the global land area (FAO
and UNEP 2020) and provide important benefits including
forest products, carbon sequestration, nutrient retention, and
flood control. Freshwater ecosystems make up only a small
fraction of the Earth’s surface (less than 1%, Gleick 1996).
However, they also provide essential services, such as water
for drinking, irrigation, wastewater assimilation, power gen-
eration, fish and waterfowl habitat, and transportation (Postel
and Carpenter 1997). Forest and freshwater ecosystems are
inextricably linked and offer related benefits, including rich
biodiversity, recreational opportunities, cultural significance,
and aesthetics.

Climate change, including increasing climate variability,
is altering the composition and functioning of forest and
freshwater ecosystems, which affects their ability to provide
ecosystem services (figure 1). Some of these changes are
caused by subtle shifts in mean climate over time, which can
elicit ecological responses that are often difficult to detect.
Increased extreme weather events, including extreme heat
and acute wet and dry conditions, arguably have greater
impacts on ecosystems than gradual changes in mean cli-
mate (Smith 2011, Ummenhofer and Meehl 2017). Warming
temperature, changes in precipitation, and increasing vari-
ability of each can manifest differently among regions. For
example, the substantial warming in cold regions reduces
the amount of frozen water by causing permafrost thaw, gla-
cial melt, and decreased snowpack and lake ice cover, with
profound effects, some of which feed back into the global
climate system (Fountain et al. 2012). In tropical regions,
small changes in otherwise steady temperature regimes also
may have profound effects because tropical ecosystems have
evolved under a narrower temperature range and may be
more sensitive to warming (Wright et al. 2009).

Evaluating the impacts of climate change on forest and
freshwater ecosystems is challenging because of co-occurring
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Figure 1. Conceptual diagram showing how climate change
and associated ecological forcing elicit ecosystem responses
and alter ecosystem services.

changes in other global change drivers that can influence
responses. Factors such as atmospheric deposition of nitro-
gen and sulfur, increasing atmospheric carbon dioxide, and
increasing tropospheric ozone can have antagonistic or
synergistic effects that may counteract or amplify effects of
climate change (Bytnerowicz et al. 2007, Baron et al. 2013).
In addition, responses of forest and freshwater ecosystems
to major disturbances, which may (e.g., extreme weather
events, catastrophic wildfires) or may not be related to cli-
mate change (e.g., land-use change), introduce additional
levels of complexity (figure 1; e.g., Ollinger et al. 2002).
Long-term ecological research has improved the scientific
understanding of shifts in forest and freshwater ecosystem
function caused by climate change and its variability. There
is a pressing need to synthesize this information to inform
resource management and help guide decision-making. In
this article, we evaluate changes in climate and the effects
of these changes at long-term ecological research (LTER)
sites that have both forest and freshwater components. Our
goals in this analysis are to characterize the range of cli-
mate changes observed across forest and freshwater sites of
the US LTER Network and evaluate the responses of these
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ecosystems to changing climate. This article is part of a spe-
cial issue that marks the 40th anniversary of the US National
Science Foundation’s Long Term Ecological Research (LTER)
program. Companion articles in this special issue address the
responses of coastal, dryland, and marine pelagic ecosystems
to climate change, and an overview article compares and
contrasts responses among these ecosystems.

Study sites

The US LTER Network consists of 28 sites located in many
ecosystem types and biomes. In this analysis we focus on
the nine LTER sites with linked forest and freshwater eco-
systems (figure 2, table 1, supplemental material). Five sites
(Andrews, Bonanza Creek, Coweeta, Hubbard Brook, and
Luquillo) are US Forest Service Experimental Forests estab-
lished between 1934 and 1963 and have long-term records
from gauged, experimental watersheds to study how forest
management and other ecological change impacts stream
water quantity and quality. Although these watershed stud-
ies were not initially designed to study climate change, their
long-term data sets have become invaluable for assessing
climate change impacts. These five sites and the additional
four sites were selected for this analysis because they have
common research themes focusing on forest and freshwater
ecosystems, even though site characteristics and research
emphases vary by location. Average annual air temperature
at these sites ranges from -3 degrees Celsius (°C) to 23°C
and mean annual precipitation ranges from 270 to 3500
millimeters (table 1). The nine sites include a tropical rain-
forest (Luquillo, Puerto Rico [LUQ]), temperate rainforest
(H.J. Andrews, Oregon [AND]), boreal forest (Niwot Ridge,
Colorado [NWT], and Bonanza Creek, Alaska [BNZ]), and
five temperate forest sites, including one in the north-central
United States (North Temperate Lakes, Wisconsin (NTL)
and four that are in relatively close proximity along a latitu-
dinal gradient in the eastern United States (Hubbard Brook,
New Hampshire [HBR]; Harvard Forest, Massachusetts
[HER]; Baltimore Ecosystem Study, Maryland [BES]; and
Coweeta, North Carolina [CWT]).

These LTER sites have a history of climate change research
using a combination of approaches including long-term
monitoring, field and laboratory experiments, dendroclima-
tology, paleoecology, and modeling. The LTER Network is
bottom-up in the sense that the research is investigator-driven
and has a broad scope with questions that vary from site to
site. Although this design makes cross-site analyses challeng-
ing, the focus on long-term place-based observational studies
and experimental manipulations (see supplemental table S1)
enables in-depth research that provides mechanistic under-
standing of ecosystem function and response to change.

Recent changes in air temperature and precipitation

To put ecosystem responses to climate change in context, we
examined changes in climate at the nine forest and freshwa-
ter LTER sites on time scales relevant to the long life spans
of trees, including the LTER period (1980-2019) relative
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Figure 2. Study sites in the Long Term Ecological Research Network representing forest and freshwater ecosystems.

to the twentieth century (1900-1999) reference period, the
current period (2010-2019) relative to the late twentieth
century reference period (1970-1999), observed 70- and
50-year trends (1950-2019 and 1970-2019) and projected
future trends (2020-2099), and recent climate (1990-2019)
versus projected future climate (2070-2099). We used pub-
licly available gridded data sets because of the need to make
comparisons on the basis of consistent data sources among
disparate sites, and to characterize changes that extend over
longer periods than the LTER program (Jones and Driscoll
2022, this issue). Monthly temperature and precipitation
data for each LTER site were extracted from 0.5-degree
grid cells for the period from 1900 through 2019 from the
University of East Anglia’s Climatic Research Unit gridded
data product (CRU TS4.04; Harris et al. 2020). Gridded cli-
mate data provide an indication of regional trends in climate
at each LTER site and are well correlated to LTER measure-
ments (supplemental figures Sla and S1b), despite some
differences in mountainous areas. Gridded temperature and
precipitation data, as well as other time series data in this
manuscript, were analyzed for significant trends (p < .05)
using the nonparametric Mann-Kendall test (Kendall 1938,
Mann 1945). Slopes were calculated as the median slope of
all possible pairs in the data set as described by Sen (1968).
Mean annual air temperature increased significantly at
all sites from 1950 to 2019, with rates ranging from 0.09°C
per decade at Niwot Ridge to 0.39°C per decade at Bonanza

https://academic.oup.com/bioscience

Creek (table 2). Precipitation also increased from 1950
to 2019 at sites in the eastern United States (Baltimore,
Coweeta, Hubbard Brook, Harvard Forest), and lesser but
statistically significant increases also occurred at Niwot
Ridge in the West. Similar patterns were evident over a
shorter period when streamflow data were available for
all sites (1970-2019), but trends in precipitation for this
shorter period, although they are generally consistent with
trends for the longer period, were not significant (table 2).
More rapid warming at poleward LTER sites and increased
precipitation in the eastern United States are consistent with
broadscale analyses (USGCRP 2017, Dai et al. 2019).

In the LTER period (1980-2019), the frequency of hot and
cold months reflects climate change effects relative to the
twentieth century (1900-1999) in absolute (figure 3a, 3b)
and relative (figure 3¢, 3d) terms. Hot months were defined
in absolute terms as those with temperature more than 2°C
above, and cold months were defined as those with tempera-
ture more than 2°C below the mean monthly temperature
for the reference period (1900-1999; figure 3a, 3b). The 2°C
value is commonly used as a policy target for maximum
allowable warming (Randalls 2010), and is slightly less
than twice the total current global average air temperature
increase since preindustrial times (1.1°C from 1880 to 2020;
NOAA 2021). Extreme hot (cold) months were defined in
relative terms as those with temperature above the 90th per-
centile (below the 10th percentile) for the twentieth century
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Table 1. Characteristics of forested Long Term Ecological Research sites.

Mean annual Mean annual

Elevation temperature precipitation

Site Latitude Longitude (in meters) (in degrees Celsius) (in millimeters) Cover type

Baltimore 39°06’N 76°18'W 2 13 1040 Mixed hardwood

Bonanza Creek 64°52’'N 147°51'W 365 -3 270 Boreal forest

Coweeta 35°00’'N 83°30'W 686 13 2100 Mixed hardwood

H. J. Andrews 44°13'N 122°15'W 1020 9 2250 Douglas fir or western
hemlock

Harvard Forest 42°32°'N 72°11'W 330 8 1090 Transition hardwood or
white pine or hemlock

Hubbard Brook 43°56’N 71°45’'W 590 6 1400 Northern hardwood or
spruce fir

Luquillo 18°18'N 65°48'W 350 23 3500 Tropical hardwoods

Niwot Ridge 40°02’N 105°33'W 3020 680 Subalpine conifer

North Temperate Lakes 46°01'N 89°40°'W 497 4 820 Red and white pine or

northern hardwood

Table 2. Trends in mean annual temperature, precipitation, and the Standardized Precipitation Evapotranspiration
Index (SPEL Vicente-Serrano et al. 2010) from 1950 to 2019 as determined with gridded climate data (CRU TS4.04;
Harris et al. 2020).
1950-2019 1970-2019
Air temperature
(in degree Precipitation Air temperature Precipitation Streamflow
Celsius [°C] (in millimeters SPEI per (in °C per (in mm per SPEI per (in mm per
Site per decade) [mm] per decade) decade decade) decade) decade decade)
H. J. Andrews 0.12 -9 0 0.18 -20 -0.01 -46
Baltimore 0.16 22 0.05 0.23 21 0.04 6
Bonanza
Creek 0.39 1 -0.01 0.49 2 -0.02 7
Coweeta 0.15 18 0.03 0.28 -2 0.01 -45
Hubbard
Brook 0.19 29 0.06 0.32 34 0.07 34
Harvard
Forest 0.2 25 0.04 0.28 25 0.05 22
Luquillo 0.2 20 0.02 0.22 90 0.09 84
North
Temperate
Lakes 0.16 6 0.03 0.24 13 0.06 6
Niwot Ridge 0.09 9 0.04 0.24 9 0.05 1
Note: Trends from 1970 to 2019 are also shown, which is the period when streamflow data are available. Values in bold font indicate significant
trends (i.e., a significant increase (positive slope) or decrease (negative slope) in the time series as determined with a Mann-Kendal test
(Kendall 1938, Mann 1945) at p < .05).

(figure 3c, 3d). Increases in frequency of hot months and
losses of cold months in absolute terms were negatively
related to mean annual temperature (figure 3a, 3b). In
contrast, the frequency of extreme hot and cold months in
relative terms was less related to mean annual temperature
(figure 3c, 3d). Relative increases for the LTER period were
greatest at Luquillo (tropical rainforest), exceeding the 90th
percentile 6 months per year on average, compared with
other sites that exceeded the 90th percentile about 2 months
per year (figure 3c). Monthly temperature during the LTER
period was never below the 10th percentile at Luquillo, with
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other sites being below the 10th percentile an average of 0.3-
0.8 months per year (figure 3d). In summary, at most sites
hot temperature thresholds were exceeded more frequently
than cold temperature thresholds, both in absolute and rela-
tive terms. In addition, absolute temperature changes were
greatest at colder sites and least at the tropical forest site, but
relative changes were greatest at the tropical forest site.

Future changes in air temperature and precipitation

We tested whether projected climate change through the
end of the twenty-first century will push LTER sites outside
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Figure 3. Number of months per year air temperature for
the LTER period (1980-2019) was greater than 2°C above
(a) and less than 2°C below the twentieth century mean
(b), and greater than 90th percentile (c) and less than 10th
percentile (d), as a function of recent (1980-2019) mean
annual air temperature.

the ranges of mean annual temperature and precipitation for
forest biomes defined by Whittaker (1975), to evaluate the
potential for future biome shifts at LTER sites. We plotted
historical (1950-2019) and projected future (2020-2099)
mean annual temperature and precipitation for each forest
and freshwater LTER site on Whittaker’s (1975) biome clas-
sification (figure 4). Historical data were obtained from the
CRU T$§4.04 source described previously (Harris et al. 2020),
and projected future data were obtained from the North
American Coordinated Regional Climate Downscaling
Experiment database (2020-2099; Mearns et al. 2017). Future
climate projections include output from three regional cli-
mate models (CRCM5-UQAM, HIRHAMS5, RCA4) driven
by three different global climate models (MPI-ESM-LR,
EC-EARTH, CanESM2, respectively) and two representative
concentration pathways (RCP 4.5 and 8.5). Bias-corrected
data (Maraun 2016) were extracted from 50-kilometer grid
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Figure 4. Forest and freshwater LTER sites plotted as a
function of temperature and precipitation in relation to
biome type (Whittaker 1975). The black lines indicate the
slope of observed trends (1950-2019) and the colored lines
indicate projected future trends (2020-2099) based on
output from regional climate models.

cells corresponding to LTER site locations. Characteristics of
the regional climate models are summarized by Mearns et al.
(2017) and described in detail by Separovi¢ and colleagues
(2013) for CRCM5-UQAM, Christensen and colleagues
(2007) for HIRHAMS, and Samuelsson and colleagues
(2011) for RCA4. Descriptions of the global climate models
are provided by Flato and colleagues (2013) and representa-
tive concentrations pathways by Moss and colleagues (2010).

The current climate at each forest and freshwater LTER
site generally reflects the current biome type defined by
Whittaker (1975) on the basis of mean annual temperature
and precipitation. Recent changes (1950-2019) are relatively
minor compared to projected future changes (2020-2099; fig-
ure 4), indicating that although few forest biome shifts have
been observed, they may occur in the future. Temperature
and precipitation changes projected under future scenarios,
shift some LTER sites (i.e., Baltimore, Bonanza Creek, Niwot
Ridge, Andrews, Coweeta) into a climate space (i.e., as it was
defined by Whittaker (1975) on the basis of mean annual
temperature and precipitation) associated with a different
biome, but other sites (i.e., Hubbard Brook, Harvard Forest,
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Luquillo, North Temperate Lakes) remain within the climate
space of their current biome (figure 4). Biomes can exist
outside their typical climate space because of factors such as
soil, legacies of disturbance, and seasonality of precipitation
(Whittaker 1975). Therefore, ecosystem changes beyond
temperature and precipitation will also likely influence the
future biomes of forest and freshwater sites. In addition,
biome shifts have occurred under observed changes in
temperature and precipitation, because of climate-related
stressors or disturbances that accelerate transitions. For
example, at Bonanza Creek in interior Alaska, temperature
and precipitation from 1950 to 2019 is characteristic of the
boreal forest biome (figure 4); however, areas dominated
by conifer forests in this region are increasingly shifting
to broad-leaved forests, a change that has been attributed
to the increased intensity of wildfires resulting from drier
conditions (Juday et al. 2015, Mack et al. 2021). Biome shifts
such as this have been documented around the world and
will become more prevalent with more pronounced future
changes in temperature and precipitation (Gonzalez et al.
2010), having important social-ecological repercussions
(e.g., Chapin et al. 2010).

Changes in the water balance and hydrology

A critical uncertainty is how changes in climate will influ-
ence the hydrology of forest and freshwater ecosystems.
Decreases in precipitation and increases in temperature
that increase evapotranspiration would likely shift for-
ests toward water-limited conditions (Jones et al. 2012).
However, increases in precipitation, thawing of permafrost,
glacial melt, or decreases in transpiration could offset water
limitation. To represent climate changes affecting moisture,
we evaluated trends in water limitation with Standardized
Precipitation Evapotranspiration Index (SPEI; Vicente-
Serrano et al. 2010) data from the Global SPEI database
(Begueria et al. 2010, SPEIbase 2021), which is derived from
the historical climate data (CRU TS4.04, Harris et al. 2020).
The SPEI uses monthly precipitation and potential evapo-
transpiration, in this case determined with the Penman-
Monteith method (PET; Allen et al. 1998), to calculate a
climatic water balance (P-PET). The values are standardized
using a log-logistic distribution, making it possible to com-
pare SPEI values across sites. Positive SPEI values indicate
wetter conditions, whereas negative values indicate drier
conditions. The SPEI index only includes precipitation and
PET and does not capture hydrological changes associated
with permafrost, snow, or glaciers.

In addition to changes in climate, forest ecosystems may
be changing, both in response to climate change, as well as
to past disturbances and subsequent succession. Therefore,
changes in hydrology may reflect climate change directly,
with no ecosystem response, or ecosystem change, with no
effect of climate change, or some combination. To evaluate
changes in the processing of water by forest and freshwa-
ter sites, we examined how changes in SPEI are related to
changes in air temperature (figure 5a) and how changes
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in streamflow are related to changes in SPEI (figure 5b).
Streamflow data were obtained from long-term monitor-
ing programs established by the USDA Forest Service at
three LTER sites (Coweeta, Hubbard Brook, and Andrews)
and from US Geological Survey (USGS) gauging stations
(USGS 2021) at the other six sites (Baltimore, Bonanza
Creek, Harvard Forest, Luquillo, North Temperate Lakes,
Niwot Ridge; see the supplemental material). For USGS
data, a stream gauging station at or closest to each LTER
site was selected from a subset of stations that make up the
GAGES 1II network (Falcone 2011), which have watersheds
that are minimally disturbed. For all sites, gauged refer-
ence watersheds with at least 50 years of continuous data
(1970-2019) were used. The selected gauging stations are
within 67 kilometers of LTER sites and drainage basins range
from 0.1 to 963 square kilometers (supplemental table S2).
All the forest and freshwater LTER sites are becom-
ing wetter as they become warmer, except for Andrews
and Bonanza Creek, which are becoming drier (figure 5a,
table 2); most LTER forest and freshwater sites are in the
eastern United States and few are in the western United
States, where climate is generally becoming drier (USGCRP
2017). Streamflow is increasing at Harvard Forest, Hubbard
Brook, and especially Luquillo, consistent with increases in
precipitation and SPEI. Streamflow at Andrews is decreasing,
consistent with a slight decrease in SPEI and decreasing pre-
cipitation (figure 5b, table 2). Streamflow at Bonanza Creek
is increasing slightly, despite declining SPEI, a response that
may be due to thawing of permafrost, deepening of active
layer depth, and resulting change in the routing of water
through catchments (Jones and Rinehart 2010). Streamflow
is decreasing slightly at Coweeta, despite increasing wet-
ness, which is consistent with observed reductions in tree
basal area and shifts in forest composition toward species
with greater water demands resulting from disturbance
and natural community dynamics (Caldwell et al. 2016). At
other sites, streamflow increases are small (Baltimore, North
Temperate Lakes) or negligible (Niwot Ridge), suggesting
minimal response to climate change or counteracting effects.
We illustrate potential shifts in future seasonal dryness
across forest and freshwater LTER sites by plotting the
dryness index (ratio of potential evapotranspiration to pre-
cipitation) for the reference period (mean of 1990-2019)
versus the latter part of the twenty-first century (mean of
2070-2099; figure 6). Similar to SPEI, the dryness index
provides a quantitative measure of water surplus or deficit,
where PET:P > 1 indicates water limitation and PET:P < 1
indicates energy limitation (Budyko 1974). Dryness index
values for each site were calculated using past and projected
future temperature and precipitation data described previ-
ously, and PET calculated with the Hamon (1963) method.
During winter (December-February), all sites are energy
limited and are projected to remain so under future climate
change (figure 6a). During summer, dryness increases at all
sites, except for Luquillo, which has a tropical climate that
does not vary much throughout the year. Because most of
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temperature and (b) streamflow versus changes in SPEI
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indicate increasingly dry conditions.

the forest and freshwater LTER sites are in mesic climates
they are not water limited in summer at present. However,
summer dryness generally increases with climate change,
and some sites show greater water limitation in the future,
especially Andrews in the Northwest. These results sug-
gest that summer dryness will become increasingly impor-
tant, with many potential negative consequences, such as
increased wildfire risk, decreased forest productivity, and
lower streamflow.

Extreme events

Climate change is also altering extreme weather events that
can have greater impacts than chronic changes in mean cli-
mate alone. Weather events have been studied at forest and
treshwater LTER sites by examining the long-term ecosystem
response to actual events and using experiments that mimic
these disturbances (supplemental table S1; Thompson et al.
2013). The types of events that occur at each LTER site
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Figure 6. Dryness index calculated as the ratio of potential
evapotranspiration to precipitation during (a) winter
(December-February) and (b) summer (June-August)
under the reference period (mean from 1990 to 2019) and
future projected climate change (mean of 2070-2099)

at forest and freshwater LTER sites. Values less than one
(dashed line) indicate energy limitation, whereas values
greater than one indicate water limitation.

have shaped their respective research programs and lines of
investigation. Climate warming is expected to increase the
intensity of the hydrological cycle, with more frequent heavy
precipitation events and longer, more intense droughts
(Trenberth 2011). In addition, climate change is increasingly
subjecting forest and freshwater ecosystems to disturbances,
such as wildfire, hurricanes, and ice storms.

For the counties in which the nine forest and freshwa-
ter LTER sites are located, severe storms and floods are
the most common extreme events that require federal
financial support, on the basis of emergency declarations
reported from 1965 to present by the Federal Emergency
Management Agency (figure 7, supplemental material;
FEMA 2020). Emergency declarations give an indication
of the extent and severity of the disaster, number of people
affected, and impacts on infrastructure. Hurricane emer-
gencies occur along North Atlantic Ocean storm tracks,
especially at Luquillo, fire emergencies occur at sites in the
western United States and Alaska, and the greatest num-
ber of snow-related emergencies occur at Baltimore, not
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Figure 7. Heat map showing the number of weather-
related disaster declarations for the county that each
forest and freshwater LTER site is located in. Data are
from the US Federal Emergency Management Agency
Disaster Declarations Database (FEMA 2020) and cover
the period from 1965 to 2020. Additional details about the
methodology are provided in the supplemental material
under the weather-related disasters section.

because it receives abundant snowfall relative to other sites
but, rather, because of the disruption these events cause
in this densely populated urban environment. Tornados
(North Temperate Lakes, Harvard Forest), severe freezing
(Bonanza Creek), and ice storms (Hubbard Brook, Harvard
Forest) are relatively rare events at forest and freshwater
LTER sites but can have long-lasting legacy effects (Dale
et al. 2001).

Extreme events and related effects on vegetation influence
forest water processing and transport to streams (Trenberth
2011). Therefore, changes in SPEI and streamflow extremes
may reflect changes associated with the increased intensity
of the hydrologic cycle. We assessed trends in extreme high
and low precipitation at forest and freshwater LTER sites
by comparing extreme SPEI values (greater than 90th and
less than 10th percentiles) in the recent period (2010-2019)
in comparison with the 1970-1999 period. The frequency
of extreme wet months increased at most sites, decreased
at Andrews and Harvard Forest, and showed little change
at Baltimore (supplemental figure S2a). The decline in
extreme wet months at Harvard Forest is difficult to explain,
given the increases observed at nearby Hubbard Brook,
indicating substantial variability within regions. The fre-
quency of extreme dry months increased at Luquillo (tropi-
cal), Andrews and Niwot Ridge (western mountain), and
Bonanza Creek (Alaska), and decreased at all the sites in the
eastern United States (supplemental figure S2b). Therefore,
extreme dry conditions are declining in the eastern United
States, which is consistent with the regional increase in
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Figure 8. Change in the frequency of high or low flow
days versus change in the frequency of extreme wet or dry
months as was indicated by values greater than the 90th
percentile (a) and less than the 10th percentile (b) for

the recent period (2010-2019) compared to the reference
period (1970-1999). The dashed line is the line of equal
response. In panels (a) and (b), sites above or below the
dashed line had a greater than or less than expected
change in days with extreme high or low flows given the
change in frequency of extreme wet or dry months.

precipitation (USGCRP 2017), whereas the other sites show
a tendency toward more extreme dryness.

Extreme streamflow has responded to changing wet and
dry conditions. In the past decade (2010-2019), the num-
ber of days with extreme high streamflow has increased
relative to 1970-1999, especially at Bonanza Creek and to a
lesser extent at Luquillo and most of the sites in the eastern
United States (supplemental figure S3a). Reductions in high
streamflow have occurred at Niwot Ridge, Andrews, and
Coweeta. At most forest and freshwater LTER sites, extreme
high streamflow has responded somewhat proportionally
to changes in extreme wet conditions (figure 8a). Harvard
Forest had more extreme high flows than expected on the
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basis of the relationship with SPEL In contrast, Coweeta,
North Temperate Lakes, and Luquillo had fewer extreme
high flows than expected on the basis of the increase in
extreme wet months. This response suggests, in general,
that some forest ecosystems are not effective in mitigat-
ing climate change-induced increases in extreme storm
events, whereas others have some capacity to moderate flow
increases associated with extreme wet conditions.

At most forest and freshwater sites, extreme low flows
occur in the summer, when trees are transpiring, but in cold
regions, extreme low flows occur in winter because of water
storage in snow and ice (e.g., Bonanza Creek and Niwot
Ridge). In 2010-2019, all sites except Niwot Ridge showed
reductions in low flow days relative to 1970-1999 (sup-
plemental figure S3b). Extreme low streamflow generally
responded as expected to extreme dry months at most sites
(figure 8b). At North Temperate Lakes and most eastern sites,
extreme low flow days decreased in response to a reduction
in extreme dry conditions. However, at Luquillo, Andrews,
and Bonanza Creek extreme low flow days decreased,
despite increases in extreme dry months. In other words, at
sites at which precipitation increased, forests received addi-
tional growing season moisture, reducing the number of low
flow days (table 2). At Bonanza Creek, permafrost thaw and
reductions in snowpack depth and duration are shortening
the winter period of extreme low flows (figure 8b), reducing
low flow days. At Andrews and Luquillo, the reduction in
extreme low flow days cannot be explained by changes in
precipitation, temperature, or ice and may be due to changes
in water use by forests undergoing succession after hurricane
disturbance (Luquillo) or sixteenth and nineteenth century
wildfire (Andrews). The nuanced relationships between
forest disturbance and succession, climate, and streamflow
highlight the need for continued study of the impacts of
climate change on the hydrological cycle.

Environmental forcing due to changes in the phase
and temperature of water
Increased energy inputs from a warming climate may pro-
duce changes in the phase of water (loss of snow and ice)
in forest and freshwater ecosystems. Chronic loss of snow
and ice reduces albedo, increases energy absorbed by forests
and lakes, and further accelerates warming (Austin and
Colman 2007, Euskirchen et al. 2016). Loss of snow and
ice in forest watersheds increases winter streamflow and
advances the timing and reduces the magnitude of spring
snowmelt discharge (Dudley et al. 2017). Shallower snow-
pack also increases the potential for soil freezing events,
which damage fine roots (Tierney et al. 2001) and may
diminish plant nutrient uptake (Campbell et al. 2014). In
addition, earlier snowmelt and a longer growing season can
increase transpiration and summer soil moisture stress in
forests, even in regions in which precipitation is increasing
(Pourmokhtarian et al. 2017).

Increased energy inputs to freshwater ecosystems
have reduced ice cover (Magnuson et al. 2000), as was

https://academic.oup.com/bioscience

demonstrated by long-term (38-167 year) records from
LTER sites, including the Tanana River in Alaska (Bonanza
Creek); Mirror Lake, New Hampshire (Hubbard Brook);
Trout Lake and Lake Mendota, Wisconsin (North Temperate
Lakes); and Green Lake 4, Colorado (Niwot Ridge; figure 9).
However, lake ice in and out dates are difficult to predict.
For example, a recent analysis of Northern Hemisphere lakes
showed that climate trends, local weather, and large-scale
climate indices account for only 40%-60% of the variability
in the timing of lake ice breakup (Magnuson 2021).

Consistent with declines in ice cover, lake surface water
temperature has increased but is also difficult to predict
because of many factors that contribute to the variability
such as radiation, cloud cover, and light attenuation in the
water column (O'Reilly et al. 2015). At North Temperate
Lakes, water temperature trends vary among lakes, by depth,
and by time of year, with the most rapid increases in the fall
(Winslow et al. 2017, Lathrop et al. 2019). Fall warming can
increase the duration of summer stratification (Woolway
et al. 2020) and prolong the period of low oxygen (Ladwig
et al. 2021). In streams, water temperature has increased
with air temperature (Kaushal et al. 2010), although local,
site-related factors, such as groundwater contributions and
riparian forest cover can affect the relationship (Arismendi
et al. 2012, Arismendi et al. 2014). For example, at Andrews,
gradual reductions in snowpack, increases in summer air
temperature, and declining summer precipitation are associ-
ated with reduced streamflow and stream network contrac-
tion (Ward et al. 2020), conditions that are linked to warmer
stream temperature (Arismendi et al. 2013). However,
stream water contributions from groundwater sources dur-
ing summer (Segura et al. 2019) and increased shade from
regenerating riparian forests (Warren et al. 2016) can coun-
teract these effects. In summary, increases in energy inputs
to forest and freshwater ecosystems are decreasing water
storage in snow, ice and groundwater and increasing the
length of the growing season, which is influencing the vol-
ume and timing of streamflow, but effects on surface water
temperature vary depending on local factors.

Ecosystem responses to climate change

The LTER program addresses five core research themes that
all sites focus on. We frame our discussion of forest and
freshwater ecosystem responses to climate change around
four of these themes (primary production, accumulation
and loss of organic matter, movement of inorganic matter,
and populations and communities), with the fifth theme
(disturbance) underlying all of the other themes.

Primary production. The complexity of changes in temperature
and moisture on primary production are reflected in long-
term trends at forest and freshwater LTER sites (e.g., see
box 1) and are central to understanding the capacity for carbon
sequestration. Increased air temperature and a longer growing
season may increase forest primary productivity in energy-
limited systems, and decrease it in water-limited systems (Liu
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Figure 9. Long-term changes in lake and river ice in

(blue lines) and ice out

(red lines) dates as determined with site-specific criteria (see supplemental
material). Dashed lines are the slope (Sen 1968) and bold lines indicate
significant trends as determined with the Mann-Kendall test (Kendall 1938,
Mann 1945) at p < .05. Sources: (a) Meier and Dewes (2020), (b) Likens and
colleagues (2020), (c) Magnuson and colleagues (2020a), (d) Magnuson and

colleagues (2020b), (e) Caine and colleagues (2020).

stage may influence the response and
long-term trajectory of net primary pro-
duction to climate change. For example,
lower-stature, young stands are less sus-
ceptible to ice storm damage than mature
stands (Rhoads et al. 2002), although tree
size is not always a strong predictor of
damage from hurricanes (Zimmerman
et al. 1994). At Andrews, climate change
has a greater influence on NPP in young
forests than mature and old-growth for-

etal. 2019), but simultaneous changes in respiration may offset
impacts on net primary production (the difference between
carbon gained by photosynthesis and carbon released through
respiration; Duveneck and Thompson 2017, Oishi et al. 2018).
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ests, which are affected more by factors such as competition,
small-scale disturbance, and microclimate (Woolley et al.
2015). In addition to impacts associated with stand age and
structure, climate change also affects forest regeneration by
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Box 1. Climate change and boreal forest growth at Bonanza Creek.

Climate change is amplified toward the Earth’s poles (USGCRP 2017, Dai et al. 2019); therefore, boreal forests may act as sentinels of
global warming. The far north has a long history of climate change research based on tree ring studies, and analyses of white spruce
(Picea glauca) tree ring records at latitudinal and elevational treelines in Alaska made important early contributions to understand-
ing relationships between past climate and tree growth (e.g., Giddings 1941). More recently, research at Bonanza Creek has provided
important new insights on environmental controls of spruce growth that have been subsequently verified across the broader Alaskan
boreal forest region (Barber et al. 2000, McGuire et al. 2010). A particularly surprising finding was that spruce growth throughout
much of the dry interior region of Alaska was reduced when temperature was warmer because of moisture limitation (Juday et al.
2015). In contrast, spruce growth responded positively to summer warming at high elevations and in maritime western Alaska, where
it is cooler and moister (Wilmking and Juday 2005, Juday et al. 2015). In these areas, growing season temperature is the dominant
control over growth, and precipitation plays a supplemental positive role.

The predictive power of summer temperature and precipitation can be combined mathematically to produce an overall climate favor-
ability index (CFI) that is useful for evaluating growth response to climate change (Juday and Alix 2012). Comparing the CFI with
an index of tree ring growth for large white spruce at Bonanza Creek and numerous similar stands of interior Alaska (dry and warm
summer region) reveals a remarkably strong and consistent relationship (see graph). These results indicate that tree ring records can
be used reliably to reconstruct past climates before instrument records (about 1900) in this region (Juday et al. 2003).

In interior Alaska, quasidecadal cycles of climate favorability and tree growth have occurred since 1850, with a peak in the first half
of the twentieth century and lowest values from 1975 to 2000. The unprecedented late twentieth century reduction in spruce growth
is consistent with strong warming at Bonanza Creek (table 2) and a drying trend as was indicated by the Standardized Precipitation
Evapotranspiration (SPEI) index (figure 5). A strong and prolonged La Nifia from 1999 to 2003 provided substantial, but only brief,
relief from hot dry conditions. However, near-record summer precipitation in interior Alaska since 2014, coincident with the excep-
tional warmth of the North Pacific Ocean and decline of Arctic sea ice cover, has produced an unprecedented climate regime of warm
and moist conditions (Barber et al. 2004), which is associated with a modest recovery of spruce growth. It is not yet clear whether
increased summer precipitation will continue to enhance boreal tree growth as anticipated additional warming occurs (figure 6b), so
the question of increased versus decreased growth remains in the balance.

Continued monitoring of the profound and pervasive ecological responses to climate change in Alaska’s boreal forest is critical for
informing environmental policies and guiding land management decisions, such as those related to forest harvesting, wildfire, assisted
migration, and carbon balance. Because of the rapid changes in climate in the far north, and importance of feedback into the global
climate system, these forests will likely continue to serve as important early indicators of change.
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influencing seed production and seedling establishment.
At Andrews, a continuous 62-year record shows that the
conifer cone crop, an indicator of seed supply, is cyclical
and responsive to climate and other environmental cues
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(Franklin 1968, Pham et al. 2013). At Bonanza Creek, epi-
sodic seed production of white spruce (Picea glauca) also
depends on a combination of specific weather conditions,
including growth-limiting water stress 1-3 years prior to
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Box 2. Ecosystem response in hurricane simulation experiments.

The frequency of intense hurricanes and geographic range of their impacts is increasing. In anticipation of this, two LTER forest sites,
Harvard Forest and Luquillo, undertook experimental approaches to better understand the effect of hurricane disturbance on vegeta-
tion and biogeochemical dynamics of the forested ecosystems represented there (Cooper-Ellis et al. 1999, Foster et al. 2004, Shiels et
al. 2015, Shiels et al. 2010). Interestingly, the two sites, one temperate and one tropical, used alternative methods to mimic hurricane
damage but arrived at similar conclusions regarding the ecosystem responses. Post-disturbance, the resilience of trees, understory
vegetation, and microbial processes exerted biotic control of ecosystem dynamics, particularly nutrient cycling.

At Harvard Forest, the Hurricane Experiment began in October 1990 in a 75-year-old oak-maple (Quercus rubra—Acer rubrum) stand,
where selected canopy trees were pulled over with a winch and cable, using records from the 1938 hurricane to determine the number
of trees felled and their direction of fall. The resulting damage to 65% of trees closely approximated effects of the 1938 storm, with
uprooted trees providing great heterogeneity in soil conditions (i.e., pit and mound microtopography; Foster et al. 2004). At Luquillo,
observations from Hurricane Hugo (1989) showed that removal of tree limbs by hurricane winds was the predominant immediate
effect (Zimmerman et al. 1994). On the basis of this observation, hurricane damage was simulated by trimming tree canopies rather
than downing whole trees. The Canopy Trimming Experiment (CTE) began in 2002, with treatments applied by a crew of arborists in
late 2004 to early 2005. The CTE was a 2 x 2 factorial experiment, increasing canopy opening in two treatment plots and then moving
debris from one trimmed plot to a third untrimmed plot (with a fourth serving as control). In this way, two main impacts of hurricane
damage, canopy opening versus debris deposition, could be determined. The experiment was replicated in three blocks of forest domi-
nated by Dacryodes excelsa. Canopy opening and amounts of debris were similar to that in Hurricane Hugo (1989).

The two experiments differed in the type of tree damage, which caused differences in soil disturbance and its heterogeneity as well as
inputs of coarse (less than 10 centimeters in diameter) woody debris. The primary effects of hurricane disturbance in both studies were
increased light levels and increased establishment of pioneer species, predominantly birch (Betula spp.) at Harvard Forest (Cooper-
Ellis et al. 1999) and pumpwood (Cecropia schreberiana) and Psychotria berteroana at Luquillo (Shiels et al. 2010). No additional
impacts on vegetation beyond the reduction in basal area associated with the physical application of the manipulation was observed at
Harvard Forest (Cooper-Ellis et al. 1999), whereas at Luquillo, Shiels and colleagues (2010) noted no impacts of hurricane treatments
on tree mortality; debris addition in the absence of canopy opening stimulated increased growth of tree basal area.

At Harvard Forest, there was remarkably little effect on ecosystem level variables, despite the increase in canopy openness and soil
heterogeneity (Cooper-Ellis et al. 1999). At Luquillo, canopy opening, and not debris deposition, accounted for most of the changes
in biotic processes (Shiels et al. 2015). Canopy opening at Luquillo decreased litterfall (as it did at Harvard Forest) and litter moisture,
thereby inhibiting lignin-degrading fungi, which slowed rates of decomposition. Some changes in nitrogen processing were noted at
both sites. At Harvard Forest, the effects were local in scale and minor in comparison to the overall nitrogen budget (Foster et al. 2004).
Elevated soil solution nitrate was a dominant response at Luquillo, particularly where canopy-opening and debris treatments occurred
simultaneously as in a hurricane, appearing to explain the increased levels of nitrate noted in streams posthurricane (Shiels et al. 2015).
These effects were transitory in nature, only lasting a year or so postdisturbance.

Luquillo (2005) Harvard Forest (1990
Photograph: Aaron B. Shiels Photograph: John F. O'Keefe, Harvard Forest
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masting events, but seed viability responds positively to
wet and warm conditions during the seedfall year and is
greatly reduced by drought stress (Juday et al. 2003, Roland
et al. 2014). Moisture can also strongly control seedling
recruitment—for example, in the subalpine forest at Niwot
Ridge, where the establishment of Engelmann spruce (Picea
engelmannii) and subalpine fir (Abies lasiocarpa) seedlings
depends on soil moisture from above average snowpack and
cool, wet summers (Andrus et al. 2018). Therefore, climatic
conditions for forest regeneration are changing, which can
have lagged, long-term effects on forest productivity.

In freshwater ecosystems, warmer water temperature
and a longer ice-free season increase primary production.
For example, warmer temperature increased primary pro-
duction in a high-elevation lake at Niwot Ridge, because
it reduced snowmelt and summer stream flow, increasing
hydraulic residence times. In addition, enhanced perma-
frost thaw and glacial melting, increases lake solute inputs
that fuel production (Preston et al. 2016). The combination
of warmer water temperature and high nutrient loading can
promote growth of cyanobacteria and harmful algal blooms
that negatively affect aquatic habitat and human health
(Paerl and Huisman 2008). Although climate change gener-
ally increases production in freshwater ecosystems, carbon
gains can be offset by respiration losses, much like in forest
ecosystems. For example, in a study of stream metabolism
across six biomes from the tropics to the Arctic, Song and
colleagues (2018) found that a 1°C increase in stream tem-
perature caused a nearly 25% overall decline in net ecosys-
tem productivity because of a change in the ratio of gross
primary production to ecosystem respiration. These results
indicate that warming-induced shifts in the metabolic bal-
ance may cause an overall increase in carbon dioxide emis-
sions from streams.

Accumulation and loss of organic matter. Climate change affects
organic matter cycling in forest and freshwater ecosystems
largely by altering litter supply, decomposition, and micro-
bial activity. Climate change is increasing extreme weather
events and other disturbances, which can cause a pulse of
litter inputs to the forest floor. For example, an ice storm in
1998 at Hubbard Brook deposited the equivalent of 10 years
of average coarse litterfall (Fahey et al. 2005), and Hurricane
Hugo at Luquillo deposited 1.2-1.9 times the average annual
fine litterfall (Lodge et al. 1991). Wildfire can also increase
litter inputs for several years, as foliage and coarse wood
fall due to tree injury and mortality (Grigal and McColl
1975); however, wildfire differs from other climate-related
disturbances in that it consumes forest floor litter, thereby
reducing the soil carbon stock (Mack et al. 2021). The initial
pulse of litter caused by disturbances is followed by a more
prolonged, but highly variable period of lower litterfall as
the forest canopy recovers (e.g., Vogt et al. 1996). If changes
in litterfall are sustained they can affect decomposition and
carbon loss, as was demonstrated by results from a network
of long-term experiments involving litter and wood addition
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to soil that incudes decades-long investigations at Andrews
and Harvard Forest (Lajtha et al. 2018).

Warming accelerates decomposition of soil organic mat-
ter, which could release more carbon dioxide to the atmo-
sphere, creating a positive feedback loop (figure 1; Knorr
et al. 2005). A long-term experiment at Harvard Forest that
began in 1991, showed that soil warming initially stimulated
soil respiration, although this effect diminished over time
because of factors such as changing substrate quality, nutri-
ent availability, moisture, and microbial biomass, carbon
use efficiency and community structure (Frey et al. 2013,
Melillo et al. 2017). Long-term studies such as this provide
insight that can only be discerned by evaluating responses
over many years. They are also critical for understanding
the complex interactions and cascading effects of climate
change. For example, in interior Alaska, the shift from boreal
forest to broad-leaved deciduous forest due to increased
wildfire size and intensity (Mack et al. 2021) has reduced
soil moisture, carbon, and nitrogen, because of the higher
evapotranspiration and more readily decomposable litter
of deciduous species (Alexander and Mack 2016). Wildfire
also consumes the insulating soil organic layer, leading to
thawing of permafrost, decomposition of previously frozen
organic matter, and further loss of soil carbon that produces
a positive feedback loop to climate warming (Schuur et al.
2009). However, replacement of slow-growing conifer spe-
cies with fast-growing deciduous species can result in a net
increase in soil carbon storage over time (Mack et al. 2021).
Understanding these complex interactions controlling car-
bon losses and feedback loops is critical for predicting future
climate change.

In freshwater ecosystems, climate also strongly regulates
organic matter supply and loss. The increases in coarse
and fine litter inputs due to climate-related disturbances
contribute to stream debris dam formation that retains par-
ticulate organic carbon (POC; e.g., Bilby 1981, Kraft et al.
2002), although this material may be released during floods
(Swanson et al. 1998, Dhillon and Inamdar 2014). Stream
litter breakdown increases with warming; however, the
proportion of carbon loss from respiration and POC should
not change with temperature because the temperature
sensitivity of microbes and detritivores is similar (Follstad
Shah et al. 2017). In addition to climate change, nutrient
pollution can further increase breakdown and loss of terres-
trially derived carbon in streams, as was demonstrated by a
stream nitrogen and phosphorus enrichment experiment at
Coweeta, in which 83% of the variation in carbon loss was
explained by discharge, nitrogen, phosphorus, and tempera-
ture (Rosemond et al. 2015). Therefore, the standing stock,
processing, and loss of carbon in streams is controlled by
climate as well as nutrient availability.

In addition to stream carbon losses via respiration and
POC, a small but important fraction is also exported as dis-
solved organic matter (DOM; Schlesinger and Bernhardt
2020). Changes in DOM have implications for the struc-
ture and function of freshwater ecosystems because it is a
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primary substrate for the aquatic food web and protects
organisms from damaging ultraviolet light (Williamson
et al. 1996). However, elevated DOM can have negative
effects, such as promoting the formation of oxidizing radi-
cals (Wasswa et al. 2020), and enhancing the transport and
altering the bioavailability of toxic metals such as mercury
and aluminum (Driscoll and Postek 1996, Dittman et al.
2010). Long-term studies in temperate regions of North
America and Europe have reported increases in the mobi-
lization of DOM to surface waters, attributed both to both
climate change and recovery from acid deposition (Monteith
etal. 2007, Clark et al. 2010). Although positive relationships
between temperature and DOM have been reported, the
results are inconsistent, and warming is thought to account
for a small portion of DOM increases (10%-20%). However,
DOM export tends to increase with discharge, and could
therefore increase in regions in which climate change is
causing more frequent and intense storms (Raymond et al.
2016). In summary, the effects of climate change on organic
matter in freshwater ecosystems varies, depending on factors
such as litter inputs, decomposition, and hydrologic change.

Movement of inorganic matter. Mineralization of organic matter
controls the supply of inorganic matter through processes
governed by biological and climatic drivers. Disturbances that
damage vegetation aboveground—for example, ice storms
(Houlton et al. 2003) and hurricanes (McDowell and Liptzin
2014), and belowground—for example soil freezing (Campbell
et al. 2014) can cause large losses of nutrients from forest
ecosystems because of a combination of release from litter
inputs and reduced plant uptake. The long-term soil warm-
ing experiment at Harvard Forest, as well as a study initiated
in 2012 at Hubbard Brook, showed that in temperate forests,
increased soil temperature increases nitrogen mineralization
and nitrification during the growing season (Butler et al. 2012,
Harrison et al. 2020). However, these effects may be offset by
a shallower snowpack and colder soils during winter (Duran
et al. 2016) or changes in soil moisture (Groffman et al. 2009).
Inorganic cycles in tropical rainforests also are sensitive to cli-
mate change. At Luquillo, increased drought caused oxidation
of soil iron, a reduction in phosphorus availability, and declin-
ing tree growth (O’Connell et al. 2018). Modeling indicates
that the tropical forest carbon balance at Luquillo may shift
from a net sink to a net source by the mid 2030s as a result
(Feng et al. 2018). Therefore, the effects of climate change on
nutrient availability in forest soils can have important implica-
tions for the carbon balance.

The impacts of climate change on inorganic matter
cycling can also substantially affect freshwater ecosystems
because of changes within surface waters and adjacent forest
watersheds. Increased extreme streamflow, which is occur-
ring at many sites (figure 8a), may increase the mobility
and delivery of inorganic matter to streams. For example,
at North Temperate Lakes, data collected over more than
two decades show that increased extreme precipitation
events have increased inputs of stream water phosphorus to
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Lake Mendota, making it more susceptible to algal blooms
(Carpenter et al. 2018). Decreases in lake ice cover duration
have reduced nitrate accumulation under ice, altering lake
chemical and biological properties (Powers et al. 2017). In
Pond Branch, a forested watershed at the Baltimore LTER
site, variations in stream nitrogen concentrations are sensi-
tive to drought and interactions between groundwater and
the riparian forest (Duncan et al. 2015). At Hubbard Brook,
there has been a long-term tightening of the nitrogen cycle
with decreases in soil nitrogen mineralization, nitrification,
soil nitrous oxide production, and stream nitrate losses
(Groffman et al. 2018). This pattern has been attributed
to enhanced plant and microbial demand for nitrogen
because of factors such as a lengthening of the growing sea-
son, atmospheric carbon dioxide fertilization, decreases in
atmospheric nitrogen deposition, increases in freeze-thaw
cycles of soils, and recovery from elevated acid deposition.
These examples illustrate how the cycling of inorganic mat-
ter is coupled with organic matter cycling, and highlight the
importance of hydrologic change as well as global change
drivers in regulating nutrient export.

Populations and communities. Climate is a key driver that shapes
populations and communities in forest and freshwater eco-
systems, and climate change may alter species’ abundance
and behavior, with impacts on community structure, com-
position, and function. In forests, climate change is shifting
the biogeographic ranges of species; however, there is much
uncertainty about the extent to which species can keep pace
with climate change and how other interacting factors may
influence migration. For example, at Niwot Ridge, increased
air temperature, often associated with expansion of trees into
the alpine zone, increases soil moisture limitation to limit
future tree seedling recruitment (Suding et al. 2015, Conlisk
et al. 2017). In the Pacific Northwest, drought extremes,
rather than changes in mean climate, increased individual-
and population-scale mortality of an understory tree, Pacific
yew (Taxus brevifolia) across a wide geographic climate
gradient (Germain and Lutz 2020). Climate extremes may
therefore be more important than changes in average climate
when predicting species range shifts.

Long-term data from forest and freshwater LTER sites
also demonstrate how climate change is altering phenol-
ogy and phenological synchrony in forest ecosystems. In a
study of LTER sites representing diverse terrestrial ecosys-
tems, warmer winters caused earlier bud break and lower
consumer abundances in temperate forests, indicating that
climate change may cause trophic mismatches between
producers and consumers (Ladwig et al. 2016). On the other
hand, some taxa respond synchronously to shifting climate.
At Hubbard Brook, long-term (25-year) black-throated blue
warbler (Setophaga caerulescens) data show that nesting
activity is synchronized with leaf phenology to maximize
annual reproductive success (Lany et al. 2016). In moun-
tain forests at the Andrews, phenological events typically
are delayed at high elevation, but in warm, dry years that
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are representative of future climate change, phenology and
microclimate are less variable and more synchronized from
low to high elevation (Ward et al. 2018). These examples
show that climate change is altering phenology in forest
ecosystems, but shifts may be synchronous or asynchronous
depending on the species and their environment.

Disturbances due to climate change are also affecting
plant and animal populations and communities in for-
est ecosystems. For example, in the western United States,
climate change has both increased wildfire and contrib-
uted to outbreaks of forest pests, such as the mountain
pine beetle (Dendroctonus ponderosae Hopkins; Mietkiewicz
and Kulakowski 2016), with some reciprocal interactions
between wildfire and pine beetle disturbances (Creeden et al.
2014, Jenkins et al. 2014). The timescales at which popula-
tions and communities recover from climate-related distur-
bances may vary. After damage from Hurricane Hugo in the
tropical rain forest at Luquillo, understory vegetation regrew
within a few months, causing coqui frogs (Eleutherodactylus
coqui, Woolbright 1996) and shrimp (Atya lanipes; Covich
et al. 1991) to increase in abundance, whereas snail popula-
tions declined sharply after the storm, and then increased as
their preferred plant species and habitat recovered (Secrest
et al. 1996). Therefore, these plant-animal interactions are
codependent and may produce delayed responses as ecosys-
tems recover from disturbance.

In freshwater ecosystems, climate change may alter
species assemblages, trophic structure, and food webs.
At North Temperate Lakes, warmer lake temperature and
lower dissolved oxygen decreased survival and repro-
duction of cisco (Coregonus artedi; Magee et al. 2019).
The disappearance of cisco from some lakes negatively
affected their predators, including walleye (Sander vitreus),
northern pike (Esox lucius), and muskellunge (Esox mas-
quinongy). A similar phenomenon has been reported in
montane streams in the southern Appalachian Mountain
region, where increases in stream temperature are limit-
ing brook trout (Salvelinus fontinalis) habitat (McDonnell
et al. 2015). Winter hypoxia in ice-covered lakes and
resulting winter fish kills exclude large piscivorous fishes
(Tonn and Magnuson 1982), but reductions in ice cover
can change top-down controls, with cascading effects on
lake communities, including small-bodied fishes, amphib-
ians, zooplankton, and phytoplankton (Magnuson et al.
1985, Jackson et al. 2007). Increased lake temperature and
low dissolved oxygen also favor nonnative species whose
higher tolerance for variability enables them to outcom-
pete native species (Rahel and Olden 2008). In summary,
climate change can induce a cascade of ecological impacts
on forest and freshwater ecosystems that alter species’
abundance and composition across trophic levels, and may
ultimately produce novel species assemblages.

Conclusions

This assessment of 40 years of research at nine forest
and freshwater LTER sites indicates that long-term studies
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provide process-level information needed to comprehen-
sively evaluate and understand how forest and freshwater
ecosystems respond to climate change. Forest and fresh-
water LTER sites have experienced differential rates of
climate change, varied environmental forcing, and diverse
ecosystem responses. Although forests have demonstrated a
remarkable ability to recover from extreme weather events,
such as hurricanes and ice storms, forest and freshwater eco-
system responses to changing disturbance regimes continue
to emerge. Continued monitoring of the long-term legacy
effects of these disturbances will help in assessing climate
change impacts on forest and freshwater ecosystems and the
services they provide.

Despite many changes in ecosystems due to climate
change, there is limited evidence of lasting shifts in ecosys-
tem state at forest and freshwater LTER sites. The transition
from boreal forest to deciduous forest species at Bonanza
Creek in Alaska is the most prominent example; however,
the long-term persistence of these deciduous stands is
unknown given the uncertainty of future fire behavior and
the successive recruitment dynamics of both hardwoods
and conifers (Mack et al. 2021). In the tropical rainfor-
est at Luquillo, despite high relative increases in extreme
temperature and an increase in the frequency of hurricane
disturbance and drought, there is little indication of eco-
system state change, or evidence of other abrupt ecosystem
change, such as catastrophic declines in insect populations
(Zimmerman et al. 2021). Nevertheless, it is possible that
ecosystem state changes will occur in the future, highlight-
ing the need for continued long-term research on climate
change impacts and the resilience of forest and freshwater
ecosystems.

Forest and freshwater ecosystems provide a wide range
of beneficial goods and services (MEA 2005) that may be
affected by climate change. Climate change is for the most
part lessening supporting, regulating, provisioning, and
cultural ecosystem services (figure 1). Examples include
the loss of supporting services, such as habitat for fish in
lakes (e.g., North Temperate Lakes; Magee et al. 2019);
the loss of regulating services, such as flood protection in
forests subjected to increased precipitation (e.g., Hubbard
Brook; Campbell et al. 2011); the loss of provisioning ser-
vices such as timber supply and quality due to wildfires
(e.g., Andrews; Halofsky et al. 2020); and the loss of cul-
tural services, such as subsistence opportunities for rural
indigenous communities (e.g., Bonanza Creek; Kofinas
et al. 2010). These changes in ecosystem services provide
a strong basis for LTER research communities to continue
engagement with policymakers and land managers to pro-
mote actions that address climate change (e.g., Driscoll
et al. 2012, Swanson et al. 2021).

Long-term ecological research provides insights into cli-
mate change effects on forest and freshwater ecosystems that
are not obtainable from short-term studies. The broad array
of research emphases and approaches is a strength of the
LTER Network and allows for in-depth, site-based analyses
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of ecosystem responses. Continuing efforts to synthesize
LTER data will facilitate future comparisons and improve
our ability to test hypotheses across sites. Climate change
effects on ecosystem services also should motivate continu-
ing efforts for environmental stewardship. Forest and fresh-
water ecosystems are experiencing unique combinations of
climate changes, environmental forcing, and compounding
disturbances and stressors, and research investigating forest
adaptation strategies and approaches to enhance resilience
to climate change will help ensure that these ecosystems
continue to deliver valuable services to society.
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