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a b s t r a c t

We discuss the thermodynamics behind self-organizing Benzoquinone (BQ) particles

on air–water interface. Experiments (Satterwhite-Warden et al., 2015; Chen et al.,

2019; Satterwhite-Warden et al., 2019) reveal that BQ particles undergo rapid transient

flocking behavior as they move around on the liquid surface. Flocks are seen to vary in

size and their formation and stability appears to be dependent upon their shape. It is

hypothesized that self organization of particles is a result of surface tension gradients

in the two dimensional liquid surface resulting from the slow dissolution of the BQ

particles. The current paper uses a mass-action kinetic framework to study the flocking

of particles. Two dynamical models, with and without a reservoir, are proposed and

analyzed through the thermodynamic lens of free energy, which informs us about

dominant and spontaneous ‘reactions’ or flock formations in the system. Results of

the model are in good agreement with experiment, revealing that irregular shaped BQ

particles do indeed show far greater propensity to form flocks compared with regularly

shaped particles and validating the mass-action framework as an appropriate tool to

investigate this system.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to the study of collective motion and self-organization in dissipative systems. Collective motion
is a phenomenon displayed across all scales of living organisms, be it a flock of birds in flight, a school of fish, or a colony
of ants or bacteria. Interestingly, we have been able to observe several similar qualitative features in the laboratory,
under appropriate conditions, in non-living systems, allowing us to identify generic conditions for collective behavior
in its many forms [1]. Experimental observations of patterns and organization requires a gradient inducing system [2]
hich then provides an impetus for self propulsion that supports the foraging of energy from the local environment.
hemotaxis, i.e., motion in response to a chemical gradient, is a phenomenon displayed by living and non-living systems
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alike and therefore an apt way to gain better understanding about the complexity of life. While there are several
different chemotactic systems, here we address the dynamics of Benzoquinone (BQ) particles on water–air interface.
Recent work [3–6] on BQ particles have shown them to be interesting systems capable of revealing much about collective
dynamics.

Explanations for nature’s patterns have come in two forms, (i) bottom-up causal arguments, i.e., dynamical approach
based on Newton’s laws or variations thereof and, (ii) top-down optimality arguments founded on a non-equilibrium
thermodynamic approach. There is growing evidence that most natural phenomena are far from thermodynamic equi-
librium and maintained there by inherent dissipative mechanisms; therefore patterns in nature may be the result of a
more fundamental and underlying thermodynamic design. Recent studies [7–13] attest to the power and significance
of thermodynamic-based approaches to the investigation of complexity, self-organization and emergence, all key to
the development of a ‘theory of living systems’. The central idea in these studies, and the thermodynamic school of
thought more broadly, is that entropy generation and free-energy consumption are inherent traits of living and non-
living dissipative systems alike. Non-living self-organizing systems thus serve as practical analogues of more sophisticated
biological counterparts. Other works [14] argue in favor of dynamics as a means to gain clarity about the self-organizing
systems. In this paper, we approach collective motion through the combined efforts of mechanics and thermodynamics.
Our assumption is that collective dynamics must necessarily be instantiated by motion and forces while the driving
mechanism for this behavior is best explained through the energetics of the system, necessitating a thermodynamic
approach.

The dynamics of autonomous chemical swimmers is a rapidly expanding topic of research. Many such systems are
composed of solid particles of compounds (e.g., camphor, benzoquinone) floating at the air–water interface [2–6,15–
18]. The dissolution or sublimation of compounds from the solid phase generates surface tension gradients that drive
individual particles across the fluid surface. We have studied the dynamics of collectives of benzoquinone (BQ) particles
at the air–water interface, which demonstrate a tendency to aggregate into collective assemblies of particles that we
call ‘‘flocks’’ [3,5,19]. This flocking dynamic is hypothesized to be driven by the variation in dissolution-induced surface
tension gradients. Further, we have hypothesized that this phenomenon is also driven by an intrinsic end-directedness to
maximize dissipation or to maximize the rate of entropy production [5].

In prior work (discussed in greater detail in subsequent sections), our colleagues reported on the aggregation dynamics
of BQ particles at the air–water interface. Experiments were conducted with two types of BQ particles, (1) symmetric,
circularly shaped disks and (2) asymmetric fragments of BQ disks. The latter irregular pellets were made by breaking large
BQ disks into fragments of similar surface area of the circular pellets. One remarkable observation was that the irregularly-
shaped particles have a much higher tendency to aggregate into flocks than the regularly-shaped circular pellets. These
flocks emerge over the course of the experiment (on the order of 10s of seconds), tend to exhibit collective motion through
the dish, and may fluctuate in size and particle number. Comparable dynamics were not observed in experiments with
regularly shaped circular pellets. One candidate explanation for this phenomenon appeals to the differences in interfacial-
tension and mass-flow due to the difference in pellet geometry, and such an analysis is pending. Here we pursue an
explanation for these differences deriving from end-directed or variational thermodynamic principles.

Non-equilibrium variational principles are highly sought-after, as they would enable predicting the time-evolution of
complex open systems, from turbulent fluids to biological systems [12,20]. These include the hypotheses that systems
will maximize the rate of entropy production (MEP) [12], or minimize the Gibbs free energy (MinFE) [21,22]. We have
previously theorized that the flocking of BQ particles might similarly be driven by such a selection principle [5], namely
MEP. It was suggested that the emergence of flocks was due to the system converging on a state with maximum rate
of entropy production (MEP). REP was approximated by estimating the dissolution rate constant k for the two types of
Q particles (regular and irregular). It was observed that flocks of irregularly shaped particles had higher k values than
on-flocking regular-particles, consistent with the hypothesis that flocking produces greater entropy production than not
locking. However, this result lacks an appropriate control condition, as we cannot compare the MEP between flocking
nd non-flocking dynamics within particle type (regular and irregular).
Herein we continue to explore explanations for the flocking phenomenon deriving from a variational principle. Using

ass-action kinetics to simulate the flocking dynamics, we investigated how the change in Gibbs free energy, ∆G, related
o the emergence of flocks of different sizes. From this we demonstrate that the preferred flock sizes of both regular and
rregular particles tend to minimize the Gibbs free energy, consistent with a variational principle like MinFE.

. Experiments

The experimental data reported in this study are based on experiments originally performed and reported in
atterwhite-Warden et al. [4]. This study examined the spontaneous dynamics of Benzoquinone (BQ) particles on water–
ir interface. The BQ particles were made in two forms, irregular and circular. The irregular particles had sharp edges and
on-uniform shape while the circular particles were 3 mm disks of BQ.
2
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2.1. Materials and methods

The experiment used 1,4-Benzoquinone (BQ), lycopodium, and sodium chloride (NaCl), all from Sigma-Aldrich.
Nanopure water (18 megaohm cm) was house-distilled, and then purified by a Hydro Service and Supplies system. The
BQ powder was first finely ground in a mortar and then molded into a pellet (either 3 mm diameter, 1 mm thick or
13 mm diameter, 1 mm thick) with a die set and press, either a hand press (Pike Technology, model no. 161-1100) or
hydraulic press (Carver Inc., model no. 4350L) was used. Two different particle forms were implemented: circular 3 mm
BQ disks or irregularly shaped and sized BQ fragments. The irregular BQ particles were made by breaking 13 mm BQ
disks into pieces. The circular particles were used in the shape created by the press. All particles were lightly dusted with
lycopodium powder, a hydrophobic material that helps the keep particles at the air–water interface, and thus extend the
observation time of self-motion.

BQ particles were gently added to the air–water interface of aqueous 0.1 M NaCl. The aqueous medium was in
a rigorously cleaned, surfactant-free glass Petri dish (90 mm diameter). This aqueous volume was selected such that
BQ particles did not touch the bottom on the Petri dish. The motion of particles was recorded using a digital video
camera (JVC-HD GZ-E200BU, frame rate: 30 fps). The recording was terminated when the particles dissolved or sank.
Image analysis was done using ImageJ 1.41 [23]; the [x,y] coordinates for each particle for each frame were manually
acquired using the MTrackJ plugin [24]. The resulting [x,y] coordinates for each trial were analyzed using the R statistical
programming language [25] (see Fig. 1).

2.2. Experimental results

The images are used to define flocks of various sizes. If the centers of any two or more BQ particles are within a
distance r < rcrit = 125 pixels, we define the particles to be part of a flock. In this paper, we examine six experiments
corresponding to systems of size ranging from a total of 4–15 particles. Five different flock-bins are defined and labeled
A–E, each flock representing a range of flock sizes defined in Table 1. Fig. 2 summarizes a significant observation for each
f these systems by showcasing the average percentage distribution of each flock over the entire 100 s of observations. An
mergent self-organization property in the BQ system can be stated as follows: (a) symmetric particles tend to persist as
ingle particles or primarily as smaller flocks; (b) in irregularly shaped particles, the system shows a reduction in smaller
locks (A,B) and a noticeable increase in larger flocks (D,E). Quantitative definitions of ‘small’ and ‘large’ flocks cannot be
iven in general and are sensitive to the system under discussion. For instance, in the 8-particle system, in moving from
egular to irregular particles we see the flocks A,B enlarge to include a significantly larger percentage of flocks C and D.1

. Modeling setup

We employ a mass-action based framework to model the interactions between ‘particles’ on an air–fluid boundary as
hey form ‘flocks’ or groups of particles. Distinct from experiments, the model treats the particles as continuous systems
nd their interaction as discrete event, determined by rate constants. The parameters αi and βi with 1 < i < 10 are the
ates of associations and dissociations of the flocks respectively and are obtained by performing curvefits to experimental
ata. While the model is formulated in general, the distinction between the two types, regularly shaped versus irregularly
haped ones are made by rate constants which are obtained from fits to experimental data. These constants will be used
s the groundwork for a network thermodynamic analysis of the mass transfer modeling flock formation. The constants
1 − α10 represent cohesion flocking tendencies while β1 − β10, all backward rates, represent separation tendencies.
In the interest of reducing the computational complexity of the problem, we define five bins as described in the

revious section, denoted A to E, to study flocking dynamics. The choice of bins depend on the total number of particles
n the system, for which a representative value is assumed based on the experiments. Our computations are focused on
wo systems, one containing 12 individual particles and the other containing 16 particles.2 Table 1 shows the binning
tructure for these two cases, with the representative value for each bin.
The difficulty in obtaining aggregation/separation data for each flock size, requires some parameter reduction. In order

o match the order of our input data (5 flock bins) to the output of our curve fit we make the following assumptions: (a)
ll rates into flock A := β1; (b) all rates into flock B := α1; (c) all rates into flock C := α2; (d) all rates into flock D := α3
nd (e) all rates into flock E := α4. This assumption allows us to reduce the number of parameters from 12 to 16. This
mounts to the assumptions that

β1 = β5 = β6 = β7 (1)
α1 = β2 = β8 = β9 (2)
α2 = α5 = β3 = β10 (3)
α3 = α6 = α8 = β4 (4)
α4 = α7 = α9 = α10 (5)

here each of the rate constants have units of 1/s.

1 It is to be noted that in the 8-particle and 10-particle system, D represents the largest flock in accordance with the definition of Table 1.
2 We shall henceforth describe this as ‘15-particle system’ to maintain consistency with experiments.
3
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Fig. 1. This figure shows time lapse images of flocking dynamics for the (a) 12 particle and (b) 15 particle BQ systems at three different times. The
top row for each of the two cases shows disk shaped particles while the second row corresponds to irregularly shaped particles.
4
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Fig. 2. This figure shows the average distribution of particles of various sizes over an entire experiment showing the propensity of the system to
form specific flocks. The panels (a)–(f) represent different system sizes, ranging from (a) 4 particles to (e) 15-particles. In each case, the panel on
the left corresponds to irregularly shaped particles while the one on the right corresponds to regular, disk shaped particles. The binning of flocks is
described in Table 1. The legends reveal the fraction of the solid area covered by each flock. The comparison between disks and irregular particles
in each panel reveals a clearly shift towards larger flocks, on average.

Fig. 3. The figure shows a cartoon of the modeling scheme depicting the various pathways between the five flocking bins A − E and their reaction
ates.

.1. Mass action equations

Fig. 3 provides a schematic of the aggregation model adopted here. The mass-action based, coupled dynamical system
or the 15 particle system is given below for a representative size corresponding to each bin (A-1; B-2; C-4, D-8; E-16).
his model employs the five rate constants under the assumption described earlier.3

dA
dt

= β1(2B + 4C + 8D + 16E) − (2α1A2
+ 4α2A4

+ 8α3A8
+ 16α4A16)

= FA(A, B, C,D, E) (6)

3 A similar system, derived for the 12 particle modeled is shown in Appendix A.
5
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Table 1
The table shows the range of each flock for the model system ranging in size from 4 to 16-particles. For sake of convenience, a representative size
for each bin is chosen in the computations which is the underlined number. It is to be noted here that while the experiments referenced in the
paper correspond to a 12-particle and 15-particle system, we approximate the latter with 16-particles for consistency with theory. However, in the
rest of this paper we shall use ‘15-particle system’ to describe this scenario to maintain consistency with experiments.
Bins A B C D E
# Particles

4 1 (2,3) (4) – –
6 1 (2,3) (4,5,6) – –
8 1 (2,3) (4,5,6) (7,8) –
10 1 (2,3) (4,5,6) (7,8,9,10) –

12a 1 (2,3) (4,5,6) (7,8,9) (10,11,12)
16 1 (2,3) (4,5,6) (7,8,9,10) (11,12,13,14,15,16)

aSee Appendix A for details of the relevant equations for this system.

dB
dt

= α1(A2
+ 2C + 4D + 8E) − (β1B + 2α2B2

+ 4α3B4
+ 8α4B8) = FB(A, B, C,D, E) (7)

dC
dt

= α2(A4
+ B2

+ 2D + 4E) − (β1C + α1C + 2α3C2
+ 4α4C4) = FC (A, B, C,D, E) (8)

dD
dt

= α3(A8
+ B4

+ C2
+ 2E) − (β1D + α1D + α2D + 2α4D2) = FD(A, B, C,D, E) (9)

dE
dt

= α4(A16
+ B8

+ C4
+ D2) − (β1 + α1 + α2 + α3)E = FE(A, B, C,D, E) (10)

In order to examine the stability of flock formation within our model we examine the change in free energy, ∆G,
ssociated with the mass transfer into each flock bin. ∆G for a reaction pathway is a physically apt way to examine the
ominant stable reaction fluxes and forces in the system [22]. In equilibrium, Gibbs free energy is given by the expression
G0 which is defined in terms of the equilibrium constant as ∆G0 = −RT ln Keq. However, the free energy can be applied

o time-dependent and out of thermodynamic situations in terms of the chemical affinity of the reaction and expressed
s

∆G = ∆G0 + ∆̄G (11)

here ∆̄G = RT ln
(
Rf /Rr

)
, Rf , Rr are the forward and reverse reactions rates respectively and R and T correspond to

he Rydberg constant and ambient temperature of the system. It is the second term here which is time dependent and
etermines the overall direction of the reaction. More specifically, it is seen in our problem that the expression for free
nergy can be written as

∆G = −RT ln Keq + ∆̄G.

ote that a negative ∆G is indicative of a spontaneous (or stable) reaction while a positive ∆G implies that the particular
eaction requires added energy to occur [22]. We point to the following possibilities:

1. When 0 < ∆̄G < ∆G0 or 0 > ∆G0 > ∆̄G and limt→∞ ∆̄G = |∆G0|, the net free energy of the system, ∆G ≤ 0 for
t ≥ 0, therefore supporting the reaction promoting the formation of the products.

2. Similarly, in the case, where 0 > ∆̄G > ∆G0 or 0 < ∆G0 < ∆̄G and limt→∞ ∆̄G = |∆G0|, then ∆G ≥ 0 for t ≥ 0
promoting the formation of the reactants.

he objective of this paper is to investigate the sign of the free energy for reactions pertaining to formation of specific
locks.

Based on our earlier assumption of isomorphic reaction rates, there are several ways to form any of the A to E flocks
ut only one way to dissociate. The expressions for various free energies associated with the formation of each species is
iven by the equations below. Note that ∆̄GX , i.e. the free energy for net formation/depletion of flock X , where X = A to
are given by:

¯∆GA = RT ln

(
α1B

1
2 α2C

1
4 α3D

1
8 α4E

1
16

β4
1A4

)
(12)

¯∆GB = RT ln

(
β1A2α2C

1
2 α3D

1
2 α4E

1
8

α4
1B4

)
(13)

¯∆GC = RT ln

(
β1A4α1B2α3D

1
2 α4E

1
4

4 4

)
(14)
α2C

6
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¯∆GD = RT ln

(
β1A8α1B4α2C2α4E

1
2

α4
3D4

)
(15)

¯∆GE = RT ln
(

β1A16α1B8α2C4α3D2

α4
4E4

)
(16)

The free energy of a chemical reaction (i.e. the affinity or chemical forces of the reaction) in the case of equilibrium
or non-equilibrium (near or far from equilibrium) can be expressed as function of chemical potential, denoted µ (see for
nstance [22]). So for instance, the Gibbs energy for the reactions X → Y and Y → Z can be expressed as

∆GXY = µX − µY (17)
∆GYZ = µY − µZ (18)

s a result,

∆GXZ = µX − µZ = (µX − µY ) + (µY − µZ ) = ∆GXY + ∆GYZ (19)

herefore the Gibbs energy possesses an additive property, which is utilized in the theoretical computations of ¯∆GA− ¯∆GE
bove, each containing the sum of contributions from different pathways identified in the Fig. 3. The linear superposition
ule is invalid when computing the rate of entropy production (σ ) in a non-equilibrium system, where σ is written as
product of the reaction fluxes and forces (or affinities) [22]. The non-equilibrium regime of a physical system is not
lways easily characterized and quantified, they key to which may be the identification of a key parameter which controls
he extent of departure from thermal equilibrium [9]. In the absence of this feature, especially in chemical systems, it
s meaningful to consider a thermodynamic quantity that is free of this constraint. Due to the nonlinear nature of the
xpression of σ , superposition breaks down when the system is far from equilibrium. However, it is generally valid in the
ase of free energy, which has been exploited in this problem.

.2. Model 2: Flocking dynamics with sink

Our second model builds upon the model 1 Eqs. (10) by accounting for the dissolution of the particles into the
nvironment (or sink) and also features concentration dependence. The dissolution is an irreversible, one way reaction, at
ate k, and the concentration of particles in the sink, denoted A′, is determined by the disequilibrium of flock concentration
etween the system and the sink. The complexity of the model system comes from the fact that the reaction rates in the
Q-environment system are dependent on the difference in concentration between the two compartments (denoted ∆φ).
he flocking and dissolution into the sink continue until ∆φ → 0. This model permits confirmation of the results of
odel 1 under more realistic conditions including exploration of the impact of (a) dissolution rate k, (b) surface tension
radient, which is related to concentration difference ∆φ and (c) initial concentrations of the two compartments, upon
he flocking dynamics. To be noted is that the rate of dissolution is independent of the flock itself.

The governing equations for the 15 particle system can be written as:
dA
dt

= ∆φ (FA(A, B, C,D, E) − kA) (20)

dB
dt

= ∆φ (FB(A, B, C,D, E) − kB) (21)

dC
dt

= ∆φ (FC (A, B, C,D, E) − kC) (22)

dD
dt

= ∆φ (FD(A, B, C,D, E) − kD) (23)

dE
dt

= ∆φ (FE(A, B, C,D, E) − kE) (24)

dA′

dt
= k∆φ (A + B + C + D + E) (25)

where ∆φ = (A + B + C + D + E) − A′. As ∆φ → 0, the right sides of Eqs. (20)–(25) vanish and the system reaches
steady state. Also, if the dissolution rate k → 0, A′ becomes irrelevant and the system of equations revert back to the
original model, i.e. the one without the sink. Initial conditions assumed for our investigations are based on experiments.

4. Results

The rate constants α1−α4 and β1 were obtained from fitting model equations (6)–(10). Rate constants are calculated by
the method of least squares with the MATLAB lsqcurvefit function. We solve for rate constants r in the governing equation
by finding the parameters which solve the problem: minr∥F (r, tdata)− ydata∥2

2 = minr
∑

i(F (r, tdatai )− ydatai )
2 where ydata

s the experimentally observed flock number at each instance of time. Experimental data is preconditioned by performing
7
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Table 2
This table shows the values of the five primary rate constants obtained from fitting data from 12 and 15 particle experiments to the mode 1.
Rate Constants α1 α2 α3 α4 β1
# Flock Size & Type

12-Regular 12.12097 0.95147 1.01760 0.72269 12.98397
12-Irregular 0.06961 0.00852 0.00003 0.00000 0.85915
15-Regular 53.21555 5.26241 8.61908 10.02046 35.29300
15-Irregular 0.30348 0.10051 0.08829 0.01088 1.00464

a polynomial fit employing the MATLAB polyfit function, thus avoiding the computational trouble of many discontinuities
nd zero-valued inputs. The same constants were used in the study of Eqs. (20)–(25). The dynamical equations were
umerically solved using a six-stage, fifth-order Runge–Kutta method via the Matlab ode45 function. In such a largely
nterdependent, non-linear system many equilibria are expected. Thus we use MATLAB function fsolve to determine the
nearest equilibrium to an initial guess informed by our numerical solutions. When compared, our methods show a less
than 0.1% error with respect to the fsolve output for each flock size estimation. Table 2 provides the fitted constants
or various scenarios. Additionally, the dissolution rate k was estimated from experiments as the reciprocal of the time
aken to reach steady state. On average the value of k ≈ 0.01. Table 3 shows the average value of each flock number, the
orresponding steady state flock number obtained by our model with the rates provided in Table 2, and relevant statistical
alues. We exhibit confidence in our fitted values by their ability to capture the overall behavior of the flocking system by
xamining the bin average absolute error (expressed in units of particles) in context of the data average standard deviation
n each bin. If the absolute error in predicting our bin sizes is less than, or relatively close to the standard deviation of
he experimental data, we assume reasonable confidence in our parameter fits (see Table 2).

The concentrations of the various flocks were used to compute the steady and time dependent free energy values for
lock formation. Fig. 4(a) and (b) shows the steady ∆̄Gi values (i = A, B, C,D, E) for the 15 and 12 flock cases. Clearly,
n the case of the irregularly shaped BQ particles, the values of ∆G are negative in the case of larger flocks showing a
reference for flocks C , D and E with the most spontaneous being flock E. In the case of the regularly shaped particles,
he intermediate flock size (i.e. flock C) appears to be the most preferred one. The computations suggest that regardless
f the total number of particles, irregularly shaped particles form large flocks more spontaneously than regularly shaped
articles and are in strong qualitative agreement with experimental observations.
Eqs. (20)–(25) of model 2 are also solved and respective free energies are compared in the presence of a sink. Figs. 4(c)–

e) shows the results of the time dependent ∆G calculations for the 12 and 15-particle system, including the sink.
pontaneity of the reaction requires ∆G < 0 and this requirement helps put a constraint on the parameter k. For
< k < 0.877, ∆Gsink < 0. This agrees with the physical actualization of constant particle dissolution towards saturation.
he value of k assumed in this study (k = 0.01) falls well within this range. Overall, the results for this model are also
n good qualitative agreement with observations. As seen earlier, at longer times, ¯∆GE < ∆̄GD < ∆̄GC < 0 dominate the
rregular system while the regular particles lean in the direction of intermediate to smaller particles with ∆̄GC < 0, with
he free energies for the other flocks being positive for all times computed.

The solution of the governing equations also allow for computation of the area which each flock occupies when our
odel reaches steady state. The area of each flock is given by the product of the estimated particle area and number

or concentration) of each flock derived from the computations. The characteristic area is chosen to be the size of one
-flock at initial time which is assumed to be unity, without loss of generality. For the 15 particle system we can see
hat the irregularly shaped particles form in such a way as to maximize the area allocated to E-flocks, while the regularly
haped particles clearly do not maximize large flocks through their interactions. Irregular particles, once again show a
lear preference for larger flocks, especially in the 15 particle case, while the smaller D-flock dominates in area for the
egularly shaped particles. The 12 particle case only shows a mild preference for E flock.

. Discussion

The primary contribution of this paper is the mapping of experimental observations on flocking of BQ particles [3–5] to
mathematical model via mass-action kinetics. While the experimental system is discrete, yet, the continuous dynamical
odel is able to capture the essential characteristics of this system. There are good reasons to use such a dynamical
odel to help explain flocking behavior: (a) collective motion and self-organization in living and non-living systems are
riven by chemical gradients, therefore a reduction of the system to a set of interrelated chemical reactions is a good first
pproximation, (b) such a model affords a thermodynamic perspective as well through the formulation of free energy (∆G),
hich is key to this analysis. Satterwhite-Warden et al. hypothesize that [5], ‘‘The flock responds to changes in its local
nvironment as it forages for interfacial free energy’’. A free energy based analysis is therefore central to understanding
elf organizing behavior, as previously noticed and as the results of this study clearly indicate.
Some recent work in the area of protein aggregation has shown such models to be particularly useful when examining

ompetitive self-assembly scenarios [21] and the problem treated here is not so dissimilar despite the assumptions
f continuity, for this discrete system. One added advantage of this analysis which is yet to be fully exploited is the
8
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Fig. 4. This figure shows the results of free energy calculations for 15 (panel a) and 12 (panel b) particle system for model 1 while (c) and (d)
show the same for model 2. Here the black bars represent the disk shaped particles, while red bars represents the irregularly shaped. No matter
the size of the system, ∆G is able to clearly distinguish between the dynamics of regular and irregular particles. In the case of irregular particles,
arger flocks show greater propensity to display negative values while in the case of regularly shaped particles, the intermediate flocks reveal the
reatest probability to occur. The panels (e) and (f) show the time dependent change in the free energy for each flock for model 2 for the 15 particle
nd 12 particle system respectively. The legend shows the color associations with the flock bin and the solid versus dashed curves, help distinguish
etween irregular and regular shapes. This final graph shows only those flocks for which ∆G is negative.

otential to examine thermodynamic aspects beyond free energy. Self organization is inherently an outcome of the
volving energies and entropy in dissipative systems [12,22] and this system lends itself quite well to examining questions
bout the merits of the maximum entropy production principle which will be studied in the future. On the flip side,
problem with this approach is its reduced complexity. Binning the flocking system forces a selective organizational
9
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structure for computational convenience which contributes to errors. However, our calculations show that the assumption
of continuity through the mass action model and binning results in deviations between 1%–13% in the total number of
particles, depending on the particular system. However, the model does a good job of satisfying mass conversation to
within 2.8% for all systems, the error coming from variability within each bin. Therefore the results and comparison must
be deemed acceptable in an average sense.

The significance of particle shape in self organization and pattern selection has been discussed in earlier works
(see [8,13,26,27] and references therein). Accordingly, shapes can induce asymmetries in the surrounding medium, driving
particles faster and increasing opportunities for collision. The nonlinearity of the model equations prevents us from gaining
insights into the reasons behind observed differences in experiments and theory between the regular disks and irregular
particles. According to [5], ‘‘However, we suspect that irregular BQ fragments elicit larger interfacial free energy differences
near particle points and edges, since dissolution at such points is faster than at smooth regions of a particle. This creates
a greater local driving force for particles to cooperate’’. The Table 2 hints at the possibility of the rate constants having
omething to do with this in our theoretical model but a simpler model can provide more meaningful insights into this
ifference. For sake of convenience we take a reduced 2-Bin system: A ↔ B with constants β1 (into A) and α1(into B).
n the framework of model 2, assuming A corresponds to an individual particle and B to a flock of size 2, this system
mounts to

dA
dt

= ∆φ
(
2β1B − 2α1A2

− kA
)

(26)

dB
dt

= ∆φ
(
α1A2

− β1B − kB
)

(27)

dA′

dt
= k∆φ (A + B) (28)

quilibrium conditions4 for the system require

A∞ =
1

2α1

(
−k +

√
k2 − 4α1(k − β1)B∞

)
(29)

isregarding the added constraint ∆φ. Eq. (29) can now be used to examine conditions under which larger flocks would
dominate, i.e. B∞ > A∞, which upon some manipulation yields the inequality

β1 < α1B∞ + 8k. (30)

his equation clearly shows that there are thresholds on the system parameters which can push the outcomes towards
ormation of larger or smaller flocks. A similar analysis is very difficult to perform for larger systems like the ones discussed
n this paper, which is why we rely on numerics for the 5-bin models. However Eq. (30) provides clear demarcating
haracteristics which determine the outcome of BQ particle flocking as a result of their shape. To compare this with model
, we take the limiting case of k → 0 in Eq. (30), which yields β1 < α1B∞. A comparison of the effectiveness of the second
odel, compared to the first will need to be made on the basis of a comparison against the experimental observations. In

his regard, Fig. 4 is revealing; it shows the model 2 to be qualitatively more compatible with experiments in showing ∆̄GE
nd its corresponding value of ∆GE to be far more negative than the free energies for other flocks. A theoretical calculation
f flock areas is also made and shown in Fig. 5.5 The pie charts of flock areas, based on the equilibrium configurations,
re shown in the panels (c) and (d) of this figure and correspond to the 15 particle and 12 particle systems respectively.
he former, corresponding to 15 particle systems matches very well with experiments and shows far greater proclivity
or large flocks in the irregular case than for disks. There is a slight increase in the area of the E flock for the 12 particle
ystem but the results are less conclusive which can be attributed to errors from the assumptions made for the model
arameters, including the dissolution constant.
While this approach has not previously been implemented in the context of chemically induced flocking, the modeling

ffort by Soh, Bishop and Gryzbowski [16] on the self propulsion and organization of camphor particles merits mention.
he authors employ the coupling of the two dimensional Navier Stokes equations with the diffusion equation to model
he dynamics, where the diffusion of camphor into the surrounding fluid, results in a surface tension gradient, thereby
ausing a (Marangoni) flow which moves the camphor particles, further disrupting the surface tension distribution. It
s likely that a very similar explanation is appropriate for the BQ system which operates on similar physico-chemical
rinciples, some of which are implicitly assumed in our own model. A particularly interesting observation that emerge in
he camphor system, which need to be investigated for BQ particles in the future is the existence of a critical mass above
hich self-organization emerges. .

4 Equilibrium can be obtained by solving for the simultaneous zeros of Eqs. (26)–(28).
5 This calculation is performed for model 1. The model 2 assumes a simplistic, uniform dissolution mechanism resulting in an increasing

ontribution to the sink with flock size. This impacts the calculation of flock area and makes it difficult to make appropriate comparisons. We
herefore take the model 1 to be more meaningful in this regard.
10
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Fig. 5. The panels (a) and (b) show the equilibrium states for different shaped 15 particle system while panels (d) and (e) reveal theoretical
calculations of the solid area distribution by the various flocks, with (c) corresponding to 15 particles and (d) to 12 particles. The panels (c) and (d)
should be compared against similar experimentally determined profiles in Fig. 2.

. Conclusion

One of the central quests of physics is the explanation of emergent patterns in nature. In trying to understand living
ystems, perhaps simplistically, we characterize ‘life’ as an emergent characteristic of a chemical system. Emergence
an be defined as [28] ‘‘...the arising of novel and coherent structures, patterns and properties during the process of
elf-organization in complex systems’’ which are ubiquitous and independent of scale. Therefore self-organizing flocking
atterns that occur in the BQ system that we study, could lead us towards the development of a theoretical framework
or life itself, as is the expectation in much of the work on complexity and self-organization [14]. Our mass-action
ased dynamics, accompanied by a thermodynamic based analysis is worthy of further pursuit as it captures interesting
haracteristics of the system observed in experiments. What is lacking in this analysis is a proper accounting of the
urrounding fluid environment which is an essential player in the entire event, orchestrating the particle motion through
he development of a Marangoni flow [16,26] and maintaining the surface tension gradient on the fluid surface which is
he driving force for the observed pattern. A mathematical formulation containing the particles and the fluid will permit
or a proper accounting of the chemical/mechanical (energetics) as well as the thermodynamic aspects (entropics) of the
ystem. The tenets of thermodynamics, especially entropy production, are recognized as immutable laws of nature and
mong the most fundamental guiding principles to describe end-directed behavior [22] and must be estimated for this
ystem to fully understand the merits of the theoretical treatment adopted here.
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T

Table 3
Here we catalog the average value of the number of flocks in each bin for each experiment, and the steady state value obtained by our model when
running with the rate constants shown in Table 1. BAAE is the bin average absolute error, i.e. the average error for each bin between the model
and experiment. We compare this value to DASD, or the data average standard deviation, i.e. the average for each bin of the standard deviation in
the number of flocks in each bin.
Flock Size A B C D E

12-Regular
Avg. Obs. Flock Number 7.07 1.31 0.03 0.00 0.16
Model SS Flock Number 1.15 1.31 0.23 0.28 0.51

BAAE DASD
2.62 2.08

12-Irregular
Avg. Obs. Flock Number 2.97 1.00 0.43 0.36 0.16
Model SS Flock Number 3.19 1.11 0.97 0.39 0.05

BAAE DASD
0.83 2.81

15-Regular
Avg. Obs. Flock Number 6.69 1.91 0.33 0.00 0.16
Model SS Flock Number 0.95 1.00 0.16 0.17 0.14

BAAE DASD
1.97 1.76

15-Irregular
Avg. Obs. Flock Number 1.09 1.02 0.29 0.41 0.47
Model SS Flock Number 1.28 1.21 0.52 0.66 0.43

BAAE DASD
0.80 3.55

Appendix A

The governing equations for the 12 particle system, based on mass-action principle is given by:
dA
dt

= β1(2B + 5C + 8D + 12E) − (2α1A2
+ 5α2A5

+ 8α3A8
+ 12α4A12) (31)

dB
dt

= α1(A2
+

5
2
C + 4D + 6E) − (β1B +

5
2
α2B

5
2 + 4α3B4

+ 6α4B6) (32)

dC
dt

= α2(A5
+ B

5
2 +

8
5
D +

12
5

E) − (β1C + alpha1C + 2α3C2
+

12
5

α4C
12
5 ) (33)

dD
dt

= α3(A8
+ B4

− +C
8
5 +

3
2
E) − (β1D + α1D + α2D +

3
2
α4D

3
2 ) (34)

dE
dt

= α4(A12
+ B6

+ C
12
5 + D

3
2 ) − (β1E + α1E + α2E + α3E) (35)

he representative size of each flock here is as follows: A−1, B−2, C −5, D−8 and E −12. The results of the 12-particle
computations presented earlier in the paper are based on these equations.

Appendix B

See Table 3.
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