COMPUTING THE GROUP OF MINIMAL NON-DEGENERATE
EXTENSIONS OF A SUPER-TANNAKIAN CATEGORY
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ABSTRACT. We prove an analog of the Kiinneth formula for the groups of minimal
non-degenerate extensions [26] of symmetric fusion categories. We describe in detail
the structure of the group of minimal extensions of a pointed super-Tannakian fusion
category. This description resembles that of the third cohomology group of a finite

abelian group. We explicitly compute this group in several concrete examples.

1. INTRODUCTION

There is a notion of categorical “orthogonality” in a braided fusion category C [12] 29].
Namely, objects X,Y of C centralize each other if the squared braiding between them
is identity, i.e., cy.xcxy = idxgy, where ¢ denotes the braiding of C. For a fusion
subcategory B C C, its centralizer in B is the fusion subcategory B’ C C consisting of
all objects X centralizing every object Y in B. When C is pointed, i.e., corresponds to a
pre-metric group (A, ¢), where ¢ is a quadratic form on a finite abelian group A, fusion
subcategories of B are in bijection with subgroups of A and the centralizers are identified
with orthogonal complements. This notion allows interpreting many aspects of the theory
of braided fusion categories in terms of “categorical linear algebra”.

For example, a symmetric fusion subcategory £ C C satisfies £ C £ and so can be
thought of as a categorical analog of a coisitropic subspace. When C is non-degenerate,
one has & = &', i.e., £ is a Lagrangian subcategory, if and only if FPdim(&)? = FPdim(C),
where FPdim denotes the Frobenius-Perron dimension. An embedding & < C with
this property will be called a minimal non-degenerate extension (or simply a minimal
extension) of €. Lan, Kong, and Wen observed in [26] that there is a natural product
of minimal extensions of £, so that the set of their equivalence classes is an abelian
group Mext(€) (in fact, minimal extensions of £ form a symmetric 2-categorical group
Mext(E), see Section [2.2)).

Groups of minimal extensions were studied by many authors, including [1I, 2, [3 1T,
18, 21], 26, 27, 30]. From the physics point of view, minimal extensions appear in the
description of 2+1D topological orders and symmetry-protected trivial (SPT) orders [26],
and symmetric invertible fermionic phases [I, 2]. It is known that for a Tannakian category
E = Rep(G), where G is a finite group, the group Mezt(€) is isomorphic to H3(G, k*),
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the third cohomology group of G. For £ = sVect, the category of super-vector spaces, it
is isomorphic to Z/16Z (this statement is known in physics as Kitaev’s 16-fold way [25]).

The goal of this paper is to describe the group of minimal extensions of a super-
Tannakian fusion category £ (with an emphasis on the case when £ is pointed) and
compute it in several concrete examples.

The main results of the present paper are the following.

In Section 3| we prove a version of the Kiinneth formula for Mexzt(Rep(G) X E), where
G is a finite group and £ is a symmetric fusion category. Theorem establishes a group
isomorphism

(1) Mext(Rep(G) X E) = Mext(€) x 2-Fun(G, Pic(£)),

where 2-Fun(G, Pic(£)) is the group of monoidal 2-functors from G to the 2-categorical
Picard group of £. For & = Rep(L) this recovers the familiar Kiinneth formula computing
the third cohomology of the product G x L.

In Section [4] we analyze the structure of the group Mext(E) for a pointed symmetric
category £. We consider a filtration

(2) Mexty,(E) C Mext, () C Mext;,(€) C Mext(E),

consisting, respectively, of the subgroups of trivial, pointed, and integral minimal exten-
sions of £, and compute its composition factors in Theorem [4.18, This description of
Mext(E) generalizes that of the third cohomology group H3(A, k*) of a finite abelian
group A [8, 28]. A new feature is the appearance of cohomological obstructions from the
theory of graded extensions [0, [17].

Finally, in Section [5| we apply our results to compute the group of minimal extensions
of concrete examples of super-Tannakian categories, namely, Rep(Z1,) and Rep(Zy x Z.3).
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anonymous referees for comments and corrections that improved the exposition. The
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2. PRELIMINARIES

In this paper, we work over an algebraically closed field k of characteristic 0. We adapt
the following font convention for higher categorical groups: we use italics (G) to denote
ordinary groups, calligraphic (G) for categorical groups, and boldface G for 2-categorical
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groups. We use the same name in different fonts to denote the truncations of a given 2-
categorical group. For example, we write Pic(€) = my(Pic(€)) and Pie(€) = m<1(Pic(€))
for the truncations of the 2-categorical Picard group Pic(€).

2.1. Symmetric fusion categories and their Picard groups. We refer the reader to
[13), [16] for the basics of the theory of braided fusion categories.

By Deligne’s theorem [10], symmetric fusion categories are parameterized by pairs
(G, t), where G is a finite group and ¢t € Z(G) is a central element such that ¢ = 1.
The corresponding category Rep(G, t) consists of finite-dimensional representations of G,
with the usual tensor product and braiding given by
) v (0@ w) = —w v, iftly : —1 and t|y = —1,

w R v, otherwise,
for all irreducible representations V, W of G, where v € V, w € W. This category is
called Tannakian if t = 1 (so it is simply Rep(G)) and super-Tannakian if t # 1. When G
contains a unique automorphism orbit of central elements of order 2 we will use notation
Rep(G7) for Rep(G, t) which is common in physics. Here f stands for “fermionic”. For
example, sVect = Rep(Z3).

Let B be a braided fusion category. The 2-categorical Picard group Pic(B) [17] is
formed by invertible B-module categories with the tensor product Xp. Its 1-categorical
truncation Pic(B) := <1 (Pic(B)) is equivalent to the categorical group Aut(Z(B);B) of
braided tensor autoequivalences of Z(B) trivializable on B [5].

The Picard group of a symmetric fusion category was determined by Carnovale in [4]:
(4)

H?(G, k*) ift =1,
Pic(Rep(G, t)) = ¢ H*(G, t, k*) if t # 1 and (t) is not a direct summand of G,
H?*(G, t,k*) x Zy ift#1and (t) is a direct summand of G.

The description in [4] was given in terms of Azumaya algebras. In terms of module
categories, the elements of H*(G, k*) correspond to module categories Rep(k,[G]) of
projective representations of G with a fixed 2-cocycle p € Z?(G, k*) and the generator
of Zy is Rep(Gy), where G = Gy x (t). Here the action of Rep(G) on Rep(k,[G]) is
defined by taking the tensor product of a linear representation of G' with a projective
representation. The action on Rep(G)) is defined by restricting a representation of G to
Gy and then taking the tensor product.

The group H*(G, t, k*) is defined as follows (see [4] and also [6]). There is a canonical

bilinear map

(5) H*(G, k) x G = Z/2Z: (n, x) = &u(z),
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where &,(z) is defined by the condition

(—1)6@) = plz, ) pe H(G, &), z € G.

pu(t, )’
Introduce a new multiplication on H?(G, k*) by
(6) prv(z, y) = ple, yv(e, y) (~H#OW -z oy e,

on representatives u, v of cohomology classes in H2(G, k*). The resulting group will be
denoted H*(G, t, k™). It is non-canonically isomorphic to H?(G, k*), see [4] for details.

There is a subgroup Pic(Rep(G, t))in: C Pic(Rep(G, t)) consisting of integral module
categories, i.e., those in which all objects have integral Frobenius-Perron dimension. We

have
(7) Pic(Rep(G, t))int = HQ(G, t, k™).

The braided 2-categorical Picard group Pic,(£) [6] of a symmetric fusion category
& consists of invertible objects in the 2-center of the monoidal 2-category of £-module
categories. The underlying braided categorical group Picy,.(€) was described in [6, Section
6]. One has Picy,(€) = Pic(€) x Autg(ide) and the corresponding quadratic form

(8) Q¢ : Picy(€£) = Inv(E)

is explicitly computed in [6, Proposition 6.11]. In particular, for £ = Rep(G, t) the
integral part of Picy,.(€) is H*(G, t, k*) x Z(G), where Z(G) denotes the center of G. In
this case, Autg(idg) = Hom(G, k*) and the restriction of the quadratic form on the
integral part of Picy,(€) is given by

_ M(Ztgu(z)-i_la _)

(9) Qelp, 2) = (=, )

for all p € H*(G, t, k*) and z € Z(G).

2.2. The 2-categorical group of minimal extensions of a symmetric category.
We recall the definition given in [26]. Let £ be a symmetric fusion category. An embedding
&€ — C into a non-degenerate braided fusion category C is called a minimal non-degenerate

extension (or, simply, a minimal extension) of £ if the latter coincides with its centralizer
inC, ie., &=E&' where

E = {X eC | Cyx OCxy = idX®y forall Y € 8}
This condition is equivalent to the equality FPdim(C) = FPdim(£)?, where FPdim de-

notes the Frobenius-Perron dimension of the category. Minimal extensions of £ form a
2-groupoid Mext(€). An isomorphism between minimal extensions €& < C; and € — Cy
is a braided equivalence C; =+ Co that restricts to the identity on £. A 2-isomorphism is
a natural isomorphism of equivalences, again identical on &.
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There is a natural tensor product of minimal extensions of £. Namely, let £ < C; and
&€ < Cy be minimal extensions. Then & X £ embeds into C; X C,y. Since £ is symmetric,
the tensor product ® : EXE — &£ is a braided tensor functor. Its adjoint sends the unit
object 1 to an étale (i.e., separable commutative) algebra A € EXE. The fusion category
(C1 K Cy) 4 of A-modules in C; K Cy contains a braided fusion subcategory

Cl L] CQ = (Cl X Cz)%

of local modules, i.e., of A-modules (V, p: A®V — V) with ¢x acaxp = p. Note that
E = (EXE), is embedded into C; [ Cy. The resulting embedding € < C; [1Cy is, by
definition, the tensor product of £ < C; and £ < C,. The unit object for this tensor
product is €& — Z(&), the embedding of £ into its Drinfeld center. The inverse of the
embedding £ < C is & < C*, where C™" coincides with C as a fusion category with a
braiding obtained by reversing the braiding of C, namely c¢%, = C;EX, X,Y € C. We refer
the reader to [26, Section 4.2] for details.

The associativity equivalences for the product [ are constructed as follows. The usual
associativity constraint of £ yields a natural isomorphism of braided tensor functors

®o(®@Nidg) 2®o(de XM ®): ERERE — &€

and, hence, an isomorphism of the corresponding étale algebras in £ X € X €. This, in
turn, gives an equivalence between categories of local modules, and, hence, between the
triple products of minimal extensions. These structures turn Mext(£) into a 2-categorical
group.

As agreed above, we denote Mext(E) = mo(Mext(€)) and Mext(E) = m<;(Mext(£)),
the truncations of Mext(£).

Example 2.1. Let G be a finite group. The group Mext(Rep(G)) was computed in [26]
Section 4.3]. Namely, a typical element of this group is a twisted Drinfeld double of G:

Rep(G) — Z(Vecg),  we Z°(G, k¥).

The product of these extensions corresponds to the product of 3-cocycles. Furthermore,
extensions corresponding to 3-cocycles wy, wy are isomorphic if and only if wy, wy are

cohomologous. Thus,
(10) Mezxt(Rep(G)) = H*(G, k™).

This result can also be deduced from [12), Section 4.4.10] since for any minimal extension
Rep(G) — C, the image of Rep(G) is a Lagrangian subcategory of C.

Example 2.2. It was shown independently in [3], [7, Proposition 5.14], [25], and [26],
Theorem 4.25] that

(11) Mext(sVect) = Zys.
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This statement is known as Kitaev’s 16-fold way [25]. Any Ising category, i.e., a non-
pointed braided fusion category of dimension 4 [I3, Appendix B], is a generator of this
group. Other elements of Mext(sVect) are pointed braided fusion categories coming from
metric groups (A, ¢) of order 4 such that there exists u € A with ¢(u) = —1.

The isomorphism can be identified with

(12) Mext(sVect) = {€ e k* | £ =1} : C — £(C),

where £(C) is the central charge of the category C. Thus, the class of a minimal non-
degenerate extension of sVect is completely determined by its central charge.

Let Rep(G, t) be a super-Tannakian category. It contains a unique maximal Tannakian
subcategory T = Rep(G/(t)). If Rep(G,t) — C is a minimal extension then the de-
equivariantization C° := T’ X Vect is a minimal extension of sVect. The assignment

(13) WG, : Mext(Rep(G, t)) — Mext(sVect) : C — C°

is a group homomorphism [26], Section 5.2]. As in , this homomorphism is identified
with taking the central charge.

By [18, Corollary 4.9], w4 is surjective if and only if () is a direct summand of G.
In this case, the above homomorphism splits, i.e., Mext(sVect) is a direct summand of
Mext(Rep(G, t)).

2.3. Central and braided graded extensions. Let B be a braided fusion category.
Let G be a finite group. A central G-graded extension of B is a G-graded fusion category

(14) c=c c=5
g

along with an embedding B — Z(C). It was shown in [22] that a central G-graded
extension is the same thing as a G-crossed braided extension. By [0, [I7] the 2-groupoid
of such extensions is equivalent to the 2-groupoid of monoidal 2-functors G — Pic(B).
For such an extension there is canonical action of G on the trivial component given by
the composition

(15) G — Pic(B) — Aut™ (B),

where the first functor corresponds to the graded extension and the second one is
the canonical monoidal functor associated to B [5].

Now let A be a finite abelian group. Braided A-graded extensions of a braided fusion
category B were classified in [6]. The 2-groupoid of such extensions is equivalent to the
2-groupoid of braided monoidal 2-functors A — Picy,(B), where the latter is the braided
2-categorical group of invertible braided B-module categories.
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3. CENTRAL GRADED EXTENSIONS AND THE KUNNETH FORMULA

3.1. The group of monoidal 2-functors to a braided 2-categorical group. Let G
be a group and let G be a braided categorical group. Let C, C' : G — G be monoidal
functors, where C' is given by z — C, with the monoidal structure M, , : C, ® C, = C,,
and C" is given by x — C, with the monoidal structure M, : C, ® C;, = C,,, =,y € G.
Clearly, such functors must factor through the commutator subgroup of G.

Define a monoidal functor

(16) C=C®C":G—G: r+—C,RC..

with the monoidal structure

Mz, @My, '
—— C,y ®C x,y €G.

xy?

) / ; Bary / /
(17) My, :C,®C,0C,®C, — C, ®C,®C, ®C,

Here B,/ , denotes the braiding in G between C,, and C,. With this product, the isomor-
phism classes of such braided monoidal functors form a categorical group which we denote
Fun(G, G). The identity element of this group is the trivial functor and the inverse of
C:xw—C,is C7' iz C;' If G is symmetric, the underlying group Fun(G, G) is
abelian.

There is an obvious short exact sequence

(18) 0 — H(G, m(G)) — Fun(G, G) — Hom(G, 10(G)) — 0.

Here H?(G, m1(G)) is isomorphic to the group of monoidal functor structures on the
trivial functor. This sequence does not split in general because the braiding of G may be
non-trivial.

Now let G be a braided 2-categorical group. Let mo(G), m1(G), m(G) denote, respec-
tively, the group of invertible objects of G, the group of automorphisms of the unit object
1g, and the group of automorphisms of id;. Let m<;(G) denote the braided categorical
group obtained by truncating G, whose objects are objects of G and morphisms are iso-
morphism classes of 1-cells in G. Let 7>1(G) denote the symmetric categorical group of
l-automorphisms of the unit object of G.

There is a 2-categorical analog of the above construction of a categorical group of
monoidal functors. It was explained in [0 Section 2.8] that isomorphisms classes of
monoidal 2-functors from G to G also form a categorical group denoted 2-Fun(G, G).
Namely, if C, C' : G — G are such 2-functors, then the monoidal structure of the product
C'®C" is defined as above and the structural associativity 2-cells are given by [0, diagram
(2.78)]. These cells involve the associativity 2-cells of C' and C” and the structure 2-cells
of G.
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The group 2-Fun(G, G) fits into the following exact sequence [6, Theorem 2.38]:
(19)
HYG, m(G)) S H G, m(Q)) LN 2-Fun(G, G) = Fun(G, 7<1(G)) LN HY(G, m(G)).

Here a assigns to a homomorphism G — 7;(G) the corresponding pullback of the asso-
ciator of the categorical group m>1(G) (the latter is an element of H?(m(G), m(G))),
[ assigns to a third cohomology class the monoidal 2-functor structure on the trivial
2-functor, v assigns to a monoidal 2-functor G — G the underlying 1-functor to the
truncation of G, and ¢ gives the obstruction for a given monoidal functor to extend to a

monoidal 2-functor.

Example 3.1. Let £ be a symmetric fusion category and let G = Pic(€) be the sym-
metric 2-categorical Picard group of £. We have <1 (Pic(£)) = Pie(€), the symmetric
categorical Picard group of &, and 7>1(Pic(€)) = Znv(€), the symmetric categorical
group of invertible objects of £. Since the associator of the latter is trivial, the exact

sequence becomes
(200 03 HYG, k) 5 2-Fun(G, Pic(€)) & Fun(G, Pic(€)) > HG, k).

Example 3.2. The restriction of the obstruction map ¢ from Example [3.1]to the subgroup
H?(G, Inv(€)) of Fun(G, Pic(£)) is given by the composition
(21) HX(G, Inv(E)) % HA(G, 2)22) L HNG, Z)2Z) & HYG, k),

where g : Inv(E) — Z/27 is the quadratic homomorphism of the symmetric categorical
group Inv(€), U* : H*(G, Z/2Z) — H*(G, Z/2Z) is the cup square in H*(G, Z/27)
(note that it is a homomorphism), and ¢ is induced by the inclusion of the coefficients
Z7)27 — k* : n+— (—1)". Indeed, by [17), Section 8.7] (see also [0l (8.45)]), the obstruction
§(L) for L € H*(G, Inv(E)) is given by

(22) S(L)(,y, 2, W) = CL(2y),L(zw0)> z,y,z,w € G,

where c is the braiding in Inv(€). Since cxy = (—1)%X4Y) for all XY € Inv(€), the

formula translates to .

For & = sVect formula describing the obstruction map
H*(G, Inv(€)) = H*(G, Z/)2Z) — H*(G, k)
in terms of the cup product appeared in [I, Section VI.B|.

3.2. The embedding Pic(£) — Pic(Z(E€)). Let £ be a symmetric fusion category. The
induction 2-functor

(23) Ind : Pic(€) — Pic(Z(E)) : M — Z(£) Kg M



MINIMAL NON-DEGENERATE EXTENSIONS OF A SUPER-TANNAKIAN CATEGORY 9

is a monoidal 2-embedding of categorical groups. On the level of 1-cells this functor
embeds Inv(€) into Inv(Z(E)).
There is an equivalence of categorical groups [6], [17]

(24) 9 : 1o (Pic(Z(E)) = At (Z(E)) : M — d(M),

such that af, & a0 (M), where oy, : Z(E) = Funze)(M, M) are two equivalences
defined, respectively, using the braiding of Z(&€) and its reverse. This equivalence 0 sends
Z € Inv(Z(€)) to 0(Z) € idz(s) defined by 0(Z)x = cz xcx, 7z for all X € Z(€).

It was shown in [0] that the monoidal equivalence restricts to a monoidal equiv-
alence between 7<;(Pic(€)) and the categorical group Aut” (Z(€);E) whose objects are
autoequivalences o € Aut’ (Z(€)) such that als = ide and automorphisms of the unit
object are v € idz(g) such that vx = 1 for all X € £. This characterizes the objects and
l-morphisms of Pic(Z(€)) induced from Pic(£).

For a monoidal 2-functor

(25) M :G — Pic(Z(E)) : g — M(g)
we denote dy : G — Aut’ (Z(€)) : g — d(M(g)) the corresponding action of G.

Lemma 3.3. Suppose that the monoidal 2-functor is such that Oy restricts to the
trivial action of G on € C Z(E). Then there is a monoidal 2-functor My : G — Pic(€)
such that 18 1somorphic to the composition

G 2 Pic(€) 24 Pic(Z(€)).
Proof. 1t follows from the hypothesis that M yields a monoidal functor
(26) G — Aut™ (Z(€); ) = 71 (Pic(€)).

Its composition with Ind coincides with M on the level of objects and 1-morphisms.
Hence, gives rise to a monoidal 2-functor My : G — Pic(€), as required. O

3.3. The group of central extensions of a symmetric fusion category. Recall
that for an étale algebra A in Z(C), where C is a fusion category, the category C4 of
A-modules in C is a fusion category. For a braided fusion category B, let Z,,,(B) denote
the symmetric center of B. If A is an étale algebra in Z,,,,,(B), then B4 is a braided
fusion category. The tensor product over a symmetric fusion category &£ is a special case
of this construction. Indeed, the tensor product ® : € X E — £ is a braided tensor
functor. Let I : &€ — £ X & be its adjoint, then A := I(1) is a canonical étale algebra
in EXE. If &€ — Cy, & — Cy are central inclusions of £ into fusion categories Cy, Co
then C; Xe Cy = (C; K Cy) 4 is a fusion category. If &€ < By, & < By are inclusions into
symmetric centers of braided fusion categories By, By then By Mg By = (B; X By)a is a
braided fusion category.
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Lemma 3.4. Let B C C be a central extension of a braided fusion category B and let A
be an etale algebra in Zy,,,(B). Then By C Ca is a central extension.

Proof. This is straightforward since the half-braiding between objects of B and C induces
the one between objects of B4 and C4. O

Let Pic(€) denote the braided 2-categorical Picard group of € and let 2-Fun(G, Pic(£))
denote the 2-categorical group of monoidal functors from G to Pic(€).

It was observed in [6] that the 2-groupoid Exct, (G, £) of central G-graded extensions
of £ is a braided 2-categorical group. The tensor product of G-graded central extensions
E — C! and & — (C? is defined as follows. Let A be the canonical étale algebra in
E K E defined above. Lemma applies to the central G-graded extension &€ K & —
@D, €, WC;, s0 we obtain a central G-graded extension

(27) E2(ERE = EPECRCHa=EPCR:C]

geG geq
which is the product of extensions £ < C! and £ — C2. We will denote this product by
E — Cl L] Cg.

Theorem 3.5. There is a monoidal 2-equivalence of 2-categorical groups
(28) 2-Fun(G, Pic(€)) = Exc. (G, £).

Proof. The 2-equivalence is established for braided £ in [I7, Theorem 7.12] (see also [0,
Theorem 8.13]). Namely, a monoidal 2-functor G — Pic(€) : g — C, gives rise to a
G-graded central extension € e C,. For symmetric £, the monoidal structure of this
2-equivalence is evident since the tensor products in 2-Fun(G, Pic(€)) and Exct. (G, &)
are defined by the very same formulas (cf. and (27)) and have the same associativity
2-cells. U

3.4. The center of a central extension of a symmetric fusion category. Let £ be
a symmetric fusion category and let
(29) c=pec, cC=¢

geG
be its central G-graded extension. It was shown in [19] that Z(C) is equivalent to a
G-equivariantization of the relative center Z¢(C). The latter is equivalent to the fusion
category Z(€) XKe C. It is a central G-graded extension of Z(&) corresponding to the
following monoidal 2-functor

Ind

(30) G — Pic(E) — Pic(Z(€)),

where the first functor corresponds to the central extension and the second is the
induction . The action of G on Z(€) is obtained by composing with the canonical
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monoidal equivalence Pic(Z(€)) = Aut™ (Z(E)). Tt follows from [6] (see Section that
this action restricts to the trivial action on & C Z(&). Therefore, Z(C) = (Z(€) Ke C)¢
is a minimal extension of the symmetric fusion category £¢ = Rep(G) X &.

Proposition 3.6. The assignment
(31) Exc, (G, £) = Mext(Rep(G)XE) : C — Z(C)
18 a monoidal 2-functor.

Proof. For a braided fusion category B containing a subcategory equivalent to Rep(G),
let Bg = BXgep() Veet denote the corresponding de-equivariantization. Using definitions
of the tensor products in Exctr (G, £) and Mext(Rep(G) K £) we obtain equivalences

ZIC'DC)e = P Z(E)R:C) R C;
geG
P (zE)RZ(E), R €y Re C;

geG

~ (P ((2(5) Ke C) B (Z(E) Ky C)",

geG

>~ (Z(CHBZ(CY),

12

for all G-graded central extensions C', C? of £. Here BY denotes the category of local
A-modules in B. The symbol [ stands for the tensor product in both Exc, and Mext.

Taking equivariantizations we get a canonical equivalence
Zctaer) = zehHmZ(e?)

in Mext(Rep(G)XE) that equips the 2-functor with a canonical monoidal structure.
O

3.5. The Kiinneth formula. Let G, L be finite groups.

Proposition 3.7. There is a split short exact sequence

(32)
0— H*(G, k*) @ H*(L, k*) & (Hom(G, k*) ® Hom(L, k*)) — H*(G x L, k*) —

Hom(L, H*(G, k*)) & Hom(G, H*(L, k*)) — 0.
Proof. Using the short exact sequence 0 — Z — Q — Q/Z — 0, we obtain isomorphisms
H'(G, k") = H(G, Q/Z) = H (G, 7)

for any finite group G' and i > 1. Also, H*(G, Z) = 0. Therefore, the sequence in question
is obtained from the usual Kiinneth formula for integral cohomology. 0J
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Below we generalize the Kiinneth formula (32). Namely, for a finite group G and a
symmetric fusion category &, we explain how to compute the group Mext(Rep(G) X E).

Theorem 3.8. There is a group isomorphism
(33) Mext(Rep(G) X E) = Meat(E) x 2-Fun(G, Pic(€))

Proof. Let C be a minimal extension of Rep(G) K . Let C denote the centralizer of
Rep(G) in C. The de-equivariantization C Mgy Veet is a minimal extension of £ and

the assignment
(34) Mext(Rep(G) K E) — Mext(E) : C — C Rigap(cr) Vet

is a monoidal 2-functor between categorical groups.
The associated group homomorphism

(35) Mext(Rep(G) X E) — Mext(E)

is split surjective, since for any D € Mext(E) we have a minimal extension Rep(G)KE —»
Z(Rep(G)) X D.

Let K(G, €) denote the kernel of (37]). It remains to show that 2-Fun(G, Pic(€)) =
K(G, &). Theorem combined with Proposition gives an inclusion

2 Fun(G, Pic(E)) = Bxw (G, ) — K(G, &).

Let us show that it is surjective. A minimal extension Rep(G) X € — C is in K (G, &) if
and only if its de-equivariantization Cg = C Mgy ) Vect is a G-graded central extension
of Z(&) such that the action of G restricts trivially to the subcategory & C Z(€). By
Lemma this means that the corresponding monoidal 2-functor G — Pic(Z(€)) is
the composition of a monoidal 2-functor F' : G — Pic(€) and the induction 2-functor
([23)). As explained in Section [3.4] this means that C = Z(Ap), where A is the central
extension of £ corresponding to F'. Thus, C € K(G, £), as required. O

Remark 3.9. Recall that a G-gauging of a braided fusion category B is the equivarianti-
zation of a faithful G-crossed braided (i.e., G-graded central) extension of B. Theorem 3.8]
in particular, characterizes the centers of central G-extensions of a symmetric fusion cate-
gory &€ as G-gaugings of Z(&) in which the associated action of G on € C Z(&) is trivial.
For £ = Vect, one recovers from this result the classification of twisted group doubles
from [12, Theorem 4.64].

Example 3.10. Let L be a finite group and set & = Rep(L) in Theorem [3.8] We recover
the Kiinneth formula as follows. In this case, Pic(€) = H?*(L, k*) and sequence
(with G = Pic(E)) splits:

(36) Fun(G, Pic(€)) = Hom(G, H*(L, k*)) & H*(G, L),
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where L = Hom(L, k*). We claim that the obstruction & in (T0) vanishes. Indeed, it
suffices to check that it vanishes on both summands of . Vanishing on the first one
follows for the existence of a Schur covering group L* of L [24] Section 2.1], since Rep(L*)
is a faithful H?(L, k*)-graded extension of Rep(L). Vanishing on the second one follows
from Example[3.2] since for the Tannakian category Rep(L) the quadratic homomorphism
q: L — 7/27 is trivial.

Therefore, the sequence becomes the following short exact sequence:

0 — H*(G, k*) = 2-Fun(G, Pic(€)) — Hom(G, H*(L, k*)) ® H*(G, L) — 0.

By the universal coefficient theorem, the last summand is further decomposed as

H*(G, L) = Ext(G/G', L) @ Hom(L, H*(G, k*)) = (é ® Z) ® Hom(L, H*(G, k*)),
where G is the commutator subgroup of G. Combining this with Theorem [3.8] we recover
all the summands of H?(G x L) = Mext(Rep(G) X Rep(L)) in the Kiinneth formula (32)).

Example 3.11. We will deal with minimal extensions of pointed symmetric fusion ca-
tegories in Section [l For now, let us note that Theorem allows calculating of their
groups of minimal extensions inductively as follows. Let r(€) denote the finite rank of
the group Inv(€), i.e., the minimal number of its generators. For r(£) = 1, the group

Mezt(€) will be computed in Section 5.1} When r(£) > 1 we can write
(37) €= Rep(Zy) K &,
where r(&;) = r(£) — 1. By Theorem [3.§|

Mext(€) = Mext(&E1) ® 2-Fun(Zy, Pie(&y)).

The last summand is computed as follows. Since H*(Zy, k*) = 0 and H?*(Zy, Inv(&)) =
Ext(Zy, Inv(&;)), sequences and become

0 — Ext(Zy, Inv(&)) = Fun(Zy, Pic(€1)) — Hom(Zy, Pic(E1)) — 0
and
0— H*(Zy, k) = 2-Fun(Zy, Pic(&))) = Fun(Zy, Pic(&)) — 0.
Thus, the direct complement of Mext(E;) in Mext(E) has a filtration with factors
(38) H¥(Zn, &) = Zy, Ext(Zy, Inv(&)), and Hom(Zy, Pic(E})).

We will see in Section that the group 2-Fun(Zy, Pic(&r)) is not, in general, a direct
sum of factors .

Remark 3.12. Let £ = Rep(G) K sVect. Since Mext(sVect) = Zyg, Theorem |3.8| gives
(39) Mext(Rep(G) X sVect) = Zys @ 2-Fun(G, Pic(sVect)).
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We have Inv(sVect) = Zy and Pic(sVect) = Zs, so it follows from exact sequences
and that the group 2-Fun(G, Pic(sVect)) has a filtration with factors

(40) H3 (G, k), Ker(HQ(G, Z,) > HYG, k*)), and  HY(G,Z,)

where ¢ is the obstruction map . Explicit formulas describing the product in this
group are given in [I].

Remark 3.13. Let £ = Rep(é, t) be a general symmetric fusion category, where the
group G fits into a (not necessarily split) short exact sequence

1= Zy=(t) >G—G—1.

In this case, there is a parameterization of Mext(E) by torsors over the cohomology
groups listed in ([40]), see [1, Section VIL.C] and [2, Table I]. These papers also contain
explicit formulas for products of minimal extensions (i.e., symmetric invertible fermionic

topological phases) in terms of this parameterization.

4. THE GROUP OF MINIMAL EXTENSIONS OF A POINTED SYMMETRIC FUSION
CATEGORY

From now on we let A be a finite abelian group and let & = Rep(A, t) be a pointed
symmetric fusion category.

4.1. A canonical grading on a minimal extension.

Proposition 4.1. Let £ — C be a minimal non-degenerate extension. Then C is faithfully
A-graded:

(41) c=pc. c=¢
z€A
where C, ={X € C | exyevx = x|y Qidx forallV € £}, x € A.
Conversely, any A-graded braided extension of this form is a minimal non-degenerate
extension of £. Two such minimal extensions are equivalent if and only if they are equi-

valent as A-graded braided extensions of €.

Proof. 1t follows from [13| Section 3.4] that £-module components of C are parameterized
by characters of Ky(€), i.e., by elements of A. Namely, the squared braiding of a simple
object X € C with simple objects of ¢ € £, where ¢ € A= Hom(A, k*) determines a

character on g, i.e., an element ax € A = A such that

C¢’XC$,¢ = (Z)(ax) id¢®X.

It follows from the hexagon axioms that the assignment X +— ax determines a grading on
C. Since C is non-degenerate, we must have C, # 0 for all x € A, i.e., the above grading
is faithful.
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Conversely, we claim that an A-graded braided extension is non-degenerate. For
x # e, we have Z,,,,(C) NC, = 0, since there is V' € & such that z|y # idy, i.e.,

cxvevx 7 dygx

for all non-zero X € C,. If V € Z,,,,,(C) N € is a non-trivial representation of A, then
there is © € A such that z|y # idy, i.e., V does not centralize C,. Hence, Z;,,,(C) = Vect,
i.e., C is non-degenerate. It is a minimal extension since FPdim(C) = FPdim(&)?2.

An equivalence of minimal extensions preserves the squared braiding and restricts to
the identity on £. Therefore it must preserve the grading . 0J

Recall [20] that a fusion category is nilpotent if it is obtained from Vect by a sequence
of graded extensions.

Corollary 4.2. Let £ be a pointed symmetric fusion category and let py, ..., p, be distinct
primes dividing FPdim(E). Let € =& K ---KE, be the Sylow decomposition of €, where

FPdim(&;) is a power of p;, i = 1,...,n. Then any minimal extension of £ is nilpotent
and
(42) Mezt(E) = Mext(&Ey) X -+ x Mext(E,).

Proof. By Proposition [4.1] a minimal extension of £ is a graded extension of a pointed
fusion category, so it is nilpotent of nilpotency class at most 2. It is shown in [12
Theorem 6.12] that any nilpotent braided fusion category C admits a Sylow decomposition
C=Cyx---xC,. Soif & — C is a minimal extension then & < C; is a minimal extension
for all # = 1,...n. This implies the statement. 0

Remark 4.3. Minimal extensions of Tannakian fusion categories were classified in [20]
where it was shown that Mexzt(Rep(G)) = H*(G, k*) for any finite group G. In view of
Corollary to classify extension of pointed symmetric fusion categories it remains to
determine Mext(Rep(A, t)), where A is an abelian group with |A| =2, n > 1, i.e., Ais
a 2-group in the sense of the classical (not higher-categorical) group theory.

Remark 4.4. It follows from the description of the homogeneous components of the
grading that the groupoid Mext(Rep(A, t)) is equivalent to the groupoid of braided
monoidal 2-functors F' : A — Picp(Rep(A, t)) such that the composition of group ho-

momorphisms
(43) AT pic, (Rep(A, 1)) = Pic(Rep(A, ) x A 22 A,

equals id4. Here p4 denotes the projection on A.
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4.2. A canonical filtration of Mext(€). We say that a minimal extension £ — C is
integral if C is an integral fusion category, i.e., FPdim(X) is an integer for all objects
X € C. Such extensions are characterized by the following property: the image of the

corresponding homomorphism composition
(44) A — Picy,(E) — Pic(E)

lies in Picj(£), see @

An integral minimal extension £ < C is pointed if C is a pointed category. Equivalently,
this extension is quasi-trivial in the sense of [0, Section 8.7], i.e., the homomorphism (44)
is trivial. In this case, the homomorphism A — Pic,.(£) is identified with the identity
map A — Autg(idg) = A. The braided monoidal functor

(45) A— 731'(35,,(5)

is determined by an clement L € H2,(A, A) = Ext(A, A).

Here and below HY (A, M) = H*''(K(A,2), M) denotes the abelian Eilenberg-Mac
Lane cohomology group of A with coefficients in M [14]. A description of low dimensional
abelian cohomology groups H}, (A, M), n < 4 can be found, e.g., in [6, Section 2.1], where
the term “braided cohomology” was used.

Finally, a pointed minimal extension £ < C is trivial if the monoidal functor (45|
is trivial. Such extensions are easy to describe explicitly as follows. We have & =
Rep(A, t) = C (21\, t), where t is viewed as a quadratic character on A. For any qua-
dratic form ¢ : A — k* define a quadratic form h, : A X A= Kk~ by

(46) hyla, ¢) = (at, §)qla), a€ A, ¢ € A
It is easy to see that this form is non-degenerate and

(47) E=C(A t)— M, :=C(Ax A, hy).

is a typical trivial minimal extension of £.

Lemma 4.5. The set of trivial (respectively, pointed, integral) minimal extensions of €

1s closed under the tensor product.

Proof. The statement about trivial extensions follows from their explicit description .
Indeed, one can directly check that the assignment

(48) H3,(A, k) — Mext(Rep(A, 1)) : g M,

is a group homomorphism.

Since & is pointed, the tensor product of its minimal extensions is obtained by taking
a de-equivariantization with respect to the diagonal Tannakian subcategory in & X £.
Clearly, a de-equivariantization of a pointed (respectively, integral) fusion category is
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pointed (respectively, integral). This proves the statement about pointed and integral
extensions. O

Remark 4.6. Homomorphism is, in general, not injective.

Thus, we have a filtration
(49) Mext,,,(E) C Mext (E) C Mext;(E) C Mext(E),
where Mexty,.;,,(£), Meat, (E), Mext;n:(E) denote the categorical groups of trivial, pointed,
and integral minimal extensions of £. There is a corresponding filtration of abelian groups
(50) Mexty,(E) C Meat, () C Mext;, () C Mext(E),
which we are going to study next. Our goal is to determine the factors of this filtration.

4.3. Trivial minimal extensions. Recall that the third abelian cohomology group
H3, (A, k*) is isomorphic to the group Quad(A, k*) of quadratic forms on A with values
in k*.

Proposition 4.7. Mexty.;,(€) = Coker (Hl(A, A) LN H3, (A, Ikx)>, where

(51)  K': HY(A, A) = Quad(A4, kK¥) : Z — ¢z, qz(x) = (zt, Z(z)), v € A.

Proof. A trivial extension of £ = Rep(A, t) is obtained by deforming the structure con-
straints of the identity extension
E=Z2(E) = 2(&).
acA
by means of an abelian 3-cocycle (w, ¢) € Z3,(A, k*). This is a special case of a zesting
procedure studied in [9]. Namely, let aw, x y and cx y denote the associativity and braiding
isomorphisms in Z(£). The deformed extension Z(£)“ ) coincides with Z(€) as an
abelian category and has the same tensor product, while its associativity and braiding

isomorphisms are given by

awxy = w(deg(X),deg(Y),deg(2))awx.y,
cxy = w(deg(X),deg(Y))cxy,
for all homogeneous objects W, X, Y.
Isomorphisms between trivial braided extensions were classified in [0, Section 8.7]. In

particular, formula follows from [6l, formula (8.52)], since the self braiding cy x of a
simple object X € Rep(A, t) is given by the evaluation (X, t). |

Proposition 4.8. Let A(2) = Zoni X -+ X Zan, be the Sylow 2-subgroup of A. Then

(52) Meatyi(E) = Zy x Z5 ' if () is a direct summand of A,

Ly otherwise.
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Proof. We write A = A(2) x A(odd) and note that the map ' from respects this
decomposition and is an isomorphism on A(odd). So we may assume that A is a 2-group.
Isomorphism ((52)) is easy to check when A = Za» is cyclic. In this case, we have

Hl(Zgn, ZQn) - ZQn, Quad(ZQn7 :[]:{X) = Z27’L+17

and the homomorphism k! : Zgn — Zgnt1 is injective if n > 1 and is zero for n = 1.
Let A= (x1) X -+ x (x,), where |z;| = 2". We may assume that ¢ € (z1). A quadratic
form g : A — k* is uniquely determined by the values
q(x;21)
q(z;)q(x)’
Here g(x;) is a 2" !th root of unity and b(x;, x;) is a min{2", 2" }th root of unity. Any

Q(CL’Z‘),Z.:].,...,’I“ and b(l’j, xl) = <j<l<7“

choice of such roots of unity will give a quadratic form. Let us identify Z € H'(A, A\)
with a bilinear form on A. The symmetric bilinear form associated to qz is

bZ<:C7y) = Z(Z’, y) Z(ya fE), $,Z./€A,

which can realize all possible values of b(x;, z;). On the other hand, ¢z(x;) = Z(z;,tz;)
can be any 2"th root of unity if i > 1 and qz(x1) = Z(x1,t)Z(x1,z1). The latter can be
any 2"'th root of unity if ¢ # z; (i.e., ny > 1) and equals 1 otherwise. From this, the
cokernel of (51)) is easily determined. O

4.4. Pointed minimal extensions. The group Mext,(Rep(A, t)) can be computed
using the classification of quasi-trivial graded extensions from [6, Section 8.7]. For an
abelian group A we identify Ext(A, A) with H? (A, A). There is a natural involution

e: H2 (A, A) — H% (A, A)
that sends the class of an abelian extension
(53) 05 A—-C—A=0
to the class of the dual extension obtained by applying the functor Hom(—, k*) to :
(54) Oaﬁ—>(j—>j:A—>O.

This ¢ was explicitly described in [28, Section 8|. Namely, let L = {L,,}.4eca be a
normalized 2-cocycle in H2 (A, 121\) corresponding to the extension (53). For any z € A
there is a normalized 1-cochain a, € C'(A, k*) such that

a,(x)a,
(59 L) = 080 e
and (L) is determined by
(56) L)y (z) = EEHBE) e a

aa:y(z>
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Let us denote H2 (A, A = {L € H%(A, A) | e(L) = L}.
By Proposition , an extension C € Mext,(€) defines a quasi-trivial A-graded braided
extension of £. The corresponding braided monoidal functor Fp : A — Picy,(€) is com-

-~

pletely determined by an abelian 2-cocycle Le € H2 (A, A) defining the monoidal struc-
ture of Fp. This L¢ is precisely the 2-cocycle corresponding to the central extension
0— A— Inv(C) — A — 0.

Thus, there is a homomorphism

(57) A Meaty(E) — HA(A, A): C — Le

whose kernel is Mext,.;,(€). The image of A consists of all L € H2 (A, ﬁ) such that
the corresponding braided monoidal functor A — Pic,,.(€) admits an extension to a
braided monoidal 2-functor. By [6, Section 8.7] this image is the kernel of the Pontryagin-
Whitehead homomorphism

PW?: H% (A, A) — HY (A, kX)

whose components are given by formulas [6, (8.53)-(8.55)]:
(58)
PW(L)(z,y,2,0) = ¢, pn.s  PWHD)(2yli2) =1, PWA(L)(w, ]y, 2) = Ly:(2),

for all z,y, z,w € A. Thus, there is an exact sequence of group homomorphisms
(59) 0 — Mewtyi(E) — Meat,(€) 2 HA(A, A) 25 14 (A, k).
For an abelian group A let us denote Ay = {x € A | 2* = e}.
Proposition 4.9. There is a group isomorphism
Meaty(E)/Meatyy(E) 2 Ker (Hf,,(A, A % Hom(Ay/(1), k*)) ,
where
(60)  6': HA(A, A — Hom(Ay/(t), K): L — 05, 0. (x) = Lyo(at), z € A.

Proof. Given the exact sequence , all we need to show is that the kernels of §' and
PW? coincide. Tt was shown in [15] (see also [6 (2.19)]) that there is an exact sequence

0 — Hom(As, k) — H4 (A, k) 24 H2 (4, A).
It follows from the construction described at the end of [6, Section 2.1] and formulas (55),
that
(61) ha(PW2(L)) = Le(L)™", L€ H%(A, A).
There is a canonical isomorphism

(62) 1y Ker(hy) = Hom(Ay, k™) : o+ 14(a),
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defined by

A N alx, z|x) ’ >
Combining formulas and we obtain
(64) tA(PW2(L))(z) = Ly .(2t), z € A.

Thus, PW?(L) = 0 if and only if L € H? (A, A) and L,.(xt) =1 for all z € A, ie,
L € Ker(6"). Since the right hand side of vanishes on ¢, we conclude that PW?

descends to a homomorphism

0" - H% (A, A)® — Hom(Ay/(t), k*)
defined in (60)). O
Remark 4.10. The group H2 (A, 121\) is (non-canonically) isomorphic to Hom(ﬁ@g, k).

It was explained in [28, Lemma 8.2] that, upon this isomorphism, ¢ is identified with the
transposition map, so

H2,(A, A = Sym’(A).

In particular, if A is cyclic, then ¢ is the identity map.
Proposition 4.11. Homomorphism 18 surjective.

Proof. We may assume that A = C; x --- x C,., where each Cj is a cyclic 2-group and
t € Oy. Tt suffices to check that for C; = (z | 22 =€), i = 2,...,r, the homomorphism

(65) H2(C;, C)) — Hom(Zy, &*) = {1} : L Lyn, v (a™)

is surjective. To see that, let £ be a primitive 2/N;-th root of 1 in k and let L be a generator
of H?(C;, C;) = Zyy, explicitly defined by

1 ifk+1<2N;

ka,xl(mm) =
Then sends L to —1, as required. 0

4.5. Integral minimal extensions. We continue to denote & = Rep(A, t).

Lemma 4.12. We have
(66) [Mext;n(E) : Mext,(E)] = |A*A.

Proof. We will prove this by induction on (&), the finite rank of the abelian group Inv(£).
When r(€) = 1, i.e.,, when A is cyclic, we have Pic;(€) = 0 and, hence, all minimal
extensions of £ are pointed, so both sides of are equal to 0.
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As in Example B.11] any £ = Rep(A, ¢) with r(£) = r+ 1, r > 1, can be written as
E =Rep(Zy) KR E,, where (&) =r and € = Rep(Ay, t). We have
(67)
[Mext; () : Mexty,(E)] = [Mextin (&) : Mext,(Er)] x [ Meatim(E)l | |Mexty(€1)]

X )
|Mext;n (&) |Mext,.(E)]

The first factor in is equal to [A3A;| by the inductive assumption. By Example|3.11]
the second factor is equal to

|H?(Zn, )| x | Ext(Zy, 211)| x |Hom(Zy, A2A))| = |Zn| x |Zn @ Ay| X |Zy @ N2A,].

Using Propositions , and {4.11] we compute the last factor in as
[ Meatyin(E)]  [Meaty(€)) : Meatuin(ED)] _ ., [Ha(A, A

1
X = =
|Mexty.;,(E)| [Mext,(E) : Mexty;,(E)] 2|H? (Ay, Ay
Csymiay
|Sym®(A)]  |Zn| % |Zy @ As|

Substituting these quantities into we obtain

(68) [M@J?tlnt<g> . Mextpt(g)] = ’ZN‘ X |ZN ®A1| X |/\3A1’ = |/\3A‘,
as required. 0

Recall from that a minimal extension & < C admits a canonical faithful A-grading

(69) c=c. c=¢

T€EA

When this extension is integral, its components are of the form C, = Rep(k,, [G]), where
(70) A— H*(A, t, k) = Pici(E) 1 2+ iy

is a group homomorphism. It follows from the description of the group Pic,.(€) in Sec-
tion and Remark that the corresponding homomorphism A — Pic,,.(£) is

(71) A— H*(A t, k) x A: x> (g, ).
Since comes from a braided monoidal 2-functor A — Picy,(€), it must satisfy
(72) Qe(py, ) =1, forall z € A,

where Q¢ : H*(A, t, k*) x A — A is the quadratic form .
Define a map 7¢ : A*> — k* by
2 Ha(y, 2)
73 Tc ‘r’ y’ z) = _1 g#r(y)éﬂr( ) ,
(73) ( )= fz(2,y)
where the bilinear map &, : H*(A, ¢, k*) x A — Z/2Z, was introduced in .
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Proposition 4.13. The map is a trilinear form on A satisfying
(74) 1e(z, tr, y) =1 and 7¢(x, ty, y) = 1.
forall z,y € A.

Proof. The linearity of 7¢ in the second and third arguments is clear since for each pu €
H?(A, k*) the map
p(z, y)

ply, =)
is an alternating bilinear form. To check the linearity in the first argument, we compute,

A% = K (2, y) =

using the definition of the product * from @:

(_1)5#101(?/)5#101(2) sz(y7 Z)
P (2, )

_ (_1)€Hw*ll«m (y) §uw*uz(z)

TC(wxa y,Z) =

(fw * f12) (Y, 2)
(Hw * p) (2, Y)
(1) 9D ()6, (4160 2) f (Y5 2) (Y 2)

fw(2,Y) pa(2,9)

J— (_1)€Mw*ll«m (y) f,u,w*uz(z)

() 08 (O, 006, () (Y 2) faly, 2)
(2, Y) (2, y)
= TC('U), 3/72)70(35; y72>7

for all z,w,y, z € A, where we used that £,., =, + &, for all u,v € H*(A, t, k*).
The condition along with the formula (9) imply that &, (z) = 0, ie. talzt) _

 pa(t )

and

1 = Qe(pa, ) (y) = ———5 = (=1 el — =2
112 (y, xt) 112 (y, wt)

for all z,y € A, which is the first identity in . Finally,

= TC('Ta (Et, y>7

1z (Yt y) i (Y)Eps (y) pa(t; y) €z (y)?

re(a, yt, y) = L) (@it - BL V) (g
12 (Y, yt) fz(y, t)

which is the second identity in ([74]). O

_ (_1)€Hx(y)+§ux(y)2 -1

Proposition 4.14. There is a (non-canonical) group isomorphism
(75) Mextin:(E)/Mext, () = Hom(A*A, k™)
Proof. The map defines a group homomorphism

(76) 71 Mextin(E) — Hom(A®?, k*) : C > 7¢.

A minimal extension C is pointed if and only if the corresponding homomorphism is
trivial, hence pointed extensions belong to the kernel of 7. Conversely, if 70 = 1 then

1= TC($a Y, y) = (_1)&@@)7
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so that &, (y) = 0 for all z,y € A. This implies that 7¢(z, y, 2) = % = 1 for all
z,y,2 € A, so that p, = 0 in H?(A, t, k*) and C is pointed.

Thus, Mext(E)/Mext, () is isomorphic to the image of 7 in Hom(A®? k*). We can
choose a presentation A = (e1) x- - - x (e,) such that we also have A = (te;) x---x (te,). By
Proposition , the trilinear form 7¢ is completely determined by its values 7¢(e;, te;, ex)
when 4, j, k are distinct. Hence, the group of such forms is embedded into Hom(A3A, k*).
By Lemma [£.12] this embedding must be an isomorphism. U

Remark 4.15. For a Tannakian category £ = Rep(A), Proposition implies a well-
known fact that the alternator homomorphism alt : H3(A, k*) — Hom(A*A, k*) defined
by
(77) alt(w)(z, y, 2) = || wlo(@), o(y), o(z))"

og€ES3

for all z,y,z € A, is surjective. Indeed, a typical minimal extension of Rep(A) is
Rep(A) — Z(Vec) for some w € H3(A, k*). In this case, the 2-cocycles ji,, x € A,

in are given by
w(z, y, 2)w(y, z, x)

(78) 1y, 2) = (7. 7. 2) . y,z€Gq,
and ( )
Haz\Y, =

Tzvee) (X, Y, 2) = ——= = alt(w)(x, vy, 2).

2(Vecs) ( ) PRER (w)( )

Remark 4.16. An integral minimal extension of a pointed super-Tannakian category
€ = Rep(A, t) of central charge 1 must be equivalent to & — Z(Vecy) for some w in
H3(G, k*) [12]. But it is not always possible to choose a group G to be abelian.

To see that twisted Drinfeld doubles of A are not sufficient, note that Z(Vec®), where
w € H3(A, k*), contains £ as a fusion category only if factors through

Hom(A?(A/(t)), k*) — Hom(A%A, k™).

Indeed, suppose there is an embedding & < Z(Vecy). Let T = Rep(A/(t)) C €. Then
T' contains pointed fusion subcategories £ and Rep(A). So T’ must be pointed. But
this means that the t-component of the canonical braiding is trivial, so u; = 1 and
alt(w)(t, —, —) = L.

An example of a minimal extension of £ involving the twisted Drinfeld double of a
non-abelian group can be constructed as follows. Let Z be an Ising category. Consider
Z(Z(7)) =IXRINRI™KRZI™. Let C be the de-equivariantization of the maximal integral
subcategory Z(Z(Z))i,: by its symmetric center (the latter is equivalent to Rep(Zs)).
Then C is a minimal extension of Cp = Rep(Zy X Zy x Z3). So C does not contain any
pointed Lagrangian Tannakian subcategories and so is not equivalent to the center of a
pointed fusion category.
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4.6. General minimal extensions. Recall that A denotes a finite abelian group so that
€ = Rep(A, t) is a pointed symmetric fusion category.

Proposition 4.17. (a) Let € be a Tannakian or non-split super-Tannakian category.
Then all minimal extensions of £ are integral, i.e., Mext(E) = Mext;(E).
(b) Let £ = Rep(A, t) be a split super-Tannakian category. Then

Mext(E)/Mext;,:(€) = Hom(A, Zs).

Proof. Part (a) is clear since in this case Pic(€) = Pici(€) and so all components of the

grading are integral.
For the part (b), let A= Ay x (t) so that & = Rep(Ay) X sVect. By Theorem [3.§|

Mezt(E) = Mext(sVect) X Exy(Ag, sVect).

Combining this with homomorphisms M ext(sVect) — Pic(sVect) and Ex.,.(Ag, sVect) —
Hom(Ay, Pic(sVect)) and using that Pic(sVect) = Zy, we obtain a group homomorphism
A — Zs. So we have a homomorphism

(79) Mextmt(g) — Hom(A, ZQ)

Equivalently, this can also be described as follows. Let F¢ : A — Picy,(€) be a braided
monoidal 2-functor corresponding to a minimal extension £ < C. The image of this
extension under is

mo(Fe)

80) AU pic () = Pic(€) x AL Pic(E) — Pic(E)/Picim(E) = Lo,

where p is the projection on Pic(€). Its kernel consists of integral extensions, since
Picipi(sVect) = {1}. It remains to check that is surjective. For this, it suffices to
check that any homomorphism ¢ : Ay — Pic(sVect) = 7y gives rise to a central Ag-
extension of sVect. Note that any Ising category is a central Zs-extension of sVect and so
gives a monoidal 2-functor Z; — Pic(sVect). Composing this with ¢, we get a monoidal
2-functor Ay — Pic(sVect) and, hence, a central Ag-extension sVect — D. As explained
in Section this gives rise to a minimal extension of £ by taking the center of D. [

Theorem 4.18. Let A be a finite abelian group and let €& = Rep(A, t) be a pointed
super-Tannakian category. The filtration of Mext(E) has factors

Meatysn(E) = Coker (Hl(A, A) 5 13 (A, k*)),
Meaty () Meatyin(€) = Ker (H2,(A4, A) % Hom(Aa/ (1), K¥))
Mextn(E)/Mext,;(E) = Hom(A*A, k*),

Hom(A, Zy) if € is split,

0 otherwise.

Mext(E)/Mext (E) =
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Proof. This follows from Propositions [4.7] [4.9} [4.14] and [4.17] O

Remark 4.19. For t = 1, i.e., when &£ is Tannakian, the factors in Theorem [4.18| were
computed in [28] and [§].

5. EXAMPLES

Recall that when t is a unique up to an automorphism central element of order 2 of a
group G, we use notation Rep(G”) instead of Rep(G, t).

5.1. Mext(Rep(Z1,)).

Proposition 5.1. Let A =Z,, X Z, and let t € A be such that (t) is not a direct factor.

Then any minimal non-degenerate extension of Rep(A, t) is pointed.
Proof. In this case, A>A = 0, so the result follows from Proposition [4.14] O

For n > 2 let &, = Rep(Z},). By Proposition Meaxt(E,) = Mexty(E,). It follows
from Propositions [4.7 and [4.9] that there is an exact sequence

(81) 0 — HY(Zagn, Zon) — H3,(Zon, k) = Mext(E,) 2 H2,(Zan, Zan) — 0,

where \ assigns to the minimal extension Rep(&,) < C the cohomology class of the ex-
tension 0 — Zon — Inv(C) — Zan — 0. Since H2,(Zon, k™) = Zont1 and H2,(Zon, Zgn) =
Zon, the above sequence becomes

(82) 0= Zo 2 Mext(E,) 2 Zow — 0.

Minimal non-degenerate extensions of &, can be explicitly described as follows. Recall
[16], 23] that a pointed braided fusion category C with the group Inv(C) = A of isomor-
phism classes of invertible objects is determined up to an equivalence by the quadratic
form ¢ : A — k*, where ¢(X) = cx x. In this case, we denote C = C(A, q).

For each m > 0 and a primitive 2""th root of unity ¢ we define a non-degenerate
quadratic form

(83) G : Zom — K=, q(j) =& forall j & Zom.

The non-degenerate pointed braided fusion category C(Zam, g¢) is a minimal extension
of &,.
For each k = 0,1,...,n and a 22" **+1th root of unity ¢ let

(84) Mk;,g == C(sz, q7<_22(n—k)) @ C(Zanfk, QC)

Again, this is a pointed non-degenerate braided fusion category.
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Proposition 5.2. For all k and ¢ as above, there is a non-degenerate minimal extension

&, — My given by the group homomorphism

n—k

).

Proof. Clearly, (85)) is an injective group homomorphism. Let ¢ @ Zox X Zgzn-—r — k*

(85) U+ Dogn —> Dagk X Tigom—r = j > (J, §°

denote the quadratic form corresponding to M, . We have

_92(n—k) n—k\2
Qk,c(bk(l)) =—C 2 'C(Q =1

Viewing as a homomorphism of metric groups, where Zs» is equipped with a quadratic
character ¢(I) = (—1)!, we obtain a braided tensor embedding &, < M. ¢, i.e., a minimal

extension of &,. O

Remark 5.3. (1) By definition, Mo = C(Zg2n, q¢) is a cyclic minimal extension
of &,.
(2) For all k and ¢, the largest order of the root of unity that occurs as a value of gy, ¢
ig 92n—k+1
(3) For all k = 0,...,n — 1, the square of My in Mext(E,) is My 12 (this is a
straightforward computation using the definition of the product of minimal exten-

sions).
Proposition 5.4. Mea:t(Rep(Zgn) & Zgn+r with any C(Zgz2n, q¢) as a generator.

Proof. We need to show that the exact sequence does not split. Observe that, for

any primitive 2"*1th root of unity ¢, the minimal extension
gn — Mn,( = C(ZQ"a q—Cil) X C(Z2"7 QC)a

where &, is embedded diagonally, is the generator of Ker(\) = Z, in (82)) (in particular,
its class in Mext(&,) does not depend on the choice of ). Thus, it suffices to check that
this minimal extension has a square root. But this follows from Remark [5.3(3). O

Corollary 5.5. The kernel of the homomorphism Mext(Rep(Z3.)) — Mext(sVect) is
1somorphic to Zon—2.

Remark 5.6. The minimal extensions of Rep(Z]) and Rep(ZL) were listed in in [27,
Tables XIV and XV]. Our description of their groups of minimal extensions is consistent
with these tables and with the results of [I] and [31].

For n = 2 Proposition says that Mext(Rep(Z})) = Zs. This disagrees with
[30, Example 7.17], where it is claimed that |[Mext(Rep(Z]))| = 32. Our explanation
of this discrepancy is that [30] counts equivalence classes of Zy-crossed braided exten-
sions of Z(Rep(sVect)) whose equivariantization is a minimal non-degenerate extension
of Rep(Z}). However, all such Z,-crossed braided extensions lead to the same element of
Mext(Rep(ZL), namely, to the identity extension Rep(Z1) < Z(Rep(Z)).
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5.2. Mext(Rep(Zy x Z1)). Let & = Rep(Zy x 7). Using Theorem [4.18] we see that the
factors of the canonical filtration of Mext(E) are

Mextyin(E) = 7y X Zo,
Mexty(E)/Mexty,.,(E) = 73,
Meaxt; (E)/Mexty(E) = 0,
Mext(E)/Mexty(E) = Z3.

Therefore, |[Mext(€)| = 128. The canonical homomorphism
w: Mext(E) — Mext(sVect) = Zys,

defined in ([13)), is split surjective and, hence,

(86) Mext(E) = Zs x Ker(w),

where | Ker(w)| = 8.

Example 5.7. The following categories are non-degenerate minimal extensions of & =
sVect X sVect lying in Ker(w):

(87) Ml(") = Z(C(ZQ; C]i)xc(zz, Qi))a MQ(f) = Z(C(Z% %))v M3(I) = Z(I)a

where ¢ and £ are primitive 4th and 8th roots of unity, respectively, and Z is an Ising
braided fusion category. We use the notation introduced in . In each of these three
cases, there is a unique embedding of £ (note that Z(C) = CXC™ for any non-degenerate
braided fusion category C).

We have the following equalities in Mezt(E) :

(88) M, (i) = My(—i) and My(€) = My(¢) if and only if & = +€,
Lemma 5.8. Ker(w) N Mext,(E) = Zy with a generator My (€).

Proof. Since Ker(w) contains a non-integral extension Mj3(Z), we see that |Ker(w) N
Mezxt, (€)| = 4.

The identity minimal extension Z(&) (respectively, M (i) and My(§)) is a pointed
minimal extension of £ characterized by the property that the largest order of the root of
unity that occurs as a value of the corresponding quadratic form is 2 (respectively, 4 and
8). Since for the square of My (§) in Mext(E) the quadratic form has values that are 4th
roots of unity, it follows that M (i) is a square in Ker(w) and the statement follows. [

Lemma 5.9. Ker(w) = Zg with a generator Ms(Z) for any Ising category I.

Proof. For a braided Ising fusion category Z the values of the canonical twist on its simple
objects are 1, —1, and a primitive 16th root of unity (, see [13, Appendix B]. Therefore,
the values of the twist on the simple objects of the integral part (Z X T),, of ZX T
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are 1, 1, —1, —1, and (2. By definition of the tensor product of minimal extensions, the
tensor square of Z(Z) in Mext(£) is the de-equivariantization of (ZXT),, X (Z* K I™),,
(viewed as a subcategory of Z(Z)*? ) by the diagonal Tannakian subcategory of £ X &.
The result contains simple objects with the twist (quadratic form) values being primitive
8th roots of unity. This means that

Z(D)* = Z(C(Z4, q¢2)) = M(CP),
so that M3(Z) has order 8 in Mext(E) by Lemma [5.8| O
Corollary 5.10. Mext(Rep(Zy X Z3)) = Zyg x Zs. The extensions Z(Rep(Zy))RI; and

Z(Z,), where Iy, Iy are any Ising braided fusion categories, can be taken as generators of
the cyclic factors.

The central charge homomorphism is identified with the projection on the first
factor.

Proof. This follows from and Lemma 0
Corollary 5.11. Mext,(Rep(Zy x Zg)) = 7 X Zy.

Proof. We have seen that |Mext,(Rep(Zy x Z}))| = 32. Since the minimal exten-
sions that project on Ising categories in Mext(sVect) are non-integral, we conclude that
Meaxt,,(Rep(Zsy % 71)) is a subgroup of Zs x Zs, which implies the result. O

Remark 5.12. All 128 minimal extensions of Rep(Zy x Z}) were listed in [27, Tables XVI-
XIX]. Our contribution is the computation of the group structure of Mext(Rep(Zy x Z')).
The filtration of this group and its integral part found in this Section are consistent with
these tables. A description of this group was also given recently in [I Section V.B and
Appendix I] and in [2, Table V], where the eight elements of the group Ker(w) were
explicitly listed.
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