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Abstract

We classify various types of graded extensions of a finite braided tensor category B in terms of its
2-categorical Picard groups. In particular, we prove that braided extensions of B by a finite group
A correspond to braided monoidal 2-functors from A to the braided 2-categorical Picard group of
B (consisting of invertible central B-module categories). Such functors can be expressed in terms
of the Eilnberg-Mac Lane cohomology. We describe in detail braided 2-categorical Picard groups of

symmetric fusion categories and of pointed braided fusion categories.
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1 Introduction and synopsis

1.1 Extensions of tensor categories

In this paper we work over an algebraically closed field k. All tensor categories are assumed to be k-linear
and finite [I§].

Let B be a tensor category. An extension of B is an embedding of B into a tensor category C i.e. a
fully faithful tensor functor ¢ : B — C. We will identify B with its image in C and use notation B C C
to denote an extension. An isomorphism between extensions i1, to : B — C is a tensor autoequivalence
F :C — C such that F ot = 1s.

When B is braided (or symmetric) there are several types of extensions reflecting different “amounts

of commutativity” of C. Namely, we say that an extension ¢ : B — C is

o central if there is a lifting tensor functor L : B — Z(C) such that ¢ coincides with the composition

B L Z(C) Torset, C, where Z(C) is the center of C and Forget : Z(C) — C is the forgetful functor;
e braided if C is braided;
o symmetric if C is symmetric.

The extending tensor category C can be viewed as a B-module category. Furthermore, the tensor
product of C equips it with a structure of a pseudo-monoid [12] in a monoidal 2-category M consisting of
certain B-modules. Commutativity properties of B, C and the type of an extension B C C are reflected
in the choice of B-modules in M and in the properties of the pseudo-monoid C. These properties are

summarized in Table[d]

In this paper, for a tensor category D we denote by Bimod (D) the monoidal 2-category of D-bimodule
categories [23]. For a braided tensor category B we denote by Mod(B) the monoidal 2-category of B-
module categories [10, 23] (it can be viewed as a monoidal 2-subcategory of Bimod(B)) and Mody,.(B)

the braided monoidal 2-category of braided B-module categories. For a symmetric tensor category &



Extension B C C 2-category M of B-modules C

tensor monoidal 2-category Bimod(B) pseudo-monoid

central monoidal 2-category Mod(B) pseudo-monoid

braided braided monoidal 2-category Mody,.(B) braided pseudo-monoid
symmetric symmetric monoidal 2-category Modgy,,(B) | symmetric pseudo-monoid

Table 1: Extensions B C C as pseudo-monoids in a monoidal 2-category M.

we denote byMody, (€) the symmetric monoidal 2-category of symmetric £-module categoriesﬂ By
definition [21], B 2], a braided B-module category is equipped with a natural collection of isomorphisms
coherently extending the braiding on B, see Definition Braided module categories turn out to play
an important role in 4d topological field theory and factorization homology. In Theorem we show
that the 2-category Mody,-(B) of braided module categories is braided 2-equivalent to the center (in the
sense of [1]) of Mod(B):

Mod,, (B) = Z(Mod(B)). (1.1)

1.2 Graded extensions and monoidal 2-functors to 2-categorical groups

We focus on extensions of finite braided tensor categories graded by finite groups.
Let G be a group. A G-extension of a tensor category D is an extension D C C together with a
faithful G-grading of C such that D is the trivial component. In other words, C admits a decomposition
c=pec, (1.2)
g€G
such that C; = D and the tensor multiplication of C maps C; x Cy to Cyy for all z,y € G. An equivalence
of G-extensions is an equivalence of extensions respecting the grading.

In [23] G-extensions of a tensor category D were classified by means of the Brauer-Picard 2-categorical
group BrPic(D) of invertible D-bimodule categories. Namely, it was shown that extensions corre-
spond to monoidal 2-functors G — BrPic(D). As a result, equivalence classes of such extensions can be
described in terms of certain cohomology groups associated to a homomorphism G — BrPic(D).

This paper provides a classification of various types of G-extensions (where G is an Abelian group)
of a braided tensor category B.

By a 2-categorical group (respectively, braided or symmetric 2-categorical group) we understand a
monoidal (respectively, braided or symmetric monoidal 2 category) in which every 0-cell is invertible

with respect to the tensor product, every 1-cell is an equivalence, and every 2-cell is an isomorphism. For

1For fusion categories, these 2-categories of module categories are fusion 2-categories [16].



a monoidal 2-category M the set of its invertible objects is a 2-categorical group which we will denote
by Inv(M).
For the monoidal 2-categories Bimod(B), Mod(B), Mod,,(B) and Mody, (B) (for symmetric B)

introduced above the 2-categorical groups of invertible objects

BrPic(B) = Inv(Bimod(B)) (1.3)

Pic(B) = Inv(Mod(B)), (1.4)
Picp.(B) = Inv(Mod,, (B)), (1.5)
Picaym(B) = Inv(Mod,,,(B)), (1.6)

are called the Brauer-Picard, Picard, braided Picard, and symmetric Picard 2-categorical group, respec-
tively. These 2-categorical groups play the key role in our study of extensions of tensor categories.

The main results of this paper concerning graded extensions (see Chapter [§]) can be stated as follows:

the groupoid of the groupoid of
G-extensions of B — corresponding monoidal 2-functors (1.7)
of a given type between 2-categorical groups G — G

for an appropriate 2-categorical group G. These categorical 2-groups and the correspondence between

different types of G-extensions and monoidal 2-functors G — G are given in Table

Extensions B C C 2-categorical group G 2-functors G — G
tensor 2-categorical group BrPic(B) monoidal

central 2-categorical group Pic(B) monoidal

braided braided 2-categorical group Picp,(B) braided
symmetric symmetric 2-categorical group Pic(B) symmetric

Table 2: G-extensions B C C and corresponding monoidal 2-functors.

1.3 Homotopy groups and invariants of 2-categorical groups

Let G be a 2-categorical group with the identity object Z. We introduce its homotopy groups as follows:

m0(G) = the group of isomorphism classes of objects (0-cells) of G, (1.8)
m(G) = Aute(Z), the group of isomorphism classes of 1-automorphisms of Z, (1.9)
m2(G) = Aut(Idz), the group of 2-automorpshisms of the identity 1-automorphism of Z. (1.10)



The multiplication of mo(G) is given by the tensor product of G and the multiplication of 7 (G), m2(G)
is the composition of automorphisms.
These homotopy groups come equipped with additional structure, which we refer to as the standard

invariants, namely a m(G)-action on 7,,(G),
70(G) X T (G) = 1 (G) m=10,1,2 (1.11)

given by the conjugation with Idy for X € my(G) (this action is used while making sense of the cohomology

groups below) and the first and the second canonical classes
ag € H3(mo(G),m(G))  and  qg € Hp.(m1(G), m(G)). (1.12)

Part of the properties of the standard invariants is that the second canonical class is invariant under the
mo(G)-action.

Here and in what follows we denote by

HI (A, M) := H" W (A,2; M) and H? (A, M):= H""3(A,4; M) (1.13)

sym

the Eilenberg-Mac Lane cohomology [19] of level 2 and 4, respectively. Note that H, ET,(A, M) is isomorphic
to the group of quadratic functions from A to M.
For a braided 2-categorical group G the m(G)-action is trivial. The canonical classes get
promoted to
ag € HE (10(G), m(G)) and qg € H2, (m1(G), m2(G)). (1.14)

sym

An additional structure is the Whitehead products
Tn(G) X T (G) = Tpam+1(G), n,m=0,1,2. (1.15)

Note that the product mo(G) x mo(G) — m1(G) is determined by the first canonical class (as the polar-
ization of the quadratic function «).

For a symmetric 2-categorical group G all Whitehead products are zero and the canonical classes are
ag € nym(wo(G),m(G)) and ¢g € nym(m((}),ﬂg((})). (1.16)

For a tensor category D the homotopy groups and standard invariants of the 2-categorical group

BrPic(D) were examined in [23]. One has
7o(BrPic(D)) = BrPic(D), w1 (BrPic(D)) = Inv(Z(D)), m2(BrPic(D))=k*.

It was shown there that the BrPic(D)-action on Inv(Z(D)) (i.e. the mp-action on 1) comes from the

isomorphism BrPic(D) ~ Auty.(Z(D)) and that the second canonical class is given by the quadratic



function

m =Inv(Z(D)) » o =k* : Z — ¢z 2,

where ¢ denotes the braiding of Z(D).
The homotopy groups of 2-categorical groups introduced in ([L.4]) - (1.6) are

o(Pic(B)) = Pic(B), m1(Pic(B)) = Inv(B), 3 (Pic(B)) = k*,
7o(Picy, (B)) = Picy, (B), m1(Picy, (B)) = Inv(Zsym(B)), 3 (Picy, (B)) = k*,
7o(Picsym(E)) = Picsym (), 1 (Picy (€)) = Inv(€), o (Picy (£)) = k*,

where B is a braided tensor category, and £ is a symmetric tensor category.
We investigate the standard invariants of the braided 2-categorical group Picy,-(B) and of the symmet-
ric 2-categorical group Pic(£). For a braided tensor B we describe the Whitehead product (Proposition

.3)
7o X T = Picy(B) X Inv(Zym(B)) — m =k~ (1.17)

and the first canonical class (viewed as a quadratic function)
Q : Mo = Picy,(B) — m = Inv(Zeym(B)). (1.18)
For a symmetric tensor category £ the first canonical class becomes a homomorphism
Q : Picgym(E) — Inv(€)s (1.19)

into the 2-torsion of the group of invertible objects of £.

1.4 Cohomological description of (braided) monoidal 2-functors

In view of the identification it is desirable to have a good description of various types of monoidal
2-functors G — G. We present one in Section [2| in terms of the Eilenberg-Mac Lane cohomology.

Let G be a 2-categorical group (respectively, braided, symmetric 2-categorical group). Denote
by 2-Fun(G, G) (respectively, 2-Funy, (G, G), 2-Fung,m (G, G)) the 2-groupoid of monoidal (respec-
tively, braided, symmetric) 2-functors G — G. Such a functor restricts on objects to a map from
70(2-Fun(G, G)) (respectively, from 7 (2-Funy, (G, G)), mo(2-Fungym (G, G))) to Hom(G, m(G))), i.e.
from the set of isomorphism classes of 2-functors to the set of group homomorphisms. A homomorphism
¢ : G — m(G) is in the image of this map (i.e. ¢ can be lifted to a monoidal (respectively, braided,

symmetric) 2-functor if and only if the following two obstructions vanish.



The first obstruction is the image of ¢ under the homomorphism
03 : Hom(G, mo(G)) — H*(G, 71 (G)) (1.20)

(respectively, Hom(G, m(G)) — H} (G, m1(G)), Hom(G, mo(G)) — H2 (G, m(G))), given by the pull-

sym
back along ¢ of the first canonical class ag defined in (1.12)) (respectively, in (1.14), (1.16])). The

obstruction o3(¢) vanishes if and only if ¢ can be lifted to a monoidal (respectively, braided, symmetric)
functor from G to the 1-categorical truncation II<;(G) of G.
Suppose that a lifting F': G — II<1(G) of ¢ is chosen. Then the second obstruction is the image of
F under the map
04 : Fun(G, <1 (G) — H*(G, 71 (G)) (1.21)

(respectively, Funy, (G, I<1(G)) = Hy, (G, m1(G)), Fungym(G, l1<1(G)) — HZ,,. (G, m1(G))). The
obstruction o4(F) measures the failure of extending F' to a monoidal (respectively, braided, symmetric)
2-functor G — G. When o4(F) vanishes, the equivalence classes of such 2-functors extending F' form a
torsor over the cokernel of a certain group homomorphism H(G, 71(G)) — H3(G, m2(G)) (respectively,
HY (G, m(G)) = H (G, m2(G)), HY(G, 71 (G)) — H3,,.(G,7(G))) depending on F.

sym

1.5 Computation of standard invariants and groups of extensions

For a non-degenerate braided fusion category B there is a monoidal 2-equivalence Mlod (Veet) = Mod,,.(B),
see Proposition In particular, the braided 2-categorical Picard group Picy,.(B) is “trivial” in this
case and so (as is well known) is the extension theory: any braided graded extension of B splits into the
tensor product of B and a pointed braided fusion category.

Thus, the most interesting braided Picard 2-categorical groups come from degenerate tensor categories.
In Section [6] we compute the homotopy groups and standard invariants of symmetric fusion categories.
For example, the homotopy groups of the braided 2-categorical group Picy,(Rep(G)), where G is a finite
group, are

mo=H*G, k*)x Z(G), m =HY(G, k*), m=HG,k*)=k",

where Z(G) denotes the center of G. The first canonical class (1.18)) is the quadratic function

H(G,K) x 2(0) » H'GK),  (1,2) 0 7(-) = 227

and the second canonical class is trivial.

The Whitehead product (1.17)) is

(H*(G, k) x Z(G)) x H'(G, k) = k*,  (7,2) x x = x(2).



We determine the corresponding homotopy groups and maps for a general (not necessarily Tannakian)
symmetric fusion category in Section [6.3

We show that the groupoid of symmetric A-extensions of a symmetric tensor category £ has a structure
of a symmetric 2-categorical group Exgym(A, £). We describe an exact sequence that can be used to
compute mo(EXgym (4, £)) in Section We also determine the group of symmetric extensions of a

symmetric fusion category in Theorem [8.20]

1.6 Organization

Section [2| contains the technical tools we need. We include a detailed description of the Eilneberg-Mac
Lane cohomology [19] in low degrees and the notions of braided and symmetric monoidal 2-categories and
2-functors between them [12] 28] [S]. An important observation is that the axioms of such categories and
functors can be viewed as “non-commutative versions” of the higher Eilneberg-Mac Lane cocycle equations
(e.g., compare equations — with commuting polytopes - ) This is parallel to the
pentagon axiom of a monoidal category being a non-commutative version of a 3-cocycle equation. Of a
special use to us are (braided, symmetric) 2-categorical groups, characterized by invertibility of their cells
with respect to the tensor product. Monoidal (braided, symmetric) 2-functors from a finite group (viewed
as discrete 2-categorical group) to (braided, symmetric) 2-categorical groups can be obtained as liftings of
usual (braided, symmetric) monoidal functors, provided that certain cohomological obstructions vanish.
These obstructions for monoidal (respectively, braided, symmetric) 2-functors and parameterization of
liftings are described in Section (respectively, Section Section. Symmetric monoidal 2-functors
as above form a symmetric 2-categorical group. Its group of isomorphism classes of objects fits into a
certain exact sequence (Theorem .

In Section [3| we recall the 2-category Mod(B) of module categories over a finite tensor category B.
When B is braided, Mod(B) is a monoidal 2-category. Its tensor product can be defined either by a
universal property or by an explicit construction, see Remark

Section[4] deals with braided module categories over a braided tensor category B introduced and studied
by Enriquez [2I], Brochier [5], and Ben-Zvi, Brochier, and Jordan [2]. In such categories the action of B
has an additional symmetry compatible with the braiding of B (Definition . Equivalently, a module
braiding on a B-module category M is the same thing as a natural tensor isomorphism between the «-
inductions [4] af,l : B°? — Endp(M) (Proposition . The 2-category Mody,(B) of braided B-module
categories is 2-equivalent to the 2-center of Mod(B) (Theorem[4.11)). In particular, Mody,(B) is braided.
The easiest examples of braided B-module categories come from tensor automorphisms of Idg, we describe

these in Section We also prove in Proposition that Modp,(B) = Modp,(Vect) when B is a



non-degenerate braided fusion category. Finally, module categories over a symmetric tensor category &
can be equipped with the identity £-module braiding and so they form a symmetric monoidal 2-category
Modgsym (). We prove in Proposition that the induction Modsym (Zsym (B)) — Modp:(B) of
braided module categories from the symmetric center of B is a braided monoidal 2-functor.

In Section [5| we describe various 2-categorical Picard groups associated to tensor categories. These
are parts of the corresponding monoidal 2-categories consisting of invertible module categories. The
new ones are the braided Picard 2-categorical group Picp,(B) = Inv(Mody,(B)) of a braided tensor
category B and the symmetric Picard 2-categorical group Picsym (€) = Inv(Modgym (£)) of a symmetric
tensor category £. We describe their homotopy groups, canonical classes, and Whitehead brackets.
Proposition provides an exact sequence featuring the group mo(Pick,(B)) that can be seen as a
sequence of homotopy groups of a certain fibration. Here we also describe Azumaya algebras in braided
tensor categories, as they give a convenient description of invertible module categories.

Section [6] is dedicated to the braided 2-categorical Picard group of a symmetric fusion category &.
We recall the computation of Pic(€) due to Carnovale [7] and use it to describe the braided categorical
Picard group of £ and its canonical classes.

In Section [7] we compute the braided categorical Picard group of a pointed braided fusion category
B. We show that in this case there is a braided monoidal equivalence of braided categorical groups
Pice, (B) = Picty(Zsym(B)), where Zgym, (B) is the symmetric center of B, see Proposition

Finally, Section contains a classification of graded extensions. Tensor (respectively, central, braided,
and symmetric) graded extensions are classified in Theorem (respectively, Theorem Theo-
rem and Theorem . We compute the group of symmetric extensions of a symmetric fusion
category in Theorem Here we also explain that the zesting procedure studied in [I4] can be under-
stood as a deformation of a braided monoidal functor A — Picy,(B) and compute Pontryagin-Whitehead

obstructions to existence of extensions in this case.
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2 Higher categorical groups and group cohomology

2.1 Eilenberg-Mac Lane cohomology

We denote by C*(A, M) the normalized standard complex of the abelian group A with coefficients in the
trivial A-module M.

Remark 2.1. We will refer to cochain complexes for the second, third, and fourth Eilenberg-Mac Lane
cohomology groups as braided, sylleptic, and symmetric, respectively. This is justified since such cochains
give rise to braided, sylleptic, and symmetric 2-categorical groups, see Sections [2.2] and [2:4] The explicit

descriptions of these complexes are recalled below.

We denote by Cy (A, M) = C*T1(K (A, 2), M) the normalised standard complex computing the second

Eilenberg-Mac Lane cohomology [19]. The first few terms of the cochain complex Cj, (A, M) are as follows:
Cor(A,M)=C°(A,M)=M, CL(AM)=C" (A M), Cp(AM)=C*A M),
Cl?r(Aa M) = Cs(Aa M) @ Cz(Av M) - {(a(fa ) 7),@(*|*))},
CI?T(A’ M) = 04(145 M) @ CS(Aa M) D 03(A7 M) = {(a’(77 T T 7)a a(fv 7|7)7 CL(*|*, 7))}7

Cp (A, M) =C5(A, M) @ CYA, M) 3 CHA, M) D CHA, M) D C3(A, M)

with the differentials

d:CE (A, M) — Cy (A, M)
d(a’)(x’ Y, Z) = a(y, Z) - a(a:y, Z) + a(x, yz) - a(l‘v y)’ (2'1)
d(a)(zly) = aly,z) —alz,y); (2.2)

d:C3 (A M) — Ct (A, M)
d(a)(x,y,z,w) = a(yazaw) - a<xyvz»w) +a(x’ysz) 7a($7yazw) +a(x,y,z), (23)
d(a)(z,y|z) = a(ylz) — azylz) + a(z|z) + a(z,y, 2) — a(z,2,y) + a(z, 2, y), (2.4)
d(a)(zly,z) = a(zly) — a(zlyz) + a(z]z) — a(x,y, 2) + a(y, v, 2) — aly, z, ), (2.5)

and

d: Cy (A, M) — Cp (A, M)

11



d(a)(z,y, z,w,u) = aly, z,w,u) — alzy, z, w,u) + a(x, yz, w, u)

(2.6)
—a(z,y, zw,u) + a(x, y, z,wu) — alx,y, z,w),

d(a)(zly, z,w) = a(z|z,w) — a(z|yz,w) + a(z]y, z2w) — a(z]y, z) @7
—a(z,y, z,w) + a(y, x, z,w) — a(y, z, z,w) + aly, z, w, ),

d(a)(z,y, zlw) = a(y, zlw) — a(zy, z[w) + a(z, yzlw) — a(z, y|lw)— 2.8)
a(z,y, z,w) + a(z,y,w, 2) — a(z,w,y, 2) + a(w, x,y, 2),

d(a)(z,ylz, w) = a(ylz, w) — a(zy|z, w) + a(z|z,w) — a(z, y|w) + a(z, y|zw) — a(z,y|2)
+a(x,y, z,w) —a(z, z,y,w) + a(z, ,y,w) (2.9)
+a(z, z,w,y) —a(z,z,w,y) + a(z,w, x,y),

d(a)(z|y|z) = —al(z,y|2) + aly, z|z) — a(z|y, 2) + a(z|z, ), x, Y, z,w € A. (2.10)

Example 2.2. The first few terms of the cochain complex C}.(Z/2Z, M) are

0 dy 0 ds dy

M M M M? M3 WK
where M™ is the direct sum of n copies of M and
di(m) = 2m
ds(m,l) = (2m,20l+m,2l —m)
ds(m,l,k) = (0,0,2(m —1+k),0,0)

Thus the first few braided cohomology groups are

Hy.(Z/2Z,M) = M,

H,y,(Z/22,M) = Mo,

HE(Z)27,M) = M/2M,

Hy (Z)22,M) = M,

HE(Z)2Z,M) = M, ® M/4M.

Here My = {m € M| sm = 0}.

We denote by C*

(A M) = C*T2(K(A,3), M) the normalised standard complex computing the third

Eilenberg-Mac Lane cohomology [19]. The first few terms of the cochain complex C7 (A, M) are as
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follows:

Csyl( ) M’ Csyl( ) = Cl(A’M)7

Csyl( M) = 02(A7M)’ Csyl( M) = CST(A,M),

Cop(A, M) = Cy (A, M) & C*(A, M) = {(a(—, -, —, =), a(—, =[=), a(~|=, =), a(=||-))},
Ceyl(AvM) = Cl?r(AvM) D CS(A’M) D CB(AvM) -
= {(a(_v T T T _)v a(_’ T _)7a(_a LR _)7 a‘(_ T _)a

with the additional differentials
Csyl(A7 M) — Csyl(A7 M)

d(a)(|ly) = a(zly) + a(y|z), (2.11)
and

d: Csyl(A M) - Csyl( )
d(a)(z|ly, 2) = a(zly, 2) + aly, z|x) + a(z|ly) + a(z[|2) — a(zly2), (2.12)
d(a)(z, yllz) = a(z,ylz) + alzlz, y) + a(z]|2) + a(yllz) — a(zyl]2). (2.13)

Example 2.3. The first few sylleptic cohomology groups of Z/27Z are

Syl(Z/2Z M) = M,

Syl(Z/2Z M) = My,

syl(Z/2Z M) = M/QMa

syl(Z/QZ M) = M,

HY\(Z)22,M) = Ms® M/2M.

We denote by C%,,,(A, M) = C**3(K(A,4), M) the normalised standard complex computing the

fourth Eilenberg-Mac Lane cohomology [19]. The first few terms of the cochain complex C7,,, (A, M) are
as follows:

co (A, M) =M, cl (A M)=CY(A M), C2 (A, M)=C?*(A M),

sym( ) Clz)sr (A7 M)’ C;lym( ) Csyl( )
Coym(A M) = C3 (A, M) & C*(A, M) =
= {(a(_v T Ty T _)v a(_v I _)a a(_7 — _)70'(_ ) _)7

a(=| = |=),a(=, =[l=), a(=[l= =), a(=[[|-))}
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with the additional differential
d:Ct (A, M)—C3 (A M)

d(a)(z|l|ly) = a(z|ly) — a(yllx), =,y € A (2.14)

Example 2.4. The first few level 4 cohomology groups of Z/27Z are the same as the symmetric coho-
mology
Z/2Z,M) = Hg,(Z/2Z, M), n < 4.

sym(

Example 2.5. It is immediate from the definitions that

sym(

H} (A, M) = (A, M) = (A, M) = Hom(A, M),

syl

ng(A7 M) syl(A M)

sym

A, M) = Ext(A, M).

eym(

It was shown in [20] that there are isomorphisms

H.(A, M) = Quad(A, M), H2 (A, M) = A, M) = Hom(A, M),

sym(

given by
(a(—,—,—),a(—=|=)) —¢q, where q(z) = a(z|z), z € A.

Here Quad(A, M) is the group of quadratic maps and My = {m € M| 2m = 0} is the 2-torsion subgroup
of M.

The 4th cohomology groups are especially important for our purposes. Let us now assume that M is

divisible. The following results are from [20].

Example 2.6. There is an isomorphism

Osym © Haym (A, M) =5 Hom(Az, M) (2.15)
assigning to a symmetric 4-cocycle (a(—,—, —, —),a(—, —|—),a(—=|—, =), a(—||—)) the homomorphism
As = Mz — a(z, z|z) — a(z|z, x) — a(z, x, 2, x). (2.16)
There is an isomorphism
Oy« Hiy(A, M) = Hom(Az, M) & Hom(A* A, M), (2.17)

whose first component is given by (2.16) and the second component assigns to a sylleptic 4-cocycle

(a(—=,—,—,—),a(—,—|—),a(—|—, —),a(—]||—)) the homomorphism
A2 A= M: x Ay — a(zlly) — alyl|x), (2.18)
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which is the obstruction for a sylleptic 4-cocycle to be symmetric.

Finally, there is a homomorphism
Opr = Hyy (A, M) — Ext(A, Hom(A, M)), (2.19)

which is the obstruction for a braided 4-cocycle to have a sylleptic structure. It is defined as follows.
Let (a(—,—,—,—),a(—,—|—),a(—|—,—)) be a braided 4-cocycle. For any x € A define a function b, €
C?(A, M) by

ba(y,2) = a(zly, 2) + aly, z[x),  w,y,z € A

It follows from formulas (2.6 -(2.10) and divisibility of M that b, is a 2-coboundary. That is there exists
a function a(—||—) € C?(A, M) such that (2.12) vanishes. The function

A = M : (z,y,2) = alelly) — alylle) + a(zllz) — a(z]|2) — a(zly2) + alyz||2)

is multiplicative in z and, hence, defines a symmetric 2-cocycle g on A with values in Hom(A, M). This
2-cocycle is cohomologically trivial if and only if the given braided 4-cocycle admits a sylleptic structure.
We set 0y, (a(—, —, —, —),a(—, —|—),a(—|—, —)) to be the class of g in Ext(A, Hom(A, M)).

The kernel of is isomorphic to Hom(A4y, M) via .

2.2 Higher braided monoidal categories and functors

Semistrict monoidal 2-categories were defined by Kapranov and Voevodsky [28] and also by Day and
Street [12] under the name of Gray monoids. It was shown that every monoidal 2-category is equivalent
to a semistrict one. We refer the reader to these papers and to [33] for basic definitions. All monoidal
2-categories considered in this paper will be assumed semistrict.

Let F,H : M — N be 2-functors between 2-categories. Recall that a pseudo-natural transformation

P :F — H is a collection of 1-morphisms Py : F(M) — H(M) and invertible 2-cells

FM)— D qm) (2.20)
F(F) S O P
FN) — = (),

for all objects M and 1-morphisms F' : M — A in M such that Piq4,, = Idp,, and
Ppog = Pp o Pg (2.21)
for all composable 1-morphisms F' and G.
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Let P,@ : F — H be pseudo-natural transformations between 2-functors. A modification n: P — Q

is a collection of 2-cells

Py
) T

ﬂw H(M), (2.22)
N A

Qum

F(M)

for all objects M in M, natural in 1-morphisms in M.

Definition 2.7. A (semistrict) braided monoidal 2-category [28| [8, [I] consists of a (semistrict) monoidal

2-category (M, X, 7), where K is the tensor product, equipped with invertible 2-cells

MRN —ZN MR N (2.23)
Xz w
MERW _ M'RW

MRN — 2B MRNY
for any Z € M(M, M’), W € M(N, N'), and Z is the unit object,

together with a pseudo-natural equivalence (braiding)
Bunxy: MEN — N KM, M,N eM,

invertible 2-cells

MRN —ZN My N MEN —EW RN (2.24)
Bz n Bum,w

Bu,n e By w Buy,n _— B a

NEM —YBZ _ NrM, NEM—YEM _ AvrgM,

satisfying Bz, yoBz, v = Bz,2,. 5 and Ba,w, o Bam,w, = Bm,w,ew,, and two invertible modiﬁcation&ﬂ

LNM MLN
Bum,wv Be,.wv Be,m Be.wv
Uﬁc,mw \M/ﬁL\M,N
MN NLM LMN

Bem,nv B, myv

L MNL,

(2.25)

2Below we omit the identity functors and the tensor product symbol K, so we write MN for M KN
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satisfying the following axiomaﬂ

LEMN Dre KLMN
%M
Bg,.m Br.cu Br,cmn
LMKN LMNK
By, v
KLNM Akl KLMN
B n Bremn
KNLM NKLM

By, v

LEMN Dre KLMN
= Bi,m By, cmn
LMEN — LMNK,
(2.26)
KLNM Dy KLMN
= B Brem.wv
LMKN — NKLM,
(2.27)
KLMN
Be.m Bre,m
KMLN MKELN
KMNL
MENL,

(2.28)

3Equalities of 2-cell compositions in this paper can be used to represent commuting polytopes [27]. These polytopes are

recovered by gluing the diagrams on both sides of equality along the perimeter
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(2.29)

for all I, £, M, N € M.

Definition 2.8. A sylleptic monoidal 2-category is a braided monoidal 2-category M with an invertible

syllepsis modification

v NM, (2.30)
B/\’,J\/[

i.e. Tm v is an invertible modification between By B, n and Idpma such that

LNM
Be,miv _
LMN Do NLM
By cm
Beom MLN
Beimn _
LMN D MANL
\—TM

Buw,c

commute for all objects £, M, N in M.

Definition 2.9. A sylleptic braided monoidal 2-category M is called symmetric if its syllepsis ([2.30)
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satisfies
Bum,.n Bum,.n

MN B‘ﬂ"“ NM - MN NM (2.33)

for all objects M, A in M.

Definition 2.10. A monoidal 2-functor F : M — M’ between monoidal 2-categories is a 2-functor along

with a pseudo-natural equivalence
Fuy : FIM)FN) = F(MN), (2.34)

an equivalence U : F(Z) — Z, and invertible modifications

FL)FM)FWN) —2 o F(L)F(MN) (2.35)

Fe.m SEMN Fr v

FLM)FN) —X (LMAN)
F@)FM)—Z IF(M) FM)FT) —LZ F(M)Z, (2.36)
Frm —2 . |L;ay  and Fuz —2 s | Rrw
Fam) —IE0 L Fom, FMT) — T80 Fm,

where L and R denote the unit constraints of M, such that

/ (N) F(K)F(L)F(M)FWN)
UN Fr.c Frn
F(KL)F(M Brc et (L)F(MN) FKL)F(M)FN) Frm F(K)F(L)F(MN)
Fxeom \ / Fr,mnv = Fice,.m “ Frmn
FKLM)F Fc.ux VF(LMN) FKLM)F areny F(LMN)
FKLMN) FKLMN)
(2.37)
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and

FM)FI)FN) FM)F(IZ)FN)

Fuz Fr n Fuz Frn
FMI)FWN) ““:, F(M)F(IN) FMI)FWN) FM)F
F(Rum) }'(MZ/\/’) F(Ly) = F(Rum) F(Ly)
FM)FWN) F(Ru) | F(Ly) FM)FWN) F(M M)F(N)

Fun Fun \ /

F(MN)
(2.38)

for all K, L, M,N € M.

Definition 2.11. A braided monoidal 2-functor F : M — M’ between braided monoidal 2-categories is

a monoidal functor along with an invertible modification

By, rwv)

F(M)F(N) FN)F(M) (2.39)
SMN
Fpmn _— Fyom
F (B
FMN) — PO 2 (vm)
such that
F(LYF(MN)
F(LYF(M F(LYF(M)FN) F(LMN)
\ BM% \
By F ), P FMLN) _ Pey F(Brim, \)
FIMN)F(L)
FM)FN)F(L) FM)FWN)F(L) ML (MNL)

F(MLN)



and

Br ). ranlF o)
—

F(LM)F(N)
F(L)F(M)F(N) F(LMN)
Pem F(Be,mn)
= —F
FN)F(LM)
FWN)F(L)F(M) Iy F(NLM)
F(NL)F(M)
(2.41)

for all objects £, M, N in M. Here B, B’ denote the braidings on M, M’. We omit 1-cell labels to keep

the diagrams readable.

Definition 2.12. A braided monoidal 2-functor F : M — M’ between sylleptic (respectively, symmetric)

monoidal 2-categories M and M’ is sylleptic (respectively, symmetric) if

Blf(M),f(.\f)
_— T
FM)FWN) FN)F(M)

IMN
Fy N _— Fyom
F(Bumw)

— | T
ﬂnmm
S Gl

F(By,m)

F(MN) F(NM)

B vy, F()
/\
ﬂ"z/«*(,w)ﬂ(m‘) .F(N)f(./\/l)
~_ Vv
Brny,r(m)

FM)FWN)

Fumn T Fym
On M

F(MN) F(NM),

-~
F(By,m)

(2.42)

for all M, N in M. Here 7, 7" are the modification defined in (2.30]).

Definition 2.13. Let F, 7' : M — M’ be two monoidal functors. A monoidal pseudo-natural transfor-

(LNM)



mation P : F — F' is a pseudo-natural transformation along with an invertible modification

PrPp

F(LYF(M) F(LYF (M) (2.43)
From M Ffp
F(LM) Pt FILM)
such that
FLM)F(N) FLM)F(N)
From Femon Feom Femn
F(L)F(M X F(LMN) F(L)FM)FN) PeaPy F(LMN)
\ % uc,,w“ uc,w.,v“
PrPuPy Py = PrPuPy FLM)F' (N Pray
#.M,.\‘H #c.M,VH / . m
FI(L)F (M)F(N) PePu F'(LMN) F(L)F (M L ” o F'(LMN)
MN -F/(L:)-F/(MN) LMN MN ]:/(C)]:/(MN) LMN
(2.44)

for all £, M, N in M. Here o and o denote the monoidal structures of F and F'.

Definition 2.14. A monoidal pseudo-natural transformation P : F — F’ between braided monoidal

2-functors is braided if

F(EM) M)
F(L)F(M) \ FI(LM) FLFM)  FBean M)
% % JM’LH %
By 7(m) M) F'(Bem) = B ). 7m) Mﬁ) F'(Bg,m)
& 52_MH / \
FM)F(L)  Breyrinn FI (ML) F(M \ F'(ML)
m e m /
M)F' (L) F'(M)F'(L)

(2.45)
for all £, M in M. Here § and ¢’ denote the braided structures on F and F”.

Definition 2.15. A modification 7 : P — @ between two monoidal pseudo-natural transformations
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P,Q: F — F' is monoidal if

Py F(MAN) TN FMN) (2.46)
PPy < < < > MmN =  PuPy <an>QwQ> > MN
N) g F/(MA) N) g F/MA),

for all M, N' € M, where p and v are modifications (2.43)) defining the monoidal structures on P and

@, respectively.

2.3 The center of a monoidal 2-category

Let M be a braided monoidal 2-category. Its center Z(M) is a braided monoidal 2-category defined
as follows [I, Section 3]. Objects of Z(M) are triples (N, S, v) where N is an object of M, S is a

pseudo-natural collection of equivalences (called a half-braiding)
Sy MN = NM, MeA,

and ~ is an invertible modification

LNM (2.47)
LMN — NLM
such that
KLNM S KLMN KLNM S KLMN  (2.48)

Scm

Se Skem = Se Skem

KNLM NKLM LMKN 5 NKLM,

Sk
for all I, £, M € M.
A morphism between (N, S, v) and (N7, S, 7') in Z(M) is pair (F, o), where F : N - N is a

morphism in M and ¢ is an invertible modification

MN — 2 L NM (2.49)
F\L =M \LF
MN! N'M
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such that

LNM

LMN — NLM
OLM

LMN' : N'LM
SE,’VI

for all £, M in M.

Sm St
F

LMN %’ LN'M \ NLM

LMN' N'LM.

’
SL,\A

A 2-morphism in Z(M) between (F, o) and (F’, 0') is a 2-cell

/\
N N, (2.50)

such that
MN 2 NM

MN 4 MM (2.51)

(- (32,

MN/f)N/M MNIH/‘N/M,
S,M SM
for all M in M.
The tensor product in Z(M) is given by
N, S, ) BN, S, ) = (NN, SS°, '), (2.52)

where NN is the tensor product in M, (SS)’, is defined as the composition

(58 : MAN SN A 2, Aarrpm,

and (yv')z,.m is given by the following composition of 2-cells

S,
2 ﬂﬁm
L

(2.53)

X

SheSe NLN' M

St
’
/}\A‘{ \U/’YLN

NN'LM

for all £, M € M.

’
S LM

The braiding between (N, S, v) and (N’, S’, 4/) is given by

(Sn, B) : (N, S, RN, S ) = (N, 8, ) RN, S, ), (2.54)



where X ¢ is the following composition 2-cell:

MNNT —— 5 NMN —— v
MAN' s NTMN —— = N'NM.

M

Let M be a braided monoidal 2 category with braiding Ba a and structure modifications 3 and
(2.25). There is a braided monoidal 2-functor

F:M—=ZM): N = (N, B_y, B-_x)

with Fy n: @ FIN)FN') — FNN') given by (Idxn, f-jyav) and identity 2-cells o (2.35) and &
(2.39). See [1L 8] for details.

2.4 2-categorical groups

Recall that a categorical group is a monoidal category in which every object is invertible with respect to
the tensor product and each morphism is an isomorphism.

We call an object P of a monoidal 2-category M invertible if there is another object Q together with
an equivalence PX Q — 7, where Z is the unit object of M. Note that in this case the object Q is unique
up to an equivalence.

Note that the tensor products —XP and PX— with an invertible object P € M are 2-autoequivalences
of M. In particular, each of them defines an equivalence of monoidal categories M(Z,Z) — M(P,P),
where Z is the unit object of M.

Definition 2.16. A 2-categorical group is a monoidal 2-category whose objects are invertible with respect

to the tensor product, whose 1-morphisms are equivalences, and whose 2-cells are isomorphisms.

Example 2.17. Let A be a 2-category. Then the monoidal 2-category Aut(A) of autoequivalences of

A with pseudo-natural equivalences as 1-morphisms and isomorphisms as 2-morphisms is a 2-categorical

group.

Example 2.18. Let M be a monoidal 2-category. Then the monoidal 2-category Inv(M) of invertible

objects in M with equivalences as 1-morphisms and isomorphisms as 2-morphisms is a 2-categorical

group.

Let G be a braided 2-categorical group with the tensor product X and unit object Z. Below we discuss

some invariants of G.
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Let IT<1(G) denote the 1-categorical truncation of G, i.e. the categorical group whose objects are
objects of G and morphisms are isomorphism classes of 1-cells in G. Let II1<(G) = G(Z, Z) be the

braided categorical group of autoequivalences of Z. Its braiding is given by the naturality 2-cells

IR — w7 (2.55)
lelIdl L lf@ld
IR ——TNXT
1dXg

for all f,g € G(Z, I).
Definition 2.19. The homotopy groups of G are defined as follows.
e the Oth homotopy group 7o(G) is the group of equivalence classes of objects of G,
e the 1st homotopy group 71 (G) is the group of isomorphism classes of autoequivalences in G(Z, Z),
e the 2nd homotopy group m2(QG) is the group of automorphisms of the identity 1-morphism Idz.
Since IT1<(G) is braided, the homotopy groups m1(G), m2(G) are abelian.
Definition 2.20. The first and second canonical classes of G,
ag € H3(m(G), m1(G)) and gqg € Hp (m1(G), ma(G)) (2.56)

are, respectively, the associator of the categorical group IT1 < (G) and the braided associator of the braided

categorical group II1<(G).
Proposition 2.21. There is a monoidal functor

a:I<1(G) = Auty,(II<(G)) (2.57)
canonically defined up to a natural isomorphism.

Proof. For any object P in G the corresponding autoequivalence a(P) of G(Z, Z) is given by composing

the monoidal equivalence

GZ,I)-»GMP,P):f—fRP,a—raRP
with the quasi-inverse of

GZ,I7) - GP,P): f—»PRf,a~PNa

That a(P) is a braided autoequivalence and that a is a monoidal functor follow the naturality properties

of K. O
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Remark 2.22. The action (2.57)) of IT<1(G) on II1<(G) can also be recovered from the adjoint action
of the 2-categorical group G on itself, i.e. a monoidal 2-functor Ad : G — Aut(G) characterized (up
to an equivalence) by a coherent collection of equivalences P XX — Adp(X) X P, pseudo-natural in

X e G.

The action (2.57) yields canonical group homomorphisms
m0(G) = Aut(m(Q)), m(G) = Aut(m2(G)), and m(G)— Hom(m(G), m(Q))

corresponding, respectively, to the actions of objects of IT<1(G) on objects and morphisms of II<1(G)
and to the action of the group of automorphisms of Z by automorphisms of Id7_, (g). We will refer to

the corresponding maps
m0(G) x 11 (G) = m(G), 7o(G) x m2(G) = m2(G), and m(G)x m(G)— m(G) (2.58)

as the Whitehead brackets.

Note that the first canonical class ag is invariant with respect to the action of 7o(G) and that the
bimultiplicative pairing 71 (G) X 71(G) — m2(G) is given by the polarization of the second canonical
class qa.

Suppose that G is a braided 2-categorical group. In this case II<1(G) is a braided categorical group

and IT;<(G) is a symmetric categorical group. Hence, the canonical classes (2.56]) get promoted to

ac € Hi(mo(G), m(G)) and qg € HY,,, (11(G), ma(G)). (2.59)

sym

The braiding of G gives a trivialization of the functor (2.57) which implies that Whitehead brackets

(2.58)) are trivial and yields a new bilinear pairing
[, ]:m0(G) x T (G) = m2(G) (2.60)

constructed as follows. For each object P in G, or an element of 7y(G), we have a canonical monoidal
automorphism of a(P) = Idz, i.e. a homomorphism m1(G) — m2(G). This gives a homomorphism
m0(G) = Hom(71(G), m(G)) identified with (2.60)).

For a symmetric 2-categorical group G the canonical classes are
oG € HY,(m0(G), m(G)) and qg € B, (m1(G), ma(G)). (2.61)

sym sym

All Whitehead brackets are trivial in this case.

2.5 Monoidal 2-functors between 2-categorical groups

Let G be a group. We consider it as a 2-categorical group with identity 1- and 2-morphisms.
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Let G be a 2-categorical group (viewed as a semistrict monoidal 2-category) with the corresponding

canonical classes
ag € H3(m(G), m1(G)) and (wg, cg) € Hp (m1(G), ma(G)).

Let C : G — II<1(G) : © = C, be a monoidal functor. This means that there are 0O-cells C, in G,

1-isomorphisms My ,, : C;Cy — Cqy, and invertible 2-cells

M, .

C.C,C, ————C,Cy. (2.62)
M., TN My.y-

for all x,y,z € G.
Note that C gives rise to an action of G on 71 (G) (obtained by composing the underlying group
homomorphism G — 7y(G) with the action of mo(G) on 71 (G)). We denote this action by (g, Z) — Z9.
Following [23] define a 4-cochain p : G* — 72(G) by setting p&(x,y, z,w) to be the composition of

faces of the following cube:

(2.63)

pg«(.T,y,Z,W) = Mzy,=

Mayzw

C.’L’yZUH

where the top face is given by Xas, , ar, . That is, we view p(z,y,2,w) as a 2-automorphism of
the composition of morphisms between opposite corners, e.g., of Myy. wMay My, ©,y,2,w € G (the
2-automorphisms of other compositions are conjugate to this one). We use this convention for other

polytopes in this paper.
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Proposition 2.23. pg is a 4-cocycle whose cohomology class in H*(G, o(G)) depends only on the
isomorphism class of C. A monoidal functor C : G — II<1(G) extends to a monoidal 2-functor G — G

if and only if p2 = 0 in HY(G, m2(G)).

Proof. Consider the following polytope (its planar projection is pictured):

C2CyC.CuCy, (2.64)
// \\
CuyC-CuCu C.Cy.CuCu C2CyCnC C.CyC-Coru
/ \
CayzCuCu C.C,C-CusCy, CayC:Cou CoCywCu C2Cy-Coni C2CyCou
CayzuwCu Cay:Cuu wyCruwu CoCyrwu

oy zw-
The edges of this polytope are isomorphisms M, ,. The faces are cells ag ., z,y, 2 € G, (2.62)) and Ky ,.
The polytope ([2.64) consists of 8 cubes (four containing the top vertex and four containing the bottom
one) glued together in such a way that each of their 48 faces belongs to exactly two cubes (so that the
boundary is empty). Six of these cubes are of the form ; their composition is the differential of
pg. The remaining two cubes commute due to the naturality of the tensor product in G. Namely, M, ,
commutes with the 2-cell o, . and M, , commutes with the 2-cell o, .. Thus, d(pg) =1.

A different choice of 2-cells results in multiplying p% by a 4-coboundary, so its class in
H*(G, m2(G)) is well-defined.

Finally, C extends to a monoidal 2-functor if the 2-cells (2.62)) can be chosen in such a way that
is satisfied. This is equivalent to commutativity of the cube (the latter is obtained by gluing the
two sides of ), i.e. to p2 being cohomologically trivial. O

For L € H?(G, 71 (G)) the monoidal functor L-C : G — II<1(G) is obtained by multiplying M, , by
Ly, forallz,yed.

Let C': G — II<1(G) be a monoidal functor with the monoidal structure M, ,, : C,Cy — Cyy, x,y € G.

The group Aut(C) of automorphisms of C' is isomorphic to H'(G, 71(G)). Explicitly, P € Aut(C)
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corresponds to a collection of equivalences P, : C, — C, such that there are invertible 2-cells

P.P,

¢.C, —C(.C, (2.65)
M, , % M,
sz

for all z,y € G.
Suppose that a monoidal functor C : G — IT<1(G) extends to a monoidal 2-functor C : G — G. That
is, there is a choice of invertible 2-cells (2.62)) such that the cubes (2.63) commute, i.e. p& = 1. Let P be

a monoidal automorphism of C.

Define a function p4(P) : G — m2(G) by

(2.66)
Czyzv
for all z,y, 2z € G. Here the top and bottom faces are a; . ..
Proposition 2.24. p}(P) is a 3-cocycle and the map
ps : Aut(C) = HY(G, 71(G)) — H3*(G, m3(G)) : P+ p&(P) (2.67)

is a well defined homomorphism. The automorphism P extends to a monoidal pseudo-natural automor-

phism of C if and only if p,(P) =0 in H*(G, ma(G)).
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Proof. Consider the following polytope (its planar projection is pictured):

C.C,C.Coy (2.68)

7 N\

C.CyCou

Coyzw-
The solid arrows are isomorphisms M, ,, and the dotted ones are products of isomorphisms P,. The faces
are cells ag . (2.62)), ptzy (2.65), and X, ,, z,y,2 € G.

The polytope consists of 8 cubes (four containing the top vertex and four containing the bottom
one) glued together in such a way that each of their 48 faces belongs to exactly two cubes (so that the
boundary is empty). Five of these cubes are of the form ; their composition is the differential of
p&(P). Two cubes consisting of solid arrows are the cubes and so they commute by assumption.
The remaining cube commutes due to the naturality of the tensor product of G. Thus, d(p,(P)) = 1.

A different choice of 2-cells results in multiplying pl(P) by a coboundary, so its class in
H3(G, 72(G)) is well-defined.

The equality

p&(PQ) = pE(P)pE(Q),  P,Q € Aut(C)
is proved directly by gluing two cubes for P and @ along the face ag .y .

Finally, P extends to a monoidal pseudo-natural automorphism of C if 2-cells can be chosen in

such a way that is satisfied. This is equivalent to commutativity of the cube , ie. to pé(P)

being cohomologically trivial. O

Let C : G — G be a monoidal 2-functor. For any w € Z3(G, m3(G)) let C* be a monoidal 2-functor
obtained from C by multiplying each 2-cell a4 . by w(z, y, 2), z,y,2z € G. The monoidal 2-equivalence
class of C¥ depends only on the cohomology class of w in H3(G, mo(G)). If C, C' are extensions of the

same monoidal functor C' : G — IIy(G) if and only if ¢’ = C¥ for some w.
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Corollary 2.25. Monoidal 2-functors C**, C*2 : G — G are isomorphic if and only if wa = p&(P)w;
for some P € Aut(C) = HY(G, m(G)).

Proof. Let agy -, ¢, Y,z € G, be the cells (2.62)) for C. A monoidal pseudo-natural isomorphism between
C“t and C“? consists of l-automorphisms P, : C, — C, such that the cube (2.66) (with the top and
bottom faces being, respectively, wi(z,y, 2)0g 4 » and wa(x,y, 2)ag,y .) commutes. This is equivalent to

wa /w1 = p&(P), where C : G — II<1(G) is the underlying monoidal functor of C. O

Example 2.26. Let I : G — II<1(G) : x — Z denote the trivial monoidal functor. Then
p1(P)(2,y,2) =wa(Pe, Py P), 2,2 €G. (2.69)
The next Corollary summarizes our description of monoidal 2-functors G — G.

Corollary 2.27. Let C : G — IIy(G) be a monoidal functor. An extension of C' to a monoidal 2-functor
C: G — G exists if and only if p& = 0 in H*(G, m2(G)). FEquivalence classes of such extensions of C
form a torsor over Coker (pl : H(G, m(G)) — H?*(G, m2(G))).

2.6 Braided monoidal 2-functors between 2-categorical groups

Let A be an Abelian group. We consider it as a 2-categorical group with identity 1- and 2-morphisms.

Let G be a braided 2-categorical group with the corresponding canonical classes
ag € HE (10(G), 71(G)) and qg = (wa, ca) € Hg’ym(m(G), m2(Q)).

Let C: A — II<1(G) : * = C; be a braided monoidal functor. This means that there is a 0-cell C,
in G for each © € G, 1-isomorphisms M, , : C;Cy — Cqy, invertible 2-cells ay . (2.62), and invertible
2-cells

C, M50, ¢, M5 C, (2.70)

Bq,y
oo
Cay

for all x,y,2 € G. Let B,),,. and 5, 4. denote the invertible modifications (2.25) with £ = C,, M =
C,, N=C..
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Define a braided 4-cochain p% € Cit (A, m2(G)) by taking p§"(C)(z,y, z,w) from ([2.63),

O,z
p%(:r,ylz) = Cr. Xp Cy — | Bz.-

(2.71)
and
V
Bely.z 4 g
am,y,zﬂ/
O 650,2
pe(xly, z) = ( CyXpCypy = | Bo.z

(2.72)

where the plane projections of the octahedra are pictured.

Remark 2.28. The octahedra (2.71]) and (2.72)) are special cases of those from the definition of a braided

pseudomonoid in a braided Gray monoid [12] Definition 13].

Proposition 2.29. pd is a braided 4-cocycle whose cohomology class in Hy (A, mo(G)) depends only on
the isomorphism class of C. A braided monoidal functor C : A — II<1(G) extends to a braided monoidal

2-functor A — G if and only if p2 = 0 in Hi (A, m2(G)).
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Proof. We need to verify vanishing of the shuffle differentials - . That the differential
is zero follows from the construction of polytope . Vanishing of the differentials (2.7)) (respectively,
, , and ) is proved in a similar way. Namely, we form polytopes by gluing the octahedra
, to cubes and to the commuting polytopes (respectively, , , and

(2.29) so that the faces of the octahedra labelled by §’s in octahedra and polytopes are glued to each
other. In the resulting large polytopes each face labelled by « or ¢ is glued to its inverse. This implies
commutativity of the polytopes, i.e. vanishing of the differentials.

A different choice of 2-cells and results in multiplying pg by a braided 4-coboundary, so
its class in H*(G, m2(G)) is well-defined.

Note that C' extends to a braided monoidal 2-functor A — G if the cells oy, and 0, can be chosen
in such a way that , , and are satisfied. This is equivalent to commutativity of cubes
and octahedra and , ie. to pd = 1. Indeed, these polytopes are obtained by gluing
the two sides of (2.37)), (2.40), and (2.41)). O

Suppose that a braided monoidal functor C : A — II<1(G) extends to a braided monoidal 2-functor
C : A — G. That is, there is a choice of invertible 2-cells and such that the cubes
and octahedra and commute, i.e. p2 = 1. Let P be a monoidal automorphism of C.

Let p&(P)(x,y,z) be defined by and let p5(P)(z|y) be the composition of the faces of the

prism
(2.73)
pe(P)(z|y) =
for all z,y € A.
Proposition 2.30. p}(P) is a braided 3-cocycle and the map
pL: Aute(C) = HY(A, m1(G)) — H(A, m(G)) : Prs pl(P) (2.74)

is a well defined group homomorphism.
The natural automorphism P extends to a braided monoidal pseudo-natural automorphism of C if and

only if p&(P) =0 in Hp (A, ma(G)).
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Proof. The differential vanishes by Proposition The vanishing of the differential (respec-
tively,(2.5))) is established by gluing the faces of three cubes , three prisms , and two copies
of the octahedron (respectively, (2.72) in such a way that the result has the empty boundary.

A different choice of 2-cells results in multiplying pé(P) by a braided coboundary, so its class
in H} (G, m3(G)) is well-defined.

The multiplicative property of pl is a direct consequence of the definition of prisms .

Finally, a monoidal pseudo-natural automorphism of C obtained by extending P is braided if 2-cells
can be chosen in such a way that the cube is satisfied. But this cube becomes a prism
in our situation since the structural 2-cells of A, viewed as a braided 2-categorical group, are trivial. So

the braided property is equivalent to the braided cohomology class of p(lj(P) being trivial. O

Let C : A — G be a monoidal 2-functor. For any (w, ¢) € Z} (A, m2(G)) let C“°) be a monoidal
2-functor obtained from C by multiplying each 2-cell a , . by w(z, y, z) and each 2-cell §, , by c(z,y)
for all ,y,2 € A. The isomorphism class of C(“**) depends only on the class of (w, ¢) in H (A, ma(G)).
If C, C' are extensions of the same braided monoidal functor C' : A — IT<{(G) if and only if C’ = C(«»)

for some (w, c).

Corollary 2.31. Braided monoidal 2-functors C(“1:¢1) C(w2:¢2) - A — G are isomorphic if and only if
(w2, c2) = (w1, c1) P& for some P € Aut(C) = HY(A, m1(G)).

Proof. This is similar to the proof of Corollary [2:25 where a criterion for isomorphism of monoidal
2-functors C“* and C“? was established. The braided property of such an isomorphism translates to
commutativity the prism with the front and back faces being, respectively, ¢i(z,vy,2)dz, and
c2(,Y)0z,. This is equivalent to ca/c; = ph(P), where C : A — II<1(G) is the underlying monoidal

functor of C. O
The next Corollary summarizes our description of braided monoidal 2-functors A — G.

Corollary 2.32. Let C: G — II<1(G) be a braided monoidal functor. An extension of C to a monoidal
2-functor A — G ezists if and only if p% = 0 in Hy (A, m2(GQ)). Equivalence classes of such extensions

form a torsor over Coker (pl : H' (A, m(G)) = H (A, m2(G))).

2.7 Symmetric monoidal 2-functors between 2-categorical groups

Let A be an Abelian group. Here we will consider it as a symmetric 2-categorical group with identity 1-

and 2-morphisms.
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Let G be a symmetric 2-categorical group with the corresponding canonical classes

Oé(;EHg

sym

(10(G), m(G)) and gg € H},,, (m(G), m2(G)).

sym

One can extend the obstruction theory from Section [2.6] to symmetric monoidal 2-functors A — G.

Namely, let C : A — II<1(G) be a symmetric monoidal functor. We define p§’ € C2% (A, ma(G))

sym

by extending the braided 4-cocycle from Proposition as follows. The components p§ (—, —, —, —),
p§ (—| =, —), and p§'(~, —, | =) are given by (263) , [€71), and (Z72), respectively, and

(2.75)

P (zly) =

for all z,y € A.

Proposition 2.33. The above p is a symmetric 4-cocycle whose cohomology class in Hﬁym(A m2(G))

depends only on the isomorphism class of C. A symmetric monoidal functor C : A — II<1(G) extends

to a symmetric monoidal 2-functor A — G if and only if pg = 0 in Hy,,. (A, m2(G)).

Proof. We need to check vanishing of the differentials (2.12)), (2.13]), and (2.14]). Vanishing of the differ-
entials and is checked by gluing polytopes and along their associativity faces
« and gluing their braiding faces ¢ to two sides of cones . The differential vanishes thanks
to axiom of a symmetric monoidal 2-category.

Proposition [2.29| gives a criterion for C to have an extension to a braided monoidal 2-functor. This
extension admits a symmetric monoidal 2-functor structure if and only if the cells (2.39)) are chosen in

such a way that the cone (2.75)) commutes. This is equivalent to p§’ being trivial in H? (A, m(G)). O

sym

Suppose that a symmetric monoidal functor C' : A — II<1(G) extends to a symmetric monoidal
2-functor C : A — G. For any P € Autg(C) the braided 3-cocycle from Proposition is symmetric,
ie.

Py (P)( |y) pi (P)(y|z) =1

for all z,y € A. This can be seen gluing boundaries of two prisms (2.73)) and two cones (2.75]).
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Corollary 2.34. Let (w1,c1), (w2, c2) € Z3,,,(A,m1(G)) be symmetric 3-cocycles. Symmetric monoidal
2-functors C(w1-e1) Cw22) .+ A — G are isomorphic if and only if (wo, c2) = (w1, 1) pC(P) for some

P e Aut(C) = H (A, m1(G)).

Proof. This is the same as Corollary since there is no difference between isomorphisms of braided

and symmetric monoidal 2-functors. O
The next Corollary summarizes our description of braided monoidal 2-functors A — G.

Corollary 2.35. Let C' : A — II<1(G) be a symmetric monoidal functor. An extension of C' to a
monoidal 2-functor A — G exists if and only if p& =0 in nym(A7 m2(G)). Equivalence classes of such

extensions form a torsor over Coker (pt : H'(A, m(G)) — H3,, (A, m(G))).

2.8 The symmetric 2-categorical group of symmetric monoidal 2-functors

Let A be a finite Abelian group and let G be a symmetric 2-categorical group.

Let C, C' : A — II<1(G) be symmetric monoidal 2-functors, where C' is given by = + C, with the
monoidal structure M, , : C; K C, = Cyy and C’' is given by z + C, with the monoidal structure
M}, :CLRC, = Cl,, z,y € A

Define a symmetric monoidal functor
C:=CRC':A— II<(G): z— C, RpCL. (2.76)

with the monoidal structure

z

Y . ’ ; Bary / ’ M’ylgM;»y ’
M,,: C,RC,RC,RC, =% €, RC,RC,RC, ——"% C, RChy, @,y € A (2.77)

Here and below we denote B, , the braiding between C, and C,.
Suppose that C and C’ extend to symmetric monoidal 2-functors C, C' : A — G. The associativity
and braiding 2-cells (2.35)) and (2.39)) for C and C’ will be denoted «, o’ and §, §’, respectively.

Our goal is to construct a canonical braided monoidal 2-functor C extending C.
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Define the associativity 2-cells &gy . (z,y,2 € A) by

/ / / By .z / vl My .M, . / /
C.CLC,C.C.CL C.CLC,C.ClCL — =2 = C,C1C,.Cl.
ng',y’By’,z By
ﬁm/\y,z
leyy CnyC:IECZC;C; e Bmlyygz IZ’BC&,M%Z’M{/,Z Bml’yz
y ﬂ/ﬁm’,y&\
B M, .M/
(zXy)’ = Y,z My, z
INedi / Nl INedi
C.C,CLC.C.CL C.C,C.CLCICL — =%+ C,C,.CLCL.
, &Mzay’BMé’y,Cz , az,y,za;,yyz ,
MIy’yMz,y MIyyMz,y MIvyZM:c,yz
/ 1 By = /el 1
C.yCl,C-CL C.yC-CL,CL : Coy-Cly
szsza:y,z
(2.78)
and the braiding 2-cells &y (x,y € A) by
/ ’ Bz&z’,y&y/ / / (2 79)
C,CLC,C, C,C.C.Cl :
ﬁm&z/\y,y/
Ta,y!
B,y B.®a y — | By,
Ba,at Iy
INedi INedi Nl
CoCyCLCl) ———— CyCaCLCY ———— C,C.CC

T,y x’,y’

CoyCly-

Here we write Byxz/14.. @s a shorthand for 5@&6;\61,,% etc.

"ly,y

Proposition 2.36. The 2-cells [2.78) and [2.79) make C = CRC' a symmetric monoidal 2-functor.

Proof. The proof is tedious but straightforward. It extends the corresponding argument for symmetric
monoidal functors and consists of decomposing the commuting cube and octahedra ,
formed by 2-cells and (2.79) into unions of commuting polytopes glued together.

For the cube for C one gets commuting polytopes obtained by gluing both sides of -
, the polytopes commuting due to the naturality of braiding and the naturality of cells 8 and T,
and cubes for C and C’. For the octahedra , one gets commuting polytopes as above,
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the corresponding polytopes for C and C’, and the symmetry polytopes (2.31)), (2.32), and (2.33))) of G.

It follows that C is a braided monoidal 2-functor.
The cone ([2.75)) corresponding to the property of C being symmetric is comprised from 02,y 0y, and

Tz,y for ¢,y € A. This cone decomposes into the union of several commuting polytopes, namely the pair

of corresponding cones for C and C’ and the symmetry polytopes (2.31), (2.32), and (2.33)). Hence, it

commutes. O

Proposition 2.37. The above product of functors turns 2-Fungym (A, G) into a symmetric 2-categorical

group.

Proof. For C, C', C" € 2-Fungym(A, G) there is a pseudo-natural equivalence between (CXC’) KX C"” and
CX(C'®C"). This can be seen to be monoidal by comparing the associativities for both 2-functors.
The unit object of 2-Fungym (A, G) is the trivial symmetric 2-functor (with C, =T for all z € A and all
structure morphisms and cells being identities).

The braiding of C and C’ is a pseudo-natural isomorphism given by

B, .
Beo(x):C,RC, —= C,KC,,, 2z €A, (2.80)

with 2-cells (2.13)) being the following compositions:

VTl y
.00~ oo cc Mo o (2.81)
T¥YYTy B Y~y TY~xy .

Bxg,y,l,/gy/ 5171’,&5;731 Bxy,l./y/
B, .
, , z,y! 7 Mg_,/,ylng)y ,
CLC.ClC, ——L = CLCLC.CYy —— L0 CL Cay.

The 2-cells (2.25)) are B, 4o and By o, © € A. One can directly verify commutativity of the cubes
) and @13).

Finally, the symmetry 2-cell 7 of G provides an invertible modification between B¢ ¢ o B¢ e and

Idewer satisfying (2.31)), (2.32)), and (2.33)). 0
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Theorem 2.38. There is an exact sequence of group homomorphisms:

HY(A, m(G)) — H2 (A, m2(G)) = m0(2-Fungym (4, G)) = mo(Fungym (A, II<1(G))) — H2 . (A, m(G)).

sym sym
Proof. The first three arrows are described in Section That they are homomorphisms follows from
the definition of the tensor product in 2-Fungym (4, G).

We need to check that

To(Funsym (A, T<1(G))) — HL (A, ma(G)) : C — pd,

sym

where the components of the symmetric 4-cocycle pd are given by the values of polytopes , ,
, and , is a group homomorphism. This is achieved by decomposing each of these polytopes
for CK C', where C,C’" € 2-Fungym(A, G), into the union of the corresponding polytopes for C and C’
and commuting polytopes satisfied by the structure 2-cells of G as well as those of C, C’, glued together
in such a way that the resulting boundary is empty.

The exactness of this sequence follows from Corollary O

3 Module categories

3.1 Module categories over a tensor category

Le C be a tensor category with the associativity constraint axy 7z : (X ®@Y)® Z — X @ (Y ® Z). Let
C°P denote the tensor category with the opposite multiplication X ®°PY =Y ® X and the associativity
constraint a%y’y. , = ag’ly’x Z2(Y®X) S5 (ZeY)® X for X,Y,Z € C. Below we recall definitions
from [31], 22].

Definition 3.1. A (left) C-module category is a finite Abelian k-linear category M together with a
bifunctor

CxM-—->M, (X, M)— XM,

exact in each variable, and a collection of isomorphisms (C-module associativity constraint)

mxym: (X @Y)« M = X+ (Y x M),
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natural in X,Y € C, M € M and such that the diagram

(X®Y)® Z)* M (3.1)
(X@ (Y ®Z)*M (X®Y)*(ZxM)

mX,Y®Z,1vI\L \me,Y,Z*Iw

Idx*my, z, M

X*(Y®Z)«M) X* (Y x(Z*xM))

commutes for all X,Y,Z €C, M € M.
A right C-module category is a C°P-module category. A C-bimodule category is a (C X C°P)-module

category.

Remark 3.2. A C-bimodule category M can be equivalently described as a category with both left and

right C-module structures and a collection of isomorphisms (a middle associativity constraint)
mxmy (X *M)xY = X *(MxY) (3.2)
natural in X, Y € C, M € M compatible in a certain way [22] Definition 7.1.7].

Definition 3.3. A C-module functor F': M — N between C-module categories is a functor along with
a collection of isomorphisms Fy s : X * F(M) = F(X * M) natural in X € C, M € M such that the

following diagram

(X®Y)*F(M) (3.3)
X (¥ + F(30)) F((X©Y)* M)
IdX*FY,ZM\L iF(mX,Y‘NI)
X # F(Y * M) o F(X # (Y % M))

commutes for X, Y € C, ,M € M.
Definition 3.4. A natural C-module transformation between C-module functors F, F' : M — N is a
natural transformation 7 : F — F’ such that

Fx m

X« F(M) — ~ F(X * M) (3.4)

Idx*an lnx*M
!

FX]\/I

X*F'(M)———F'(X* M)

commutes for all X € C, M € M.
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Let F: L - M and F” : M — N be C-module functors then F’ o F' has a canonical structure of
C-module functor

FJI(,F(M) F'(Fx,m)
——

(F'oF)x. : X « F'(F(M)) F/(X  F(M)) F/(F(X+M)), XeC MeM. (35)

Thus, C-module categories, C-module functors, and C-module natural transformations form a strict 2-

category Mod(C).

3.2 Tensor product of module categories

Let C be a tensor category, let M be a right C-module category, and let N be a left C-module category.
The (relative) tensor product MK N [23] is an abelian category M XN along with a functor M x N —
M X N universal among C-balanced and right exact in each variable functors from M x N to Abelian
categories.

An explicit description is given as follows. Objects of M K¢ N are pairs (V,7v), where V€ MXN
and

yx V(XK1 = (1R X)xV, (3.6)

is a balancing isomorphism natural in V€ M XN, X € C and such that the following diagram

TXQY

Vx(XY)K1) AR(XQY))*xV (3.7)
- lnxw
(Ve (XR1))* (YR 5 (IRX) (Vs (YR1) > (1R X))« (1RY) % V),
commutes. Here m and n are the module associativity constraints in M and N.

A morphism between (V, {yx}xec) and (V', {7 }xec) in M K¢ N is a morphism f : V — V' in
M XN such that the diagram

*( XX
Ve(x®1) 2y (xm) (3.8)
’YXi v%i
XX )*
ARX)«V —07 1 mx) v

commutes for all X € C.

If M is a C-bimodule category then M X N inherits the left C-module category structure from M:

Y (V, {x}) = (Y R1) =V, {Fx}), (3.9)
where
(YR V)% (X K1) — X~ (1R X)*(YR1) V) (3.10)
(YR (Vs (XK1)— > (YR1)* (1R X) = V)
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for all X,Y € C. Similarly, if A/ is a C-bimodule category then M K¢ N inherits the right C-module
category structure from N.

Thus, there is a monoidal 2-category Bimod(C) of C-bimodule categories. Its 1-cells are C-bimodule
functors and 2-cells are natural transformations of C-bimodule functors. The regular C-bimodule category

C is the identity for XK.

3.3 From module categories over a braided tensor category to bimodule ca-

tegories
Let B be a braided tensor category with the braiding
cxy XY SY®X, X, Y eB.

The braiding of B allows to turn a left B-module category M into a B-bimodule category as follows.
Let mxynm : (X®@Y)®M = X ® (Y ® M) denote the left B-module associativity constraint of M.
Define the right action of B on M by M * X := X x M for all X € B and M € M. The right B-module

associativity constraint is given by the composition

mpM, XY

Mx(X®Y) X (M« X)*Y (3.11)

CX,\Y my,x,M

(XQY)sM—" s (YRX)«+ M —"" s Y (X M)

and the middle associativity constraint is given by

mx,y,M

(X *xM) X*(M=+Y) (3.12)

-1
My x,M cy, x mXx,y,M

Vx(X*xM)———————= (Y RX)xM (XY)* M ————— X x (Y x M),

forall X, Y € Band M € M.

Remark 3.5. Since B-module functors and their B-module natural transformations extend to B-bimodule

functors and B-bimodule transformations in an obvious way, there is a 2-embedding Mod(B) — Bimod(B3).

Using the B-bimodule structure of M we define the tensor product M Kz N of B-module categories
M, N, as in Section It has a canonical structure of a left B-module category. This makes Mod(B)

a monoidal 2-category.

Remark 3.6. From (3.7) we see that objects of M Kpg N are pairs (V, {vx}xep), where V.€e M RN
and

x (XX *xV = (1K X)*V, VeMRN, X eB,
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is a natural balancing isomorphism satisfying

TXRY

(XeY)K1)xV AIX(X®Y)) *xV (3.13)
(YeX)K1)xV nx,y,v

YRD®(XR1)«V)— > > (YRX)«V —" > (1KY)® (1K X) % V).
The vertical composition on the left side is the right B-module associativity constraint of M.
Proposition 3.7. Let C C B be a tensor subcategory. The induction
Mod(C) - Mod(B) : N — BX: N (3.14)
is a monoidal 2-functor.
Proof. The monoidal structure on the 2-functor is given by the canonical equivalence

(BRe M)Rp (BXe N) 2 BXe (MK B)Xe N = BXe (MK N), M, N € Mod(C).

The verification of axioms is straightforward and is left to the reader. O

4 Braided module categories

4.1 Module braiding on module categories
Let B be a braided tensor category. The following definition appeared in [21] Bl 2].

Definition 4.1. A braided B-module category is a pair (M, o), where M is a B-module category and
o={oxm: X*M — X *M}xep mem is a natural isomorphism (called a B-module braiding) with

o1,m = 1y such that the diagrams

X (Y * M) —20 L X s (Y % M) (X®Y)*M Txen (X®Y)* M
m;(,lY,M m;(,ly, M C;,lx l i‘:x*y
(X@Y)*M (X@Y)*M (Y®X)*M (Y(X)X)*M
CX,Y c;,lX mY,X,JVIl imy,x,M
YoX)xM YoX)xM Y (X *«M) Y« (X = M)
my, x, M my, X, M \ /
oX, M oY, X xM
Y ox (X« M) — 2 o Vs (X % M) Y« (X * M)
(4.1)

commute for all X,Y € B and M € M.
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Definition 4.2. A B-module functor F' : M — N between braided B-module categories is braided if the

diagram
X« F(M) —"0 o X % F(M) (4.2)
FX,M\L \LFX,IVI
F(ox,m)
F(X M) F(X «M)

commutes for all X € B and M € M.

A morphism between braided B-module functors is a B-module natural transformation.
Let Mody,(B) denote the 2-category of braided B-module categories.

Example 4.3. Let C be a braided tensor category containing B. Then C is a braided B-module category
with the B-module braiding

OX,y = Cy,XCX\Y, X, Y € B, (43)
where ¢ denotes the braiding of C. The commutativity of diagrams in Definition follows directly from

the hexagon identities and naturality of braiding.

Recall that the symmetric center Zgym(B) of a braided tensor category B is the full subcategory of
B whose objects V satisfy cxyveyx = Idxgy for all X in B. Clearly, Z4ym(B) is a symmetric tensor

category.

Example 4.4. A special case of the previous example is C = B, the regular B-module category, with
the module braiding (4.3). The category of braided module endofunctors of B is braided equivalent to
Zoym(B).

Remark 4.5. The name braided in Definition [4.1] is justified as follows. Recall that the Artin braid

group of type B is the group B,, generated by elements ¢, ..., and relations

Sn—1SnSn—1Sn = SnSn—1SnSn—1,
SiSj = SiSys |Z - ]| > 2,
GiGit1S = Sit1SiSi+1s i=1,....,n—1
Equivalently, B,, is the braid group of a once punctured disk.
Let o be an element of B,,. We will use the same letter o to denote the induced permutation in S,,_1.

Given objects Xi,...,X,_1 in a braided tensor category B and an object M in a braided B-module

category M, there are isomorphisms

X1®"'®Xn,1*M—)XU(1)®...7®XU(n_1)*M, o € B,,
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compatible with the composition of braids. In particular, for any X € B there is a homomorphism from

the pure braid group of type B to Auty (X®"=1) « M).

Definition 4.6. We say that a braided B-module category is indecomposable if it is indecomposable as

a B-module category.

The a-inductions [4] for a a left B-module category M are tensor functors
oy BP = Endp(M),  oF(X)(M)=XxM, XeB MeM. (4.4)

Here Endp(M) is the category of right exact B-module endofunctors of M, The B-module structures on

a*(X)( are given by the compositions

af (X)v,m a (X)v,m

Y ®af (X )M—>aM )Y « M) Y ® o (X)(M) ———— a,(X)(Y x M)
X*M Y*M X*M Y*M
m;}X’Ml me,y,M m;’lx’Mi me,y,M
cxl *1d «Id
YoX) s M —" " - (X®Y)*M, YoX)s M —2"M _(X@Y) M,

for all X,Y € C, M € M respectively.

The monoidal structures of af/[ are

-1
My x,M

ol (V) (a (X)(M)) =Y % (X « M) YoX)+M X5 (XoY)*M=a},(X®Y)(M),
o (V) (g (X)(M)) = Y 5 (X % M) 555 (v @ X) « M 20 (X @ V) * M = a, (X ©Y)(M).

Remark 4.7. For every B-module functor F : M — A there are natural transformations of B-module

functors
M L N (4.5)
FE
o (X) —= |ai(X)
M—T N,
for all X € B.

Remark 4.8. Let M be a B-module category. The B-bimodule category M constructed in Section
can be conveniently described by means of the functor O‘j\_/t : BP — Endp(M). Indeed, this functor turns
a canonical (B X &ndg(M))-module category M into a B-bimodule category. Note that the functor o/,

gives rise to a different B-bimodule category obtained from M using the reverse braiding of B.



Let A(B) denote the 2-category whose objects are pairs (M, n), where M is a B-module category

and 7 : O‘XA = @, is an isomorphism of tensor functors, 1-cells are B-module functors F' : M — N such

that
M d N M—E N (4.6)
o ()| P (xm == e = o[ = aM> o Jog(0)
SN £
M N M—— N,

for all X € B, where F ;7 are natural isomorphisms from (4.5)), and 2-cells are B-module natural

transformations.
Proposition 4.9. There is canonical 2-equivalence Mody, (B) = A(B).

Proof. A module braiding ox, 3 on M is the same thing as a natural isomorphism 7 : O‘j\_/t = oy, via
nx (M) =oxn:af(X)(M)=X*«M— X x M= a,,(X)(M), X eB, MeM.

The first diagram in (4.1)) is equivalent to nx : af,(X) =+ a;((X) being an isomorphism of left B-module
functors and the second diagram expresses the tensor property of the natural isomorphism 7. On the

level of 1-cells, the commuting square (4.2)) is equivalent to the identity (4.6). O

Remark 4.10. A version of Proposition was proved by Safonov in [S, Proposition 2.7].

4.2 Mody,(B) as a braided monoidal 2-category

Theorem 4.11. There is a canonical 2-equivalence Modp,(B) = Z(Mod(B)). In particular, Modp,(B)

has a canonical structure of a braided monoidal 2-category.

Proof. In view of Proposition it suffices to construct a 2-equivalence A (B) = Z(Mod(B)).

We construct a 2-functor A(B) — Z(Mod(B)) as follows. Let (A, n: aj; = aj;) be an object of
A(B). Let A be an algebra in B and let M = Modg(A) be the category of A-modules in B (any B-module
category is of this form). Then M Kz N = Mody (af;(A)), where a-(A) is an algebra in Endg(N) and
its module in A is an object N € N along with an action a/J\r[(A) x* N — N satisfying usual axioms.
Similarly, V'K M = Mody(aj(A)). Hence, the isomorphism n : of;(4) = aj (A) of algebras in
Endp(N) yields a pseudo-natural B-module equivalence Sy : M Ky N = N Kp M.
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Let £ = Modg(A4;) and M = Modg(A42). The invertible modification vz (2.47) comes from the

commutative diagram of algebra isomorphisms

nNAa; ®n _ _
af (A1) ® afi(As) Lo ap (A1) ® ay(As) (4.7)
(O‘At)A1®A2\L i(a/\/)Al(&Az
Oéj\r/(Al & AQ) oAz Oéx/(A1 ® AQ)

Note that since af/ is a central functor, af/(Al) ® af\[[(Ag) are algebras in Endp(N) and n4, ® na, is
an algebra isomorphism. The coherence condition follows from the tensor property of 1. Thus,
we have an object (N, S = {Sm}, v = {y£.m}) of Z(Mod(B)), see Section This gives rise to a
2-functor

A(B) = Z(Mod(B)) : (N, 1) — (N, S, 7). (4.8)

To construct a 2-functor in the opposite direction, note that for any X € Endp(Znmoa(s)) = B°P and

N € Mod(B) the tensor functors

B — Endp(N) : X + Ly o (X Mg Idy) o Ly, (4.9)

B — &Endp(N) : X — Ry o (Idy Mg X) o Ry, (4.10)

where Ly, Ry are the unit constraint 1-cells in Mod(B), are isomorphic to aj\} and a,, respectively.

For an object (N, S, v) in Z(Mod(B)) consider the following composition of invertible 2-cells:

N (4.11)
%:> RX[I
BRg N % N R B
X&BIdyl Sx lIdNﬁBX
BXpg N Xz B

N >
x\: RN
N,

where the top and bottom triangles are canonical 2-cells coming from the unit constraints of Mod(B)
and Sx is the half-braiding 2-cell. The outside compositions are and . Thus, 2-cells
give an isomorphism of B-module functors nx : a{-(X) = aj(X), X € B. The multiplicative property
of the pseudo-natural transformation S implies that 7 is an isomorphism of tensor functors.

This gives a 2-functor

Z(Mod(B)) — A(B) : (N, S, 7) = (N, nv) (4.12)
quasi-inverse to .

48



This resulting 2-equivalence Modyp,(B) = Z(Mod(B)) obtained using Proposition induces on

Mody,,(B) a structure of a braided monoidal 2-category. O
For braided B-module categories M := (M, o™) and N := (N, ¢V') the braiding
Buny : MR N = N Kg M
in Modp,(B) is given by the half braiding of N
Proposition 4.12. A braided tensor functor F : B — C induces a braided monoidal 2-functor
Mody,,(C) = Modp:(B) : (M, o) = (M, &),
where M = M with the action X *+ M = F(X)«M and 6x m =o0ox.m, X € B, M € M.
Proof. This is verified directly using the C-module braiding axioms of o and the braided property of F. [

Remark 4.13. The braided monoidal 2-category structure on Modp,(B) constructed in Theorem m
can also be described explicitly as follows. Let (M, o™) and (N, ¢) be braided B-module categories.
Recall that objects of M K N are pairs (V, 7), where V € M KN and

yx (XK1 *xV S (1R X)*V, X € B,

is a balancing isomorphism satisfying (3.7]).
The tensor product of Mody,(B) is

(M, cMYRg (N, o) = ( M Rg N, ¢MEN)y,

where
oy (YR« (V7)) = (XB*(V,7),  XeB, (V.7) e MBsN,

is given by the composition
UN -1 oM
XRDeoV S (IRX) eV 2L (IRX) eV 2 (XR)eV 2% (XK1 eV

The unit object for this tensor product is the regular braided B-module category from Example
The braiding is
B, oMy (. ov) - (M, e B (W, o) 5 (N, V)R (M, ™M), (V, 7) = (V1 3),

where M RN — N KM :V — Vtis the transposition functor, i.e. Vi = NK M for V.= M X N (this
extends to M XA thanks to the universal property of X) and

s t\—1
A (XKD V2 (xr) vt O L amx) v, X eB.
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4.3 Examples and basic properties of braided module categories
Let B be a braided tensor category.

Example 4.14. The regular braided B-module category B from Example is the unit object of
Modyp,(B). It generates a braided monoidal 2-category Mod{ .(B) whose objects are direct sums of
copies of B (identified with natural numbers), 1-cells are matrices of objects in Z,,,,,(B), and 2-cells are
matrices of morphisms in . The tensor product is given by the Kronecker product of such matrices

while the braiding 2-cells are given by the braiding of Z,,.,,(B).

Example 4.15. Note that B can have other B-module braidings, in addition to one from Example
Namely, it follows from the first diagram in (4.1]) that a B-module braiding o on B satisfies

oxy =0x1cy,xcxy, X,Y € B.

The second diagram in (4.1)) is equivalent to ox 1 being a tensor automorphism of Idz. Conversely, any

v € Autg(Idp) yields a module braiding
oy =(x®1cyxexy, X,Y € B. (4.13)

Let B” := (B, ¢”) denote the corresponding braided B-module category.

There is an exact sequence [18, 3.3.4] of groups
1 = Inv(Zeym(B)) = Inv(B) % Aut(ldg), (4.14)

where

a(Z)x =czxex.z € Aut(X @ Z) = K~ (4.15)

for every simple object X € B. Two braided B-module categories B** and B"2, vq,vy € Aut(Idg), are
equivalent if and only if v, = v1a(Z) for some Z € Inv(B). Thus, the group of equivalence classes of
braided B-module categories of the form BY is isomorphic to Coker(Inv(B) < Aut(Idg)).

Let Modi_(B) denote the full braided monoidal 2-subcategory of Modp,(B) generated by braided

B-module categories B”.

Example 4.16. Let M be an exact B-module category. The 2-categorical half-braiding
M= MRy B 24 B Ky M~ M (4.16)
is identified with the image of v under the composition
Autg(I1dg) & Inv(Z(B)) = Inv(Z(Endg(M)) = Inv(Endg(M)) = Autg(M), (4.17)

50



where +() =1 as an object of B with the half-braiding
vxldy : X 2 X@uv) S ()@ X 2 X, XeB.

For the trivial tensor category B = Vect we have Mody, (Vect) = Mod? (Vect) = Modg,(Vect), the
2-category of 2-vector spaces. The objects of this category are natural numbers, 1-cells are matrices of
vector spaces, and 2-cells are matrices of linear transformations.

The following result was established in [30] using different methods and terminology.

Proposition 4.17. Let B be a non-degenerate braided fusion category. There is an equivalence of braided

monoidal 2-categories

Modp,(B) ~ Modyp,(Vect). (4.18)

Proof. Let M be an indecomposable B-module category. The tensor functors af/t : B = Endp(M) are
given by the compositions

B — Z(B) ~ Z(Ends(M)) — Ends(M), (4.19)

where the first functor is the embedding of B (respectively, BV) into Z(B), and the last one is the
forgetful functor. The images of B and B*®V generate Z(Endp(M)). If M has a B-module braiding, it
follows from Proposition [4.9) that the full images of o/, (B) and oy, (B) in Endg(M) coincide. Since the
forgetful functor is surjective, we have aﬁ(l’)’) = &ndg(M). Thus, M is an invertible B-module category
such that the braided autoequivalence Oy = (o)~ o ay, € Aut® (B) is trivial. It follows from [10] 23]
that M ~ B as a B-module category, i.e. Modpr(B) ~ Mod}_(B). Since the homomorphism « from
Example is an isomorphism for a non-degenerate category B, we have Modg (B) ~ Mod? (B).
Since Zgym (B) = Vect, Mod$ . (B) is 2-equivalent to Modp,(Vect), and the statement follows. O

4.4 The symmetric monoidal 2-category of symmetric module categories

Let € be a symmetric tensor category. For any £-module category M we have aj{,t = o). In particular

any £-module category M has the identity module braiding Id xg -

Definition 4.18. A braided £-module category (M, o) is called symmetric if ox pr = Idxgas for all
X e&and M € M.

Example 4.19. Let C be a symmetric braided tensor category containing £. Then C is a symmetric

&E-module category.

Clearly, the tensor product of symmetric module categories is symmetric. We will denote Modgym (£)

the symmetric monoidal 2-category of symmetric £-module categories (its double braiding 2-cells (2.30))
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are identities). Note that Modgym(€) = Mod(£) as a monoidal 2-category and can also be viewed as a

braided monoidal 2-subcategory of Modp,(£).

Remark 4.20. Let B be a braided tensor category. It follows from Example that the braided

monoidal 2-category Modg, (B) has a symmetric structure.

Proposition 4.21. Let £ be a tensor subcategory of Zsym (B). The induction
Mod(€) — Modp,(B) : N — BX: N (4.20)
s a braided monoidal 2-functor.

Proof. Let N' = Modg(A) € Mod(€) for some algebra A € £. Then B X N = Modg(A). For any

M € Mod(B) the composition of B-module equivalences
MKp (BXe N) = Moda(ay(A)) = Moda(af,(A)) = (BXe N) K M,

where the equality in the middle is due to the fact that A € Z,,,,(B), defines a half braiding on BXg N.
It follows that B K¢ A is a braided B-module category and the monoidal induction 2-functor from
Proposition lifts to a braided monoidal 2-functor (4.20)). O

5 2-categorical Picard groups

In this Section we describe categorical 2-groups of module categories over tensor categories in terms

introduced in Section 2.4]

5.1 The 2-categorical Brauer-Picard group of a tensor category

Let D be a tensor category. Recall from [23] Section 4.1] that a D-bimodule category M is invertible
with respect to Xp if and only if M° Xp M = D and M Xp M° = D, where M? is the opposite
Abelian category of M with the left (respectively, right) D-module actions of X € D given by the right
(respectively, left) actions of *X (see also [I7]).

The 2-categorical Brauer-Picard group [23] of a tensor category D is
BrPic(D) = Inv(Bimod(D)). (5.1)

Its objects are invertible D-bimodule categories, 1-cells are D-bimodule equivalences, and 2-cells are
isomorphisms of D-bimodule equivalences. The tensor product is Kp and the unit object is the regular
D-bimodule category. Let BrPic(D) denote the categorical group obtained by truncating BrPic(D) and

let BrPic(D) denote the group of isomorphism classes of objects.
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The homotopy groups of BrPic(D) are

mo(BrPic(D)) = BrPic(D) = Aut” (Z(D)), (5.2)
71 (BrPic(D)) = Inv(Z(D)), (5.3)
7o (BrPic(D)) = k™. (5.4)

The 1-categorical truncations of BrPic(D) are

II<1(BrPic(D)) = BrPic(D) = Aut” (Z(D)), (5.5)

II<(BrPic(D)) = Inv(Z(D)). (5.6)

The first canonical class is the associator agypic(p) € H*(Aut" (Z(D)), Inv(Z(D))) of the categorical
group Aut”" (Z(D)). The second canonical class is the braided associator qBrpic(p) € Hp (Inv(Z(D)), k*)

of the braided categorical group Znv(Z(D)), corresponding to the quadratic form
(BrPic(D) * Inv(Z(’D)) — kX7 Cz.7-
The monoidal functor IT<;(BrPic(D)) — Aut’" (II,<(BrPic(D))) coincides with the composition
BrPic(D) = Aut®" (Z(D)) — Aut®" (Inv(Z(D))) [10, 23)].
The non-trivial Whitehead brackets are the maps my x m; — w1 and 71 X m; — 72 given by
Aut’ (Z(D)) x Inv(Z(D)) — Inv(Z(D)) : (F, Z) — F(Z), (5.7)

Inv(Z(D)) x Inv(Z(D)) = k* : (Z, W) — cw,zczw- (5.8)

Here ¢ denotes the braiding of Z(D).

5.2 The 2-categorical Picard group of a braided tensor category

Let B be a braided tensor category. Recall [10, 23] that a B-module category M is invertible if and only
if the a-induction tensor functors o, : B°P — Endp(M), see (&4)), are equivalences. Here Endp(M)
denotes the category of right exact B-module endofunctors of M.

Recall that a B-module category M is exact [24] if for any projective object P € B and any object
M € M the object P ®@ M € M is projective. For an exact M, the dual category Endg(M) is a
multitensor category. The tensor product of functors is their composition and the left and right duals of
a C-module functor F': M — M are its left and right adjoints.

The following result was explained to us by Victor Ostrik.

Proposition 5.1. An invertible B-module category is exact.

53



Proof. Let M be an invertible B-module category. It is equivalent to Modg(A) for some algebra A in B
and

Bimodg(A) & Endp(M) = BP.
So the tensor product over A is exact on the category of A-bimodules. This implies that it is exact for
right modules tensored with left modules (as any right A-module M can be made into a bimodule A® M
and similarly for left modules). By [22] Proposition 7.9.7(1) and Example 7.9.8], this is equivalent to

exactness of the internal Hom functor
M — B: M — Hom(N, M) for all N € Modg(A)
and, hence, to exactness of M. O

Corollary 5.2. Let C be a finite tensor category. An invertible C-bimodule category is exact.

Proof. A canonical monoidal 2-equivalence between Pic(Z(C)) and BrPic(C) preserves exactness by [24]

Theorem 3.31]. O
The 2-categorical Picard group [10, 23] of B is
Pic(B) = Inv(Mod(B)). (5.9)

Its objects are invertible B-module categories, 1-cells are B-module equivalences, and 2-cells are isomor-
phisms of B-module equivalences. The tensor product is Xz and the unit object is the regular B-module
category. Let Pic(B) denote the categorical group obtained by modding out Pic(B) by 2-morphisms and
let Pic(BB) denote the group of isomorphism classes of objects.

The homotopy groups of Pic(B) are

70(Pic(B)) = Pic(B), (5.10)
™1 (Pic(B)) = Inv(B), (5.11)
T2 (Pic(B)) = k*. (5.12)

The 1-categorical truncations of Pic(B) are
II<1(Pic(B)) = Pie(B), (5.13)
ng (PIC(B)) = Inv(B) (514)

The first canonical class is the associator apics) € H?(Pic(B), Inv(B)) of the categorical group
Pie(B). The second canonical class is the braided associator gpics) € Hp.(Inv(B), k) of the braided

categorical group Znv(B), corresponding to the quadratic form

dPic(B) * InU(B) — kX Z— Cz.Z-

54



The monoidal functor IT<; (Pic(B)) — Aut’ (I1,<(Pic(B))) coincides with the composition Pic(B) —
Aut®™ (B) — Aut’ (Inv(B)) [10, 23].

The non-trivial Whitehead brackets are the maps myp x m; — w1 and 71 X m; — 72 given by

Aut® (B) x Inv(B) = Inv(B) : (F, Z) — F(Z), (5.15)

Inv(B) x Inv(B) = k* : (Z, W) — cw,zczw. (5.16)

Here ¢ denotes the braiding of B.
For any tensor category D there is a monoidal 2-equivalence BrPic(D) = Pic(Z(D)) [23| Theorem

5.2]. Thus, 2-categorical Picard groups generalize Brauer-Picard groups.

5.3 The braided 2-categorical Picard group of a braided tensor category

The braided 2-categorical Picard group of a braided tensor category B is
Picp,(B) = Inv(Modp,(B)) = Inv(Z(Mod(B))), (5.17)

where the last 2-equivalence is by Theorem Its objects are invertible braided B-module categories,
1-cells are braided B-module equivalences, and 2-cells are natural isomorphisms of B-module equivalences.
The tensor product is K and the unit object is the regular braided B-module category (see Example .
Let Picy,(B) denote the braided categorical group obtained by by modding out Picp,(B) by 2-morphisms
and let Picy,.(B) denote the group of isomorphism classes of objects.

The homotopy groups of Picy,(B) are

70(Pic(B)) = Picy(B), (5.18)
m1(Pic(B)) = Inv(Z.ym(B)), (5.19)
o (Pic(B)) = k*. (5.20)

The 1-categorical truncations of Picy,(B) are

[, (Pic(B)) = Picy,(B), (5.21)
T, < (Pic(B)) = Tnv(Zym(B)). (5.22)

The first canonical class is the braided associator apic,, ) € Hp.(Picyy(B), Inv(Zsym(B))) of the

braided categorical group Picp,(B) corresponding to the quadratic function

QPicbr(B) : P’icbr(B) — Im)(ZSym(B)) : M — BM,M;
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where B denotes the braiding of Picp,.(B). The second canonical class is the symmetric associator
@Picy, (B) € Hgym(InU(Zsym(B)), k*) of the symmetric categorical group Znv(Z,,, (B)) corresponding to
the homomorphism

QPicy,. (B) * ITLU(ZSym(B)) — {:t].} C kX Z— Cz.7.

Proposition 5.3. Let (M, o™) be an indecomposable braided B-module category and let Z be an invert-

ible object in Zgym (B). The Whitehead bracket [, | : mo x mp — w2 (2.60) of Picy,(B) satisfies
M
UZ,M = [M, Z] IdZ*M (523)
for all objects M € M.

Proof. For any simple M in M we identify O’%M € Aut(Z ® M) with a non-zero scalar. It suffices to

check that this scalar does not in fact depend on M. Note that

M _ M M
0z, xoM = CZ2,XCX,Z07z M = Oz M

for any simple object X € B. Since every simple object N of M is contained in some X ® M we conclude

that G%M :0%]\,. O
Recall from [I0} 23] a monoidal functor
9 : Pic(B) — Aut” (B) : M+ (a},) "' oayy,, (5.24)

where af/l : B°P — &ndp(M) are equivalences (4.4)).
Proposition 5.4. There is an exact sequence

1 = Inv(Zgym(B)) = Inv(B) = Autg(Idg) = Picy,(B) 2, Pic(B) 2, Auty,(B), (5.25)
where « is defined in ([4.15), e(v) = B” (see Example[4.16), and (M, o) = M.
Proof. This is an immediate consequence of the definitions. O

Remark 5.5. By the fiber of the monoidal functor F' : G — H between groupoids we mean the category
of pairs (X, z), where X € G and « : F((G) — I for the unit object I € H. It follows from Proposition [4.9]
that the fiber of the monoidal functor Pic(B) — Aut(B) coincides with Picy,(B). The exact sequence

(5.25)) can be seen as the Serre exact sequence of homotopy groups of the fibration of categorical groups

Picy, (B) — Pic(B) — Aut(B).
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Example 5.6. Let Pici,.(B) be the braided 2-categorical subgroup of Picy,(B) consisting of braided
B-module categories whose underlying B-module category is the regular B-module category B. That is,
Picg, (B) = Inv(Mod}_(B)), see Example
The objects of Picg,(B) are braided B-module categories B, v € Autg(Idg). The module braiding
of BY is
okm = (vx ®Idy) oenxex,m, X, M €B. (5.26)

The homotopy groups of Picp,.(B) are

o(Pict, (B)) = Coker(Inv(B) 2 Autg(Idg)), (5.27)
m1(Pich,(B)) = Inv(Zeym(B)), (5.28)
mo(Pici,(B)) = k*. (5.29)

The following is a convenient “non-skeletal” description of Picj.(B). The objects B” correspond to

elements of Autg(Idg), 1-morphisms are given by
Pic,(B)(B", BY) = {Z € Tnv(B)) | cz.x ocx.z 0 (ux ®1dz) = vx @ 1dz, X € B}, (5.30)

and 2-cells are isomorphisms between invertible objects of B. The tensor product is B* X BY := BHH
for all p,v € Autg(Idg). The associativity and braiding 2-cells are identities and the pseudo-naturality
2-cell for the tensor product is

‘ZZ,W =CzWw, Z, W e Im)(B)7

where ¢ denotes the braiding of B. We also have
BZ,B“ =Vgz, Z € In‘u(B), Ve AUt@(B)

All other structural 2-cells are identities.

5.4 The symmetric 2-categorical Picard group of a symmetric tensor category
Let € be a symmetric tensor category. The symmetric 2-categorical Picard group of £ is
Picsym (£) = Inv(Modgym(€)) = Inv(Mod(€)) = Pic(€). (5.31)

Its objects are invertible symmetric £-module categories, 1-cells are £-module equivalences, and 2-cells
are natural isomorphisms of £-module equivalences. Let Picg,,(E) denote the categorical group obtained

by truncating Picgym (€) and let Picgym (€) denote the group of isomorphism classes of objects.
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The homotopy groups of Picsym(£) are

mo(Pic(€)) = Picsym(E) = Pic(€), (5.32)
m1(Pic(€)) = Inv(E), (5.33)
o (Pic(€)) = k™. (5.34)

The 1-categorical truncations of Picgym(€) are
II<;(Pic(€)) = Picgm (&) = Pic(€), (5.35)

II1 < (Pic(€)) = Inv(E). (5.36)

The first canonical class is the symmetric associator apic,,,.8) € Haym(Pic(€), Inv(£)) of the sym-

metric categorical group Pic(B) corresponding to the homomorphism
QPicsym(E) : PZC((C;) — I?’LU(E)Q M BM,/\/h

where B denotes the braiding of Pic(£). The second canonical class is the symmetric associator qpic(e) €

H2  (Inv(E), k) of the braided categorical group Znv(€) corresponding to the homomorphism

sym

Piceym(£) * Inv(c‘,') — {:l:l} Ck*:Zw— Cz.7.

5.5 Azumaya algebras in braided tensor categories

Let R be an algebra in a braided tensor category B, i.e. an object together with morphisms 1 : R® R — R
(the product) and ¢ : I — R (the unit map) satisfying the associativity and unit conditions.

Denote by Autqiq(R) the group of algebra automorphisms of R.

Remark 5.7. The assignment
Autg(Idg) = Autag(R) :a— ag (5.37)
is a group homomorphism.

Let M be a right R-module in B with the structural map p: M ® R — M. For any X € B there is
an R-module structure on X ® M defined by

ldx®p: XO@M®R— X ® M.
Thus, the category Bg of right R-modules in B is a left B-module category via
BxBr—Br, (X,M)—X®M.
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The a-induction functors (4.4) for Bg are

of B pBp=E&ndg(Br)P: X = X ® R, (5.38)

o
with the obvious right R-module structures and the left R-module structures given by

cr,x®Idr Idx®u
—_

RRX®R X®R®R -2 X @R,

et ®Id
RoX®R 2" XoRoR X% XoR XeB

for azgR and oy, respectively.
The tensor product R ® S of two algebras R, S € B has an algebra structure, with the multiplication

map pres defined as

Idr®cs,R®Ids HROUS
—_

RRS®R®S ROIRRS®S —— R® S,

where i and pg are multiplications of algebras R and .S, respectively (here we suppress the associativity
constraints in B). We have

Br Xp Bs = Brgs-

Let R°? = R denote the algebra with the multiplication opposite to that of R:
RoRIEH ReRE R

Following [34], we say that an algebra R in a braided monoidal category B is Azumaya if the morphism

Idr®cr,r n®Idr
—=5

R®RP®R R®R®REA RoORS R

induces an isomorphism R ® R°® — R ® R*. The B-module category Bp is invertible in Pic(B) if and
only if R is an Azumaya algebra (in which case othR are equivalences).

Thus, the 2-categorical Picard group of Pic(B) is monoidally 2-equivalent to the group of Morita
equivalence classes of exact Azumaya algebras in B (the latter group was called in [34] the Brauer group
of B).

It was shown in [34, Theorem 3.1] that for an Azumaya algebra R the functors (??) are monoidal
equivalences.

For an Azmaya algebra R € B and an automorphism ¢ € Auty,(R) let 4R be the invertible R-
bimodule obtained from R by twisting the right R-action by ¢. Under the equivalence ong it corresponds

to an invertible object Py € B and we have a group homomorphism

Autqig(R) = Inv(B) : ¢ — Py. (5.39)
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Remark 5.8. An isomorphism of R-bimodules f : P ® R — 4R is completely determined by the
morphism g : P — R defined by g = f(1®¢). Indeed, f = pu(g ® 1). While the right R-module property

of such f is automatic, the left R-module property amounts to the condition

(¢ ®g)=plg®@1L)cr.p - (5.40)

Remark 5.9. An Azumaya algebra R € B gives rise to a homomorphism <g : Autg(Idg) — Inv(B),
which is the composition of the homomorphisms (5.37) and ([5.39).

Note that spgs(a) = sr(a) ® ss(a), so that we have a homomorphism
¢ : Pic(B) — Homg,(Autg(Idg), Inv(B)), (5.41)
or, equivalently, a (bimultiplicative) pairing
(—, =) : Pic(B) x Autg(Idg) — Inv(B). (5.42)
This can be interpreted in terms of module categories as follows. For any M € Pic(B) there is an

isomorphism Autg(M) = Inv(B) given by at,. For v € Autg(Idg) the value of (M, v) is the image of
P g Y Qg ® g

v under the composition
Autg(Idg) & Inv(Z(B)) = Inv(Z(Endg(M))) — Inv(Endg(M)) = Inv(B). (5.43)

Note that the object (M, v) coincides with the central structure of the braided module B-category B”
(see Example , i.e. with the value of the half-braiding M Kz B¥ — B” Xz M viewed as an object of
Autg(M) = Inv(B).

6 The braided 2-categorical Picard group of a symmetric fusion
category

Let G be a finite group and let Rep(G) denote the category of representations of G. It was proved by
Deligne [I5] that a symmetric fusion category is equivalent to the following “super” generalization of
Rep(G). Namely, let G be a finite group and let ¢ € G be a central element such that t> = 1. Then
Rep(G) has a braiding defined by

N —w®uv if tv = —v, tw = —w,
cvw VW =WeV:ivew— (6.1)

w®uv otherwise.
The fusion category Rep(G) equipped with the above braiding will be denoted Rep(G, t). Any symmetric

fusion category is equivalent to Rep(G, t) for a unique up to an isomorphism pair (G, t). Under this
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notation Rep(G, 1) is nothing but Rep(G) with its usual transposition braiding. We call Rep(G, t)
Tannakian if t = 1 and super- Tannakian if t # 1.

The Picard group of Pic(Rep(G, t)) was computed by Carnovale in [7]. We recall this description in
Sections and describe the symmetric categorical group Pic(Rep(G, t)), i.e. the homomorphism

QPic(Rep(c, 1)) : Pic(Rep(G, t)) — G.

In Sections and we describe the braided categorical Picard group Picy,(Rep(G, t)).

6.1 The 2-categorical Picard group of a Tannakian category

Let B = Rep(G) be the category of finite dimensional representations of a finite group G with its standard
symmetric braiding. For a 2-cocycle v € Z%(G,k*) denote by Rep., (G) the category of y-projective
representations of G.

The first statement of the following Proposition is well known (see e.g. [7]).

Proposition 6.1. The assignment
H?*(G,kX) = Pic(Rep(G)) : ~— Rep., (G)
is an isomorphism. The homomorphism Q pic(Rep(G)) * H?(G,k*) — (6)2 is trivial.

Proof. Since an Azumaya algebra in Rep(G) is also an Azumaya algebra in Veet it should have the form
Endy (V) for some vector space V. The G-action on Endy (V') corresponds to the structure of a projective
G-representation on V. Its Schur multiplier (as a class in H?(G, k*)) is the only Morita invariant of the
G-algebra Endy(V) .

We describe @ pic(rep(c)) @s follows. The transposition automorphism cgpq, (v, End, (v) of the tensor
square Endy(V)®? of the Azumaya algebra Endy(V) is inner, i.e. is given by conjugation with an
invertible element ¢ € Endy(V)®2. The value Q(Endy(V)) is the character x € G defined by g(¢) =
x(9)¢ for all g € G. Under the isomorphism End(V)®? =2 End,(V®?) the element ¢ corresponds to

cvy € Endk(V®2). Clearly, cy,v is G-invariant, which makes the character x trivial. O

Proposition 6.2. The pairing (5.42)) for Rep(G) is given by

HAG ) % Z2(G) = G+ (1.2) o ver alg) = L92). (6.2)

Proof. We need to compute the invertible object sr(z) € Rep(G) for R = Endi(V), where V is a
projective G-representation p : G — GL(V) with multiplier . According to the remarkthe invertible

object corresponding to an automorphism ¢ of End (V') is given by the (unique) character y such that
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there is an invertible ¢ € Endg (V) (the image of g : P — R on a basic vector of P) with the properties
é(x) = Cz¢~t and x(g9)¢p(g9) = p(g)¢ for any = € Endi(V) and g € G. Taking ¢ = p(z) we get that x is

of the form ~,. O

6.2 The 2-categorical Picard group of a super-Tannakian category

We start with the basic example.

Example 6.3. Let G = Z/2Z and let t be the nontrivial element of G. Then Rep(G, t) = sVect, the
category of super vector spaces. It goes back to [35] that Pic(sVect) = Z/27Z. Let II denote the non-
identity simple object of sVect.

Let R be an Azumaya algebra in sVect and let ¢ : R — R be an automorphism. The equation can
be rewritten as ¢(r)( = Cr(—l)"“”d, where ( is the value of ¢ on a basic element of the invertible object
P € sVect.

The homomorphism Q pjc(svect) : Pic(sVect) = /27 — Inv(sVect) = Z/2Z is the identity map. Indeed,
the Azymaya algebra A = k(z|z? = 1) = I HII (with 2 odd) represents the non-trivial class in Pic(sVect).
Its tensor square in sVect is A®? = k(z,y|lz? = y?> = 1 2y + yz = 0). The braiding c4 4 is the algebra
automorphism 7 interchanging z and y. Note that 7(r)(z — y) = (z — y)r(=1)I"! for r € A®2. Since
the element ( = x —y € A®? is odd, the invertible object in sVect corresponding to 7 is the non-trivial

element IT of Inv(sVect).
The pairing (5.42)) for sVect is given by

Pic(sVect) x Autg(Idsyeet) — Inv(sVect) (A,m) =11,

where 7 is the natural automorphism of the identity functor of sVect such that m; = Idy and n = —1Idp.

Indeed the automorphism 74 of the Azymaya algebra A satisfies 7(a)z = za(—1)%! for a € A.

We say that Rep(G, t) is split super-Tannakian if (t) is a direct summand of G and non-split super-
Tannakian otherwise.

The following definition was given and Theorem below was proved by Carnovale [7]. We include
the argument for the sake of completeness and to set up notation for subsequent computations.

Define the group H?(G,t,k*) to be the second cohomology H?(G, k*) as a set, with the group

operation (on the level of cocycles) given by

(v )(f.9) = (DS DED(fgw(f.9)  fog€ G, vyv e HAG, k). (6.3)
where &, : G — Z/2Z is the homomorphism defined by

()80 = 3(g) = 109
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Remark 6.4. It was explained in [7] that H?(G,t, k) is (non-canonically) isomorphic to H?(G, k).
Theorem 6.5. The Picard group of a split super-Tannakian symmetric fusion category is
Pic(Rep(G,t)) = H*(G,t, k™) x Z/2Z. (6.5)
The Picard group of a non-split super- Tannakian symmetric fusion category is
Pic(Rep(G,t)) = H*(G,t, k*). (6.6)

The homomorphism Q pic(rep(c,t)) : Pic(Rep(G,t)) — Inv(Rep(G,t))2 = (é)g restricted to H*(G,t, k)

is given by
(t,g)
v(g,1)

In the split case, the homomorphism Qpic(rep(c,t)) Testricted to Z/27Z is the isomorphism Z /27 — (t).

Yoo wlg) = (6.7)

Proof. Consider the homomorphism Pic(Rep(G, t)) — Pic(sVect) induced by the restriction functor
Rep(G,t) — sVect. We start by showing that this homomorphism is surjective if and only if Rep(G, t)
is split. Indeed, a splitting of the restriction functor Rep(G,t) — sVect induces a splitting of the homo-
morphism Pic(Rep(G, t)) — Pic(sVect). Conversely, an Azumaya algebra R € Rep(G,t), which class
is mapped to the class of I @ II € sVect, has the form (I @ II) ® Endy(U) for some vector space U. In
particular its classical center (computed in Vect) coincides with I @ II. The G-action descends from R to
its center and gives a splitting G — Auty,(I 1) = Z/27Z.

The restriction of the homomorphism @ pic(rep(G,1)) to Pic(sVect) is described in Example

In the following we argue that the kernel of the homomorphism Pic(Rep(G,t)) — Pic(sVect) is
isomorphic to H?(G,t,k*). This kernel consists of classes of Azumaya algebras of the form Endy(V)
for a projective G-representation V. It is straightforward to see (e.g., by computing the left center [9]
in Rep(G,t)) that Endi(V) is an Azumaya algebra in Rep(G,t) for any projective G-representation
V. Thus we have a set-theoretic bijection H?(G,t,k*) — Ker(Pic(Rep(G,t)) — Pic(sVect)) sending
v € Z?(G,k*) to the (class of) Endy(V), where V is a projective G-representation with the Schur
multiplier 7. To show that this is a group isomorphism we need a few facts.

Let U and V be super vector spaces. Define a map
¢ Endi(U) @ Endi, (V) — Endp,(URV) : a ®b— ¢ap, (6.8)

by ¢ap(u®v) = (=1)Pla(u) @ b(v) for all homogeneous maps a € Endy(U), b € Endy(V) and homo-

geneous vectors u € U, v € V, where |a| denotes the degree of a.
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The map is an isomorphism of algebras in sVect, i.e. ¢qp 0 Peq = (_1)|b‘|cl¢aoc,bod. Indeed,

Gap(beau®v)) = (=), 4 (c(u) @ d(v))
= () a(e(w) @ b(d(v))
— (_l)ld\lqubHCIHIb\UI(a oc)(u) @ (bod)(v)

= (_1)|bHC|¢aoc,bod(u X U)-

Let now U be a projective G-representation with the Schur multiplier v € Z%(G,k*). Let t € G
be a central involution. Denote by U = Uy @ U; the Z/2Z-grading corresponding to ¢, i.e. u € U
is homogeneous of degree |u| iff t(u) = (—1)/*lu. Then the G-action is related to the grading in the
following way |g.u| = & (g) + |u|, where &, is defined in (6.4). Indeed,

- B ~q(tg) _ el GY)
t.(gu) = y(t, g)(tg)u = v(t, g)(gt).u = ry(g’t)g.(t.u) = (—1)‘ |m .

Now let U and V be projective G-representations with the Schur multipliers i,y € Z2%(G, k) corre-
spondingly. Note that Endy(U) is a G-algebra with g(a) defined by g(a)(u) = g.(a(g~'.u)) (and similarly
for Endy(V)). Then the homomorphism ¢ : Endi(U) ® Endi(V) — Endi(U ® V) has the following
G-equivariance property:

Pg(a).g(v) = P(9) © bap 0 plg) ™"
where p(g) : U®V — U ®V is given by p(g)(u @ v) = (=1)&@Wllgu @ gv. Indeed, the relation

Bg(a).gv) © P(9) = p(g) © Pap can be checked directly:

(a0 (p(9) (u @ v)) = (1) D1y 4) 40 (9:u @ g.v)
 (—)E @O 9wl g q) (g.4) © g(b)(g-0)
(1) HllHE @I ((u)) @ g.(b(v)
= (1) HHE @I ((u)) @ g.(b(v)
= (=!I p(g)(a(u) @ b(v))

= p(9)(Pap(u®v)).

The map p: G — GL(U ® V) is a projective representation with the Schur multiplier

Y(f.9) = (1) DYy (f, ) (f.9), f.9€G. (6.9)
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To see this, we compute

p(fg)uv) = (1)U (fg)ue (fg)u
= (1)Ul (f, 9)yv (£, 9)f(9-w) ® [.(g.v)
= ()& @ISl (f g) f.(gu) ® f.(g-0)
= (=)W f,9)p(f)(g-u © g.v)

=7(f,9)p(f)(p(g)(u @ v)).

In the rest of the proof we describe the restriction of the homomorphism Qrep(c,) to H 2(G,t, k%), Let
again V be a projective G-representation with the Schur multiplier v € Z%(G, k*). The automorphism
CEndy(V),End, (v) Of the algebra Endy(V)®? in Rep(G,t)

CEndy(V),Endy(v)(a @ b) = (=Dl @ q,

transported (along @) to an automorphism of the algebra Endy(V®?), is inner. More precisely, we have

vy 0 dapocyy = (=DIgy o,

since

cv, (dap(u @) = (=1)eyy (a(u) © b(v))

— (= 1) bl B () & (o)
— (—1)lallbl+ullvllal vl ) @ o)
(1)l g @ )

= (=Dl o (cv,v (u @ v)).

The element cy,y € Endy(V)®? has the following G-equivariance property: g(cy.y) = x~(9)cv.v,

where ., is defined in (6.7). That is, p(g) o cv,v o p(g) ™! = x(g)cv,v since we have

pg)(evy (u®v)) = (=1)“"lp(g) (v ® u)
= () ulle @Il gy g
= (1)@ +e@lvlHlaullavlg o, @ g4y

= (1)@l ey (gu® gov)
= X~ (9)evv (p(g)(u @ v)).

The formula for Q pjc(rep(c,t)) O H?(G,t,k*) now follows from Remark O
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Recall that the character &, : G — Z/2Z = {0, 1} was defined in (6.2). It depends on v € H%(G, k*)

as well as on t € Z(G).
Proposition 6.6. The pairing (5.42)) for Rep(G,t) is given by

(7, 2) = V0> in the non-split case, (6.10)

(v, €), 2) = ’thg,\,(z)VE’Y(z)E in the split case, (6.11)

for v € HX(G, k*) and z € Z(G), where v is the composition G — (t) — k> of the non-trivial character
on (t) with a (chosen) splitting G — (t) (i.e., v € G corresponds to the image of I under a (chosen)
splitting sVect — Rep(G, t)).

Proof. First assume that the class of R is in the kernel of the homomorphism Pic(Rep(G,t)) — Pic(sVect),
ie. R = Endg(V), where V is a projective G-representation p : G — GL(V) with multiplier 7. Ac-
cording to Remark the invertible object corresponding to the automorphism ¢ = p(2)(—)p(z)~! of
Endy (V) is given by the (unique) character y such that there is an invertible { € Endy (V) with the
properties ¢(r) = ¢r¢ = (=1)I"I<h and ¢p(g) = x(g9)p(g)¢ for any g € G. A (unique up to a scalar) solution
is ¢ = p(2t5®), where &,(2) = |p(2)| (or, equivalently, (—=1)$(*) = ~,(z)). Thus, x = 7,,e,-). This
computes the pairing between H?(G, k*) and Z(G) and, in particular, proves the formula (6.10)).

In the split case the restriction of the pairing to sVect C Rep(G,t) is (1, €), z) = v57(3)¢ (according
to Example . O

Remark 6.7. It should be noted that both sides of (6.11)) depend on the choice of splitting G — (¢).
Indeed, the identification Pic(Rep(G,t)) = H*(G, k*) x Z/27 (implicit on the left hand side of (6.11]))

is not canonical and depends on this choice.

6.3 The braided categorical Picard group of a Tannakian category

Theorem 6.8. Let £ be a symmetric tensor category. There is a group isomorphism
Picy-(€) =2 Pic(€) x Autg(ldg) . (6.12)
The first canonical class of Picy(E) is
QPic,,(6)(M, V) = Qpicie) (M) (M, v). (6.13)

where the pairing (M, v) is defined in (5.42]).

Proof. Since every £-module category admits an identity £-module braiding it follows that Picy,.(£) is

generated by symmetric categorical subgroups Pic(£) and Autg(Ide) (the latter consists of invertible
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categories in Mod{ _(€)). These subgroups intersect trivially, so Picy,(€) is their direct product.

For M € Pic(€) and v € Autg(Idg) the self-braiding C(u, 1), M, ) o0 (M, v) = M K B is the
composition of (conjugates of) Caq a1, Ca,pv, Cpv pm and Cpv gv. The self-braiding Caq aq is the symmetric
one of Picy,(E). The relation between the self-braiding Caq g and (M, v) is explained in Example
The braidings Cpv a4 and Cpv pv are in effect trivial (the first since Cpv ¢ is the symmetric braiding
CB.m Picyy(E), while the second is the trivial case M = B of Example . This proves the formula

for Qpic,, (&) O
The Whitehead bracket mg x m — 7o of Picp,(€) is given by
(Pic(€) x Autg(Idg)) x Inv(€) = k* : [(M, v), Z] = vz. (6.14)
We can now describe the braided categorical Picard group of a Tannakian category.

Corollary 6.9. We have

70 (Picy,(Rep(Q))) = H(G, k*) x Z(G), (6.15)

71 (Picy, (Rep(Q))) = G, (6.16)

where G denotes the group of characters of G.

The first canonical class is the quadratic form

QPicbr(Rep(G))(P)/v Z) = '72(7)3 zZ € Z(G)’ Y€ HQ(Gv kx) (617)

The second canonical class is trivial.

The Whitehead bracket (6.14) is given by

(.2, =x(z),  x€C.z€Z(G) (6.18)
Proof. Follows from Propositions and Theorem O

6.4 The braided categorical Picard group of a super-Tannakian category

Here we deal with the super-Tannakian case. We start with the basic example of the symmetric fusion

category sVect of super vector spaces. As before, II denotes the non-identity simple object of sVect.

Example 6.10. The group mo(Picpy(sVect)) = Picy.(sVeet) x Autg(Idsyeet) = Z/27 X Z/2Z consists
of pairs (Z,id), (Z,7), (R,id), (R,m), where T is the regular sVect-module category, R = Vect viewed
as an sVect-module category (i.e. R = sVecta, where A is the algebra from Example , m is the

natural automorphism of the identity functor of sVeet such that 74 = Id; and 7 = —Idp (as in the
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algebra from Example [6.3)). It follows from Example and Theorem that the quadratic function

Q Picy, (svect) * Picyr(sVect) — Inv(sVect) is given by

QPicM(sVect)(I7 Zd) = QPich(sVect)(Ia 71—) = QPich(sVect)(Rv 7T) = Ia QPich(sVect) (Rv Zd) =1L

Corollary 6.11.

) H?(G,t,k*) x Z(G) in the non-split case,
7o (Picy-(Rep(G,t))) = (6.19)
H?(G,t,k*) x Z)2Z x Z(G) in the split case.
71 (Picy, (Rep(G, 1)) = G. (6.20)
The first canonical class of Picy,.(Rep(G,t)) is given by the quadratic form (with values in 6’)
Q Picy, (Rep(G,1)) (V> 2) = Vopen 211 in the non-split case, (6.21)
QPicy, (Rep(G,1)) (V5 €5 2) = Y ey (0141 v (2)e in the split case, (6.22)
for v € H*(G, k*), 2 € Z(G), and v € G, where v € G is as in Pmposition.
The second canonical class is the homomorphism
G — {£1} : x = x(b). (6.23)
The Whitehead bracket is given by (6.18) (and does not depend on t).
Proof. Follows from Theorems and and Proposition O

7 The braided Picard group of a pointed braided fusion category

Recall [20], [I§] that a pointed braided fusion category B is determined by a quadratic form ¢ : A — k*,
where A is the finite Abelian group of isomorphisms classes of simple objects of B and ¢(z) = ¢z 5, © € A,

where ¢ denotes the braiding of B.
Proposition 7.1. Let B be a pointed braided fusion category. There is an equivalence

Pico(B) & Picyy(Zoym(B)) (7.1)
of braided categorical groups.

Proof. The group Picy,-(B) can be computed using the exact sequence ((5.25). Namely, we have a short

exact sequence
0 — Coker(Inv(B) = Autg(Idg)) — Picy,(B) — Ker(Pic(B) 2, Aut’ (B)) — 0. (7.2)
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By [10, Proposition 5.17], the induction
Ind : Pic(Z5ym(B)) = Pic(B) : M — BXz 5 M

establishes a group isomorphism Pic(Zgym (B)) = Ker(9). Note that provides a splitting for (7.2).
The homomorphism « is the map A — A coming from the bilinear form on A associated to g. Its cokernel
is AL = Autgy(Idz,,,. 8))-

Thus, the split exact sequence yields a group isomorphism by Proposition

Picy (Zsym(B)) = Pic(Z4ym(B)) x Autg(ldz,,, 1)) — Picy(B) : (M, v) = Ind(M)",
cf. Example The value of the quadratic form gpje,,(3) on Ind(M)® is given by the half braiding
Ind(M) X B¥ — B K Ind(M).

The latter coincides with the value of the pairing (M, x|z, . (5)) (0.42), see Remark So the result
follows from Proposition O

Note that 7 := ¢| 41 is an element of AL of order at most 2.
Corollary 7.2.
Hom(A2 A, k%) x AL ifr=1,
Picy,(C(A, 9)) = 4 Hom(A2 A, k¥) x AL if T#1 and A= Ker(t) x Z.)2Z, (7.3)
Hom(A% A, kX) x Z/2Z x AL if 7 #1 and A # Ker(r) x Z/2Z.

Proof. This follows from Proposition [7.1] and the description of the Picard group of a symmetric fusion
category, see Sections [6.1] and O

8 Classification of graded extensions

8.1 Graded tensor extensions [23]
Let D be a tensor category and let G be a finite group.

Definition 8.1. A tensor G-graded extension (or, simply, a G-extension) of a tensor category D is a

tensor category

c=pc., C=0, (8.1)

zeG
such that C; # 0 and the tensor product of C maps C, x Cy to Cyy for all ,y € G.
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Definition 8.2. An equivalence between two G-graded extensions, C = @, C, and C = D.c C.
of D is a tensor equivalence F : C = C such that F|p = Idp and F(C,) = C, for all z € G. An
isomorphism between equivalences of G-extensions F, F' : C = C is a tensor isomorphism n : F = F’

whose restriction on F|p = Idp is the identity isomorphism.

Thus, G-extensions of D form a 2-groupoid Ex(G, D) whose objects are extensions, 1-cells are equiv-

alences of extensions, and 2-cells are isomorphisms of equivalences.

Example 8.3. G-extensions of Vect are precisely pointed fusion categories Vecti, where w € Z3(G, k)
is a 3-cocycle. Equivalences between extensions Veetr and Vect‘é’; correspond to 2-cochains u € C?(G, k*)

such that d(u) = @/w. Thus, 7o(Ex(G, Vect)) = H3(G, k*).

Remark 8.4. Example [8.3|shows that there exist equivalent tensor categories that are not equivalent as
extensions. Indeed, if the cohomology classes of w and @ are in the same Aut(G)-orbit then Veet & = Vect“_é

as tensor categories.

The following theorem is essentially proved in [23]. We include its proof for the reader’s convenience.
Our arguments for central, braided, and symmetric extensions in subsequent sections will follow the same

pattern.
Theorem 8.5. There is an equivalence of 2-groupoids Ex(G, D) = 2-Fun(G, BrPic(D)).
Proof. We construct a 2-functor
M : Ex(G, D) — 2-Fun(G, BrPic(D)) (8.2)

as follows. Given a G-extension C = C, of D, each homogeneous component C, is an invertible

zeG
D-bimodule category. The restrictions ®g 4 : C; x Cy = Cqy, x,y € G, of the tensor product of C are

D-balanced functors and so give rise to D-bimodule equivalences
My Co Rp Cy =5 Coy. (8.3)

The associativity constraints of C restricted to C, x Cy x C, can be viewed as natural isomorphisms of
D-balanced functors and so give rise to natural isomorphisms of D-bimodule functors

My,

C, Xp Cy Xp C, _—r 5 C,. Xp Cyz (8.4)
Mu:,yi :ﬂm)y,z lMl‘vyz
CoyXp C, Moy Cayzs

for all z,y, z € G, cf. (2.35)). The pentagon identity for the associativity constraints of C implies that (2.37)
is satisfied (equivalently, the cubes (2.63]) commute for all z,y, z, w € G). This means that the above data
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consisting of D-bimodule categories C,, equivalences M, ,, and natural isomorphisms oy 4 -, 2,y,2 € G,
determine a monoidal 2-functor M (C) : G — BrPic(D).

Suppose that there is another G-extension C = é e Cy of D and an equivalence of extensions

F :C — C. Tt restricts to D-bimodule equivalences
E,:Cp = C,. (8.5)

The tensor structure of F restricted to C, x C, gives rise to an invertible 2-cell

F,RpF, - -
C,RpC)———2" €, Kp C, (3.6)

Ha,q .
Mx'yl é) \LM:ﬂ,y

Cy Cays

Fy Yy

x,y € G, and the coherence axiom for the tensor structure of F' implies that ([2.44)) is satisfied (equivalently,
that the cubes (2.66) commute for all z,y,z € G), so that we have a pseudo-natural isomorphism
M(F): M(C) — M(C).

Given an isomorphism 7 between a pair of equivalences F, F’ of extensions C and C’ its components

are natural isomorphisms of D-bimodule functors:
Ca

The tensor property of n implies that (2.46) is satisfied, i.e. the cylinder

F.F,
//\ ~ ~
C.®pC, R C. ®p C, (8.8)
V
Il
Hg,h Il
Mo,y I Mz .,y

’ ’
FLF,

commutes for all z,y € G. So we get an invertible modification M (n) between pseudo-natural isomor-
phisms M (F) and M (F’). This completes the construction of a monoidal 2-functor (8.2).
A 2-functor
L : 2-Fun(G, BrPic(D)) — Ex(G, D) (8.9)

quasi-inverse to (8.2) can be constructed by reversing the above constructions. Namely, let C : G —
BrPic(D) : x +— C, be a monoidal 2-functor. Form a D-bimodule category L(C) := @, C» with
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the tensor product given by composing C, x C, — C; Wp C, with 1-cells and the associativity
constraints coming from 2-cells (8.4). The commuting polytopes give the pentagon identity for the
associativity constraint.

To check that L(C) is rigid, note that by Corollary it is exact as a D-module category. Hence,
the dual category Endp(L(C)) is a tensor category (i.e. is rigid). Given a homogeneous object X in
C, C L(C), x € G, define a D-module endofuctor L(X) € Endp(L(C)) by setting L(X) = X ® — on
D and L(X) =0 on Cy, g # 0. Its adjoints are given by functors X* ® —, *X ® — : C; — D for some
objects X*,*X € C,-1. These objects are the duals of X. Thus, L(C) is a tensor category and so it is a
G-extension of D.

From the universal property of Mp, a pseudo-natural isomorphism of functors C, C’ : G — BrPic(D)
gives an equivalence of extensions with the tensor structure coming from and that a modification

of pseudo-natural isomorphisms gives a natural isomorphism of equivalences of extensions. O

Remark 8.6. The proof of Theorem is based on the correspondences (coming from the universal
property of Mp) between the structure functors and morphisms of graded tensor categories and the
axioms they satisfy and the structure 1- and 2-cells of monoidal 2-functors and the commutative polytopes

satisfied by them. We summarize these correspondences in Table [3] (cf. the table from [3| Section 2.3]).

Tensor G-extensions C of D Monoidal 2-functors M : G — BrPic(D)
homogeneous components C,, O-cells M(g) :=C,
tensor products C4 x Cp, — Cyp monoidal 1-cells M, p, : Cg Wp Cp, = Cgp,
associativity constraints ax,y,z associativity 2-cells af g p,
commuting pentagon diagram for a commuting cubes for «
equivalence F : C — C of extensions l-cells F, : C, — C,
tensor structure of F monoidal 2-cells pg p,
commuting tensor property diagram for F’ commuting cubes for
isomorphism 7 : F' — F”’ of equivalences modification 2-cells n, : Fy — Fé (18.7))
commuting tensor property diagram for 7 commuting cylinders for n

Table 3: A correspondence between tensor G-extensions and monoidal 2-functors.

We can describe G-graded extensions of D in terms of group cohomology. It follows from constructions

of Section that given a monoidal functor M : G — BrPic(D) there exist a canonical cohomology class
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Py, € HY(G, k*) and a canonical group homomorphism
pas s HY(G, Inv(Z(D))) — H3(G, k)

defined in (2.63) and (2.66)), respectively.

Corollary 8.7. A monoidal functor M : G — BrPic(D) gives rise to a G-graded extension of D if and

only if p§; = 0 in H*(G, k*). Equivalence classes of such extensions form a torsor over the cokernel
of Pys-

Proof. This follows from Theorem and Corollary O

Remark 8.8. In [23] the notion of an equivalence of graded extensions was not explicitly defined and
extensions were parameterized by a torsor over H?(G, k™). We would like to point that the map pj, is
non-trivial in general. Here is a simple example. Let D = Vect;, /22, Where w is the non-trivial element of
H3(Z/2Z, k*). Then Inv(Z(D)) = Z/2Z x 7./2Z with the associator w x w~!. Take the trivial monoidal
functor M : Z/27Z — BrPic(D). The homomorphism p}, is given by , ie.

prs i Hom(Z/2Z, 7./27 x 7.)27) — H*(Z/2Z, k) : P+ (w x w™ ') o (P x P x P),

which is clearly non-zero. This explains the difference between our parameterization of extensions and

that of [23, Theorem 1.3].

8.2 Central graded extensions
Let B be a braided tensor category.

Definition 8.9. A central G-extension of B is a pair (C, ¢), where C is a G-extension and ¢ : B — Z(C)
is a braided tensor functor whose composition with the forgetful functor Z(C) — C coincides with the

inclusion B — C.

Definition 8.10. Let (C,.: B — Z(C)) and (C,7 : B — Z(C)) be two central G-extensions of B. An
equivalence between these extensions is an equivalence F : C — C of G-extensions such that 7 = ind(F)oud,

where ind(F) : Z(C) = Z(C) is the braided equivalence induced by F.

Central G-extensions of B form a 2-groupoid Exctr (G, B).

Recall that a G-crossed braided tensor category is a G-graded tensor category C = €p C; equipped

zeG
with the action of G on C, i.e. a monoidal functor G — Autg(C), such that z(Cy) = C,,,-1 and with a
G-crossed braiding

cxy : X®Y - g9Y)® X, Xel,Yec(, (8.10)
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satisfying certain natural axioms. Note that the trivial component of the grading C. is a braided tensor
category. Let Excr—br(G, B) denote the 2-groupoid of G-crossed braided fusion categories whose trivial
component is B.

The next Proposition was essentially proved in [25]. It shows that the notions of a central extension

and a G-crossed extension coincide.
Proposition 8.11. There is a 2-equivalence Exer—pe(G, B) & Exctr (G, B).

Proof. We need to explain how a G-crossed braided structure translates into a central functor and vice
versa.

Let C be a G-crossed braided tensor category with C. = B. The restriction of the crossed braiding
provides X € C. with the structure of a central object of C and

L:B:C6—>Z(C):X»—>(X,c;(’17)

is a braided tensor functor whose composition with the forgetful functor Z(C) — C is identity.

In the opposite direction, a central G-extension (C,:: B — Z(C)) yields a natural isomorphism
exz:  X®Z S5 ZeX, XeB Ze(, (8.11)

satisfying the hexagon axioms. This turns each C, into an invertible B-module category. Furthermore,

there are B-module equivalences

C, — Funp(Cp, Coy) : Y = — ®Y,

Coyz—1 = Funp(Ce, Cpy) @ Y=Y ® —,

for all z,y € G. Here the functor categories consist of right exact B-module functors. Combining these
equivalences for a fixed 2 € G we obtain a tensor autoequivalence 2 € Autg(C) such that 2(Cy) = Cpyp—

and there is a natural isomorphism
(V)X 2XQY forall X € C,, Y €C.

The latter is a crossed braiding on C.
These constructions are inverses of each other and are compatible with equivalences of G-crossed

braided and central extensions, i.e. define a 2-equivalence between the corresponding 2-groupoids. O

Remark 8.12. Let C be a central G-extension of B. The braided tensor category C¢ obtained from C as
the equivariantization [I8, Section 4] with respect to the canonical action of G constructed in the proof

of Proposition coincides with. the centralizer of the image of B in Z(C).
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Recall that the Picard group of B was introduced in Section The following result is essentially a
consequence of Proposition and [23, Theorem 7.12]. We include the proof for the sake of completeness.

Theorem 8.13. There is an equivalence of 2-groupoids Exctr (G, B) = 2-Fun(G, Pic(B)).

Proof. We adjust the proof of Theorem to the present setting (with D-bimodule categories, functors,
and isomorphisms replaced by B-module ones).

A central structure on a G-extension C = @, C, of B consists of isomorphisms that turn
every component C, into an invertible B-module category, i.e. C, belongs to Pic(B). Equivalences
coming from tensor products C, x C, — C,y are B-module equivalences in this case and natural
isomorphisms are isomorphisms of B-module functors.

An equivalence of central G-extensions of B yields B-module equivalences between homogeneous
components and isomorphisms of B-module functors. An isomorphism between equivalences of
central G-extensions yields an isomorphism of B-module functors.

Diagrams , , and commute for the same reason as in the proof of Theorem [8.5

Thus, becomes a 2-functor

Exctr (G, B) — 2-Fun(G, Pic(B)). (8.12)

Conversely, given a monoidal 2-functor G — Pic(B), consider its composition with the inclusion
Pic(B) — BrPic(B). By Theorem this yields a G-extension C of B. The B-bimodule structure of
C comes from its left B-module structure, so there is a natural isomorphism between the functors of left

and right tensor multiplication by X € B:
CX721X®ZL>Z®X, Z eC. (813)

The hexagon for (8.13)) follows from the above definition of a B-bimodule category structure of C and
from the monoidal property of the 2-functor Mod(B) — Bimod (). Thus, (8.13) is a central structure

on the G-extension C of B and there is a 2-functor

2-Fun(G, Pic(B)) = Exct,(G, B) (8.14)
quasi-inverse to (8.12]). O
Remark 8.14. It follows from Theorem B.I3] that central G-extensions of B can be described in terms

of monoidal functors G — Pic(B) and group cohomology analogously to Corollary

8.3 Braided graded extensions

Let B be a braided tensor category and let A be an Abelian group.
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Definition 8.15. A braided A-extension of B is a braided tensor category C that is an A-extension of B.

Definition 8.16. An equivalence between braided A-extensions C, C of B is an equivalence of A-

extensions that is a braided functor.

Example 8.17. Braided A-extensions of Vect are precisely pointed braided fusion categories Vect’;, where
w € Z} (G, k¥) is an abelian 3-cocycle. Equivalences between extensions Vect and Veet’ correspond
to abelian 2-cochains p € C?.(A, k*) such that d(p) = w/@. Thus, the set of isomorphism classes
Exy,.(A, Vect) of braided A-extensions of Veet is in bijection with Hp (A, k™) = Quad(A, k*).

Let 2-Funy,, (A, Picp,(B)) denote the 2-groupoid of braided monoidal 2-functors from A to Picy,(B).
Theorem 8.18. There is a 2-equivalence Expy(A, B) = 2-Funy, (4, Picp(B)).

Proof. Let C = @, 4 C. be a braided A-extension of B. Each homogeneous component Cy, y € A, is an

invertible B-module category. The squared braiding
OX)y = Cy XCXY, XeB Yely,

equips it with the structure of a braided B-module category, i.e. C, € Picp,(B). The equivalences
My, : C, g Cy = Cyy from (B.3) are braided module equivalences. Indeed, commutativity of the
diagram (4.2)) is a consequence of the identity

CY @Y, XCX, 10, = (¢v;,x @ ldy, )(Idy; ® ¢y, xex v, )(cx,y, @ Idy,), X, 11,Y; € B,

where we omit the associativity constraints in C.
As in the proof of Theorem equivalences M, , along with the associativity 2-cells a4, . from (8.4))

define a monoidal structure on the 2-functor
M(C): A — Picpe(B) : x — C,.

Furthermore, the commutativity constraint of C gives rise to invertible 2-cells

C, K50, al C, K5 Cy (8.15)
M,y My,
Cay

for all x,y € A. The conditions and in the definition of a braided monoidal 2-functor
(i.e. commutativity of the octahedra and ) follow from the hexagon axioms satisfied by the
braiding of C.

Thus, M(C) : A — Picpe(B) is a braided monoidal 2-functor.
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Suppose there is another braided A-extension C = D.ca C, of B and an equivalence of braided A-
extensions F : C — C. The B-module equivalences Fj, : Cp — (Nfg; between the homogeneous components
are braided B-module equivalences. Indeed, commutativity of diagram is a consequence of the
braided property of F'. We have invertible 2-cells satisfying as in the proof of Theorem
The condition (i.e. commutativity of the prism ) follows from the braided property of F.
Thus, we have a pseudo-natural isomorphism M (F) : M(C) — M(C) of braided monoidal 2-functors.

Given an isomorphism 7 between a pair of equivalences F, F’ of braided extensions C and C’ one
constructs an invertible modification M (1) between M (F) and M (F’) as in (8.7).

Thus, we have a 2-functor M : Expr(A, B) = 2-Funy, (4, Picy(B)). In the opposite direction,
the 2-functor constructed in the proof of Theorem carries a braided structure on a 2-functor
C : A — Picp,(B)) to a braiding on L(C) = @, 4 C.. Namely, 2-cells give rise to the braiding
constraints for L(C) while commuting octahedra , ensure that they satisfy give the hexagon

identities. O

Remark 8.19. The proof of Theorem [8.18| extends that of Theorem So it extends the correspon-

dences in Table Bl as follows:

Braided tensor A-extensions C of B Monoidal 2-functors M : A — Picp,(B)
braiding constraints cx,y braiding 2-cells 5, (8.15)
commuting hexagon diagrams for ¢ commuting octahedra (2.71)), (2.72))
braided property diagram for F' commuting prism ([2.73))

Table 4: A correspondence between braided extensions and braided monoidal 2-functors.

We can describe A-graded extensions of B in terms of braided group cohomology. It follows from
constructions of Section that given a braided monoidal functor M : A — BrPic(D) there exist
a canonical braided cohomology class p}, € HfT(A, k*) and a canonical group homomorphism p}, :

HY(A, Inv(B)) — H} (A, k*).

Corollary 8.20. A braided monoidal functor M : A — Picy,(B) gives rise to an A-graded extension of
B if and only if pS; = 0 in H} (A, k™). Equivalence classes of such extensions of form a torsor over the

cokernel of pi,.

Proof. This follows from Theorem and Corollary O
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Example 8.21. Let B be a non-degenerate braided fusion category. By Proposition Picyr(B) =
Picy,(Vect) and so Expr(A, B) = Exp, (A, Vect). Thus, any braided A-extension of B is equivalent to
one of the form BX C(A, q) for some g € Quad(A, k*) = H? (A, k*).

Thus, the only braided fusion categories that admit interesting extensions are degenerate ones.

8.4 Symmetric graded extensions

Let £ be a symmetric tensor category and let A be an Abelian group.

Definition 8.22. A symmetric A-extension of £ is a symmetric tensor category C that is an A-extension

of €.

Equivalences of symmetric A-extensions are the same as for braided A-extensions. The 2-groupoid

Exsym(A, &) of symmetric A-extensions of £ is a 2-subgroupoid of Expy (A4, £).

Example 8.23. Symmetric A-extensions of Vect are precisely pointed braided fusion categories Veet';,
where w € Z2 . (G, kX) is a symmetric 3-cocycle. Equivalences between extensions Vect and Vectii

sym

correspond to symmetric 2-cochains p € CZ,,,(A, k*) such that d(p) = w/@. Thus, the set of iso-
morphism classes Exgy, (A, Vect) of braided A-extensions of Vect is in bijection with H2 ,, (A, k*) =

sym
HOI’T‘I(A7 ]CX)Q = HOI’T‘I(A7 ZQ)

Let C=6p C, and C' = @, 4 C, be symmetric A-extensions of £. Then C K¢ C' is an (A x A)-

z€A

extension of £. Define the tensor product of these extensions to be the diagonal subcategory of C K¢ C':

CoeC' =@ C. R C,. (8.16)

z€A

This equips the 2-groupoid Exgym (A4, &) of symmetric A-extensions of £ with a structure of a symmetric
2-categorical group.

Recall that the symmetric 2-categorical group Picgym(€) of symmetric £-module categories is equi-
valent to Pic(£), the Picard group of £. Let 2-Fungym (A4, Pic(£)) denote the 2-groupoid of symmetric

monoidal 2-functors from A to Pic(&).
Theorem 8.24. There is a symmetric monoidal 2-equivalence Exsym (A, £) = 2-Fungym (A, Pic(£)).

Proof. We extend Theorem to the symmetric setting. Observe that the homogeneous components of
a symmetric extension C = @,ca C, of £ are necessarily symmetric £-module categories. Commutativity
of the cones is equivalent to the squared braiding of C being identity, i.e. to the braided monoidal
2-functor x — C, being symmetric.

The monoidal structure of this 2-equivalence is established by comparing the tensor products, asso-

ciativities, and braidings of Exgym (4, £) and 2-Fungym (4, Pic(£)). O
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Corollary 8.25. There is an exact sequence of group homomorphisms:

HY(A, Inv(€)) — H2 (A, k™) = 70(Exsym (A, £)) — mo(Funsym(A, Pic(£))) — Hj,,, (A, k™).

sym

(8.17)

Proof. This follows from Theorem [2.38 O

8.5 The group of symmetric extensions of a symmetric fusion category

Let G be a finite abelian group and let t € G be a central element such that t> = 1. Let A be a finite

Abelian group. In this Section we compute the group
Ezsym (A, €) := mo(Exsym(4, &))
of symmetric A-extensions of & = Rep(G, t).

Theorem 8.26. There are group isomorphisms

IR

Ezoym(A, Rep(G)) = H*(G, A)& H'(A, L,), (8.18)

Ezxsym (A, Rep(G, t))

1

H2(G/{t), A) ift#1. (8.19)

Proof. Let us first consider symmetric A-extensions of Rep(G). They are of the form Rep(é’7 t), where
G is a central extension

15450561 (8.20)

and { is a central element of G such that 2 = 1 and 7(f) = 1. Thus, every symmetric A-extension of
Rep(G) is completely determined by the pair consisting of a cohomology class in H2(G, A) corresponding
to the isomorphism class of the group extension and t € (A\)Q = H'(A, Zs). The corresponding
map Exgym(A, Rep(G)) — H?*(G, A)@ H' (A, Z,) is a group isomorphism. It is clearly injective. To see
that it is surjective note that the elements of H?(G, g) form a subgroup Fxra, (A, Rep(G)) of Tannakian
A-extensions of Rep(G) while the elements of H!(A, Z3) form the subgroup of split extensions.

Now consider a symmetric A-extension C of Rep(G, t) with ¢ # 1. It contains a unique maximal
Tannakian subcategory Cy of index 2 which is a Tannakian A-extension of Rep(G/(t)). We have a group

homomorphism
£ i Bagym(A, Rep(G, 1)) = Exran(A, Rep(G/())) = HX(G/(t), A) : C — Co. (8.21)
We claim that f has an inverse given by the induction
9 Exran(A, Rep(G/(t)) = Exsym(A, Rep(G, t)) : T — Rep(G) Rrep(ayy) T (8.22)
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where the tensor product of fusion categories over a symmetric fusion category is defined in [I1] Section
2.5,

Indeed, we have f o g = Id since the maximal Tannakian subcategory of Rep(G) Mpep ey T is
Rep(G/(t)) Rpep(a/ey)y T = T. To check that g o f = Id we observe that there is a surjective symmetric
tensor functor F' : Cy K Rep(G, t) — C given by embedding of factors. Since the intersection of Cy and
Rep(G, t) in C is Rep(G/(t)) we see that I factors through Co Mrep(/ 1)) Rep(G, t). The latter fusion

category has the same Frobenius-Perron dimension as C so that C = Co Mgep(/ (1)) Rep(G, t). O

Corollary 8.27. Exgym,(A, sVect) =

Below we describe the exact sequence (8.17)) computing the group of symmetric extensions. This is

meant to illustrate our obstruction theory and give an alternative proof of Theorem [8.26

Proposition 8.28. There are group isomorphisms

70 (Funsym (A, Picgm(Rep(@)))) = H2(G, A), (8.23)
7o(Fngym (A, Picgm(Rep(G, 1)) = Ker(fﬂ(a, A) =5 Hom(G/(t), (A)s )), (8.24)

where
2, : HX(G, A) — Hom(G/(t), (A)2) : m — m(t, —)m(—, t)~". (8.25)

Proof. Let us consider the Tannakian case first. Let ¢/ = [G, G] and G = Hom(G, k*). We have a

homomorphism of short exact sequences

-~

0 —— Ext(G/@, A) H2(G, A) Hom(A, H(G, kX)) — 0

| :

00— H2, (A, G) —— mo(Funsym (A, Picsm(Rep(G)))) — Hom(A, H(G, kX)) —= 0.
(8.26)

Here « is the duality isomorphism. The homomorphism £3 is defined as follows. An element m € H?(G, E)

gives rise to a central group extension

A-G5G6—1. (8.27)

The category Rep(G) is a symmetric A-extension of Rep(G) and, therefore, yields a symmetric monoidal
functor a(m) : A — Picsym(Rep(G)). The first row of is split exact [29, Theorem 2.1.19] and
the second row comes from assigning to a symmetric functor a group homomorphism. Hence, § is an
isomorphism. This proves (8.23]).

In the super-Tannakian case we have an exact sequence

0— H2, (A, Q) = Fungym(A, Picgm(Rep(G, t))) — Hom(A, H*(G, kX)) L Hom(A, (G)s), (8.28)

sym
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where ¢* is induced by the second canonical class of Picgym(Rep(G, t)),

g : Picgym(Rep(G, 1) = H*(G, k*) = Inv(Rep(G, t))2 = (G)z : j1 = th_ _t;
see Theorem Combining (8.28) with the commuting square
H(G, A) = Hom(4, (G)2) (8.29)
Hom(4, H2(G, k*)) —"——= Hom(G, (4),)

we obtain (8.24). O

Recall that isomorphism (2.15) identifies HZ , (A, k*) with Hom(Ag, k*) = (1/4;) Combining this

sym

with the isomorphisms H2(Z,, A) = A/(A)? = (Ag) we obtain

A, kX) = H(Zy, A). (8.30)

sym(

Proposition 8.29. The obstruction homomorphism mo(Funsym (A, Picsym(E))) = Ha (A, kX) in (8.17)

sym

is given by

Fungym (A, Picgm(£)) = Ker(E,) — H*(G, A) X2 H2((1), A) = (A, k), (8.31)

sym

where the first isomorphism is (8.24]), the last one is (8.30), Z; is defined in (8.25), and res is the

restriction map in cohomology.

Proof. For a symmetric monoidal functor F' : A — Piceym(E)) let a = a(F') € nym(A k*) be the
obstruction to lifting it to a symmetric monoidal 2-functor. The isomorphism expresses @ as an
element of (1/4;) in terms of its components a(z,z,x,z), a(z,z|z), and a(z|r,z), © € As. We have
a(z,z|z) = a(z|z,x) = 1 while the value of a(x,x,z,z) is found as follows. Let us view the £-module
equivalence M, , : F(z) K¢ F(x) = £ coming from the monoidal functor structure of F' as an element
of Inv(€) = G. Then a(z,z,z, ) is equal to the value of the self-braiding of M, ,, i.e. to the evaluation
M, »(t). Note that the map

Ay — é T = Mz,w|<t>

is a homomorphism, since
My My y = My oy My y My 5, T,y € Asg,

and Mm,yMy,z|(t) = Mmzy|(t> =1.
By (2.15)), a is identified with the homomorphism

Ay = E* x> M, . (1). (8.32)

81



That this map coincides with the restriction map Ker(Z;) — H?(G, A\) Res, H2({(t), E) follows from

commutativity of the following diagram

H2(G, A) H2,,.(G/G, G, &) —= H2,,.(4, G) (8.33)
Res l
H2((1), A) = HZ,,, (4, (t)),
where s denotes a splitting of the first row of (8.26)). O

Thus, for ¢ = 1 the exact sequence (8.17) gives rise to a split short exact sequence
0 — Hom(A, Zy) = Exyym(A, Rep(G)) — H*(G, A) = 0, (8.34)

while for ¢ # 1 it becomes

HYG, A) 2 HY((t), A) = Ezym(A, Rep(G, 1)) —

o R R (8.35)
Ker (H2(G, A) =5 HY(G/(t), H' (1), A))) 2= B2((1), A).
The isomorphism Ezgy.m, (A, Rep(G, t)) = H*(G/(t), E) from (8.19) can be recovered by comparing the
sequence (8.35)) with the exact sequence coming from the Lyndon-Hochschild-Serre spectral sequence
13, 32]:

HYG, A) 5= H1Y((1), A) »H2(G/(t), A) 25

Ker (H2(G, A) 2% H2((t), A)) =5 BY(G/(t), H'({t), A)). 50
8.6 The Pontryagin-Whitehead quadratic function and zesting
Let B be a braided tensor category and let A be an Abelian group. Fix a homomorphism
f:A—= Picy(B) 1z — C, (8.37)

that extends to a braided monoidal 2-functor A — Picy,(B). That is, there is a braided extension
c=pc..
T€EA
Let ¢ denote the braiding of C.
Let Ex{;(A, B) C Exy-(A, B) be the 2-subgroupoid of extensions corresponding to f. Our goal here
is to describe 770(:E)xbfr(A7 B)).
An extension of to a braided monoidal functor A — Picy,(B) amounts to choosing B-equivalences

C, M Cy = Cuy, x,y € A, satisfying coherence conditions. Any two such equivalences differ by a tensor
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multiplication by an invertible object Ly, € Zgym (B). Hence, any extension Ce Exgr(A, B) is equal to
C as an abelian category and has the tensor product

XRY =L, ®XQY, Xel,Yely zy €A (8.38)
To get associativity and braiding constraints of C it is necessary to have isomorphisms
Cowe  Luy:®Lyy = Lyy. ®Ly o, Kuy: Loy — Ly, z,y,z € A, (8.39)

ie. L ={Lyy}zyea must be a 2-cocycle in Z2 (A, Inv(Zsy,(B))). These constraints are given by

(XOY)BZ = Lpy. ® Ly y @ X QY ®Z 2451, . 0L, @ XQY ®Z

o o (8.40)
LA Lyy@X®L,.0Y®Z=X(YRZ)
and
XOY =L,y @ X®Y =% 1L, 0XQY 25 0,, 0V @ X =Y®X (8.41)

for all objects X € C,, Y € Cy, Z €C., , y, z € A, where we omit the associativity constraints of C.
This is a braided version of the construction introduced in [23], Section 8.7]. Such extensions were
considered in [6] where they were called zestings of C. Recently, a more general construction was studied
in great detail in [I4]. In Propositions and below we compute obstructions and give a parame-
terization of such extensions. Our treatment of equivalence classes of zesting extensions and obstructions
seems to be different from that of [I4], Section 4].
By Proposition [5.3] the Whitehead bracket
[—, =] : Picyr(B) x Inv(Zsym(B)) — k*
satisfies car,zcz v = (M, Z]ldgzgnm for all Z € Inv(Z,yn,(B)) and M € M, where M € Picy,(B).
Define a group homomorphism
PWg : Hy, (A, Inv(Z4,m(B))) — Hp.(A, k™) : Z = Qz, (8.42)
where (7 is identified with the quadratic from
Qz(a?) = [CI, Z(.TJ)] »CZ(2),Z(z)> rc A (8.43)
Define a quadratic function

PWE : HE (A, Inv(Z4ym(B))) — Hy (A, k), (8.44)

by setting the components of PWZ(L) for a braided 2-cocycle L to be

PWE(L)(,y,z,w) =L, , .L...» (8.45)
PWE(L)(x,yl2) = 1, (8.46)
PWg(L)(:c\y,z) =[Cy, Ly -], z,y,z,w € A. (8.47)
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Definition 8.30. We will call (8.42)) and ({8.44) the first and second Pontryagin- Whitehead maps, cf. [23]

Section 8.7].

Remark 8.31. The maps PW} and PW? depend on the homomorphism f : A — Picy,(B) : z — C,.

Proposition 8.32. Let L be a 2-cocycle in ZE (A, Inv(Zsym(B))). One can choose isomorphisms (8.39)

so that the associativity and braiding isomorphisms (8.40), (8.41) satisfy the pentagon and hexagon axioms

(i.e. give rise to a tensor category) if and only if PWZ(L) is trivial in Hy . (A, k*).

Proof. Define a cochain a € C3.(A, k*) by a(z,y,2) = &4y, a(x|y) = Ky y for all z,y, 2z € A, where £

and £ are isomorphisms (8.39)).

In the diagrams below we will omit the the tensor product sign and the associativity constraints of C.

The pentagon for the associativity constraint (8.40) becomes the diagram

LuyeowLay Loy XY ZW 278 LoysubewlayXYZW
Loyewlioy.Ly XY ZW Loy zwleyl, wXY ZW
foyesw %

CLy 2. X CL w, XY
LayenoLay-XLy, .Y ZW LoeoLyeasLy XY ZW 55 L0 L oL o XY ZW LaywleyXY L. wZW
Eoyz,w / CLZYUJYX\L \ Eay, 2w
CLy, 2, X CL, w, XY

Ly yewlyzwX Ly .Y ZW

CLyz,w,X

LL,yszLyz,wLy’zYZW

Ey.zw

Ly yzwly wX L, Y ZW

while the hexagons are the diagrams

CLg yXY,Z Kay,z
Loy Loy XYZ Loy 2ZLyy XY —"* > I 7Ly XY
5;,13, 2 CZ;,%Z C;;,y,z
Lay:Ly . XYZ Lay:LoyZXY — % o I La,ZXY
o K & &L,
Loy XL, .YZ Lyy-Ly.ZXY LewyL. o ZXY
cy,z Ry, z Rz, z
&L,
Loy XLy . 2Y LoyeLy ZXY —2" > Lo, Lo ZXY
Ry,z CX.,zZ CX,Z
L. X oy
LooyXLoy2Y ——"" > L, .L,.XZY ' LazyLe . XZ2Y,
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CLy, 2, X

CL. w,Y

L@yzwLy,ZMXYLz,wZW

CLy, 2w, X

Lz,yszLy zsz wYZW - Lz yszLy,szLz,wZVVy

(8.48)

(8.49)



and

Re,yz CX,Ly,2YZ
Lyy.XL,.Y7 —""—> 1L, ,XL,,Y7—"" 1, .L,,YZX (8.50)
CLy,z,X cL‘_L/,zvx cXJ‘y,z f'y,z,m
Lyy.Ly . XYZ fev Ly. oLy . XYZ Ly.oL..YZX
gz.y,z fy,z,w%y CLz,z,Y
Loy.Ly XYZ Ly.oL..XYZ Ly..YL,.ZX
Ka,y KRz, z CX,z
Loy Ly . XYZ _ e Ly.:L, . XYZ Ly..YL,.XZ
CX,Y CX,Y Kg,z
§y,2,2 CLy 2,Y

Lyy.Ly,YXZ7 ——""—— 1L, .. L, . YXZ7 ———> L, .. YL, . XZ,
forall z,y,z,we Aand X €C;, Y €Cy, Z€C,, W € C,.
After cancelling internal polygons commuting by the functoriality of the tensor product of C, naturality

of ¢, and the Yang-Baxter equation, we see that the clockwise compositions given by the perimeters of

(8.48), (8.49), and (8.50) are

CL, L., da)(x,y,z,w), d(a)(z,y|lz), andcxr, cr,. xd(a)(z|y,z), respectively.
Comparing this with the definition of PWZ(L) we get the result. O

Proposition 8.33. There is a fibration F' — 7r0(Ex£T(A7 B)) — B, where the base B is the set of zeroes
of PW¢ and the fiber F is the cokernel of PW}.

Proof. The assertion about the base follows from Proposition [8.32

Let C, C be A-extensions of B corresponding to the same braided monoidal functor A — Picy,(B).
Then C = C“9) for some (w,s) € H3(A, k*). An equivalence of extensions C“) =5 C is given on
homogeneous component C,, v € A, by X — Z(2) ® X, X € C, for Z(x) € Inv(Zsym(B)). The tensor
property of this equivalence means that Z : A — Inv(Zgy,(B)) is a homomorphism, while its braided

property translates to commutativity of the diagram

CZ(2)RX,Z(y)QY

Z(x) 9 X ® Z(y) @Y Z(y) Y @ Z(z) © X (8.51)
Cx,z(y)l icy,z(m)
Z(zy) X QY () exy Z(zy) ®Y @ X,

forall 2,y € A, X € C, Y € C,. Here c denotes the braiding of C.
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Comparing the compositions in (8.51) we see that

S(T,Y) = cz2(2),2(y) OV, 2(2)C2Z(2),Y s for all Y € C,,

and so the corresponding quadratic form is ¢(z,z) = [Cs, Z(2)] cz(2),2(2) = Qz(z), x € A. O

8.7 Quasi-trivial braided extensions

Let B be a braided tensor category. We saw in Example that the braided 2-categorical group Picp,(B)
contains a full 2-categorical subgroup Picll)r(B) consisting of braided B-module categories M such that

M = B as a B-module category.

Definition 8.34. Let A be a finite group. We say that a braided A-graded extension of B is quasi-trivial

if it contains an invertible object in every homogeneous component.

Equivalently, an A-extension of B is quasi-trivial if the corresponding homomorphism A — Picy,.(B)

factors through Pict,.(B).

Remark 8.35. A quasi-trivial extension is a special type of a braided zesting considered in [14]. Namely,

it is a zesting of C(A4, 1) K B.

Let Expy_qt(A, B) denote the 2-groupoid of quasi-trivial braided A-extensions of B. We have an
equivalence of 2-groupoids

Expr_qt (A, B) = 2-Funy,. (4, Pic,.(B)).

Since objects of Picp,,.(B) are of the form BY, v € Autg(Ids) (see Example, any braided monoidal

2-functor A — Picp,(B) (and any extension in Expy_qt(A, B) comes from a group homomorphism
[ A— Autg(Idp).

Example 8.36. Given f as above, there is a canonical quasi-trivial A-graded braided extension B(f)

of B such that B(f) = BX Vect4 as a tensor category and its braiding is given by
CX&:E,Y&y:f(l.)Y CX\Y, XvYGBv xvyeAv
where & € A denote the simple objects of Vect 4.

Hence,

Expr_qt(A, B) = \V Ex/. (A, B),
fEHom(A, Autg (Idg))

where EX]);P at (A, B) is the 2-subgroupoid of quasi-trivial extensions corresponding to f. Furthermore,

EXfl

L (A, B) = Ex{?

br—qt(A’ B) if and only if fo = f10(Z) for some Z € Inv(B).
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The Pontryagin-Whitehead maps (8.42) and (8.44) in this situation are given by
PWé(f)(Z)(ac) = [(%) 2(2) C2(2),2(x)> Z € Hom(A, Inv(Zsym(B))), (8.52)

and

PWBQ(f)(L)($7y,Z7w) = CLy y, Lz > (8.53)
PWg (D) (,yl2) = 1, (8.54)
PWE 5 (L)(aly,2) = f(2)r,., L€ Hp (A Inv(Zeym(B))), (8.55)

for all z,y, z,w € A.

Corollary 8.37. There is a fibration F' — WO(EX{;r_qt (A, B)) — B, where the base B is the set of zeroes
of PWg(f) and the fiber F' is the cokernel of PWé(f).

Thus, quasi-trivial A-extensions of B are obtained by choosing a homomorphism f : A — Autg(Idg),
deforming (“zesting”) the tensor product and constraints of B(f) by means of L € Z2 (A, Inv(Zsym(B)))
2

such that PWp
(w,6) € Z2 (A, k*). Corollary gives a description of equivalence classes of such extensions.

(L) = 0 via (8.38) - (8.41), and then twisting the result by means of a braided 3-cocycle
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