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Abstract

We classify various types of graded extensions of a finite braided tensor category B in terms of its

2-categorical Picard groups. In particular, we prove that braided extensions of B by a finite group

A correspond to braided monoidal 2-functors from A to the braided 2-categorical Picard group of

B (consisting of invertible central B-module categories). Such functors can be expressed in terms

of the Eilnberg-Mac Lane cohomology. We describe in detail braided 2-categorical Picard groups of

symmetric fusion categories and of pointed braided fusion categories.
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1 Introduction and synopsis

1.1 Extensions of tensor categories

In this paper we work over an algebraically closed field k. All tensor categories are assumed to be k-linear

and finite [18].

Let B be a tensor category. An extension of B is an embedding of B into a tensor category C i.e. a

fully faithful tensor functor ι : B → C. We will identify B with its image in C and use notation B ⊂ C

to denote an extension. An isomorphism between extensions ι1, ι2 : B → C is a tensor autoequivalence

F : C → C such that F ◦ ι1 = ι2.

When B is braided (or symmetric) there are several types of extensions reflecting different “amounts

of commutativity” of C. Namely, we say that an extension ι : B → C is

• central if there is a lifting tensor functor L : B → Z(C) such that ι coincides with the composition

B L−→ Z(C)
Forget−−−−→ C, where Z(C) is the center of C and Forget : Z(C)→ C is the forgetful functor;

• braided if C is braided;

• symmetric if C is symmetric.

The extending tensor category C can be viewed as a B-module category. Furthermore, the tensor

product of C equips it with a structure of a pseudo-monoid [12] in a monoidal 2-category M consisting of

certain B-modules. Commutativity properties of B, C and the type of an extension B ⊂ C are reflected

in the choice of B-modules in M and in the properties of the pseudo-monoid C. These properties are

summarized in Table 1.

In this paper, for a tensor category D we denote by Bimod(D) the monoidal 2-category of D-bimodule

categories [23]. For a braided tensor category B we denote by Mod(B) the monoidal 2-category of B-

module categories [10, 23] (it can be viewed as a monoidal 2-subcategory of Bimod(B)) and Modbr(B)

the braided monoidal 2-category of braided B-module categories. For a symmetric tensor category E
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Extension B ⊂ C 2-category M of B-modules C

tensor monoidal 2-category Bimod(B) pseudo-monoid

central monoidal 2-category Mod(B) pseudo-monoid

braided braided monoidal 2-category Modbr(B) braided pseudo-monoid

symmetric symmetric monoidal 2-category Modsym(B) symmetric pseudo-monoid

Table 1: Extensions B ⊂ C as pseudo-monoids in a monoidal 2-category M.

we denote byModsym(E) the symmetric monoidal 2-category of symmetric E-module categories1. By

definition [21, 5, 2], a braided B-module category is equipped with a natural collection of isomorphisms

coherently extending the braiding on B, see Definition 4.1. Braided module categories turn out to play

an important role in 4d topological field theory and factorization homology. In Theorem 4.11 we show

that the 2-category Modbr(B) of braided module categories is braided 2-equivalent to the center (in the

sense of [1]) of Mod(B):

Modbr(B) ∼= Z(Mod(B)). (1.1)

1.2 Graded extensions and monoidal 2-functors to 2-categorical groups

We focus on extensions of finite braided tensor categories graded by finite groups.

Let G be a group. A G-extension of a tensor category D is an extension D ⊂ C together with a

faithful G-grading of C such that D is the trivial component. In other words, C admits a decomposition

C =
⊕
g∈G

Cg (1.2)

such that C1 = D and the tensor multiplication of C maps Cx× Cy to Cxy for all x, y ∈ G. An equivalence

of G-extensions is an equivalence of extensions respecting the grading.

In [23] G-extensions of a tensor category D were classified by means of the Brauer-Picard 2-categorical

group BrPic(D) of invertible D-bimodule categories. Namely, it was shown that extensions (1.2) corre-

spond to monoidal 2-functors G→ BrPic(D). As a result, equivalence classes of such extensions can be

described in terms of certain cohomology groups associated to a homomorphism G→ BrPic(D).

This paper provides a classification of various types of G-extensions (where G is an Abelian group)

of a braided tensor category B.

By a 2-categorical group (respectively, braided or symmetric 2-categorical group) we understand a

monoidal (respectively, braided or symmetric monoidal 2 category) in which every 0-cell is invertible

with respect to the tensor product, every 1-cell is an equivalence, and every 2-cell is an isomorphism. For

1For fusion categories, these 2-categories of module categories are fusion 2-categories [16].
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a monoidal 2-category M the set of its invertible objects is a 2-categorical group which we will denote

by Inv(M).

For the monoidal 2-categories Bimod(B), Mod(B), Modbr(B) and Modsym(B) (for symmetric B)

introduced above the 2-categorical groups of invertible objects

BrPic(B) = Inv(Bimod(B)) (1.3)

Pic(B) = Inv(Mod(B)), (1.4)

Picbr(B) = Inv(Modbr(B)), (1.5)

Picsym(B) = Inv(Modsym(B)), (1.6)

are called the Brauer-Picard, Picard, braided Picard, and symmetric Picard 2-categorical group, respec-

tively. These 2-categorical groups play the key role in our study of extensions of tensor categories.

The main results of this paper concerning graded extensions (see Chapter 8) can be stated as follows:
the groupoid of

G-extensions of B

of a given type




the groupoid of

corresponding monoidal 2-functors

between 2-categorical groups G→ G

 (1.7)

for an appropriate 2-categorical group G. These categorical 2-groups and the correspondence between

different types of G-extensions and monoidal 2-functors G→ G are given in Table 2.

Extensions B ⊂ C 2-categorical group G 2-functors G→ G

tensor 2-categorical group BrPic(B) monoidal

central 2-categorical group Pic(B) monoidal

braided braided 2-categorical group Picbr(B) braided

symmetric symmetric 2-categorical group Pic(B) symmetric

Table 2: G-extensions B ⊂ C and corresponding monoidal 2-functors.

1.3 Homotopy groups and invariants of 2-categorical groups

Let G be a 2-categorical group with the identity object I. We introduce its homotopy groups as follows:

π0(G) = the group of isomorphism classes of objects (0-cells) of G, (1.8)

π1(G) = AutG(I), the group of isomorphism classes of 1-automorphisms of I, (1.9)

π2(G) = Aut(IdI), the group of 2-automorpshisms of the identity 1-automorphism of I. (1.10)
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The multiplication of π0(G) is given by the tensor product of G and the multiplication of π1(G), π2(G)

is the composition of automorphisms.

These homotopy groups come equipped with additional structure, which we refer to as the standard

invariants, namely a π0(G)-action on πm(G),

π0(G)× πm(G)→ πm(G) m = 0, 1, 2 (1.11)

given by the conjugation with IdX for X ∈ π0(G) (this action is used while making sense of the cohomology

groups below) and the first and the second canonical classes

αG ∈ H3(π0(G), π1(G)) and qG ∈ H3
br(π1(G), π2(G)). (1.12)

Part of the properties of the standard invariants is that the second canonical class is invariant under the

π0(G)-action.

Here and in what follows we denote by

Hn
br(A,M) := Hn+1(A, 2;M) and Hn

sym(A,M) := Hn+3(A, 4;M) (1.13)

the Eilenberg-Mac Lane cohomology [19] of level 2 and 4, respectively. Note that H3
br(A,M) is isomorphic

to the group of quadratic functions from A to M .

For a braided 2-categorical group G the π0(G)-action (1.11) is trivial. The canonical classes get

promoted to

αG ∈ H3
br(π0(G), π1(G)) and qG ∈ H3

sym(π1(G), π2(G)). (1.14)

An additional structure is the Whitehead products

πn(G)× πm(G)→ πn+m+1(G), n,m = 0, 1, 2. (1.15)

Note that the product π0(G)× π0(G)→ π1(G) is determined by the first canonical class (as the polar-

ization of the quadratic function α).

For a symmetric 2-categorical group G all Whitehead products are zero and the canonical classes are

αG ∈ H3
sym(π0(G), π1(G)) and qG ∈ H3

sym(π1(G), π2(G)). (1.16)

For a tensor category D the homotopy groups and standard invariants of the 2-categorical group

BrPic(D) were examined in [23]. One has

π0(BrPic(D)) = BrPic(D), π1(BrPic(D)) = Inv(Z(D)), π2(BrPic(D)) = k×.

It was shown there that the BrPic(D)-action on Inv(Z(D)) (i.e. the π0-action on π1) comes from the

isomorphism BrPic(D) ' Autbr(Z(D)) and that the second canonical class is given by the quadratic
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function

π1 = Inv(Z(D))→ π2 = k× : Z 7→ cZ,Z ,

where c denotes the braiding of Z(D).

The homotopy groups of 2-categorical groups introduced in (1.4) - (1.6) are

π0(Pic(B)) = Pic(B), π1(Pic(B)) = Inv(B), π2(Pic(B)) = k×,

π0(Picbr(B)) = Picbr(B), π1(Picbr(B)) = Inv(Zsym(B)), π2(Picbr(B)) = k×,

π0(Picsym(E)) = Picsym(E), π1(Picbr(E)) = Inv(E), π2(Picbr(E)) = k×,

where B is a braided tensor category, and E is a symmetric tensor category.

We investigate the standard invariants of the braided 2-categorical group Picbr(B) and of the symmet-

ric 2-categorical group Pic(E). For a braided tensor B we describe the Whitehead product (Proposition

5.3)

π0 × π1 = Picbr(B)× Inv(Zsym(B)) → π2 = k× (1.17)

and the first canonical class (viewed as a quadratic function)

Q : π0 = Picbr(B) → π1 = Inv(Zsym(B)). (1.18)

For a symmetric tensor category E the first canonical class becomes a homomorphism

Q : Picsym(E) → Inv(E)2 (1.19)

into the 2-torsion of the group of invertible objects of E .

1.4 Cohomological description of (braided) monoidal 2-functors

In view of the identification (1.7) it is desirable to have a good description of various types of monoidal

2-functors G→ G. We present one in Section 2 in terms of the Eilenberg-Mac Lane cohomology.

Let G be a 2-categorical group (respectively, braided, symmetric 2-categorical group). Denote

by 2-Fun(G,G) (respectively, 2-Funbr(G,G), 2-Funsym(G,G)) the 2-groupoid of monoidal (respec-

tively, braided, symmetric) 2-functors G → G. Such a functor restricts on objects to a map from

π0(2-Fun(G,G)) (respectively, from π0(2-Funbr(G,G)), π0(2-Funsym(G,G))) to Hom(G, π0(G))), i.e.

from the set of isomorphism classes of 2-functors to the set of group homomorphisms. A homomorphism

φ : G → π0(G) is in the image of this map (i.e. φ can be lifted to a monoidal (respectively, braided,

symmetric) 2-functor if and only if the following two obstructions vanish.
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The first obstruction is the image of φ under the homomorphism

o3 : Hom(G, π0(G))→ H3(G, π1(G)) (1.20)

(respectively, Hom(G, π0(G))→ H3
br(G, π1(G)), Hom(G, π0(G))→ H3

sym(G, π1(G))), given by the pull-

back along φ of the first canonical class αG defined in (1.12) (respectively, in (1.14), (1.16)). The

obstruction o3(φ) vanishes if and only if φ can be lifted to a monoidal (respectively, braided, symmetric)

functor from G to the 1-categorical truncation Π≤1(G) of G.

Suppose that a lifting F : G → Π≤1(G) of φ is chosen. Then the second obstruction is the image of

F under the map

o4 : Fun(G, Π≤1(G)→ H4(G, π1(G)) (1.21)

(respectively, Funbr(G, Π≤1(G)) → H4
br(G, π1(G)), Funsym(G, Π≤1(G)) → H4

sym(G, π1(G))). The

obstruction o4(F ) measures the failure of extending F to a monoidal (respectively, braided, symmetric)

2-functor G → G. When o4(F ) vanishes, the equivalence classes of such 2-functors extending F form a

torsor over the cokernel of a certain group homomorphism H1(G, π1(G))→ H3(G, π2(G)) (respectively,

H1(G, π1(G))→ H3
br(G, π2(G)), H1(G, π1(G))→ H3

sym(G, π2(G))) depending on F .

1.5 Computation of standard invariants and groups of extensions

For a non-degenerate braided fusion category B there is a monoidal 2-equivalence Mod(Vect) = Modbr(B),

see Proposition 4.17. In particular, the braided 2-categorical Picard group Picbr(B) is “trivial” in this

case and so (as is well known) is the extension theory: any braided graded extension of B splits into the

tensor product of B and a pointed braided fusion category.

Thus, the most interesting braided Picard 2-categorical groups come from degenerate tensor categories.

In Section 6 we compute the homotopy groups and standard invariants of symmetric fusion categories.

For example, the homotopy groups of the braided 2-categorical group Picbr(Rep(G)), where G is a finite

group, are

π0 = H2(G, k×)× Z(G), π1 = H1(G, k×), π2 = H0(G, k×) = k×,

where Z(G) denotes the center of G. The first canonical class (1.18) is the quadratic function

H2(G, k×)× Z(G) → H1(G, k×), (γ, z) 7→ γz(−) =
γ(z,−)

γ(−, z)

and the second canonical class is trivial.

The Whitehead product (1.17) is

(H2(G, k×)× Z(G))×H1(G, k×) → k×, (γ, z)× χ 7→ χ(z).
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We determine the corresponding homotopy groups and maps for a general (not necessarily Tannakian)

symmetric fusion category in Section 6.3.

We show that the groupoid of symmetric A-extensions of a symmetric tensor category E has a structure

of a symmetric 2-categorical group Exsym(A, E). We describe an exact sequence that can be used to

compute π0(Exsym(A, E)) in Section 2.8. We also determine the group of symmetric extensions of a

symmetric fusion category in Theorem 8.26.

1.6 Organization

Section 2 contains the technical tools we need. We include a detailed description of the Eilneberg-Mac

Lane cohomology [19] in low degrees and the notions of braided and symmetric monoidal 2-categories and

2-functors between them [12, 28, S]. An important observation is that the axioms of such categories and

functors can be viewed as “non-commutative versions” of the higher Eilneberg-Mac Lane cocycle equations

(e.g., compare equations (2.7) -(2.10) with commuting polytopes (2.26) - (2.29)). This is parallel to the

pentagon axiom of a monoidal category being a non-commutative version of a 3-cocycle equation. Of a

special use to us are (braided, symmetric) 2-categorical groups, characterized by invertibility of their cells

with respect to the tensor product. Monoidal (braided, symmetric) 2-functors from a finite group (viewed

as discrete 2-categorical group) to (braided, symmetric) 2-categorical groups can be obtained as liftings of

usual (braided, symmetric) monoidal functors, provided that certain cohomological obstructions vanish.

These obstructions for monoidal (respectively, braided, symmetric) 2-functors and parameterization of

liftings are described in Section 2.5 (respectively, Section 2.6, Section 2.7). Symmetric monoidal 2-functors

as above form a symmetric 2-categorical group. Its group of isomorphism classes of objects fits into a

certain exact sequence (Theorem 2.38).

In Section 3 we recall the 2-category Mod(B) of module categories over a finite tensor category B.

When B is braided, Mod(B) is a monoidal 2-category. Its tensor product can be defined either by a

universal property or by an explicit construction, see Remark 3.6.

Section 4 deals with braided module categories over a braided tensor category B introduced and studied

by Enriquez [21], Brochier [5], and Ben-Zvi, Brochier, and Jordan [2]. In such categories the action of B

has an additional symmetry compatible with the braiding of B (Definition 4.1). Equivalently, a module

braiding on a B-module category M is the same thing as a natural tensor isomorphism between the α-

inductions [4] α±M : Bop → EndB(M) (Proposition 4.9). The 2-category Modbr(B) of braided B-module

categories is 2-equivalent to the 2-center of Mod(B) (Theorem 4.11). In particular, Modbr(B) is braided.

The easiest examples of braided B-module categories come from tensor automorphisms of IdB, we describe

these in Section 4.3. We also prove in Proposition 4.17 that Modbr(B) ∼= Modbr(Vect) when B is a
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non-degenerate braided fusion category. Finally, module categories over a symmetric tensor category E

can be equipped with the identity E-module braiding and so they form a symmetric monoidal 2-category

Modsym(E). We prove in Proposition 4.21 that the induction Modsym(Zsym(B)) → Modbr(B) of

braided module categories from the symmetric center of B is a braided monoidal 2-functor.

In Section 5 we describe various 2-categorical Picard groups associated to tensor categories. These

are parts of the corresponding monoidal 2-categories consisting of invertible module categories. The

new ones are the braided Picard 2-categorical group Picbr(B) = Inv(Modbr(B)) of a braided tensor

category B and the symmetric Picard 2-categorical group Picsym(E) = Inv(Modsym(E)) of a symmetric

tensor category E . We describe their homotopy groups, canonical classes, and Whitehead brackets.

Proposition 5.4 provides an exact sequence featuring the group π0(Picbr(B)) that can be seen as a

sequence of homotopy groups of a certain fibration. Here we also describe Azumaya algebras in braided

tensor categories, as they give a convenient description of invertible module categories.

Section 6 is dedicated to the braided 2-categorical Picard group of a symmetric fusion category E .

We recall the computation of Pic(E) due to Carnovale [7] and use it to describe the braided categorical

Picard group of E and its canonical classes.

In Section 7 we compute the braided categorical Picard group of a pointed braided fusion category

B. We show that in this case there is a braided monoidal equivalence of braided categorical groups

Picbr (B) ∼= Picbr (Zsym(B)), where Zsym(B) is the symmetric center of B, see Proposition 7.1.

Finally, Section 8 contains a classification of graded extensions. Tensor (respectively, central, braided,

and symmetric) graded extensions are classified in Theorem 8.5 (respectively, Theorem 8.13, Theo-

rem 8.18, and Theorem 8.24). We compute the group of symmetric extensions of a symmetric fusion

category in Theorem 8.26. Here we also explain that the zesting procedure studied in [14] can be under-

stood as a deformation of a braided monoidal functor A→ Picbr (B) and compute Pontryagin-Whitehead

obstructions to existence of extensions in this case.
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2 Higher categorical groups and group cohomology

2.1 Eilenberg-Mac Lane cohomology

We denote by C∗(A,M) the normalized standard complex of the abelian group A with coefficients in the

trivial A-module M .

Remark 2.1. We will refer to cochain complexes for the second, third, and fourth Eilenberg-Mac Lane

cohomology groups as braided, sylleptic, and symmetric, respectively. This is justified since such cochains

give rise to braided, sylleptic, and symmetric 2-categorical groups, see Sections 2.2 and 2.4. The explicit

descriptions of these complexes are recalled below.

We denote by C∗br(A,M) = C∗+1(K(A, 2),M) the normalised standard complex computing the second

Eilenberg-Mac Lane cohomology [19]. The first few terms of the cochain complex C∗br(A,M) are as follows:

C0
br(A,M) = C0(A,M) = M, C1

br(A,M) = C1(A,M), C2
br(A,M) = C2(A,M),

C3
br(A,M) = C3(A,M)⊕ C2(A,M) = {(a(−,−,−), a(−|−))},

C4
br(A,M) = C4(A,M)⊕ C3(A,M)⊕ C3(A,M) = {(a(−,−,−,−), a(−,−|−), a(−|−,−))},

C5
br(A,M) = C5(A,M)⊕ C4(A,M)⊕ C4(A,M)⊕ C4(A,M)⊕ C3(A,M)

= {(a(−,−,−,−,−), a(−,−,−|−), a(−,−|−,−), a(−|−,−,−), a(−| − |−))}

with the differentials

d : C2
br(A,M)→ C3

br(A,M)

d(a)(x, y, z) = a(y, z)− a(xy, z) + a(x, yz)− a(x, y), (2.1)

d(a)(x|y) = a(y, x)− a(x, y); (2.2)

d : C3
br(A,M)→ C4

br(A,M)

d(a)(x, y, z, w) = a(y, z, w)− a(xy, z, w) + a(x, yz, w)− a(x, y, zw) + a(x, y, z), (2.3)

d(a)(x, y|z) = a(y|z)− a(xy|z) + a(x|z) + a(x, y, z)− a(x, z, y) + a(z, x, y), (2.4)

d(a)(x|y, z) = a(x|y)− a(x|yz) + a(x|z)− a(x, y, z) + a(y, x, z)− a(y, z, x), (2.5)

and

d : C4
br(A,M)→ C5

br(A,M)
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d(a)(x, y, z, w, u) = a(y, z, w, u)− a(xy, z, w, u) + a(x, yz, w, u)

− a(x, y, zw, u) + a(x, y, z, wu)− a(x, y, z, w),
(2.6)

d(a)(x|y, z, w) = a(x|z, w)− a(x|yz, w) + a(x|y, zw)− a(x|y, z)

− a(x, y, z, w) + a(y, x, z, w)− a(y, z, x, w) + a(y, z, w, x),
(2.7)

d(a)(x, y, z|w) = a(y, z|w)− a(xy, z|w) + a(x, yz|w)− a(x, y|w)−

a(x, y, z, w) + a(x, y, w, z)− a(x,w, y, z) + a(w, x, y, z),
(2.8)

d(a)(x, y|z, w) = a(y|z, w)− a(xy|z, w) + a(x|z, w)− a(x, y|w) + a(x, y|zw)− a(x, y|z)

+ a(x, y, z, w)− a(x, z, y, w) + a(z, x, y, w)

+ a(x, z, w, y)− a(z, x, w, y) + a(z, w, x, y),

(2.9)

d(a)(x|y|z) = −a(x, y|z) + a(y, x|z)− a(x|y, z) + a(x|z, y), x, y, z, w ∈ A. (2.10)

Example 2.2. The first few terms of the cochain complex C∗br(Z/2Z,M) are

M
0 // M

d1 // M
0 // M2 d3 // M3 d4 // M5 // ...

where Mn is the direct sum of n copies of M and

d1(m) = 2m

d3(m, l) = (2m, 2l +m, 2l −m)

d4(m, l, k) = (0, 0, 2(m− l + k), 0, 0)

Thus the first few braided cohomology groups are

H0
br(Z/2Z,M) = M,

H1
br(Z/2Z,M) = M2,

H2
br(Z/2Z,M) = M/2M,

H3
br(Z/2Z,M) = M4,

H4
br(Z/2Z,M) = M2 ⊕M/4M.

Here Ms = {m ∈M | sm = 0}.

We denote by C∗syl(A,M) = C∗+2(K(A, 3),M) the normalised standard complex computing the third

Eilenberg-Mac Lane cohomology [19]. The first few terms of the cochain complex C∗syl(A,M) are as
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follows:

C0
syl(A,M) = M, C1

syl(A,M) = C1(A,M),

C2
syl(A,M) = C2(A,M), C3

syl(A,M) = C3
br(A,M),

C4
syl(A,M) = C4

br(A,M)⊕ C2(A,M) = {(a(−,−,−,−), a(−,−|−), a(−|−,−), a(−||−))},

C5
syl(A,M) = C5

br(A,M)⊕ C3(A,M)⊕ C3(A,M) =

= {(a(−,−,−,−,−), a(−,−,−|−), a(−,−|−,−), a(−|−,−,−),

a(−| − |−), a(−,−||−), a(−||−,−))}

with the additional differentials

d : C3
syl(A,M)→ C4

syl(A,M)

d(a)(x||y) = a(x|y) + a(y|x), (2.11)

and

d : C4
syl(A,M)→ C5

syl(A,M)

d(a)(x||y, z) = a(x|y, z) + a(y, z|x) + a(x||y) + a(x||z)− a(x||yz), (2.12)

d(a)(x, y||z) = a(x, y|z) + a(z|x, y) + a(x||z) + a(y||z)− a(xy||z). (2.13)

Example 2.3. The first few sylleptic cohomology groups of Z/2Z are

H0
syl(Z/2Z,M) = M,

H1
syl(Z/2Z,M) = M2,

H2
syl(Z/2Z,M) = M/2M,

H3
syl(Z/2Z,M) = M2,

H4
syl(Z/2Z,M) = M2 ⊕M/2M.

We denote by C∗sym(A,M) = C∗+3(K(A, 4),M) the normalised standard complex computing the

fourth Eilenberg-Mac Lane cohomology [19]. The first few terms of the cochain complex C∗sym(A,M) are

as follows:

C0
sym(A,M) = M, C1

sym(A,M) = C1(A,M), C2
sym(A,M) = C2(A,M),

C3
sym(A,M) = C3

br(A,M), C4
sym(A,M) = C4

syl(A,M),

C5
sym(A,M) = C5

syl(A,M)⊕ C2(A,M) =

= {(a(−,−,−,−,−), a(−,−,−|−), a(−,−|−,−), a(−|−,−,−),

a(−| − |−), a(−,−||−), a(−||−,−), a(−|||−))}
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with the additional differential

d : C4
sym(A,M)→ C5

sym(A,M)

d(a)(x|||y) = a(x||y)− a(y||x), x, y ∈ A. (2.14)

Example 2.4. The first few level 4 cohomology groups of Z/2Z are the same as the symmetric coho-

mology

Hn
sym(Z/2Z,M) = Hn

syl(Z/2Z,M), n ≤ 4.

Example 2.5. It is immediate from the definitions that

H0
br(A, M) = H0

syl(A, M) = H0
sym(A, M) ∼= M,

H1
br(A, M) = H1

syl(A, M) = H1
sym(A, M) ∼= Hom(A, M),

H2
br(A, M) = H2

syl(A, M) = H2
sym(A, M) ∼= Ext(A, M).

It was shown in [20] that there are isomorphisms

H3
br(A, M) ∼= Quad(A, M), H3

syl(A, M) = H3
sym(A, M) ∼= Hom(A, M2),

given by

(a(−,−,−), a(−|−)) 7→ q, where q(x) = a(x|x), x ∈ A.

Here Quad(A,M) is the group of quadratic maps and M2 = {m ∈M | 2m = 0} is the 2-torsion subgroup

of M .

The 4th cohomology groups are especially important for our purposes. Let us now assume that M is

divisible. The following results are from [20].

Example 2.6. There is an isomorphism

θsym : H4
sym(A, M)

∼−→ Hom(A2, M) (2.15)

assigning to a symmetric 4-cocycle (a(−,−,−,−), a(−,−|−), a(−|−,−), a(−||−)) the homomorphism

A2 →M : x 7→ a(x, x|x)− a(x|x, x)− a(x, x, x, x). (2.16)

There is an isomorphism

θsyl : H4
syl(A, M)

∼−→ Hom(A2, M)⊕ Hom(Λ2A, M), (2.17)

whose first component is given by (2.16) and the second component assigns to a sylleptic 4-cocycle

(a(−,−,−,−), a(−,−|−), a(−|−,−), a(−||−)) the homomorphism

Λ2A→M : x ∧ y 7→ a(x||y)− a(y||x), (2.18)
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which is the obstruction for a sylleptic 4-cocycle to be symmetric.

Finally, there is a homomorphism

θbr : H4
br(A, M) −→ Ext(A, Hom(A, M)), (2.19)

which is the obstruction for a braided 4-cocycle to have a sylleptic structure. It is defined as follows.

Let (a(−,−,−,−), a(−,−|−), a(−|−,−)) be a braided 4-cocycle. For any x ∈ A define a function bx ∈

C2(A, M) by

bx(y, z) = a(x|y, z) + a(y, z|x), x, y, z ∈ A.

It follows from formulas (2.6) -(2.10) and divisibility of M that bx is a 2-coboundary. That is there exists

a function a(−||−) ∈ C2(A, M) such that (2.12) vanishes. The function

A3 →M : (x, y, z) 7→ a(x||y)− a(y||x) + a(x||z)− a(z||x)− a(x||yz) + a(yz||x)

is multiplicative in x and, hence, defines a symmetric 2-cocycle g on A with values in Hom(A, M). This

2-cocycle is cohomologically trivial if and only if the given braided 4-cocycle admits a sylleptic structure.

We set θbr(a(−,−,−,−), a(−,−|−), a(−|−,−)) to be the class of g in Ext(A, Hom(A, M)).

The kernel of (2.19) is isomorphic to Hom(A2, M) via (2.16).

2.2 Higher braided monoidal categories and functors

Semistrict monoidal 2-categories were defined by Kapranov and Voevodsky [28] and also by Day and

Street [12] under the name of Gray monoids. It was shown that every monoidal 2-category is equivalent

to a semistrict one. We refer the reader to these papers and to [33] for basic definitions. All monoidal

2-categories considered in this paper will be assumed semistrict.

Let F ,H : M → N be 2-functors between 2-categories. Recall that a pseudo-natural transformation

P : F → H is a collection of 1-morphisms PM : F(M)→ H(M) and invertible 2-cells

F(M)

F(F )

��

PM // H(M)

H(F )

��
F(N )

PN // H(N ),

PF +3

(2.20)

for all objects M and 1-morphisms F : M→ N in M such that PIdM = IdPM and

PF◦G = PF ◦ PG (2.21)

for all composable 1-morphisms F and G.
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Let P,Q : F → H be pseudo-natural transformations between 2-functors. A modification η : P → Q

is a collection of 2-cells

F(M)

PM

++

QM

33 H(M),ηM
��

(2.22)

for all objects M in M, natural in 1-morphisms in M.

Definition 2.7. A (semistrict) braided monoidal 2-category [28, 8, 1] consists of a (semistrict) monoidal

2-category (M, �, I), where � is the tensor product, equipped with invertible 2-cells

M � N

M�W

��

Z�N //M′ � N

M′�W

��
M � N ′ Z�N ′ //M′ � N ′,

�Z,W +3

(2.23)

for any Z ∈M(M, M′), W ∈M(N , N ′), and I is the unit object,

together with a pseudo-natural equivalence (braiding)

BM,N : M � N → N � M, M,N ∈M,

invertible 2-cells

M � N

BM,N

��

Z�N //M′ � N

BM′,N

��

M � N

BM,N

��

M�W //M � N ′

BM′,N

��
N � M N�Z // N � M′, N � M W�M // N ′ � M,

BZ,N +3 BM,W +3

(2.24)

satisfying BZ1,N ◦BZ2,N = BZ1⊗Z2,N and BM,W1
◦BM,W2

= BM,W1⊗W2
, and two invertible modifications2

LNM
BL,N

((

MLN
BL,N

((
LMN

BM,N

66

BLM,N

// NLM LMN

BL,M

66

BL,MN

//MNL,

βL,M|N
��

βL|M,N
��

(2.25)

2Below we omit the identity functors and the tensor product symbol �, so we write MN for M � N .
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satisfying the following axioms3:

LKMN

BK,M

��

KLMN
BK,Loo

BK,LMN

��

BK,LM

xx

LKMN

BK,M

��
BK,MN

&&

KLMN
BK,Loo

BK,LMN

��

=

LMKN
BK,N

// LMNK LMKN
BK,N

// LMNK,

βK|L,M

"*

βK|LM,N

+3

βK|M,N

4<

βK|L,MN +3

(2.26)

KLNM

BL,N

��

KLMN
BM,Noo

BKLM,N

��

BLM,N

xx

KLNM

BL,N

��
BKL,N

&&

KLMN
BM,Noo

BKLM,N

��

=

KNLM
BK,N

// NKLM LMKN
BK,N

// NKLM,

βL,M|N

"*

βK,LM|N

+3

βK,L|N

4<

βKL,M|N +3

(2.27)

KLMN
BL,M

xx

�� ��

BKL,M

&&

KLMN
BL,M

xx

BKL,M

&&
KMLN

��

MKLN

��

KMLN

��

//MKLN

��

��

=

KMNL //

&&

MNKL KMNL

&&

MNKL

MKNL

88

MKNL,

88

βL|M,N

#+
βKL|M,N
s{

βK,L|MN

4<

βK|M,N

KS

βK,L|M .6

�BK,M,BL,N
(0

βK,L|N

4<

(2.28)

3Equalities of 2-cell compositions in this paper can be used to represent commuting polytopes [27]. These polytopes are

recovered by gluing the diagrams on both sides of equality along the perimeter
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KLM

yy

��

%%

KLM

yy

��

%%
LKM

��

KML

��

��

LKM

��

��

KML

��

=

LMK

$$

MKL

zz

LMK

%%

MKL

yy
MLK MLK,

βK|L,M
"*

βK|M,Lbj βL,K|M 4<

βK,L|M
t|

BK,BL,N

��

BBK,L,M

��

(2.29)

for all K, L, M, N ∈M.

Definition 2.8. A sylleptic monoidal 2-category is a braided monoidal 2-category M with an invertible

syllepsis modification

MN

BM,N

++
NM,

BN ,M

kk τM,N
��

(2.30)

i.e. τM,N is an invertible modification between BN ,MBM,N and IdM�N such that

LNM BL,N

��

LNM BL,N

��

BN ,M

||

=

LMN

BM,N
--

BLM,N // NLM

BN ,LM

cc LMN

BM,N
--

NLM,

BN ,LM

cc

BN ,L

bb

βL,M|N

��

τLM,N

��

βN |L,M

��

τN ,M

X`
τN ,L

>F
(2.31)

MLN BL,N

��

MLN BL,N

��

BM,L

||

=

LMN

BL,M
--

BL,MN //MNL

BMN ,L

cc LMN

BL,M
--

MNL,

BMN ,L

cc

BN ,L

bb

βL|M,N

��

τL,MN

��

βM,N |L

��

τM,L

X`
τN ,L

?G
(2.32)

commute for all objects L, M, N in M.

Definition 2.9. A sylleptic braided monoidal 2-category M is called symmetric if its syllepsis (2.30)
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satisfies

MN

BM,N

!!

BM,N

99NM
BN ,Moo = MN

BM,N

!!

BM,N

99NM

τM,N
��

τN ,M
��

IdM�N

��

(2.33)

for all objects M, N in M.

Definition 2.10. A monoidal 2-functor F : M→M′ between monoidal 2-categories is a 2-functor along

with a pseudo-natural equivalence

FM,N : F(M)F(N )→ F(MN ), (2.34)

an equivalence U : F(I)→ I, and invertible modifications

F(L)F(M)F(N )

FL,M

��

FM,N // F(L)F(MN )

FL,MN

��
F(LM)F(N )

FLM,N // F(LMN ),

αL,M,N +3

(2.35)

F(I)F(M)

FI,M

��

U // IF(M)

LF(M)

��

F(M)F(I)

FM,I

��

U // F(M)I,

RF(M)

��

and

F(IM)
F(LM) // F(M), F(MI)

F(RM) // F(M),

λM +3 ρM +3

(2.36)

where L and R denote the unit constraints of M, such that

F(K)F(L)F(M)F(N )
FK,L

tt

FM,N

**

F(K)F(L)F(M)F(N )
FK,L

tt

FM,N

**
FL,M

��

F(KL)F(M)F(N )

FKL,M

��

FM,N

**

F(K)F(L)F(MN )

FL,MN

��

FK,L

tt

F(KL)F(M)F(N )

FKL,M

��

F(K)F(L)F(MN )

FL,MN

��

F(KL)F(MN )

FKL,MN

��

= F(K)F(LM)F (N )
FK,LM

tt

FLM,N

**
F(KLM)F(N )

FKLM,N **

F(K)F(LMN )

FK,LMNtt

F(KLM)F(N )

FKLM,N **

F(K)F(LMN )

FK,LMNtt
F(KLMN ) F(KLMN )

αKL,M,N

&.
αK,L,MN

��

�FK,L,FM,N +3

αK,L,M

��

αL,M,N

&.

αK,LM,N +3

(2.37)
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and

F(M)F(I)F(N )
FM,I

uu

FI,N

))

F(M)F(I)F(N )
FM,I

uu

FI,N

))
U

��

F(MI)F(N )

F (RM)

��

FMI,N

))

F(M)F(IN )

F(LN )

��

FM,IN

uu

F(MI)F(N )

F(RM)

��

F(M)F(IN )

F(LN )

��

F(MIN )

F(RM) F (LN )

��

= F(M)IF(N )
RF(M)

uu

LF(N)

))
F(M)F(N )

FM,N ))

F(M)F(N )

FM,Nuu

F(M)F(N )

FM,N ))

F(K)F(M)F(N )

FM,Nuu
F(MN ) F(MN )

FRM,IdN

%-

FIdM,LN

qy

αM,I,N +3

ρM

��

λN

��

(2.38)

for all K,L,M,N ∈M.

Definition 2.11. A braided monoidal 2-functor F : M→M′ between braided monoidal 2-categories is

a monoidal functor along with an invertible modification

F(M)F(N )

FM,N

��

BF (M),F (N) // F(N )F(M)

FN ,M

��
F(MN )

F (BM,N ) // F(NM)

δM,N +3

(2.39)

such that

F(L)F(MN )

))

F(L)F(MN )

''

��

F(L)F(M)F(N )

55

))

��

��

F(LMN )

��

F(L)F(M)F(N )

55

��

F(LMN )

��

��

F(LM)F(N )

55

))
F(ML)F(N )

''
F(M)F(L)F(N )

55

))

��

F(MLN )

��

= F(MLN )

��

F(M)F(LN )

77

��

F(MN )F(L)

''
F(M)F(N )F(L)

))

F(MNL) F(M)F(N )F(L)

))

55

F(MNL)

F(M)F(NL)

55

F(M)F(NL)

77

α−1
L,M,N

��

αM,L,N

��

δL,M

��

FBL,M,N

��

FM,BL,N ��

δL,N

qy

β′F (L)|F (M),F (N)ks

αM,N ,L

��

F (βL|M,N )
ks

δL,MN #+

B′F(L),FM,N

qy

(2.40)
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and

F (LM)F (N )

))

F (LM)F (N )

''

��

F (L)F (M)F (N )

55

))

��

��

F (LMN )

��

F (L)F (M)F (N )

66

��

F (LMN )

��

��

F (L)F (MN )

66

))
F (L)F (NM)

''
F (L)F (N )F (M)

66

))

��

F (LNM)

��

= F (LNM)

��

F (LN )F (M)

77

��

F (N )F (LM)

''
F (N )F (L)F (M)

))

F (NLM) F (N )F (L)F (M)

))

66

F (NLM)

F (NL)F (M)

66

F (NL)F (M)

77

αL,M,N

��

α−1
L,N ,M

��

δM,N

��

FL,BN ,M

��

FBL,N ,M ��

δL,N

qy

β′F (L),F (M)|F (N)ks

α−1
N ,L,M

��

F (βL,M|N )
ks

δLM,N #+

B′FL,M,F (N)

rz

(2.41)

for all objects L,M,N in M. Here B, B′ denote the braidings on M, M′. We omit 1-cell labels to keep

the diagrams readable.

Definition 2.12. A braided monoidal 2-functor F : M→M′ between sylleptic (respectively, symmetric)

monoidal 2-categories M and M′ is sylleptic (respectively, symmetric) if

F(M)F(N )

B′F(M),F(N)

,,

FM,N

��

F (N )F (M)

FN ,M

��

F(M)F(N )

B′F (M),F (N)

,,

FM,N

��

F(N )F(M)

FN ,M

��

BF(N),F(M)

ll

=

F(MN )

F(BM,N )

++
F(NM)

F(BN ,M)

kk F(MN ) F(NM),

F(BN ,M)

kk

δM,N +3
δN ,M

ks

F (τM,N )
��

τ ′F (M),F (N)
��

(2.42)

for all M, N in M. Here τ, τ ′ are the modification defined in (2.30).

Definition 2.13. Let F ,F ′ : M→M′ be two monoidal functors. A monoidal pseudo-natural transfor-
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mation P : F → F ′ is a pseudo-natural transformation along with an invertible modification

F(L)F(M)

FL,M

��

PLPM // F ′(L)F ′(M)

F ′L,M

��
F(LM)

PLM // F ′(LM)

µL,M +3

(2.43)

such that

F(LM)F(N )
FLM,N

((

F(LM)F(N )
FLM,N

((
PLMPN

��

F(L)F(M)F(N )

FL,M

55

FM,N ))
PLPMPN

��

F(LMN )

PLMN

��

F(L)F(M)F(N )

FL,M

55

PLPMPN

��

F(LMN )

PLMN

��

F(L)F(MN )

FL,MN

66

PLPMN

��

= F ′(LM)F ′(N )

F ′LM,N ((
F ′(L)F ′(M)F ′(N )

F ′M,N ))

F ′(LMN ) F ′(L)F ′(M)F ′(N )

F ′M,N ))

F ′L,M

55

F ′(LMN )

F ′(L)F ′(MN )

F ′L,MN

66

F ′(L)F ′(MN )

F ′L,MN

66

αL,M,N

$,

α′L,M,N

$,

µM,N

��

µL,MN

��

µL,M

��

µLM,N

��

(2.44)

for all L,M,N in M. Here α and α′ denote the monoidal structures of F and F ′.

Definition 2.14. A monoidal pseudo-natural transformation P : F → F ′ between braided monoidal

2-functors is braided if

F(LM)

PLM

''

F(LM)

PLM

''
F(BL,M)

��

F(L)F(M)

FL,M

77

PLPM ''
B′F(L),F(M)

��

F ′(LM)

F ′(BL,M)

��

F(L)F(M)

FL,M

77

B′F(L),F(M)

��

F ′(LM)

F ′(BL,M)

��

F ′(L)F ′(M)

F ′L,M

77

BF′(L),F′(M)

��

= F(ML)

PML ''
F(M)F(L)

PMPL ''

F ′(ML) F(M)F(L)

PMPL ''

FM,L

77

F ′(ML)

F ′(M)F ′(L)

F ′M,L

77

F ′(M)F ′(L)

F ′M,L

77

µL,M

#+

µM,L

#+

B′PL,PM

#+
δ′L,M

��

δM,L

��
PBL,M #+

(2.45)

for all L,M in M. Here δ and δ′ denote the braided structures on F and F ′.

Definition 2.15. A modification η : P → Q between two monoidal pseudo-natural transformations
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P,Q : F → F ′ is monoidal if

F(M)F(N )
FM,N //

PMPN

��

F(MN )

QMN

��

PMN

��

F(M)F(N )
FM,N //

PMPN

��

QMQN

��

F(MN )

QMN

��

=

F ′(M)F ′(N )
F ′M,N

// F ′(MN ) F ′(M)F ′(N )
F ′M,N

// F ′(MN ),

ηMN +3 ηMηN +3µM,N

"*

νM,N

t|

(2.46)

for all M, N ∈ M, where µ and ν are modifications (2.43) defining the monoidal structures on P and

Q, respectively.

2.3 The center of a monoidal 2-category

Let M be a braided monoidal 2-category. Its center Z(M) is a braided monoidal 2-category defined

as follows [1, Section 3]. Objects of Z(M) are triples (N , S, γ) where N is an object of M, S is a

pseudo-natural collection of equivalences (called a half-braiding)

SM : MN → NM, M ∈ A,

and γ is an invertible modification

LNM
SL

((
LMN

SM

66

SLM

// NLM

γL,M��

(2.47)

such that

KLNM

SL

��

KLMN
SMoo

SKLM

��

SLM

xx

KLNM

SL

��

SKL

&&

KLMN
SMoo

SKLM

��

=

KNLM
SK

// NKLM LMKN
SK

// NKLM,

γL,M

"*

γK,LM
+3

γK,L
4<

γKL,M +3

(2.48)

for all K, L, M ∈M.

A morphism between (N , S, γ) and (N ′, S′, γ′) in Z(M) is pair (F, σ), where F : N → N ′ is a

morphism in M and σ is an invertible modification

MN
SM //

F
��

NM

F
��

MN ′
S′M

// N ′M

σM +3

(2.49)
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such that

LNM
SL

((

LNM
SL

))
F
��

LMN
SLM

//

SM

66

F
��

NLM

F
��

= LMN

SM

55

F
��

LN ′M

S′L ))

NLM

F
��

LMN ′
S′LM

// N ′LM LMN ′
S′LM

//
S′M

66

N ′LM.

σLM
+3

σM
19

σL

%-

γL,M��

γ′L,M��

for all L, M in M.

A 2-morphism in Z(M) between (F, σ) and (F ′, σ′) is a 2-cell

N

F

**

F ′

44 N ′,α
��

(2.50)

such that

MN
SM //

F

  

NM

F ′

~~

F

  

MN
SM //

F

  

F ′

~~

NM

F ′

~~

=

MN ′
S′M

// N ′M MN ′
S′M

// N ′M,

α IdM+3 IdMα+3σM

"*

σ′M

t|

(2.51)

for all M in M.

The tensor product in Z(M) is given by

(N , S, γ) � (N ′, S′, γ′) = (NN ′, SS′, γγ′), (2.52)

where NN ′ is the tensor product in M, (SS)′M is defined as the composition

(SS)′M : MNN ′ SM N ′−−−−→ NMN ′
N S′M−−−→ NN ′M,

and (γγ′)L,M is given by the following composition of 2-cells

LNN ′M
SL

''
LNMN ′

S′M

77

SL ''

NLN ′M
S′L

''
LMNN ′

SM

77

SLM

// NLMN ′
S′M

77

S′LM

// NN ′LM

γL,M�� γ′L,M��

�S′M,SL

��

(2.53)

for all L,M ∈M.

The braiding between (N , S, γ) and (N ′, S′, γ′) is given by

(S′N , Σ) : (N , S, γ) � (N ′, S′, γ′)→ (N ′, S′, γ′) � (N , S, γ), (2.54)
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where ΣM is the following composition 2-cell:

MNN ′
SM //

S′N
��

S′MN

))

NMN ′
S′M //

S′NM ))

NN ′M

S′N
��

MNN ′
S′M

// N ′MN
SM

// N ′NM.

γ′M,N 19 γ′N ,M
qy

S′SM��

Let M be a braided monoidal 2 category with braiding BM,N and structure modifications β and γ

(2.25). There is a braided monoidal 2-functor

F : M→ Z(M) : N 7→ (N , B−,N , β−,−|N )

with FN,N ′ : F(N )F(N ′) → F(NN ′) given by (IdNN ′ , β−|N ,N ′) and identity 2-cells α (2.35) and δ

(2.39). See [1, 8] for details.

2.4 2-categorical groups

Recall that a categorical group is a monoidal category in which every object is invertible with respect to

the tensor product and each morphism is an isomorphism.

We call an object P of a monoidal 2-category M invertible if there is another object Q together with

an equivalence P �Q→ I, where I is the unit object of M. Note that in this case the object Q is unique

up to an equivalence.

Note that the tensor products −�P and P�− with an invertible object P ∈M are 2-autoequivalences

of M. In particular, each of them defines an equivalence of monoidal categories M(I,I) → M(P ,P),

where I is the unit object of M.

Definition 2.16. A 2-categorical group is a monoidal 2-category whose objects are invertible with respect

to the tensor product, whose 1-morphisms are equivalences, and whose 2-cells are isomorphisms.

Example 2.17. Let A be a 2-category. Then the monoidal 2-category Aut(A) of autoequivalences of

A with pseudo-natural equivalences as 1-morphisms and isomorphisms as 2-morphisms is a 2-categorical

group.

Example 2.18. Let M be a monoidal 2-category. Then the monoidal 2-category Inv(M) of invertible

objects in M with equivalences as 1-morphisms and isomorphisms as 2-morphisms is a 2-categorical

group.

Let G be a braided 2-categorical group with the tensor product � and unit object I. Below we discuss

some invariants of G.
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Let Π≤1(G) denote the 1-categorical truncation of G, i.e. the categorical group whose objects are

objects of G and morphisms are isomorphism classes of 1-cells in G. Let Π1≤(G) = G(I, I) be the

braided categorical group of autoequivalences of I. Its braiding is given by the naturality 2-cells

I � I
Id�g //

f�Id

��

I � I

f�Id

��
I � I

Id�g
// I � I

�f,g +3

(2.55)

for all f, g ∈ G(I, I).

Definition 2.19. The homotopy groups of G are defined as follows.

• the 0th homotopy group π0(G) is the group of equivalence classes of objects of G,

• the 1st homotopy group π1(G) is the group of isomorphism classes of autoequivalences in G(I, I),

• the 2nd homotopy group π2(G) is the group of automorphisms of the identity 1-morphism IdI .

Since Π1≤(G) is braided, the homotopy groups π1(G), π2(G) are abelian.

Definition 2.20. The first and second canonical classes of G,

αG ∈ H3(π0(G), π1(G)) and qG ∈ H3
br(π1(G), π2(G)) (2.56)

are, respectively, the associator of the categorical group Π1≤(G) and the braided associator of the braided

categorical group Π1≤(G).

Proposition 2.21. There is a monoidal functor

a : Π≤1(G)→ Autbr(Π1≤(G)) (2.57)

canonically defined up to a natural isomorphism.

Proof. For any object P in G the corresponding autoequivalence a(P) of G(I, I) is given by composing

the monoidal equivalence

G(I, I)→ G(P , P) : f 7→ f � P , α 7→ α� P

with the quasi-inverse of

G(I, I)→ G(P , P) : f 7→ P � f, α 7→ P � α.

That a(P) is a braided autoequivalence and that a is a monoidal functor follow the naturality properties

of �.
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Remark 2.22. The action (2.57) of Π≤1(G) on Π1≤(G) can also be recovered from the adjoint action

of the 2-categorical group G on itself, i.e. a monoidal 2-functor Ad : G → Aut(G) characterized (up

to an equivalence) by a coherent collection of equivalences P � X → AdP(X ) � P , pseudo-natural in

X ∈ G.

The action (2.57) yields canonical group homomorphisms

π0(G)→ Aut(π1(G)), π0(G)→ Aut(π2(G)), and π1(G)→ Hom(π1(G), π2(G))

corresponding, respectively, to the actions of objects of Π≤1(G) on objects and morphisms of Π≤1(G)

and to the action of the group of automorphisms of I by automorphisms of IdΠ≤1(G). We will refer to

the corresponding maps

π0(G)× π1(G)→ π1(G), π0(G)× π2(G)→ π2(G), and π1(G)× π1(G)→ π2(G) (2.58)

as the Whitehead brackets.

Note that the first canonical class αG is invariant with respect to the action of π0(G) and that the

bimultiplicative pairing π1(G) × π1(G) → π2(G) is given by the polarization of the second canonical

class qG.

Suppose that G is a braided 2-categorical group. In this case Π≤1(G) is a braided categorical group

and Π1≤(G) is a symmetric categorical group. Hence, the canonical classes (2.56) get promoted to

αG ∈ H3
br(π0(G), π1(G)) and qG ∈ H3

sym(π1(G), π2(G)). (2.59)

The braiding of G gives a trivialization of the functor (2.57) which implies that Whitehead brackets

(2.58) are trivial and yields a new bilinear pairing

[ , ] : π0(G)× π1(G)→ π2(G) (2.60)

constructed as follows. For each object P in G, or an element of π0(G), we have a canonical monoidal

automorphism of a(P) = IdI , i.e. a homomorphism π1(G) → π2(G). This gives a homomorphism

π0(G)→ Hom(π1(G), π2(G)) identified with (2.60).

For a symmetric 2-categorical group G the canonical classes are

αG ∈ H3
sym(π0(G), π1(G)) and qG ∈ H3

sym(π1(G), π2(G)). (2.61)

All Whitehead brackets are trivial in this case.

2.5 Monoidal 2-functors between 2-categorical groups

Let G be a group. We consider it as a 2-categorical group with identity 1- and 2-morphisms.
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Let G be a 2-categorical group (viewed as a semistrict monoidal 2-category) with the corresponding

canonical classes

αG ∈ H3(π0(G), π1(G)) and (ωG, cG) ∈ H3
br(π1(G), π2(G)).

Let C : G → Π≤1(G) : x → Cx be a monoidal functor. This means that there are 0-cells Cx in G,

1-isomorphisms Mx,y : CxCy → Cxy, and invertible 2-cells

CxCyCz

Mx,y

��

My,z // CxCyz

Mx,yz

��
CxyCz

Mxy,z // Cxyz,

αx,y,z +3

(2.62)

for all x, y, z ∈ G.

Note that C gives rise to an action of G on π1(G) (obtained by composing the underlying group

homomorphism G→ π0(G) with the action of π0(G) on π1(G)). We denote this action by (g, Z) 7→ Zg.

Following [23] define a 4-cochain p0
C : G4 → π2(G) by setting p0

C(x, y, z, w) to be the composition of

faces of the following cube:

CxCyCzCw

Mx,y

zz

My,z

��

Mz,w

$$
CxyCzCw

Mxy,z

��
Mz,w

""

CxCyzCw

Mx,yz

||

Myz,w

""

CxCyCzw

Mx,y

||

My,zw

��

p0
C(x, y, z, w) =

CxyzCw

Mxyz,w

$$

CxyCzw

Mxy,zw

��

CxCyzw

Mx,yzw

zz
Cxyzw,

αx,yz,w

�'

αx,y,z
w�

αy,z,w

 (

αxy,z,w

"*
αx,y,zw

z�

(2.63)

where the top face is given by �Mx,y,Mz,w . That is, we view p0
C(x, y, z, w) as a 2-automorphism of

the composition of morphisms between opposite corners, e.g., of Mxyz,wMxy,zMx,y, x, y, z, w ∈ G (the

2-automorphisms of other compositions are conjugate to this one). We use this convention for other

polytopes in this paper.
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Proposition 2.23. p0
C is a 4-cocycle whose cohomology class in H4(G, π2(G)) depends only on the

isomorphism class of C. A monoidal functor C : G→ Π≤1(G) extends to a monoidal 2-functor G→ G

if and only if p0
C = 0 in H4(G, π2(G)).

Proof. Consider the following polytope (its planar projection is pictured):

CxCyCzCwCu

vv }} !! ((
CxyCzCwCu

}} �� !!

CxCyzCwCu

vv (( **

CxCyCzwCu

tt �� ((

CxCyCzCwu

tt ��   
CxyzCwCu

!! ((

CxCyCzCwCu

�� **

CxyCzCwu

�� ((

CxCyzwCu

tt !!

CxCyzCwu

��tt

CxCyCzwu

~~vv
CxyzwCu

((

CxyzCwu

!!

CxyCzwu

}}

CxCyzwu

vv
Cxyzwu.

(2.64)

The edges of this polytope are isomorphisms Mx,y. The faces are cells αx,y,z, x, y, z ∈ G, (2.62) and �f,g.

The polytope (2.64) consists of 8 cubes (four containing the top vertex and four containing the bottom

one) glued together in such a way that each of their 48 faces belongs to exactly two cubes (so that the

boundary is empty). Six of these cubes are of the form (2.63); their composition is the differential of

p0
C . The remaining two cubes commute due to the naturality of the tensor product in G. Namely, Mx,y

commutes with the 2-cell αz,w,u and Mw,u commutes with the 2-cell αx,y,z. Thus, d(p0
C) = 1.

A different choice of 2-cells (2.62) results in multiplying p0
C by a 4-coboundary, so its class in

H4(G, π2(G)) is well-defined.

Finally, C extends to a monoidal 2-functor if the 2-cells (2.62) can be chosen in such a way that (2.37)

is satisfied. This is equivalent to commutativity of the cube (2.63) (the latter is obtained by gluing the

two sides of (2.37)), i.e. to p0
C being cohomologically trivial.

For L ∈ H2(G, π1(G)) the monoidal functor L ·C : G→ Π≤1(G) is obtained by multiplying Mx,y by

Lx,y for all x, y ∈ G.

Let C : G→ Π≤1(G) be a monoidal functor with the monoidal structure Mx,y : CxCy → Cxy, x, y ∈ G.

The group Aut(C) of automorphisms of C is isomorphic to H1(G, π1(G)). Explicitly, P ∈ Aut(C)
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corresponds to a collection of equivalences Px : Cx → Cx such that there are invertible 2-cells

CxCy

Mx,y

��

PxPy // CxCy

Mx,y

��
Cxy

Pxy // Cxy

µx,y +3

(2.65)

for all x, y ∈ G.

Suppose that a monoidal functor C : G→ Π≤1(G) extends to a monoidal 2-functor C : G→ G. That

is, there is a choice of invertible 2-cells (2.62) such that the cubes (2.63) commute, i.e. p0
C = 1. Let P be

a monoidal automorphism of C.

Define a function p1
C(P ) : G3 → π2(G) by

CxCyCz

Mx,y

||

PxPyPz

��

My,z

""
CxyCz

PxyPz

��

Mxy,z

  

CxCyCz

Mx,y

~~

My,z

  

CxCyz

Mx,yz

~~

PxPyz

��

p1
C(P )(x, y, z) =

CxyCz

Mxy,z

""

Cxyz

Pxyz

��

CxCyz

Mx,yz

||
Cxyz,

αx,y,z

�%

µx,yy�

µyz,w

 (

µxy,z

 (
µx,yz

{�

(2.66)

for all x, y, z ∈ G. Here the top and bottom faces are αx,y,z.

Proposition 2.24. p1
C(P ) is a 3-cocycle and the map

p1
C : Aut(C) = H1(G, π1(G))→ H3(G, π2(G)) : P 7→ p1

C(P ) (2.67)

is a well defined homomorphism. The automorphism P extends to a monoidal pseudo-natural automor-

phism of C if and only if p1
C(P ) = 0 in H3(G, π2(G)).
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Proof. Consider the following polytope (its planar projection is pictured):

CxCyCzCw

ww �� �� ''
CxyCzCw

�� �� **

CxCyzCw

xx �� **

CxCyCzw

tt ww ''

CxCyCzCw

�� �� ��
CxyzCw

�� &&

CxyCzw

�� **

CxCyzw

�� **

CxyCzCw

ww ��

CxCyzCw

tt ��

CxCyCzw

ww ��
Cxyzw

''

CxyzCw

��

CxyCzw

��

CxCyzw

ww
Cxyzw.

(2.68)

The solid arrows are isomorphisms Mx,y and the dotted ones are products of isomorphisms Px. The faces

are cells αx,y,z (2.62), µx,y (2.65), and �x,y, x, y, z ∈ G.

The polytope (2.68) consists of 8 cubes (four containing the top vertex and four containing the bottom

one) glued together in such a way that each of their 48 faces belongs to exactly two cubes (so that the

boundary is empty). Five of these cubes are of the form (2.66); their composition is the differential of

p1
C(P ). Two cubes consisting of solid arrows are the cubes (2.63) and so they commute by assumption.

The remaining cube commutes due to the naturality of the tensor product of G. Thus, d(p1
C(P )) = 1.

A different choice of 2-cells (2.65) results in multiplying p1
C(P ) by a coboundary, so its class in

H3(G, π2(G)) is well-defined.

The equality

p1
C(PQ) = p1

C(P )p1
C(Q), P,Q ∈ Aut(C)

is proved directly by gluing two cubes (2.66) for P and Q along the face αx,y,z.

Finally, P extends to a monoidal pseudo-natural automorphism of C if 2-cells (2.65) can be chosen in

such a way that (2.44) is satisfied. This is equivalent to commutativity of the cube (2.66), i.e. to p1
C(P )

being cohomologically trivial.

Let C : G → G be a monoidal 2-functor. For any ω ∈ Z3(G, π2(G)) let Cω be a monoidal 2-functor

obtained from C by multiplying each 2-cell αx,y,z by ω(x, y, z), x, y, z ∈ G. The monoidal 2-equivalence

class of Cω depends only on the cohomology class of ω in H3(G, π2(G)). If C, C′ are extensions of the

same monoidal functor C : G→ Π0(G) if and only if C′ ∼= Cω for some ω.
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Corollary 2.25. Monoidal 2-functors Cω1 , Cω2 : G → G are isomorphic if and only if ω2 = p1
C(P )ω1

for some P ∈ Aut(C) = H1(G, π1(G)).

Proof. Let αx,y,z, x, y, z ∈ G, be the cells (2.62) for C. A monoidal pseudo-natural isomorphism between

Cω1 and Cω2 consists of 1-automorphisms Px : Cx → Cx such that the cube (2.66) (with the top and

bottom faces being, respectively, ω1(x, y, z)αx,y,z and ω2(x, y, z)αx,y,z) commutes. This is equivalent to

ω2/ω1 = p1
C(P ), where C : G→ Π≤1(G) is the underlying monoidal functor of C.

Example 2.26. Let I : G→ Π≤1(G) : x 7→ I denote the trivial monoidal functor. Then

p1
I (P )(x, y, z) = ωG(Px, Py, Pz), x, y, z ∈ G. (2.69)

The next Corollary summarizes our description of monoidal 2-functors G→ G.

Corollary 2.27. Let C : G→ Π0(G) be a monoidal functor. An extension of C to a monoidal 2-functor

C : G → G exists if and only if p0
C = 0 in H4(G, π2(G)). Equivalence classes of such extensions of C

form a torsor over Coker
(
p1
C : H1(G, π1(G))→ H3(G, π2(G))

)
.

2.6 Braided monoidal 2-functors between 2-categorical groups

Let A be an Abelian group. We consider it as a 2-categorical group with identity 1- and 2-morphisms.

Let G be a braided 2-categorical group with the corresponding canonical classes

αG ∈ H3
br(π0(G), π1(G)) and qG = (ωG, cG) ∈ H3

sym(π1(G), π2(G)).

Let C : A → Π≤1(G) : x → Cx be a braided monoidal functor. This means that there is a 0-cell Cx

in G for each x ∈ G, 1-isomorphisms Mx,y : CxCy → Cxy, invertible 2-cells αx,y,z (2.62), and invertible

2-cells

Cx �B Cy
Bx,y //

Mx,y

((

Cy �B Cx

My,x

vv
Cxy

δx,y

KS
(2.70)

for all x, y, z ∈ G. Let βx|y,z and βx,y|z denote the invertible modifications (2.25) with L = Cx, M =

Cy, N = Cz.
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Define a braided 4-cochain p0
C ∈ C4

br(A, π2(G)) by taking pbr0 (C)(x, y, z, w) from (2.63),

Cx �B Cy �B Cz

Bx�y,z

55

My,z //

Mx,y

""

By,z

''
Cx �B Cyz

Mx,yz

��

Cx �B Cz �B Cy
Mz,yoo

Mx,z

��
Bx,z

||

p0
C(x, y|z) = Cxy �B Cz

Mxy,z //

Bxy,z

��

Cxyz Cxz �B Cy
Mxz,yoo

Cz �B Cxy

Mz,xy

OO

Cz �B Cx �B Cy,
Mx,yoo

Mz,x

OO

δy,z
T\

βx,y|z

|� δx,z +3

δxy,z

{�

αx,y,z ,4
αx,z,yks

αz,x,yks

BMx,y,Cz

EM

(2.71)

and

Cx �B Cy �B Cz

Bx,y�z

55

Mx,y //

My,z

""

Bx,y

((
Cxy �B Cz

Mxy,z

��

Cy �B Cx �B Cz
My,xoo

Mx,z

��
Bx,z

||

p0
C(x|y, z) = Cx �B Cyz

Mx,yz //

Bx,yz

  

Cxyz Cy �B Cxz
My,xzoo

Cyz �B Cx,

Myz,x

OO

Cy �B Cz �B Cx.
My,zoo

Mz,x

OO

δx,y
T\

βx|y,z

|� δx,z +3

δx,yz

z�

αx,y,z

��

αy,x,z

��

αy,z,x

KS

BCx,My,z

FN

(2.72)

where the plane projections of the octahedra are pictured.

Remark 2.28. The octahedra (2.71) and (2.72) are special cases of those from the definition of a braided

pseudomonoid in a braided Gray monoid [12, Definition 13].

Proposition 2.29. p0
C is a braided 4-cocycle whose cohomology class in H4

br(A, π2(G)) depends only on

the isomorphism class of C. A braided monoidal functor C : A→ Π≤1(G) extends to a braided monoidal

2-functor A→ G if and only if p0
C = 0 in H4

br(A, π2(G)).
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Proof. We need to verify vanishing of the shuffle differentials (2.6) – (2.10). That the differential (2.6)

is zero follows from the construction of polytope (2.64). Vanishing of the differentials (2.7) (respectively,

(2.8), (2.9), and (2.10)) is proved in a similar way. Namely, we form polytopes by gluing the octahedra

(2.71), (2.72) to cubes (2.63) and to the commuting polytopes (2.26) (respectively, (2.27), (2.28), and

(2.29)) so that the faces of the octahedra labelled by β’s in octahedra and polytopes are glued to each

other. In the resulting large polytopes each face labelled by α or δ is glued to its inverse. This implies

commutativity of the polytopes, i.e. vanishing of the differentials.

A different choice of 2-cells (2.62) and (2.70) results in multiplying p0
C by a braided 4-coboundary, so

its class in H4(G, π2(G)) is well-defined.

Note that C extends to a braided monoidal 2-functor A→ G if the cells αx,y,z and δx,y can be chosen

in such a way that (2.37), (2.40), and (2.41) are satisfied. This is equivalent to commutativity of cubes

(2.63) and octahedra (2.71) and (2.72), i.e. to p0
C = 1. Indeed, these polytopes are obtained by gluing

the two sides of (2.37), (2.40), and (2.41).

Suppose that a braided monoidal functor C : A→ Π≤1(G) extends to a braided monoidal 2-functor

C : A → G. That is, there is a choice of invertible 2-cells (2.62) and (2.70) such that the cubes (2.63)

and octahedra (2.71) and (2.72) commute, i.e. p0
C = 1. Let P be a monoidal automorphism of C.

Let p1
C(P )(x, y, z) be defined by (2.66) and let p1

C(P )(x | y) be the composition of the faces of the

prism

CxCy

PxPy

}}

Bx,y

��

Mx,y

((
p1
C(P )(x | y) = CxCy

Bx,y

��

Mx,y

((

CyCx

PyPx

}}

My,x

// Cxy

Pxy

~~
CyCx

My,x

// Cxy,

BPx,Pyy�

µx,y

y�

δx,y
	�

δx,y
	�

µy,x

y�

(2.73)

for all x, y ∈ A.

Proposition 2.30. p1
C(P ) is a braided 3-cocycle and the map

p1
C : Aut⊗(C) = H1(A, π1(G))→ H3

br(A, π2(G)) : P 7→ p1
C(P ) (2.74)

is a well defined group homomorphism.

The natural automorphism P extends to a braided monoidal pseudo-natural automorphism of C if and

only if p1
C(P ) = 0 in H3

br(A, π2(G)).
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Proof. The differential (2.3) vanishes by Proposition 2.24. The vanishing of the differential (2.4) (respec-

tively,(2.5)) is established by gluing the faces of three cubes (2.66), three prisms (2.73), and two copies

of the octahedron (2.71) (respectively, (2.72)) in such a way that the result has the empty boundary.

A different choice of 2-cells (2.65) results in multiplying p1
C(P ) by a braided coboundary, so its class

in H3
br(G, π2(G)) is well-defined.

The multiplicative property of p1
C is a direct consequence of the definition of prisms (2.73).

Finally, a monoidal pseudo-natural automorphism of C obtained by extending P is braided if 2-cells

(2.65) can be chosen in such a way that the cube (2.45) is satisfied. But this cube becomes a prism (2.73)

in our situation since the structural 2-cells of A, viewed as a braided 2-categorical group, are trivial. So

the braided property is equivalent to the braided cohomology class of p1
C(P ) being trivial.

Let C : A → G be a monoidal 2-functor. For any (ω, c) ∈ Z3
br(A, π2(G)) let C(ω,c) be a monoidal

2-functor obtained from C by multiplying each 2-cell αx,y,z by ω(x, y, z) and each 2-cell δx,y by c(x, y)

for all x, y, z ∈ A. The isomorphism class of C(ω,c) depends only on the class of (ω, c) in H3
br(A, π2(G)).

If C, C′ are extensions of the same braided monoidal functor C : A → Π≤1(G) if and only if C′ ∼= C(ω,c)

for some (ω, c).

Corollary 2.31. Braided monoidal 2-functors C(ω1,c1), C(ω2,c2) : A → G are isomorphic if and only if

(ω2, c2) = (ω1, c1) p1
C for some P ∈ Aut(C) = H1(A, π1(G)).

Proof. This is similar to the proof of Corollary 2.25, where a criterion for isomorphism of monoidal

2-functors Cω1 and Cω2 was established. The braided property of such an isomorphism translates to

commutativity the prism (2.73) with the front and back faces being, respectively, c1(x, y, z)δx,y and

c2(x, y)δx,y. This is equivalent to c2/c1 = p1
C(P ), where C : A → Π≤1(G) is the underlying monoidal

functor of C.

The next Corollary summarizes our description of braided monoidal 2-functors A→ G.

Corollary 2.32. Let C : G→ Π≤1(G) be a braided monoidal functor. An extension of C to a monoidal

2-functor A → G exists if and only if p0
C = 0 in H4

br(A, π2(G)). Equivalence classes of such extensions

form a torsor over Coker
(
p1
C : H1(A, π1(G))→ H3

br(A, π2(G))
)
.

2.7 Symmetric monoidal 2-functors between 2-categorical groups

Let A be an Abelian group. Here we will consider it as a symmetric 2-categorical group with identity 1-

and 2-morphisms.
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Let G be a symmetric 2-categorical group with the corresponding canonical classes

αG ∈ H3
sym(π0(G), π1(G)) and qG ∈ H3

sym(π1(G), π2(G)).

One can extend the obstruction theory from Section 2.6 to symmetric monoidal 2-functors A → G.

Namely, let C : A → Π≤1(G) be a symmetric monoidal functor. We define pC0 ∈ C4
sym(A, π2(G))

by extending the braided 4-cocycle from Proposition 2.29 as follows. The components pC0 (−, −, −, −),

pC0 (− |−, −), and pC0 (−, −, | −) are given by (2.63) , (2.71), and (2.72), respectively, and

Cx �B Cy
Bx,y

66

Mx,y

��

Cy �B Cx

By,x

vv

My,x

��

pC0 (x || y) =

Cxy,

τx,y
��

δx,y

KS
δy,x

KS (2.75)

for all x, y ∈ A.

Proposition 2.33. The above p0
C is a symmetric 4-cocycle whose cohomology class in H4

sym(A, π2(G))

depends only on the isomorphism class of C. A symmetric monoidal functor C : A → Π≤1(G) extends

to a symmetric monoidal 2-functor A→ G if and only if p0
C = 0 in H4

sym(A, π2(G)).

Proof. We need to check vanishing of the differentials (2.12), (2.13), and (2.14). Vanishing of the differ-

entials (2.12) and (2.13) is checked by gluing polytopes (2.71) and (2.72) along their associativity faces

α and gluing their braiding faces δ to two sides of cones (2.75). The differential (2.14) vanishes thanks

to axiom (2.33) of a symmetric monoidal 2-category.

Proposition 2.29 gives a criterion for C to have an extension to a braided monoidal 2-functor. This

extension admits a symmetric monoidal 2-functor structure if and only if the cells (2.39) are chosen in

such a way that the cone (2.75) commutes. This is equivalent to pC0 being trivial in H4
sym(A, π2(G)).

Suppose that a symmetric monoidal functor C : A → Π≤1(G) extends to a symmetric monoidal

2-functor C : A → G. For any P ∈ Aut⊗(C) the braided 3-cocycle from Proposition 2.30 is symmetric,

i.e.

pC1 (P )(x | y) pC1 (P )(y |x) = 1

for all x, y ∈ A. This can be seen gluing boundaries of two prisms (2.73) and two cones (2.75).
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Corollary 2.34. Let (ω1, c1), (ω2, c2) ∈ Z3
sym(A, π1(G)) be symmetric 3-cocycles. Symmetric monoidal

2-functors C(ω1,c1), C(ω2,c2) : A → G are isomorphic if and only if (ω2, c2) = (ω1, c1) pC1 (P ) for some

P ∈ Aut(C) = H1(A, π1(G)).

Proof. This is the same as Corollary 2.31, since there is no difference between isomorphisms of braided

and symmetric monoidal 2-functors.

The next Corollary summarizes our description of braided monoidal 2-functors A→ G.

Corollary 2.35. Let C : A → Π≤1(G) be a symmetric monoidal functor. An extension of C to a

monoidal 2-functor A→ G exists if and only if p0
C = 0 in H4

sym(A, π2(G)). Equivalence classes of such

extensions form a torsor over Coker
(
p1
C : H1(A, π1(G))→ H3

sym(A, π2(G))
)
.

2.8 The symmetric 2-categorical group of symmetric monoidal 2-functors

Let A be a finite Abelian group and let G be a symmetric 2-categorical group.

Let C, C ′ : A → Π≤1(G) be symmetric monoidal 2-functors, where C is given by x 7→ Cx with the

monoidal structure Mx,y : Cx � Cy
∼−→ Cxy and C ′ is given by x 7→ C′x with the monoidal structure

M ′x,y : C′x � C′y
∼−→ C′xy, x, y ∈ A.

Define a symmetric monoidal functor

C̃ := C � C ′ : A→ Π≤1(G) : x 7→ Cx �B C′x. (2.76)

with the monoidal structure

M̃x,y : Cx � C′x � Cy � C′y
Bx′,y−−−→ Cx � Cy � C′x � C′y

Mx,y�M
′
x,y−−−−−−−−→ Cxy � C′xy, x, y ∈ A. (2.77)

Here and below we denote Bx′,y the braiding between C′x and Cy.

Suppose that C and C ′ extend to symmetric monoidal 2-functors C, C′ : A → G. The associativity

and braiding 2-cells (2.35) and (2.39) for C and C′ will be denoted α, α′ and δ, δ′, respectively.

Our goal is to construct a canonical braided monoidal 2-functor C̃ extending C̃.
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Define the associativity 2-cells α̃x,y,z (x, y, z ∈ A) by

CxC′xCyC′yCzC′z
By′,z //

Bx′,y

��

CxC′xCyCzC′yC′z
My,zM

′
y,z //

Bx′,y�z

��

Bx′,y

vv

CxC′xCyzC′yz

Bx′,yz

��

CxCyC′xCzC′yC′z
Bx′,yz

((
CxCyC′xC′yCzC′z

B(x�y)′,z //

Mx,yM
′
x,y

��

By′,z
66

CxCyCzC′xC′yC′z
My,zM

′
y,z //

Mx,yM
′
x,y

��

CxCyzC′xC′yz

Mx,yzM
′
x,yz

��
CxyC′xyCzC′z

B(xy)′,z // CxyCzC′xyC′z
Mxy,zM

′
xy,z

// CxyzC′xyz

αx,y,zα
′
x,y,z +3

�Mx,y,BM′x,y,Cz +3

�BC′x,My,z
,M′y,z

��

�B
x′,y,By′,z

$,

βx′,y′|z
��

βx′|y,z +3

(2.78)

and the braiding 2-cells δ̃x,y (x, y ∈ A) by

CxC′xCyC′y
Bx�x′,y�y′ //

Bx′,y

��

Bx�x′,y

$$

CyC′yCxC′x

By′,x

yy
CxCyC′xC′y Bx,y

//

Mx,yM
′
x,y

$$

CyCxC′xC′y Bx′,y′
//

Bx�x′,y′

::

CyCxC′yC′x

Bx,y′

OO

My,xM
′
y,x

zz
CxyC′xy.

δx,yδ
′
x,y

KS

βx,x′|y

6>

βx,x′|y′

`h

βx�x′|y,y′

KS

τx,y′ +3

(2.79)

Here we write βx�x′|y,y′ as a shorthand for βCx�C′x|Cy,C′y etc.

Proposition 2.36. The 2-cells (2.78) and (2.79) make C̃ = C � C′ a symmetric monoidal 2-functor.

Proof. The proof is tedious but straightforward. It extends the corresponding argument for symmetric

monoidal functors and consists of decomposing the commuting cube (2.63) and octahedra (2.71), (2.72)

formed by 2-cells (2.78) and (2.79) into unions of commuting polytopes glued together.

For the cube (2.63) for C̃ one gets commuting polytopes obtained by gluing both sides of (2.26) -

(2.29), the polytopes commuting due to the naturality of braiding and the naturality of cells β and τ ,

and cubes (2.63) for C and C′. For the octahedra (2.71), (2.72) one gets commuting polytopes as above,
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the corresponding polytopes for C and C′, and the symmetry polytopes (2.31), (2.32), and (2.33)) of G.

It follows that C̃ is a braided monoidal 2-functor.

The cone (2.75) corresponding to the property of C̃ being symmetric is comprised from δx,y, δ
′
x,y and

τx,y for x, y ∈ A. This cone decomposes into the union of several commuting polytopes, namely the pair

of corresponding cones for C and C′ and the symmetry polytopes (2.31), (2.32), and (2.33). Hence, it

commutes.

Proposition 2.37. The above product of functors turns 2-Funsym(A, G) into a symmetric 2-categorical

group.

Proof. For C, C′, C′′ ∈ 2-Funsym(A, G) there is a pseudo-natural equivalence between (C � C′)� C′′ and

C�(C′�C′′). This can be seen to be monoidal by comparing the associativities (2.78) for both 2-functors.

The unit object of 2-Funsym(A, G) is the trivial symmetric 2-functor (with Cx = I for all x ∈ A and all

structure morphisms and cells being identities).

The braiding of C and C′ is a pseudo-natural isomorphism given by

BC, C′(x) : Cx � C′x
Bx,x′−−−→ C′x � Cx, x ∈ A, (2.80)

with 2-cells (2.13) being the following compositions:

CxC′xCyC′y

Bx′,y

""

Byy′

��

CxCyC′xC′y
Mx,y�Mx′,y′ //

Bx�y,x′�y′

��

By,x′�y′

zz

By,x′
oo CxyC′xy

Bxy,x′y′

��

CxC′xC′yCy

Bx,x′

��

Bx,x′�y′

$$
C′xCxC′yCy

Bx,y′ // C′xC′yCxCy
Mx′,y′�Mx,y // C′xyCxy.

τx′,y��

βy|x′,y′  (

βx,y|x′�y′ +3

βx|x′,y′
6>

δx,y�δ
′
x,y

��

(2.81)

The 2-cells (2.25) are βx,x′|x′′ and βx|x′ x′′ , x ∈ A. One can directly verify commutativity of the cubes

(2.44) and (2.45).

Finally, the symmetry 2-cell τ of G provides an invertible modification between BC′,C ◦ BC,C′ and

IdC�C′ satisfying (2.31), (2.32), and (2.33).
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Theorem 2.38. There is an exact sequence of group homomorphisms:

H1(A, π1(G))→ H3
sym(A, π2(G))→ π0(2-Funsym(A, G))→ π0(Funsym(A, Π≤1(G)))→ H4

sym(A, π2(G)).

(2.82)

Proof. The first three arrows are described in Section 2.7. That they are homomorphisms follows from

the definition of the tensor product in 2-Funsym(A, G).

We need to check that

π0(Funsym(A, Π≤1(G)))→ H4
sym(A, π2(G)) : C 7→ p0

C ,

where the components of the symmetric 4-cocycle p0
C are given by the values of polytopes (2.63), (2.71),

(2.72), and (2.75), is a group homomorphism. This is achieved by decomposing each of these polytopes

for C � C′, where C, C′ ∈ 2-Funsym(A, G), into the union of the corresponding polytopes for C and C′

and commuting polytopes satisfied by the structure 2-cells of G as well as those of C, C′, glued together

in such a way that the resulting boundary is empty.

The exactness of this sequence follows from Corollary 2.35.

3 Module categories

3.1 Module categories over a tensor category

Le C be a tensor category with the associativity constraint aX,Y,Z : (X ⊗ Y ) ⊗ Z ∼−→ X ⊗ (Y ⊗ Z). Let

Cop denote the tensor category with the opposite multiplication X ⊗op Y = Y ⊗X and the associativity

constraint aop
X,Y,Z = a−1

Z,Y,X : Z ⊗ (Y ⊗X)
∼−→ (Z ⊗ Y ) ⊗X for X,Y, Z ∈ C. Below we recall definitions

from [31, 22].

Definition 3.1. A (left) C-module category is a finite Abelian k-linear category M together with a

bifunctor

C ×M→M, (X,M) 7→ X ∗M,

exact in each variable, and a collection of isomorphisms (C-module associativity constraint)

mX,Y,M : (X ⊗ Y ) ∗M ∼−→ X ∗ (Y ∗M),
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natural in X,Y ∈ C,M ∈M and such that the diagram

((X ⊗ Y )⊗ Z) ∗M
mX⊗Y,Z,M

))

aX,Y,Z∗IdM

uu
(X ⊗ (Y ⊗ Z)) ∗M

mX,Y⊗Z,M

��

(X ⊗ Y ) ∗ (Z ∗M)

mX,Y,Z∗M

��
X ∗ ((Y ⊗ Z) ∗M)

IdX∗mY,Z,M // X ∗ (Y ∗ (Z ∗M))

(3.1)

commutes for all X,Y, Z ∈ C, M ∈M.

A right C-module category is a Cop-module category. A C-bimodule category is a (C � Cop)-module

category.

Remark 3.2. A C-bimodule category M can be equivalently described as a category with both left and

right C-module structures and a collection of isomorphisms (a middle associativity constraint)

mX,M,Y : (X ∗M) ∗ Y ∼−→ X ∗ (M ∗ Y ) (3.2)

natural in X,Y ∈ C, M ∈M compatible in a certain way [22, Definition 7.1.7].

Definition 3.3. A C-module functor F : M → N between C-module categories is a functor along with

a collection of isomorphisms FX,M : X ∗ F (M)
∼−→ F (X ∗M) natural in X ∈ C, M ∈ M such that the

following diagram

(X ⊗ Y ) ∗ F (M)

FX⊗Y,M

))

mX,Y,F (M)

uu
X ∗ (Y ∗ F (M))

IdX∗FY,M
��

F ((X ⊗ Y ) ∗M)

F (mX,Y,M )

��
X ∗ F (Y ∗M)

FX,Y ∗M // F (X ∗ (Y ∗M))

(3.3)

commutes for X,Y ∈ C, ,M ∈M.

Definition 3.4. A natural C-module transformation between C-module functors F, F ′ : M → N is a

natural transformation η : F → F ′ such that

X ∗ F (M)
FX,M //

IdX∗ηM
��

F (X ∗M)

ηX∗M

��
X ∗ F ′(M)

F ′X,M // F ′(X ∗M)

(3.4)

commutes for all X ∈ C, M ∈M.
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Let F : L → M and F” : M → N be C-module functors then F ′ ◦ F has a canonical structure of

C-module functor

(F ′ ◦F )X,M : X ∗F ′(F (M))
F ′X,F (M)−−−−−→ F ′(X ∗F (M))

F ′(FX,M )−−−−−−→ F ′(F (X ∗M)), X ∈ C, M ∈M. (3.5)

Thus, C-module categories, C-module functors, and C-module natural transformations form a strict 2-

category Mod(C).

3.2 Tensor product of module categories

Let C be a tensor category, let M be a right C-module category, and let N be a left C-module category.

The (relative) tensor product M�C N [23] is an abelian category M�C N along with a functor M×N →

M �C N universal among C-balanced and right exact in each variable functors from M×N to Abelian

categories.

An explicit description is given as follows. Objects of M �C N are pairs (V, γ), where V ∈ M � N

and

γX : V ∗ (X � 1)
∼−→ (1 �X) ∗ V, (3.6)

is a balancing isomorphism natural in V ∈M � N , X ∈ C and such that the following diagram

V ∗ ((X ⊗ Y ) � 1)
γX⊗Y //

mV,X,Y

��

(1 � (X ⊗ Y )) ∗ V

nX,Y,V

��
(V ∗ (X � 1)) ∗ (Y � 1)

γX // (1 �X) ∗ (V ∗ (Y � 1))
γY // (1 �X) ∗ ((1 � Y ) ∗ V ),

(3.7)

commutes. Here m and n are the module associativity constraints in M and N .

A morphism between (V, {γX}X∈C) and (V ′, {γ′X}X∈C) in M �C N is a morphism f : V → V ′ in

M � N such that the diagram

V ∗ (X � 1)
f∗(X�1) //

γX

��

V ′ ∗ (X � 1)

γ′X
��

(1 �X) ∗ V
(1�X)∗f // (1 �X) ∗ V ′

(3.8)

commutes for all X ∈ C.

If M is a C-bimodule category then M �C N inherits the left C-module category structure from M:

Y ∗ (V, {γX}) = ((Y � 1) ∗ V, {γX}), (3.9)

where

((Y � 1) ∗ V ) ∗ (X � 1)
γX //

m−1
Y,V,X

��

(1 �X) ∗ ((Y � 1) ∗ V )

(Y � 1) ∗ (V ∗ (X � 1))
γX // (Y � 1) ∗ ((1 �X) ∗ V )

(3.10)
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for all X,Y ∈ C. Similarly, if N is a C-bimodule category then M �C N inherits the right C-module

category structure from N .

Thus, there is a monoidal 2-category Bimod(C) of C-bimodule categories. Its 1-cells are C-bimodule

functors and 2-cells are natural transformations of C-bimodule functors. The regular C-bimodule category

C is the identity for �C .

3.3 From module categories over a braided tensor category to bimodule ca-

tegories

Let B be a braided tensor category with the braiding

cX,Y : X ⊗ Y ∼−→ Y ⊗X, X, Y ∈ B.

The braiding of B allows to turn a left B-module category M into a B-bimodule category as follows.

Let mX,Y,M : (X ⊗ Y ) ⊗M ∼−→ X ⊗ (Y ⊗M) denote the left B-module associativity constraint of M.

Define the right action of B on M by M ∗X := X ∗M for all X ∈ B and M ∈M. The right B-module

associativity constraint is given by the composition

M ∗ (X ⊗ Y )
mM,X,Y // (M ∗X) ∗ Y

(X ⊗ Y ) ∗M
cX,Y // (Y ⊗X) ∗M

mY,X,M // Y ∗ (X ∗M)

(3.11)

and the middle associativity constraint is given by

(X ∗M) ∗ Y
mX,Y,M // X ∗ (M ∗ Y )

Y ∗ (X ∗M)
m−1
Y,X,M // (Y ⊗X) ∗M

cY,X // (X ⊗ Y ) ∗M
mX,Y,M // X ∗ (Y ∗M),

(3.12)

for all X, Y ∈ B and M ∈M.

Remark 3.5. Since B-module functors and their B-module natural transformations extend to B-bimodule

functors and B-bimodule transformations in an obvious way, there is a 2-embedding Mod(B)→ Bimod(B).

Using the B-bimodule structure of M we define the tensor product M �B N of B-module categories

M, N , as in Section 3.2. It has a canonical structure of a left B-module category. This makes Mod(B)

a monoidal 2-category.

Remark 3.6. From (3.7) we see that objects of M �B N are pairs (V, {γX}X∈B), where V ∈ M � N

and

γX : (X � 1) ∗ V → (1 �X) ∗ V, V ∈M � N , X ∈ B,
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is a natural balancing isomorphism satisfying

((X ⊗ Y ) � 1) ∗ V
γX⊗Y //

cX,Y

��

(1 � (X ⊗ Y )) ∗ V

nX,Y,V

��

((Y ⊗X) � 1) ∗ V

mY,X,V

��
(Y � 1)⊗ ((X � 1) ∗ V )

γX // (Y �X) ∗ V
γY // (1 � Y )⊗ ((1 �X) ∗ V ).

(3.13)

The vertical composition on the left side is the right B-module associativity constraint of M.

Proposition 3.7. Let C ⊂ B be a tensor subcategory. The induction

Mod(C)→Mod(B) : N 7→ B �C N (3.14)

is a monoidal 2-functor.

Proof. The monoidal structure on the 2-functor (3.14) is given by the canonical equivalence

(B �C M) �B (B �C N ) ∼= B �C (M �B B) �C N ∼= B �C (M �C N ), M,N ∈Mod(C).

The verification of axioms is straightforward and is left to the reader.

4 Braided module categories

4.1 Module braiding on module categories

Let B be a braided tensor category. The following definition appeared in [21, 5, 2].

Definition 4.1. A braided B-module category is a pair (M, σ), where M is a B-module category and

σ = {σX,M : X ∗M → X ∗M}X∈B,M∈M is a natural isomorphism (called a B-module braiding) with

σ1,M = 1M such that the diagrams

X ∗ (Y ∗M)
σX,Y ∗M //

m−1
X,Y,M

��

X ∗ (Y ∗M)

m−1
X,Y,M

��
(X ⊗ Y ) ∗M

cX,Y

��

(X ⊗ Y ) ∗M

c−1
Y,X

��
(Y ⊗X) ∗M

mY,X,M

��

(Y ⊗X) ∗M

mY,X,M

��
Y ∗ (X ∗M)

σX,M // Y ∗ (X ∗M)

(X ⊗ Y ) ∗M
σX⊗Y,M //

c−1
Y,X

��

(X ⊗ Y ) ∗M

cX,Y

��
(Y ⊗X) ∗M

mY,X,M

��

(Y ⊗X) ∗M

mY,X,M

��
Y ∗ (X ∗M)

σX,M ((

Y ∗ (X ∗M)

Y ∗ (X ∗M)

σY,X∗M

66

(4.1)

commute for all X,Y ∈ B and M ∈M.
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Definition 4.2. A B-module functor F : M→ N between braided B-module categories is braided if the

diagram

X ∗ F (M)
σX,F (M) //

FX,M

��

X ∗ F (M)

FX,M

��
F (X ∗M)

F (σX,M ) // F (X ∗M)

(4.2)

commutes for all X ∈ B and M ∈M.

A morphism between braided B-module functors is a B-module natural transformation.

Let Modbr(B) denote the 2-category of braided B-module categories.

Example 4.3. Let C be a braided tensor category containing B. Then C is a braided B-module category

with the B-module braiding

σX,Y = cY,XcX,Y , X, Y ∈ B, (4.3)

where c denotes the braiding of C. The commutativity of diagrams in Definition 4.1 follows directly from

the hexagon identities and naturality of braiding.

Recall that the symmetric center Zsym(B) of a braided tensor category B is the full subcategory of

B whose objects V satisfy cXV cV X = IdX⊗V for all X in B. Clearly, Zsym(B) is a symmetric tensor

category.

Example 4.4. A special case of the previous example is C = B, the regular B-module category, with

the module braiding (4.3). The category of braided module endofunctors of B is braided equivalent to

Zsym(B).

Remark 4.5. The name braided in Definition 4.1 is justified as follows. Recall that the Artin braid

group of type B is the group Bn generated by elements ς1, . . . , ςn and relations

ςn−1ςnςn−1ςn = ςnςn−1ςnςn−1,

ςiςj = ςiςj , |i− j| ≥ 2,

ςiςi+1ςi = ςi+1ςiςi+1, i = 1, . . . , n− 1.

Equivalently, Bn is the braid group of a once punctured disk.

Let σ be an element of Bn. We will use the same letter σ to denote the induced permutation in Sn−1.

Given objects X1, . . . , Xn−1 in a braided tensor category B and an object M in a braided B-module

category M, there are isomorphisms

X1 ⊗ · · · ⊗Xn−1 ∗M → Xσ(1) ⊗ . . . ,⊗Xσ(n−1) ∗M, σ ∈ Bn,
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compatible with the composition of braids. In particular, for any X ∈ B there is a homomorphism from

the pure braid group of type B to AutM(X⊗(n−1) ∗M).

Definition 4.6. We say that a braided B-module category is indecomposable if it is indecomposable as

a B-module category.

The α-inductions [4] for a a left B-module category M are tensor functors

α±M : Bop → EndB(M), α±(X)(M) = X ∗M, X ∈ B, M ∈M . (4.4)

Here EndB(M) is the category of right exact B-module endofunctors of M, The B-module structures on

α±(X)( are given by the compositions

Y ⊗ α+
M(X)(M)

α+
M(X)Y,M // α+

M(X)(Y ∗M)

Y ∗ (X ∗M)

m−1
Y,X,M

��

X ∗ (Y ∗M)

(Y ⊗X) ∗M
c−1
X,Y ∗IdM // (X ⊗ Y ) ∗M,

mX,Y,M

OO

Y ⊗ α−M(X)(M)
α−M(X)Y,M // α−M(X)(Y ∗M)

Y ∗ (X ∗M)

m−1
Y,X,M

��

X ∗ (Y ∗M)

(Y ⊗X) ∗M
cY,X∗IdM // (X ⊗ Y ) ∗M,

mX,Y,M

OO

for all X,Y ∈ C, M ∈M respectively.

The monoidal structures of α±M are

α+
M(Y )(α+

M(X)(M)) = Y ∗ (X ∗M)
m−1
Y,X,M−−−−−→ (Y ⊗X) ∗M cY,X−−−→ (X ⊗ Y ) ∗M = α+

M(X ⊗ Y )(M),

α−M(Y )(α−M(X)(M)) = Y ∗ (X ∗M)
m−1
Y,X,M−−−−−→ (Y ⊗X) ∗M

c−1
X,Y−−−→ (X ⊗ Y ) ∗M = α−M(X ⊗ Y )(M).

Remark 4.7. For every B-module functor F : M → N there are natural transformations of B-module

functors

M

α±M(X)

��

F // N

α±N (X)

��
M F // N ,

F±X,− +3

(4.5)

for all X ∈ B.

Remark 4.8. Let M be a B-module category. The B-bimodule category M constructed in Section 3.3

can be conveniently described by means of the functor α+
M : Bop → EndB(M). Indeed, this functor turns

a canonical (B � EndB(M))-module category M into a B-bimodule category. Note that the functor α−M

gives rise to a different B-bimodule category obtained from M using the reverse braiding of B.
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Let A(B) denote the 2-category whose objects are pairs (M, η), where M is a B-module category

and η : α+
M
∼−→ α−M is an isomorphism of tensor functors, 1-cells are B-module functors F : M→ N such

that

M F //

α+
M(X)

  

N

α−N (X)

~~

α+
N (X)

  

M F //

α+
M(X)

  

α−M(X)

~~

N

α−N (X)

~~

=

M
F

// N M
F

// N ,

ηX +3 ηX +3F+
X,−

&.

F−X,−

px

(4.6)

for all X ∈ B, where F±X,− are natural isomorphisms from (4.5), and 2-cells are B-module natural

transformations.

Proposition 4.9. There is canonical 2-equivalence Modbr(B) ∼= A(B).

Proof. A module braiding σX,M on M is the same thing as a natural isomorphism η : α+
M
∼−→ α−M via

ηX(M) = σX,M : α+
M(X)(M) = X ∗M → X ∗M = α−M(X)(M), X ∈ B, M ∈M.

The first diagram in (4.1) is equivalent to ηX : α+
M(X)

∼−→ α−M(X) being an isomorphism of left B-module

functors and the second diagram expresses the tensor property of the natural isomorphism ηM. On the

level of 1-cells, the commuting square (4.2) is equivalent to the identity (4.6).

Remark 4.10. A version of Proposition 4.9 was proved by Safonov in [S, Proposition 2.7].

4.2 Modbr(B) as a braided monoidal 2-category

Theorem 4.11. There is a canonical 2-equivalence Modbr(B) ∼= Z(Mod(B)). In particular, Modbr(B)

has a canonical structure of a braided monoidal 2-category.

Proof. In view of Proposition 4.9 it suffices to construct a 2-equivalence A(B) ∼= Z(Mod(B)).

We construct a 2-functor A(B) → Z(Mod(B)) as follows. Let (N , η : α+
N
∼−→ α−N ) be an object of

A(B). Let A be an algebra in B and let M = ModB(A) be the category of A-modules in B (any B-module

category is of this form). Then M �B N ∼= ModN (α+
N (A)), where α+

N (A) is an algebra in EndB(N ) and

its module in N is an object N ∈ N along with an action α+
N (A) ∗ N → N satisfying usual axioms.

Similarly, N �B M ∼= ModN (α−N (A)). Hence, the isomorphism ηA : α+
N (A)

∼−→ α−N (A) of algebras in

EndB(N ) yields a pseudo-natural B-module equivalence SM : M �B N ∼−→ N �B M.
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Let L = ModB(A1) and M = ModB(A2). The invertible modification γL,M (2.47) comes from the

commutative diagram of algebra isomorphisms

α+
N (A1)⊗ α+

N (A2)
ηA1
⊗ηA2 //

(α+
N )A1⊗A2

��

α−N (A1)⊗ α−N (A2)

(α−N )A1⊗A2

��
α+

N (A1 ⊗A2)
ηA1⊗A2 // α−N (A1 ⊗A2).

(4.7)

Note that since α±N is a central functor, α±N (A1) ⊗ α±N (A2) are algebras in EndB(N ) and ηA1
⊗ ηA2

is

an algebra isomorphism. The coherence condition (2.48) follows from the tensor property of η. Thus,

we have an object (N , S = {SM}, γ = {γL,M}) of Z(Mod(B)), see Section 2.3. This gives rise to a

2-functor

A(B)→ Z(Mod(B)) : (N , η) 7→ (N , S, γ). (4.8)

To construct a 2-functor in the opposite direction, note that for any X ∈ EndB(IMod(B)) ∼= Bop and

N ∈Mod(B) the tensor functors

Bop → EndB(N ) : X 7→ LN ◦ (X �B IdN ) ◦ L−1
N , (4.9)

Bop → EndB(N ) : X 7→ RN ◦ (IdN �B X) ◦R−1
N , (4.10)

where LN , RN are the unit constraint 1-cells in Mod(B), are isomorphic to α+
N and α−N , respectively.

For an object (N , S, γ) in Z(Mod(B)) consider the following composition of invertible 2-cells:

N
L−1

N

vv

R−1
N

((
B �B N

X�BIdN

��

SB // N �B B

IdN�BX
��

B �B N

LN
((

SB // N �B B

RN
vv

N ,

+3

+3

SX +3

(4.11)

where the top and bottom triangles are canonical 2-cells coming from the unit constraints of Mod(B)

and SX is the half-braiding 2-cell. The outside compositions are (4.9) and (4.10). Thus, 2-cells (4.11)

give an isomorphism of B-module functors ηX : α+
N (X)

∼−→ α−N (X), X ∈ B. The multiplicative property

(2.21) of the pseudo-natural transformation S implies that η is an isomorphism of tensor functors.

This gives a 2-functor

Z(Mod(B))→ A(B) : (N , S, γ) 7→ (N , ηN ) (4.12)

quasi-inverse to (4.8).
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This resulting 2-equivalence Modbr(B) ∼= Z(Mod(B)) obtained using Proposition 4.9 induces on

Modbr(B) a structure of a braided monoidal 2-category.

For braided B-module categories M := (M, σM) and N := (N , σN ) the braiding

BM,N : M �B N ∼−→ N �B M

in Modbr(B) is given by the half braiding of N .

Proposition 4.12. A braided tensor functor F : B → C induces a braided monoidal 2-functor

Modbr(C)→Modbr(B) : (M, σ) 7→ (M̃, σ̃),

where M̃ = M with the action X ∗M = F (X) ∗M and σ̃X,M = σX,M , X ∈ B, M ∈M.

Proof. This is verified directly using the C-module braiding axioms of σ and the braided property of F .

Remark 4.13. The braided monoidal 2-category structure on Modbr(B) constructed in Theorem 4.11

can also be described explicitly as follows. Let (M, σM) and (N , σN ) be braided B-module categories.

Recall that objects of M �B N are pairs (V, γ), where V ∈M � N and

γX : (X � 1) ∗ V ∼−→ (1 �X) ∗ V, X ∈ B,

is a balancing isomorphism satisfying (3.7).

The tensor product of Modbr(B) is

(M, σM) �B (N , σN ) = (M �B N , σM�BN ),

where

σM�BN
X,(V,γ) : (X � 1) ∗ (V, γ)→ (X � 1) ∗ (V, γ), X ∈ B, (V, γ) ∈M �B N ,

is given by the composition

(X � 1)⊗ V γX−−→ (1 �X)⊗ V
σN
X,V−−−→ (1 �X)⊗ V

γ−1
X−−→ (X � 1)⊗ V

σM
X,V−−−→ (X � 1)⊗ V

The unit object for this tensor product is the regular braided B-module category from Example 4.4.

The braiding is

B(M, σM),(N , σN ) : (M, σM) �B (N , σN )
∼−→ (N , σN ) �B (M, σM), (V, γ) 7→ (V t, γ̃),

where M � N → N � M : V 7→ V t is the transposition functor, i.e. V t = N �M for V = M �N (this

extends to M � N thanks to the universal property of �) and

γ̃X : (X � 1) ∗ V t
σN
X,V−−−→ (X � 1) ∗ V t (γtX)−1

−−−−−→ (1 �X) ∗ V t, X ∈ B.
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4.3 Examples and basic properties of braided module categories

Let B be a braided tensor category.

Example 4.14. The regular braided B-module category B from Example 4.4 is the unit object of

Modbr(B). It generates a braided monoidal 2-category Mod0
br(B) whose objects are direct sums of

copies of B (identified with natural numbers), 1-cells are matrices of objects in Zsym(B), and 2-cells are

matrices of morphisms in B. The tensor product is given by the Kronecker product of such matrices

while the braiding 2-cells are given by the braiding of Zsym(B).

Example 4.15. Note that B can have other B-module braidings, in addition to one from Example 4.4.

Namely, it follows from the first diagram in (4.1) that a B-module braiding σ on B satisfies

σX,Y = σX,1cY,XcX,Y , X, Y ∈ B.

The second diagram in (4.1) is equivalent to σX,1 being a tensor automorphism of IdB. Conversely, any

ν ∈ Aut⊗(IdB) yields a module braiding

σνX,Y = (νX ⊗ 1)cY,XcX,Y , X, Y ∈ B. (4.13)

Let Bν := (B, σν) denote the corresponding braided B-module category.

There is an exact sequence [18, 3.3.4] of groups

1→ Inv(Zsym(B))→ Inv(B)
α−→ Aut(IdB), (4.14)

where

α(Z)X = cZ,XcX,Z ∈ Aut(X ⊗ Z) = k× (4.15)

for every simple object X ∈ B. Two braided B-module categories Bν1 and Bν2 , ν1, ν2 ∈ Aut(IdB), are

equivalent if and only if ν2 = ν1α(Z) for some Z ∈ Inv(B). Thus, the group of equivalence classes of

braided B-module categories of the form Bν is isomorphic to Coker(Inv(B)
α−→ Aut(IdB)).

Let Mod1
br(B) denote the full braided monoidal 2-subcategory of Modbr(B) generated by braided

B-module categories Bν .

Example 4.16. Let M be an exact B-module category. The 2-categorical half-braiding

M 'M �B Bν
SνM−−→ Bν �B M 'M (4.16)

is identified with the image of ν under the composition

Aut⊗(IdB)
ι−→ Inv(Z(B)) ∼= Inv(Z(EndB(M))→ Inv(EndB(M)) = AutB(M), (4.17)
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where ι(ν) = 1 as an object of B with the half-braiding

νXIdX : X ∼= X ⊗ ι(ν)
∼−→ ι(ν)⊗X ∼= X, X ∈ B.

For the trivial tensor category B = Vect we have Modbr(Vect) = Mod0
br(Vect) = Mod1

br(Vect), the

2-category of 2-vector spaces. The objects of this category are natural numbers, 1-cells are matrices of

vector spaces, and 2-cells are matrices of linear transformations.

The following result was established in [30] using different methods and terminology.

Proposition 4.17. Let B be a non-degenerate braided fusion category. There is an equivalence of braided

monoidal 2-categories

Modbr(B) 'Modbr(Vect). (4.18)

Proof. Let M be an indecomposable B-module category. The tensor functors α±M : B → EndB(M) are

given by the compositions

B → Z(B) ' Z(EndB(M))→ EndB(M), (4.19)

where the first functor is the embedding of B (respectively, Brev) into Z(B), and the last one is the

forgetful functor. The images of B and Brev generate Z(EndB(M)). If M has a B-module braiding, it

follows from Proposition 4.9 that the full images of α+
M(B) and α−M(B) in EndB(M) coincide. Since the

forgetful functor is surjective, we have α±M(B) = EndB(M). Thus, M is an invertible B-module category

such that the braided autoequivalence ∂M := (α+
M)−1 ◦α−M ∈ Autbr(B) is trivial. It follows from [10, 23]

that M ' B as a B-module category, i.e. Modbr(B) ' Mod1
br(B). Since the homomorphism α from

Example 4.15 is an isomorphism for a non-degenerate category B, we have Mod1
br(B) ' Mod0

br(B).

Since Zsym(B) = Vect , Mod0
br(B) is 2-equivalent to Modbr(Vect), and the statement follows.

4.4 The symmetric monoidal 2-category of symmetric module categories

Let E be a symmetric tensor category. For any E-module category M we have α+
M = α−M. In particular

any E-module category M has the identity module braiding IdX⊗M .

Definition 4.18. A braided E-module category (M, σ) is called symmetric if σX,M = IdX⊗M for all

X ∈ E and M ∈M.

Example 4.19. Let C be a symmetric braided tensor category containing E . Then C is a symmetric

E-module category.

Clearly, the tensor product of symmetric module categories is symmetric. We will denote Modsym(E)

the symmetric monoidal 2-category of symmetric E-module categories (its double braiding 2-cells (2.30)
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are identities). Note that Modsym(E) = Mod(E) as a monoidal 2-category and can also be viewed as a

braided monoidal 2-subcategory of Modbr(E).

Remark 4.20. Let B be a braided tensor category. It follows from Example 4.16 that the braided

monoidal 2-category Mod1
br(B) has a symmetric structure.

Proposition 4.21. Let E be a tensor subcategory of Zsym(B). The induction

Mod(E)→Modbr(B) : N 7→ B �E N (4.20)

is a braided monoidal 2-functor.

Proof. Let N = ModE(A) ∈ Mod(E) for some algebra A ∈ E . Then B �E N = ModB(A). For any

M ∈Mod(B) the composition of B-module equivalences

M �B (B �E N ) ∼= ModM(α−M(A)) = ModM(α+
M(A)) ∼= (B �E N ) �B M,

where the equality in the middle is due to the fact that A ∈ Zsym(B), defines a half braiding on B �E N .

It follows that B �E N is a braided B-module category and the monoidal induction 2-functor from

Proposition 3.7 lifts to a braided monoidal 2-functor (4.20).

5 2-categorical Picard groups

In this Section we describe categorical 2-groups of module categories over tensor categories in terms

introduced in Section 2.4.

5.1 The 2-categorical Brauer-Picard group of a tensor category

Let D be a tensor category. Recall from [23, Section 4.1] that a D-bimodule category M is invertible

with respect to �D if and only if Mo �D M ∼= D and M �D Mo ∼= D, where Mo is the opposite

Abelian category of M with the left (respectively, right) D-module actions of X ∈ D given by the right

(respectively, left) actions of ∗X (see also [17]).

The 2-categorical Brauer-Picard group [23] of a tensor category D is

BrPic(D) = Inv(Bimod(D)). (5.1)

Its objects are invertible D-bimodule categories, 1-cells are D-bimodule equivalences, and 2-cells are

isomorphisms of D-bimodule equivalences. The tensor product is �D and the unit object is the regular

D-bimodule category. Let BrPic(D) denote the categorical group obtained by truncating BrPic(D) and

let BrPic(D) denote the group of isomorphism classes of objects.
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The homotopy groups of BrPic(D) are

π0(BrPic(D)) = BrPic(D) ∼= Autbr(Z(D)), (5.2)

π1(BrPic(D)) = Inv(Z(D)), (5.3)

π2(BrPic(D)) = k×. (5.4)

The 1-categorical truncations of BrPic(D) are

Π≤1(BrPic(D)) = BrPic(D) ∼= Autbr(Z(D)), (5.5)

Π1≤(BrPic(D)) = Inv(Z(D)). (5.6)

The first canonical class is the associator αBrPic(D) ∈ H3(Autbr(Z(D)), Inv(Z(D))) of the categorical

group Autbr(Z(D)). The second canonical class is the braided associator qBrPic(D) ∈ H3
br(Inv(Z(D)), k×)

of the braided categorical group Inv(Z(D)), corresponding to the quadratic form

qBrPic(D) : Inv(Z(D))→ k× : Z 7→ cZ,Z .

The monoidal functor Π≤1(BrPic(D)) → Autbr(Π1≤(BrPic(D))) coincides with the composition

BrPic(D) ∼= Autbr(Z(D))→ Autbr(Inv(Z(D))) [10, 23].

The non-trivial Whitehead brackets are the maps π0 × π1 → π1 and π1 × π1 → π2 given by

Autbr(Z(D))× Inv(Z(D))→ Inv(Z(D)) : (F, Z) 7→ F (Z), (5.7)

Inv(Z(D))× Inv(Z(D))→ k× : (Z, W ) 7→ cW,ZcZ,W . (5.8)

Here c denotes the braiding of Z(D).

5.2 The 2-categorical Picard group of a braided tensor category

Let B be a braided tensor category. Recall [10, 23] that a B-module category M is invertible if and only

if the α-induction tensor functors α±M : Bop → EndB(M), see (4.4), are equivalences. Here EndB(M)

denotes the category of right exact B-module endofunctors of M.

Recall that a B-module category M is exact [24] if for any projective object P ∈ B and any object

M ∈ M the object P ⊗ M ∈ M is projective. For an exact M, the dual category EndB(M) is a

multitensor category. The tensor product of functors is their composition and the left and right duals of

a C-module functor F : M→M are its left and right adjoints.

The following result was explained to us by Victor Ostrik.

Proposition 5.1. An invertible B-module category is exact.
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Proof. Let M be an invertible B-module category. It is equivalent to ModB(A) for some algebra A in B

and

BimodB(A) ∼= EndB(M) ∼= Bop.

So the tensor product over A is exact on the category of A-bimodules. This implies that it is exact for

right modules tensored with left modules (as any right A-module M can be made into a bimodule A⊗M

and similarly for left modules). By [22, Proposition 7.9.7(1) and Example 7.9.8], this is equivalent to

exactness of the internal Hom functor

M→ B : M 7→ Hom(N, M) for all N ∈ ModB(A)

and, hence, to exactness of M.

Corollary 5.2. Let C be a finite tensor category. An invertible C-bimodule category is exact.

Proof. A canonical monoidal 2-equivalence between Pic(Z(C)) and BrPic(C) preserves exactness by [24,

Theorem 3.31].

The 2-categorical Picard group [10, 23] of B is

Pic(B) = Inv(Mod(B)). (5.9)

Its objects are invertible B-module categories, 1-cells are B-module equivalences, and 2-cells are isomor-

phisms of B-module equivalences. The tensor product is �B and the unit object is the regular B-module

category. Let Pic(B) denote the categorical group obtained by modding out Pic(B) by 2-morphisms and

let Pic(B) denote the group of isomorphism classes of objects.

The homotopy groups of Pic(B) are

π0(Pic(B)) = Pic(B), (5.10)

π1(Pic(B)) = Inv(B), (5.11)

π2(Pic(B)) = k×. (5.12)

The 1-categorical truncations of Pic(B) are

Π≤1(Pic(B)) = Pic(B), (5.13)

Π1≤(Pic(B)) = Inv(B). (5.14)

The first canonical class is the associator αPic(B) ∈ H3(Pic(B), Inv(B)) of the categorical group

Pic(B). The second canonical class is the braided associator qPic(B) ∈ H3
br(Inv(B), k×) of the braided

categorical group Inv(B), corresponding to the quadratic form

qPic(B) : Inv(B)→ k× : Z 7→ cZ,Z .
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The monoidal functor Π≤1(Pic(B))→ Autbr(Π1≤(Pic(B))) coincides with the composition Pic(B)→

Autbr(B)→ Autbr(Inv(B)) [10, 23].

The non-trivial Whitehead brackets are the maps π0 × π1 → π1 and π1 × π1 → π2 given by

Autbr(B)× Inv(B)→ Inv(B) : (F, Z) 7→ F (Z), (5.15)

Inv(B)× Inv(B)→ k× : (Z, W ) 7→ cW,ZcZ,W . (5.16)

Here c denotes the braiding of B.

For any tensor category D there is a monoidal 2-equivalence BrPic(D) ∼= Pic(Z(D)) [23, Theorem

5.2]. Thus, 2-categorical Picard groups generalize Brauer-Picard groups.

5.3 The braided 2-categorical Picard group of a braided tensor category

The braided 2-categorical Picard group of a braided tensor category B is

Picbr(B) = Inv(Modbr(B)) ∼= Inv(Z(Mod(B))), (5.17)

where the last 2-equivalence is by Theorem 4.11. Its objects are invertible braided B-module categories,

1-cells are braided B-module equivalences, and 2-cells are natural isomorphisms of B-module equivalences.

The tensor product is �B and the unit object is the regular braided B-module category (see Example 4.1).

Let Picbr (B) denote the braided categorical group obtained by by modding out Picbr(B) by 2-morphisms

and let Picbr(B) denote the group of isomorphism classes of objects.

The homotopy groups of Picbr(B) are

π0(Pic(B)) = Picbr(B), (5.18)

π1(Pic(B)) = Inv(Zsym(B)), (5.19)

π2(Pic(B)) = k×. (5.20)

The 1-categorical truncations of Picbr(B) are

Π≤1(Pic(B)) = Picbr (B), (5.21)

Π1≤(Pic(B)) = Inv(Zsym(B)). (5.22)

The first canonical class is the braided associator αPicbr(B) ∈ H3
br(Picbr(B), Inv(Zsym(B))) of the

braided categorical group Picbr(B) corresponding to the quadratic function

QPicbr(B) : Picbr(B)→ Inv(Zsym(B)) : M 7→ BM,M,
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where B denotes the braiding of Picbr(B). The second canonical class is the symmetric associator

qPicbr(B) ∈ H3
sym(Inv(Zsym(B)), k×) of the symmetric categorical group Inv(Zsym(B)) corresponding to

the homomorphism

qPicbr(B) : Inv(Zsym(B))→ {±1} ⊂ k× : Z 7→ cZ,Z .

Proposition 5.3. Let (M, σM) be an indecomposable braided B-module category and let Z be an invert-

ible object in Zsym(B). The Whitehead bracket [ , ] : π0 × π1 → π2 (2.60) of Picbr(B) satisfies

σM
Z,M = [M, Z] IdZ∗M (5.23)

for all objects M ∈M.

Proof. For any simple M in M we identify σM
Z,M ∈ Aut(Z ⊗M) with a non-zero scalar. It suffices to

check that this scalar does not in fact depend on M . Note that

σM
Z,X⊗M = cZ,XcX,Zσ

M
Z,M = σM

Z,M

for any simple object X ∈ B. Since every simple object N of M is contained in some X⊗M we conclude

that σM
Z,M = σM

Z,N .

Recall from [10, 23] a monoidal functor

∂ : Pic(B)→ Autbr(B) : M 7→ (α+
M)−1 ◦ α−M, (5.24)

where α±M : Bop → EndB(M) are equivalences (4.4).

Proposition 5.4. There is an exact sequence

1→ Inv(Zsym(B)) −→ Inv(B)
α−→ Aut⊗(IdB)

ε−→ Picbr(B)
φ−→ Pic(B)

∂−→ Autbr(B), (5.25)

where α is defined in (4.15), ε(ν) = Bν (see Example 4.16), and φ(M, σ) = M.

Proof. This is an immediate consequence of the definitions.

Remark 5.5. By the fiber of the monoidal functor F : G → H between groupoids we mean the category

of pairs (X,x), where X ∈ G and x : F (G)→ I for the unit object I ∈ H. It follows from Proposition 4.9

that the fiber of the monoidal functor Pic(B) → Aut(B) coincides with Picbr(B). The exact sequence

(5.25) can be seen as the Serre exact sequence of homotopy groups of the fibration of categorical groups

Picbr(B)→ Pic(B)→ Aut(B).
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Example 5.6. Let Pic1br(B) be the braided 2-categorical subgroup of Picbr(B) consisting of braided

B-module categories whose underlying B-module category is the regular B-module category B. That is,

Pic1br(B) = Inv(Mod1
br(B)), see Example 4.15.

The objects of Pic1br(B) are braided B-module categories Bν , ν ∈ Aut⊗(IdB). The module braiding

of Bν is

σνX,M = (νX ⊗ IdM ) ◦ cM,XcX,M , X,M ∈ B. (5.26)

The homotopy groups of Pic1br(B) are

π0(Pic1br(B)) = Coker(Inv(B)
∂−→ Aut⊗(IdB)), (5.27)

π1(Pic1br(B)) = Inv(Zsym(B)), (5.28)

π2(Pic1br(B)) = k×. (5.29)

The following is a convenient “non-skeletal” description of Pic1br(B). The objects Bν correspond to

elements of Aut⊗(IdB), 1-morphisms are given by

Pic1br(B)(Bµ, Bν) = {Z ∈ Inv(B)) | cZ,X ◦ cX,Z ◦ (µX ⊗ IdZ) = νX ⊗ IdZ , X ∈ B}, (5.30)

and 2-cells are isomorphisms between invertible objects of B. The tensor product is Bµ � Bν := Bµµ

for all µ, ν ∈ Aut⊗(IdB). The associativity and braiding 2-cells are identities and the pseudo-naturality

2-cell for the tensor product is

�Z,W = cZ,W , Z,W ∈ Inv(B),

where c denotes the braiding of B. We also have

BZ,Bν = νZ , Z ∈ Inv(B), ν ∈ Aut⊗(B).

All other structural 2-cells are identities.

5.4 The symmetric 2-categorical Picard group of a symmetric tensor category

Let E be a symmetric tensor category. The symmetric 2-categorical Picard group of E is

Picsym(E) = Inv(Modsym(E)) = Inv(Mod(E)) = Pic(E). (5.31)

Its objects are invertible symmetric E-module categories, 1-cells are E-module equivalences, and 2-cells

are natural isomorphisms of E-module equivalences. Let Picsym(E) denote the categorical group obtained

by truncating Picsym(E) and let Picsym(E) denote the group of isomorphism classes of objects.
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The homotopy groups of Picsym(E) are

π0(Pic(E)) = Picsym(E) = Pic(E), (5.32)

π1(Pic(E)) = Inv(E), (5.33)

π2(Pic(E)) = k×. (5.34)

The 1-categorical truncations of Picsym(E) are

Π≤1(Pic(E)) = Picsym(E) = Pic(E), (5.35)

Π1≤(Pic(E)) = Inv(E). (5.36)

The first canonical class is the symmetric associator αPicsym(B) ∈ H3
sym(Pic(E), Inv(E)) of the sym-

metric categorical group Pic(B) corresponding to the homomorphism

QPicsym(E) : Pic(E)→ Inv(E)2 : M 7→ BM,M,

where B denotes the braiding of Pic(E). The second canonical class is the symmetric associator qPic(E) ∈

H3
sym(Inv(E), k×) of the braided categorical group Inv(E) corresponding to the homomorphism

qPicsym(E) : Inv(E)→ {±1} ⊂ k× : Z 7→ cZ,Z .

5.5 Azumaya algebras in braided tensor categories

Let R be an algebra in a braided tensor category B, i.e. an object together with morphisms µ : R⊗R→ R

(the product) and ι : I → R (the unit map) satisfying the associativity and unit conditions.

Denote by Autalg(R) the group of algebra automorphisms of R.

Remark 5.7. The assignment

Aut⊗(IdB)→ Autalg(R) : a 7→ aR (5.37)

is a group homomorphism.

Let M be a right R-module in B with the structural map ρ : M ⊗ R → M . For any X ∈ B there is

an R-module structure on X ⊗M defined by

IdX ⊗ ρ : X ⊗M ⊗R→ X ⊗M.

Thus, the category BR of right R-modules in B is a left B-module category via

B × BR → BR, (X, M) 7→ X ⊗M.
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The α-induction functors (4.4) for BR are

α±BR : B → RBR = EndB(BR)op : X 7→ X ⊗R, (5.38)

with the obvious right R-module structures and the left R-module structures given by

R⊗X ⊗R cR,X⊗IdR−−−−−−→ X ⊗R⊗R IdX⊗µ−−−−→ X ⊗R,

R⊗X ⊗R
c−1
X,R⊗IdA
−−−−−−→ X ⊗R⊗R IdX⊗µ−−−−→ X ⊗R, X ∈ B

for α+
BR and α−BR , respectively.

The tensor product R⊗ S of two algebras R,S ∈ B has an algebra structure, with the multiplication

map µR⊗S defined as

R⊗ S ⊗R⊗ S IdR⊗cS,R⊗IdS−−−−−−−−−→ R⊗R⊗ S ⊗ S µR⊗µS−−−−−→ R⊗ S,

where µR and µS are multiplications of algebras R and S, respectively (here we suppress the associativity

constraints in B). We have

BR �B BS ∼= BR⊗S .

Let Rop = R denote the algebra with the multiplication opposite to that of R:

R⊗R cR,R−−−→ R⊗R µ−→ R.

Following [34], we say that an algebra R in a braided monoidal category B is Azumaya if the morphism

R⊗Rop ⊗R IdR⊗cR,R−−−−−−→ R⊗R⊗R µ⊗IdR−−−−→ R⊗R µ−→ R

induces an isomorphism R ⊗ Rop → R ⊗ R∗. The B-module category BR is invertible in Pic(B) if and

only if R is an Azumaya algebra (in which case α±BR are equivalences).

Thus, the 2-categorical Picard group of Pic(B) is monoidally 2-equivalent to the group of Morita

equivalence classes of exact Azumaya algebras in B (the latter group was called in [34] the Brauer group

of B).

It was shown in [34, Theorem 3.1] that for an Azumaya algebra R the functors (??) are monoidal

equivalences.

For an Azmaya algebra R ∈ B and an automorphism φ ∈ Autalg(R) let φR be the invertible R-

bimodule obtained from R by twisting the right R-action by φ. Under the equivalence α±BR it corresponds

to an invertible object Pφ ∈ B and we have a group homomorphism

Autalg(R)→ Inv(B) : φ 7→ Pφ. (5.39)
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Remark 5.8. An isomorphism of R-bimodules f : P ⊗ R → φR is completely determined by the

morphism g : P → R defined by g = f(1⊗ ι). Indeed, f = µ(g ⊗ 1). While the right R-module property

of such f is automatic, the left R-module property amounts to the condition

µ(φ⊗ g) = µ(g ⊗ 1)cR,P . (5.40)

Remark 5.9. An Azumaya algebra R ∈ B gives rise to a homomorphism ςR : Aut⊗(IdB) → Inv(B),

which is the composition of the homomorphisms (5.37) and (5.39).

Note that ςR⊗S(a) = ςR(a)⊗ ςS(a), so that we have a homomorphism

ς : Pic(B) → Homgr(Aut⊗(IdB), Inv(B)), (5.41)

or, equivalently, a (bimultiplicative) pairing

〈− , −〉 : Pic(B)×Aut⊗(IdB)→ Inv(B). (5.42)

This can be interpreted in terms of module categories as follows. For any M ∈ Pic(B) there is an

isomorphism AutB(M) ∼= Inv(B) given by α+
M. For ν ∈ Aut⊗(IdB) the value of 〈M, ν〉 is the image of

ν under the composition

Aut⊗(IdB)
ι−→ Inv(Z(B)) ∼= Inv(Z(EndB(M)))→ Inv(EndB(M)) ∼= Inv(B). (5.43)

Note that the object 〈M, ν〉 coincides with the central structure of the braided module B-category Bν

(see Example 5.6), i.e. with the value of the half-braiding M �B Bν → Bν �B M viewed as an object of

AutB(M) ∼= Inv(B).

6 The braided 2-categorical Picard group of a symmetric fusion

category

Let G be a finite group and let Rep(G) denote the category of representations of G. It was proved by

Deligne [15] that a symmetric fusion category is equivalent to the following “super” generalization of

Rep(G). Namely, let G be a finite group and let t ∈ G be a central element such that t2 = 1. Then

Rep(G) has a braiding defined by

cV,W : V ⊗W ∼−→W ⊗ V : v ⊗ w 7→


−w ⊗ v if tv = −v, tw = −w,

w ⊗ v otherwise.

(6.1)

The fusion category Rep(G) equipped with the above braiding will be denoted Rep(G, t). Any symmetric

fusion category is equivalent to Rep(G, t) for a unique up to an isomorphism pair (G, t). Under this
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notation Rep(G, 1) is nothing but Rep(G) with its usual transposition braiding. We call Rep(G, t)

Tannakian if t = 1 and super-Tannakian if t 6= 1.

The Picard group of Pic(Rep(G, t)) was computed by Carnovale in [7]. We recall this description in

Sections 6.2 and describe the symmetric categorical group Pic(Rep(G, t)), i.e. the homomorphism

QPic(Rep(G, t)) : Pic(Rep(G, t))→ Ĝ.

In Sections 6.3 and 6.4 we describe the braided categorical Picard group Picbr (Rep(G, t)).

6.1 The 2-categorical Picard group of a Tannakian category

Let B = Rep(G) be the category of finite dimensional representations of a finite group G with its standard

symmetric braiding. For a 2-cocycle γ ∈ Z2(G, k×) denote by Repγ(G) the category of γ-projective

representations of G.

The first statement of the following Proposition is well known (see e.g. [7]).

Proposition 6.1. The assignment

H2(G, k×)→ Pic(Rep(G)) : γ 7→ Repγ(G)

is an isomorphism. The homomorphism QPic(Rep(G)) : H2(G, k×)→ (Ĝ)2 is trivial.

Proof. Since an Azumaya algebra in Rep(G) is also an Azumaya algebra in Vect it should have the form

Endk(V ) for some vector space V . The G-action on Endk(V ) corresponds to the structure of a projective

G-representation on V . Its Schur multiplier (as a class in H2(G, k×)) is the only Morita invariant of the

G-algebra Endk(V ) .

We describe QPic(Rep(G)) as follows. The transposition automorphism cEndk(V ),Endk(V ) of the tensor

square Endk(V )⊗2 of the Azumaya algebra Endk(V ) is inner, i.e. is given by conjugation with an

invertible element ζ ∈ Endk(V )⊗2. The value Q(Endk(V )) is the character χ ∈ Ĝ defined by g(ζ) =

χ(g)ζ for all g ∈ G. Under the isomorphism Endk(V )⊗2 ∼= Endk(V ⊗2) the element ζ corresponds to

cV,V ∈ Endk(V ⊗2). Clearly, cV,V is G-invariant, which makes the character χ trivial.

Proposition 6.2. The pairing (5.42) for Rep(G) is given by

H2(G, k×)× Z(G)→ Ĝ : (γ, z) 7→ γz, γz(g) =
γ(g, z)

γ(z, g)
. (6.2)

Proof. We need to compute the invertible object ςR(z) ∈ Rep(G) for R = Endk(V ), where V is a

projective G-representation ρ : G→ GL(V ) with multiplier γ. According to the remark 5.8 the invertible

object corresponding to an automorphism φ of Endk(V ) is given by the (unique) character χ such that
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there is an invertible ζ ∈ Endk(V ) (the image of g : P → R on a basic vector of P ) with the properties

φ(x) = ζxζ−1 and χ(g)ζρ(g) = ρ(g)ζ for any x ∈ Endk(V ) and g ∈ G. Taking ζ = ρ(z) we get that χ is

of the form γz.

6.2 The 2-categorical Picard group of a super-Tannakian category

We start with the basic example.

Example 6.3. Let G = Z/2Z and let t be the nontrivial element of G. Then Rep(G, t) = sVect , the

category of super vector spaces. It goes back to [35] that Pic(sVect) = Z/2Z. Let Π denote the non-

identity simple object of sVect .

Let R be an Azumaya algebra in sVect and let φ : R→ R be an automorphism. The equation (5.40) can

be rewritten as φ(r)ζ = ζr(−1)|r||ζ|, where ζ is the value of φ on a basic element of the invertible object

P ∈ sVect .

The homomorphism QPic(sVect) : Pic(sVect) = Z/2Z → Inv(sVect) = Z/2Z is the identity map. Indeed,

the Azymaya algebra A = k〈x|x2 = 1〉 = I⊕Π (with x odd) represents the non-trivial class in Pic(sVect).

Its tensor square in sVect is A⊗2 = k〈x, y|x2 = y2 = 1 xy + yx = 0〉. The braiding cA,A is the algebra

automorphism τ interchanging x and y. Note that τ(r)(x − y) = (x − y)r(−1)|r| for r ∈ A⊗2. Since

the element ζ = x − y ∈ A⊗2 is odd, the invertible object in sVect corresponding to τ is the non-trivial

element Π of Inv(sVect).

The pairing (5.42) for sVect is given by

Pic(sVect)×Aut⊗(IdsVect )→ Inv(sVect) 〈A, π〉 = Π ,

where π is the natural automorphism of the identity functor of sVect such that π1 = Id1 and πΠ = −IdΠ.

Indeed the automorphism πA of the Azymaya algebra A satisfies π(a)x = xa(−1)|a| for a ∈ A.

We say that Rep(G, t) is split super-Tannakian if 〈t〉 is a direct summand of G and non-split super-

Tannakian otherwise.

The following definition was given and Theorem 6.5 below was proved by Carnovale [7]. We include

the argument for the sake of completeness and to set up notation for subsequent computations.

Define the group H2(G, t, k×) to be the second cohomology H2(G, k×) as a set, with the group

operation (on the level of cocycles) given by

(γ ∗ ν)(f, g) = (−1)ξγ(f)ξν(g)γ(f, g)ν(f, g) f, g ∈ G, γ, ν ∈ H2(G, k×). (6.3)

where ξγ : G→ Z/2Z is the homomorphism defined by

(−1)ξγ(g) = γt(g) =
γ(t, g)

γ(g, t)
. (6.4)
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Remark 6.4. It was explained in [7] that H2(G, t, k×) is (non-canonically) isomorphic to H2(G, k×).

Theorem 6.5. The Picard group of a split super-Tannakian symmetric fusion category is

Pic(Rep(G, t)) ∼= H2(G, t, k×)× Z/2Z. (6.5)

The Picard group of a non-split super-Tannakian symmetric fusion category is

Pic(Rep(G, t)) ∼= H2(G, t, k×). (6.6)

The homomorphism QPic(Rep(G,t)) : Pic(Rep(G, t)) → Inv(Rep(G, t))2 = (Ĝ)2 restricted to H2(G, t, k×)

is given by

γ 7→ γt, γt(g) =
γ(t, g)

γ(g, t)
. (6.7)

In the split case, the homomorphism QPic(Rep(G,t)) restricted to Z/2Z is the isomorphism Z/2Z→ 〈̂t〉.

Proof. Consider the homomorphism Pic(Rep(G, t)) → Pic(sVect) induced by the restriction functor

Rep(G, t) → sVect . We start by showing that this homomorphism is surjective if and only if Rep(G, t)

is split. Indeed, a splitting of the restriction functor Rep(G, t)→ sVect induces a splitting of the homo-

morphism Pic(Rep(G, t)) → Pic(sVect). Conversely, an Azumaya algebra R ∈ Rep(G, t), which class

is mapped to the class of I ⊕ Π ∈ sVect , has the form (I ⊕ Π) ⊗ Endk(U) for some vector space U . In

particular its classical center (computed in Vect) coincides with I ⊕Π. The G-action descends from R to

its center and gives a splitting G→ Autalg(I ⊕Π) = Z/2Z.

The restriction of the homomorphism QPic(Rep(G,t)) to Pic(sVect) is described in Example 6.3.

In the following we argue that the kernel of the homomorphism Pic(Rep(G, t)) → Pic(sVect) is

isomorphic to H2(G, t, k×). This kernel consists of classes of Azumaya algebras of the form Endk(V )

for a projective G-representation V . It is straightforward to see (e.g., by computing the left center [9]

in Rep(G, t)) that Endk(V ) is an Azumaya algebra in Rep(G, t) for any projective G-representation

V . Thus we have a set-theoretic bijection H2(G, t, k×) → Ker(Pic(Rep(G, t)) → Pic(sVect)) sending

γ ∈ Z2(G, k×) to the (class of) Endk(V ), where V is a projective G-representation with the Schur

multiplier γ. To show that this is a group isomorphism we need a few facts.

Let U and V be super vector spaces. Define a map

φ : Endk(U)⊗ Endk(V )→ Endk(U ⊗ V ) : a⊗ b 7→ φa,b, (6.8)

by φa,b(u ⊗ v) = (−1)|b||u|a(u) ⊗ b(v) for all homogeneous maps a ∈ Endk(U), b ∈ Endk(V ) and homo-

geneous vectors u ∈ U, v ∈ V , where |a| denotes the degree of a.
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The map (6.8) is an isomorphism of algebras in sVect , i.e. φa,b ◦ φc,d = (−1)|b||c|φa◦c,b◦d. Indeed,

φa,b(φc,d(u⊗ v)) = (−1)|d||u|φa,b(c(u)⊗ d(v))

= (−1)|d||u|+|b||c(u)|a(c(u))⊗ b(d(v))

= (−1)|d||u|+|b||c|+||b|u|(a ◦ c)(u)⊗ (b ◦ d)(v)

= (−1)|b||c|φa◦c,b◦d(u⊗ v).

Let now U be a projective G-representation with the Schur multiplier γ ∈ Z2(G, k×). Let t ∈ G

be a central involution. Denote by U = U0 ⊕ U1 the Z/2Z-grading corresponding to t, i.e. u ∈ U

is homogeneous of degree |u| iff t(u) = (−1)|u|u. Then the G-action is related to the grading in the

following way |g.u| = ξγ(g) + |u|, where ξγ is defined in (6.4). Indeed,

t.(g.u) = γ(t, g)(tg).u = γ(t, g)(gt).u =
γ(t, g)

γ(g, t)
g.(t.u) = (−1)|u|

γ(t, g)

γ(g, t)
g.u.

Now let U and V be projective G-representations with the Schur multipliers γU , γV ∈ Z2(G, k×) corre-

spondingly. Note that Endk(U) is a G-algebra with g(a) defined by g(a)(u) = g.(a(g−1.u)) (and similarly

for Endk(V )). Then the homomorphism φ : Endk(U) ⊗ Endk(V ) → Endk(U ⊗ V ) has the following

G-equivariance property:

φg(a),g(b) = ρ(g) ◦ φa,b ◦ ρ(g)−1 ,

where ρ(g) : U ⊗ V → U ⊗ V is given by ρ(g)(u ⊗ v) = (−1)ξγ(g)|v|g.u ⊗ g.v. Indeed, the relation

φg(a),g(b) ◦ ρ(g) = ρ(g) ◦ φa,b can be checked directly:

φg(a),g(b)(ρ(g)(u⊗ v)) = (−1)ξγ(g)|v|φg(a),g(b)(g.u⊗ g.v)

= (−1)ξγ(g)|v|+|g(b)||g.u|g(a)(g.u)⊗ g(b)(g.v)

= (−1)|b||u|+ξγ(g)|b(v)|g.(a(u))⊗ g.(b(v))

= (−1)|b||u|+ξγ(g)|b(v)|g.(a(u))⊗ g.(b(v))

= (−1)|b||u|ρ(g)(a(u)⊗ b(v))

= ρ(g)(φa,b(u⊗ v)).

The map ρ : G→ GL(U ⊗ V ) is a projective representation with the Schur multiplier

γ(f, g) = (−1)ξγ(f)ξV (g)γU (f, g)γV (f, g), f, g ∈ G. (6.9)
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To see this, we compute

ρ(fg)(u⊗ v) = (−1)ξγ(fg)|v|(fg).u⊗ (fg).v

= (−1)ξγ(fg)|v|γU (f, g)γV (f, g)f.(g.u)⊗ f.(g.v)

= (−1)ξγ(g)|v|+ξγ(f)|g.v|γ(f, g)f.(g.u)⊗ f.(g.v)

= (−1)ξγ(g)|v|γ(f, g)ρ(f)(g.u⊗ g.v)

= γ(f, g)ρ(f)(ρ(g)(u⊗ v)).

In the rest of the proof we describe the restriction of the homomorphism QRep(G,t) to H2(G, t, k×). Let

again V be a projective G-representation with the Schur multiplier γ ∈ Z2(G, k×). The automorphism

cEndk(V ),Endk(V ) of the algebra Endk(V )⊗2 in Rep(G, t)

cEndk(V ),Endk(V )(a⊗ b) = (−1)|a||b|b⊗ a,

transported (along φ) to an automorphism of the algebra Endk(V ⊗2), is inner. More precisely, we have

cV,V ◦ φa,b ◦ c−1
V,V = (−1)|a||b|φb,a,

since

cV,V (φa,b(u⊗ v)) = (−1)|b||u|cV,V (a(u)⊗ b(v))

= (−1)|b||u|+|a(u)||b(v)|b(u)⊗ a(v)

= (−1)|a||b|+|u||v|+|a||v|b(u)⊗ a(v)

= (−1)|a||b|+|u||v|φb,a(v ⊗ u)

= (−1)|a||b|φb,a(cV,V (u⊗ v)).

The element cV,V ∈ Endk(V )⊗2 has the following G-equivariance property: g(cV,V ) = χγ(g)cV,V ,

where χγ is defined in (6.7). That is, ρ(g) ◦ cV,V ◦ ρ(g)−1 = χ(g)cV,V since we have

ρ(g)(cV,V (u⊗ v)) = (−1)|u||v|ρ(g)(v ⊗ u)

= (−1)|u||v|+ξ(g)|u|g.v ⊗ g.u

= (−1)ξ(g)
2+ξ(g)|v|+|g.u||g.v|g.v ⊗ g.u

= (−1)ξ(g)+ξ(g)|v|cV,V (g.u⊗ g.v)

= χγ(g)cV,V (ρ(g)(u⊗ v)).

The formula for QPic(Rep(G,t)) on H2(G, t, k×) now follows from Remark 5.8.
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Recall that the character ξγ : G→ Z/2Z = {0, 1} was defined in (6.2). It depends on γ ∈ H2(G, k×)

as well as on t ∈ Z(G).

Proposition 6.6. The pairing (5.42) for Rep(G, t) is given by

〈γ, z〉 = γztξγ (z) in the non-split case, (6.10)

〈(γ, ε), z〉 = γztξγ (z)νξγ(z)ε in the split case, (6.11)

for γ ∈ H2(G, k×) and z ∈ Z(G), where ν is the composition G→ 〈t〉 → k× of the non-trivial character

on 〈t〉 with a (chosen) splitting G → 〈t〉 (i.e., ν ∈ Ĝ corresponds to the image of Π under a (chosen)

splitting sVect → Rep(G, t)).

Proof. First assume that the class ofR is in the kernel of the homomorphism Pic(Rep(G, t))→ Pic(sVect),

i.e. R = Endk(V ), where V is a projective G-representation ρ : G → GL(V ) with multiplier γ. Ac-

cording to Remark 5.8, the invertible object corresponding to the automorphism φ = ρ(z)(−)ρ(z)−1 of

Endk(V ) is given by the (unique) character χ such that there is an invertible ζ ∈ Endk(V ) with the

properties φ(r) = ζrζ−1(−1)|r||ζ| and ζρ(g) = χ(g)ρ(g)ζ for any g ∈ G. A (unique up to a scalar) solution

is ζ = ρ(ztξγ(z)), where ξγ(z) = |ρ(z)| (or, equivalently, (−1)ξγ(z) = γt(z)). Thus, χ = γztξγ (z) . This

computes the pairing between H2(G, k×) and Z(G) and, in particular, proves the formula (6.10).

In the split case the restriction of the pairing to sVect ⊂ Rep(G, t) is 〈(1, ε), z〉 = νξγ(z)ε (according

to Example 6.3).

Remark 6.7. It should be noted that both sides of (6.11) depend on the choice of splitting G → 〈t〉.

Indeed, the identification Pic(Rep(G, t)) ∼= H2(G, k×)× Z/2Z (implicit on the left hand side of (6.11))

is not canonical and depends on this choice.

6.3 The braided categorical Picard group of a Tannakian category

Theorem 6.8. Let E be a symmetric tensor category. There is a group isomorphism

Picbr(E) ∼= Pic(E)×Aut⊗(IdE ) . (6.12)

The first canonical class of Picbr(E) is

QPicbr(E)(M, ν) = QPic(E)(M) 〈M, ν〉. (6.13)

where the pairing 〈M, ν〉 is defined in (5.42).

Proof. Since every E-module category admits an identity E-module braiding it follows that Picbr (E) is

generated by symmetric categorical subgroups Pic(E) and Aut⊗(IdE ) (the latter consists of invertible
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categories in Mod1
br(E)). These subgroups intersect trivially, so Picbr(E) is their direct product.

For M ∈ Pic(E) and ν ∈ Aut⊗(IdE ) the self-braiding C(M, ν),(M, ν) on (M, ν) = M �B Bν is the

composition of (conjugates of) CM,M, CM,Bν , CBν ,M and CBν ,Bν . The self-braiding CM,M is the symmetric

one of Picbr (E). The relation between the self-braiding CM,Bν and 〈M, ν〉 is explained in Example 4.16.

The braidings CBν ,M and CBν ,Bν are in effect trivial (the first since CBν ,M is the symmetric braiding

CB,M Picbr (E), while the second is the trivial case M = B of Example 4.16). This proves the formula

for QPicbr(E).

The Whitehead bracket π0 × π1 → π2 (2.60) of Picbr(E) is given by

(Pic(E)×Aut⊗(IdE ))× Inv(E)→ k× : [(M, ν), Z] = νZ . (6.14)

We can now describe the braided categorical Picard group of a Tannakian category.

Corollary 6.9. We have

π0(Picbr(Rep(G))) ∼= H2(G, k×)× Z(G), (6.15)

π1(Picbr(Rep(G))) ∼= Ĝ, (6.16)

where Ĝ denotes the group of characters of G.

The first canonical class is the quadratic form

QPicbr(Rep(G))(γ, z) = γz(−), z ∈ Z(G), γ ∈ H2(G, k×). (6.17)

The second canonical class is trivial.

The Whitehead bracket (6.14) is given by

[(γ, z), χ] = χ(z), χ ∈ Ĝ, z ∈ Z(G). (6.18)

Proof. Follows from Propositions 6.1, 6.2 and Theorem 6.8.

6.4 The braided categorical Picard group of a super-Tannakian category

Here we deal with the super-Tannakian case. We start with the basic example of the symmetric fusion

category sVect of super vector spaces. As before, Π denotes the non-identity simple object of sVect .

Example 6.10. The group π0(Picbr(sVect)) ∼= Picbr(sVect) × Aut⊗(IdsVect ) ∼= Z/2Z × Z/2Z consists

of pairs (I, id), (I, π), (R, id), (R, π), where I is the regular sVect-module category, R = Vect viewed

as an sVect-module category (i.e. R = sVectA, where A is the algebra from Example 6.3), π is the

natural automorphism of the identity functor of sVect such that π1 = Id1 and πΠ = −IdΠ (as in the
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algebra from Example 6.3). It follows from Example 6.3 and Theorem 6.8 that the quadratic function

QPicbr(sVect) : Picbr(sVect)→ Inv(sVect) is given by

QPicbr(sVect)(I, id) = QPicbr(sVect)(I, π) = QPicbr(sVect)(R, π) = I, QPicbr(sVect)(R, id) = Π.

Corollary 6.11.

π0(Picbr(Rep(G, t))) ∼=


H2(G, t, k×)× Z(G) in the non-split case,

H2(G, t, k×)× Z/2Z× Z(G) in the split case.

(6.19)

π1(Picbr(Rep(G, t))) ∼= Ĝ. (6.20)

The first canonical class of Picbr(Rep(G, t)) is given by the quadratic form (with values in Ĝ)

QPicbr(Rep(G,t))(γ, z) = γztξγ (z)+1 in the non-split case, (6.21)

QPicbr(Rep(G,t))(γ, ε, z) = γztξγ (z)+1νξγ(z)ε in the split case, (6.22)

for γ ∈ H2(G, k×), z ∈ Z(G), and x ∈ G, where ν ∈ Ĝ is as in Proposition 6.6.

The second canonical class is the homomorphism

Ĝ→ {±1} : χ 7→ χ(t). (6.23)

The Whitehead bracket is given by (6.18) (and does not depend on t).

Proof. Follows from Theorems 6.5 and 6.8 and Proposition 6.6.

7 The braided Picard group of a pointed braided fusion category

Recall [26, 18] that a pointed braided fusion category B is determined by a quadratic form q : A → k×,

where A is the finite Abelian group of isomorphisms classes of simple objects of B and q(x) = cx,x, x ∈ A,

where c denotes the braiding of B.

Proposition 7.1. Let B be a pointed braided fusion category. There is an equivalence

Picbr(B) ∼= Picbr(Zsym(B)) (7.1)

of braided categorical groups.

Proof. The group Picbr(B) can be computed using the exact sequence (5.25). Namely, we have a short

exact sequence

0→ Coker(Inv(B)
α−→ Aut⊗(IdB))→ Picbr(B)→ Ker(Pic(B)

∂−→ Autbr(B))→ 0. (7.2)
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By [10, Proposition 5.17], the induction

Ind : Pic(Zsym(B))→ Pic(B) : M 7→ B �Zsym(B) M

establishes a group isomorphism Pic(Zsym(B)) ∼= Ker(∂). Note that (4.21) provides a splitting for (7.2).

The homomorphism α is the map A 7→ Â coming from the bilinear form on A associated to q. Its cokernel

is Â⊥ ∼= Aut⊗(IdZsym(B)).

Thus, the split exact sequence (7.2) yields a group isomorphism (7.1) by Proposition 6.8:

Picbr(Zsym(B)) ∼= Pic(Zsym(B))×Aut⊗(IdZsym(B))→ Picbr(B) : (M, ν) 7→ Ind(M)ν ,

cf. Example 5.6. The value of the quadratic form qPicbr(B) on Ind(M)x is given by the half braiding

Ind(M) �B Bν → Bν �B Ind(M).

The latter coincides with the value of the pairing 〈M, x|Zsym(B)〉 (5.42), see Remark 5.8. So the result

follows from Proposition 6.8.

Note that τ := q|A⊥ is an element of Â⊥ of order at most 2.

Corollary 7.2.

Picbr(C(A, q)) ∼=


Hom(Λ2 Â, k×)× Â⊥ if τ = 1,

Hom(Λ2 Â, k×)× Â⊥ if τ 6= 1 and A = Ker(τ)× Z/2Z,

Hom(Λ2 Â, k×)× Z/2Z× Â⊥ if τ 6= 1 and A 6= Ker(τ)× Z/2Z.

(7.3)

Proof. This follows from Proposition 7.1 and the description of the Picard group of a symmetric fusion

category, see Sections 6.1 and 6.2.

8 Classification of graded extensions

8.1 Graded tensor extensions [23]

Let D be a tensor category and let G be a finite group.

Definition 8.1. A tensor G-graded extension (or, simply, a G-extension) of a tensor category D is a

tensor category

C =
⊕
x∈G

Cx, Ce = D, (8.1)

such that Cx 6= 0 and the tensor product of C maps Cx × Cy to Cxy for all x, y ∈ G.
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Definition 8.2. An equivalence between two G-graded extensions, C =
⊕

x∈G Cx and C̃ =
⊕

x∈G C̃x

of D is a tensor equivalence F : C ∼−→ C̃ such that F |D = IdD and F (Cx) = C̃x for all x ∈ G. An

isomorphism between equivalences of G-extensions F, F ′ : C ∼−→ C̃ is a tensor isomorphism η : F
∼−→ F ′

whose restriction on F |D = IdD is the identity isomorphism.

Thus, G-extensions of D form a 2-groupoid Ex(G, D) whose objects are extensions, 1-cells are equiv-

alences of extensions, and 2-cells are isomorphisms of equivalences.

Example 8.3. G-extensions of Vect are precisely pointed fusion categories VectωG, where ω ∈ Z3(G, k×)

is a 3-cocycle. Equivalences between extensions VectωG and Vect ω̃G correspond to 2-cochains µ ∈ C2(G, k×)

such that d(µ) = ω̃/ω. Thus, π0(Ex(G, Vect)) = H3(G, k×).

Remark 8.4. Example 8.3 shows that there exist equivalent tensor categories that are not equivalent as

extensions. Indeed, if the cohomology classes of ω and ω̃ are in the same Aut(G)-orbit then VectωG ∼= Vect ω̃G

as tensor categories.

The following theorem is essentially proved in [23]. We include its proof for the reader’s convenience.

Our arguments for central, braided, and symmetric extensions in subsequent sections will follow the same

pattern.

Theorem 8.5. There is an equivalence of 2-groupoids Ex(G, D) ∼= 2-Fun(G, BrPic(D)).

Proof. We construct a 2-functor

M : Ex(G, D)→ 2-Fun(G, BrPic(D)) (8.2)

as follows. Given a G-extension C =
⊕

x∈G Cx of D, each homogeneous component Cg is an invertible

D-bimodule category. The restrictions ⊗x,y : Cx × Cy → Cxy, x, y ∈ G, of the tensor product of C are

D-balanced functors and so give rise to D-bimodule equivalences

Mx,y : Cx �D Cy
∼−→ Cxy. (8.3)

The associativity constraints of C restricted to Cx × Cy × Cz can be viewed as natural isomorphisms of

D-balanced functors and so give rise to natural isomorphisms of D-bimodule functors

Cx �D Cy �D Cz
My,z //

Mx,y

��

Cx �D Cyz

Mx,yz

��
Cxy �D Cz

Mxy,z

// Cxyz,

αx,y,z +3

(8.4)

for all x, y, z ∈ G, cf. (2.35). The pentagon identity for the associativity constraints of C implies that (2.37)

is satisfied (equivalently, the cubes (2.63) commute for all x, y, z, w ∈ G). This means that the above data
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consisting of D-bimodule categories Cx, equivalences Mx,y, and natural isomorphisms αx,y,z, x, y, z ∈ G,

determine a monoidal 2-functor M(C) : G→ BrPic(D).

Suppose that there is another G-extension C̃ =
⊕

g∈G C̃g of D and an equivalence of extensions

F : C → C̃. It restricts to D-bimodule equivalences

Fx : Cx
∼−→ C̃x. (8.5)

The tensor structure of F restricted to Cx × Cy gives rise to an invertible 2-cell

Cx �D Cy
Fx�DFy //

Mx,y

��

C̃x �D C̃y

M̃x,y

��
Cxy

Fxy

// C̃xy,

µx,y +3

(8.6)

x, y ∈ G, and the coherence axiom for the tensor structure of F implies that (2.44) is satisfied (equivalently,

that the cubes (2.66) commute for all x, y, z ∈ G), so that we have a pseudo-natural isomorphism

M(F ) : M(C)→M(C̃).

Given an isomorphism η between a pair of equivalences F, F ′ of extensions C and C′ its components

are natural isomorphisms of D-bimodule functors:

Cx

Fx

**

F ′x

44 C̃x.ηx
��

(8.7)

The tensor property of η implies that (2.46) is satisfied, i.e. the cylinder

Cx �D Cy

FxFy

,,

F ′xF
′
y

22

Mx,y

��

C̃x �D C̃y

M̃x,y

��
Cxy

Fgh

++

F ′xy

33 C̃gh.

ηgηh��

ηgh��

µg,h

�� µ′g,h

��

(8.8)

commutes for all x, y ∈ G. So we get an invertible modification M(η) between pseudo-natural isomor-

phisms M(F ) and M(F ′). This completes the construction of a monoidal 2-functor (8.2).

A 2-functor

L : 2-Fun(G, BrPic(D))→ Ex(G, D) (8.9)

quasi-inverse to (8.2) can be constructed by reversing the above constructions. Namely, let C : G →

BrPic(D) : x 7→ Cx be a monoidal 2-functor. Form a D-bimodule category L(C) :=
⊕

x∈G Cx with
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the tensor product given by composing Cx × Cy → Cx �D Cy with 1-cells (8.3) and the associativity

constraints coming from 2-cells (8.4). The commuting polytopes (2.63) give the pentagon identity for the

associativity constraint.

To check that L(C) is rigid, note that by Corollary 5.2 it is exact as a D-module category. Hence,

the dual category EndD(L(C)) is a tensor category (i.e. is rigid). Given a homogeneous object X in

Cx ⊂ L(C), x ∈ G, define a D-module endofuctor L(X) ∈ EndD(L(C)) by setting L(X) = X ⊗ − on

D and L(X) = 0 on Cg, g 6= 0. Its adjoints are given by functors X∗ ⊗ −, ∗X ⊗ − : Cx → D for some

objects X∗, ∗X ∈ Cx−1 . These objects are the duals of X. Thus, L(C) is a tensor category and so it is a

G-extension of D.

From the universal property of �D, a pseudo-natural isomorphism of functors C, C ′ : G→ BrPic(D)

gives an equivalence of extensions with the tensor structure coming from (8.6) and that a modification

of pseudo-natural isomorphisms gives a natural isomorphism of equivalences of extensions.

Remark 8.6. The proof of Theorem 8.5 is based on the correspondences (coming from the universal

property of �D) between the structure functors and morphisms of graded tensor categories and the

axioms they satisfy and the structure 1- and 2-cells of monoidal 2-functors and the commutative polytopes

satisfied by them. We summarize these correspondences in Table 3 (cf. the table from [3, Section 2.3]).

Tensor G-extensions C of D Monoidal 2-functors M : G→ BrPic(D)

homogeneous components Cg 0-cells M(g) := Cg

tensor products Cg × Ch → Cgh monoidal 1-cells Mg,h : Cg �D Ch → Cgh

associativity constraints aX,Y,Z associativity 2-cells αf,g,h (8.4)

commuting pentagon diagram for a commuting cubes (2.63) for α

equivalence F : C → C̃ of extensions 1-cells Fg : Cg → C̃g

tensor structure of F monoidal 2-cells µg,h (8.6)

commuting tensor property diagram for F commuting cubes (2.66) for µ

isomorphism η : F → F ′ of equivalences modification 2-cells ηg : Fg → F ′g (8.7)

commuting tensor property diagram for η commuting cylinders (8.8) for η

Table 3: A correspondence between tensor G-extensions and monoidal 2-functors.

We can describe G-graded extensions of D in terms of group cohomology. It follows from constructions

of Section 2.5 that given a monoidal functor M : G→ BrPic(D) there exist a canonical cohomology class
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p0
M ∈ H4(G, k×) and a canonical group homomorphism

p1
M : H1(G, Inv(Z(D)))→ H3(G, k×)

defined in (2.63) and (2.66), respectively.

Corollary 8.7. A monoidal functor M : G → BrPic(D) gives rise to a G-graded extension of D if and

only if p0
M = 0 in H4(G, k×). Equivalence classes of such extensions form a torsor over the cokernel

of p1
M .

Proof. This follows from Theorem 8.5 and Corollary 2.27.

Remark 8.8. In [23] the notion of an equivalence of graded extensions was not explicitly defined and

extensions were parameterized by a torsor over H3(G, k×). We would like to point that the map p1
M is

non-trivial in general. Here is a simple example. Let D = VectωZ/2Z, where ω is the non-trivial element of

H3(Z/2Z, k×). Then Inv(Z(D)) ∼= Z/2Z×Z/2Z with the associator ω×ω−1. Take the trivial monoidal

functor M : Z/2Z→ BrPic(D). The homomorphism p1
M is given by (2.69), i.e.

p1
M : Hom(Z/2Z, Z/2Z× Z/2Z)→ H3(Z/2Z, k×) : P 7→ (ω × ω−1) ◦ (P × P × P ),

which is clearly non-zero. This explains the difference between our parameterization of extensions and

that of [23, Theorem 1.3].

8.2 Central graded extensions

Let B be a braided tensor category.

Definition 8.9. A central G-extension of B is a pair (C, ι), where C is a G-extension and ι : B ↪→ Z(C)

is a braided tensor functor whose composition with the forgetful functor Z(C) → C coincides with the

inclusion B ↪→ C.

Definition 8.10. Let (C, ι : B → Z(C)) and (C̃, ι̃ : B → Z(C̃)) be two central G-extensions of B. An

equivalence between these extensions is an equivalence F : C ∼−→ C̃ of G-extensions such that ι̃ = ind(F )◦ι,

where ind(F ) : Z(C)
∼−→ Z(C̃) is the braided equivalence induced by F .

Central G-extensions of B form a 2-groupoid Exctr(G, B).

Recall that a G-crossed braided tensor category is a G-graded tensor category C =
⊕

x∈G Cx equipped

with the action of G on C, i.e. a monoidal functor G → Aut⊗(C), such that x(Cy) = Cxyx−1 and with a

G-crossed braiding

cX,Y : X ⊗ Y → g(Y )⊗X, X ∈ Cx, Y ∈ C, (8.10)
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satisfying certain natural axioms. Note that the trivial component of the grading Ce is a braided tensor

category. Let Excr−br(G, B) denote the 2-groupoid of G-crossed braided fusion categories whose trivial

component is B.

The next Proposition was essentially proved in [25]. It shows that the notions of a central extension

and a G-crossed extension coincide.

Proposition 8.11. There is a 2-equivalence Excr−br(G, B) ∼= Exctr(G, B).

Proof. We need to explain how a G-crossed braided structure translates into a central functor and vice

versa.

Let C be a G-crossed braided tensor category with Ce = B. The restriction of the crossed braiding

(8.10) provides X ∈ Ce with the structure of a central object of C and

ι : B = Ce → Z(C) : X 7→ (X, c−1
X,−)

is a braided tensor functor whose composition with the forgetful functor Z(C)→ C is identity.

In the opposite direction, a central G-extension (C, ι : B → Z(C)) yields a natural isomorphism

cX,Z : X ⊗ Z ∼−→ Z ⊗X, X ∈ B, Z ∈ C, (8.11)

satisfying the hexagon axioms. This turns each Cx into an invertible B-module category. Furthermore,

there are B-module equivalences

Cy → FunB(Cx, Cxy) : Y 7→ − ⊗ Y,

Cxyx−1 → FunB(Cx, Cxy) : Y 7→ Y ⊗ −,

for all x, y ∈ G. Here the functor categories consist of right exact B-module functors. Combining these

equivalences for a fixed x ∈ G we obtain a tensor autoequivalence x ∈ Aut⊗(C) such that x(Cy) = Cxyx−1

and there is a natural isomorphism

x(Y )⊗X ∼= X ⊗ Y for all X ∈ Cx, Y ∈ C.

The latter is a crossed braiding on C.

These constructions are inverses of each other and are compatible with equivalences of G-crossed

braided and central extensions, i.e. define a 2-equivalence between the corresponding 2-groupoids.

Remark 8.12. Let C be a central G-extension of B. The braided tensor category CG obtained from C as

the equivariantization [18, Section 4] with respect to the canonical action of G constructed in the proof

of Proposition 8.11 coincides with. the centralizer of the image of B in Z(C).
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Recall that the Picard group of B was introduced in Section 5.2. The following result is essentially a

consequence of Proposition 8.11 and [23, Theorem 7.12]. We include the proof for the sake of completeness.

Theorem 8.13. There is an equivalence of 2-groupoids Exctr(G, B) ∼= 2-Fun(G, Pic(B)).

Proof. We adjust the proof of Theorem 8.5 to the present setting (with D-bimodule categories, functors,

and isomorphisms replaced by B-module ones).

A central structure on a G-extension C =
⊕

x∈G Cx of B consists of isomorphisms (8.11) that turn

every component Cx into an invertible B-module category, i.e. Cx belongs to Pic(B). Equivalences

(8.3) coming from tensor products Cx × Cy → Cxy are B-module equivalences in this case and natural

isomorphisms (8.4) are isomorphisms of B-module functors.

An equivalence of central G-extensions of B yields B-module equivalences (8.5) between homogeneous

components and isomorphisms (8.6) of B-module functors. An isomorphism between equivalences of

central G-extensions yields an isomorphism (8.7) of B-module functors.

Diagrams (2.63), (2.66), and (8.8) commute for the same reason as in the proof of Theorem 8.5.

Thus, (8.2) becomes a 2-functor

Exctr(G, B)→ 2-Fun(G, Pic(B)). (8.12)

Conversely, given a monoidal 2-functor G → Pic(B), consider its composition with the inclusion

Pic(B) → BrPic(B). By Theorem 8.5, this yields a G-extension C of B. The B-bimodule structure of

C comes from its left B-module structure, so there is a natural isomorphism between the functors of left

and right tensor multiplication by X ∈ B:

cX,Z : X ⊗ Z ∼−→ Z ⊗X, Z ∈ C. (8.13)

The hexagon for (8.13) follows from the above definition of a B-bimodule category structure of C and

from the monoidal property of the 2-functor Mod(B)→ Bimod(B). Thus, (8.13) is a central structure

on the G-extension C of B and there is a 2-functor

2-Fun(G, Pic(B))→ Exctr(G, B) (8.14)

quasi-inverse to (8.12).

Remark 8.14. It follows from Theorem 8.13 that central G-extensions of B can be described in terms

of monoidal functors G→ Pic(B) and group cohomology analogously to Corollary 8.7.

8.3 Braided graded extensions

Let B be a braided tensor category and let A be an Abelian group.
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Definition 8.15. A braided A-extension of B is a braided tensor category C that is an A-extension of B.

Definition 8.16. An equivalence between braided A-extensions C, C̃ of B is an equivalence of A-

extensions that is a braided functor.

Example 8.17. Braided A-extensions of Vect are precisely pointed braided fusion categories VectωA, where

ω ∈ Z3
br(G, k

×) is an abelian 3-cocycle. Equivalences between extensions VectωA and Vect ω̃A correspond

to abelian 2-cochains µ ∈ C2
br(A, k

×) such that d(µ) = ω/ω̃. Thus, the set of isomorphism classes

Exbr(A, Vect) of braided A-extensions of Vect is in bijection with H3
br(A, k

×) ∼= Quad(A, k×).

Let 2-Funbr(A, Picbr(B)) denote the 2-groupoid of braided monoidal 2-functors from A to Picbr(B).

Theorem 8.18. There is a 2-equivalence Exbr(A, B)
∼−→ 2-Funbr(A, Picbr(B)).

Proof. Let C =
⊕

x∈A Cx be a braided A-extension of B. Each homogeneous component Cy, y ∈ A, is an

invertible B-module category. The squared braiding

σX,Y = cY XcXY , X ∈ B, Y ∈ Cy,

equips it with the structure of a braided B-module category, i.e. Cy ∈ Picbr(B). The equivalences

Mx,y : Cx �B Cy
∼−→ Cxy from (8.3) are braided module equivalences. Indeed, commutativity of the

diagram (4.2) is a consequence of the identity

cY1⊗Y2,XcX,Y1⊗Y2 = (cY1,X ⊗ IdY2)(IdY1 ⊗ cY2,XcX,Y2)(cX,Y1 ⊗ IdY2), X, Y1, Y2 ∈ B,

where we omit the associativity constraints in C.

As in the proof of Theorem 8.5, equivalences Mx,y along with the associativity 2-cells αx,y,z from (8.4)

define a monoidal structure on the 2-functor

M(C) : A→ Picbr(B) : x 7→ Cx.

Furthermore, the commutativity constraint of C gives rise to invertible 2-cells

Cx �B Cy
Bx,y //

Mx,y

((

Cy �B Cx

My,x

vv
Cxy

δx,y

KS (8.15)

for all x, y ∈ A. The conditions (2.40) and (2.41) in the definition of a braided monoidal 2-functor

(i.e. commutativity of the octahedra (2.71) and (2.72)) follow from the hexagon axioms satisfied by the

braiding of C.

Thus, M(C) : A→ Picbr(B) is a braided monoidal 2-functor.
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Suppose there is another braided A-extension C̃ =
⊕

x∈A C̃x of B and an equivalence of braided A-

extensions F : C → C̃. The B-module equivalences Fx : Cx
∼−→ C̃x between the homogeneous components

are braided B-module equivalences. Indeed, commutativity of diagram (4.2) is a consequence of the

braided property of F . We have invertible 2-cells (8.6) satisfying (2.63) as in the proof of Theorem 8.5.

The condition (2.45) (i.e. commutativity of the prism (2.73)) follows from the braided property of F .

Thus, we have a pseudo-natural isomorphism M(F ) : M(C)→M(C̃) of braided monoidal 2-functors.

Given an isomorphism η between a pair of equivalences F, F ′ of braided extensions C and C′ one

constructs an invertible modification M(η) between M(F ) and M(F ′) as in (8.7).

Thus, we have a 2-functor M : Exbr(A, B)
∼−→ 2-Funbr(A, Picbr(B)). In the opposite direction,

the 2-functor (8.9) constructed in the proof of Theorem 8.5 carries a braided structure on a 2-functor

C : A → Picbr(B)) to a braiding on L(C) =
⊕

x∈A Cx. Namely, 2-cells (8.15) give rise to the braiding

constraints for L(C) while commuting octahedra (2.71), (2.72) ensure that they satisfy give the hexagon

identities.

Remark 8.19. The proof of Theorem 8.18 extends that of Theorem 8.5. So it extends the correspon-

dences in Table 3 as follows:

Braided tensor A-extensions C of B Monoidal 2-functors M : A→ Picbr(B)

braiding constraints cX,Y braiding 2-cells δx,y (8.15)

commuting hexagon diagrams for c commuting octahedra (2.71), (2.72)

braided property diagram for F commuting prism (2.73)

Table 4: A correspondence between braided extensions and braided monoidal 2-functors.

We can describe A-graded extensions of B in terms of braided group cohomology. It follows from

constructions of Section 2.6 that given a braided monoidal functor M : A → BrPic(D) there exist

a canonical braided cohomology class p0
M ∈ H4

br(A, k
×) and a canonical group homomorphism p1

M :

H1(A, Inv(B))→ H3
br(A, k

×).

Corollary 8.20. A braided monoidal functor M : A → Picbr (B) gives rise to an A-graded extension of

B if and only if p0
M = 0 in H4

br(A, k
×). Equivalence classes of such extensions of form a torsor over the

cokernel of p1
M .

Proof. This follows from Theorem 8.18 and Corollary 2.32.
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Example 8.21. Let B be a non-degenerate braided fusion category. By Proposition 4.17, Picbr(B) =

Picbr(Vect) and so Exbr(A, B)
∼−→ Exbr(A, Vect). Thus, any braided A-extension of B is equivalent to

one of the form B � C(A, q) for some q ∈ Quad(A, k×) = H3
br(A, k

×).

Thus, the only braided fusion categories that admit interesting extensions are degenerate ones.

8.4 Symmetric graded extensions

Let E be a symmetric tensor category and let A be an Abelian group.

Definition 8.22. A symmetric A-extension of E is a symmetric tensor category C that is an A-extension

of E .

Equivalences of symmetric A-extensions are the same as for braided A-extensions. The 2-groupoid

Exsym(A, E) of symmetric A-extensions of E is a 2-subgroupoid of Exbr(A, E).

Example 8.23. Symmetric A-extensions of Vect are precisely pointed braided fusion categories VectωA,

where ω ∈ Z3
sym(G, k×) is a symmetric 3-cocycle. Equivalences between extensions VectωA and Vect ω̃A

correspond to symmetric 2-cochains µ ∈ C2
sym(A, k×) such that d(µ) = ω/ω̃. Thus, the set of iso-

morphism classes Exsym(A, Vect) of braided A-extensions of Vect is in bijection with H3
sym(A, k×) ∼=

Hom(A, k×)2 = Hom(A, Z2).

Let C =
⊕

x∈A Cx and C′ =
⊕

x∈A C′x be symmetric A-extensions of E . Then C �E C′ is an (A× A)-

extension of E . Define the tensor product of these extensions to be the diagonal subcategory of C �E C′:

C �E C′ =
⊕
x∈A

Cx �E C′x. (8.16)

This equips the 2-groupoid Exsym(A, E) of symmetric A-extensions of E with a structure of a symmetric

2-categorical group.

Recall that the symmetric 2-categorical group Picsym(E) of symmetric E-module categories is equi-

valent to Pic(E), the Picard group of E . Let 2-Funsym(A, Pic(E)) denote the 2-groupoid of symmetric

monoidal 2-functors from A to Pic(E).

Theorem 8.24. There is a symmetric monoidal 2-equivalence Exsym(A, E)
∼−→ 2-Funsym(A, Pic(E)).

Proof. We extend Theorem 8.18 to the symmetric setting. Observe that the homogeneous components of

a symmetric extension C = ⊕x∈A Cx of E are necessarily symmetric E-module categories. Commutativity

of the cones (2.75) is equivalent to the squared braiding of C being identity, i.e. to the braided monoidal

2-functor x 7→ Cx being symmetric.

The monoidal structure of this 2-equivalence is established by comparing the tensor products, asso-

ciativities, and braidings of Exsym(A, E) and 2-Funsym(A, Pic(E)).
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Corollary 8.25. There is an exact sequence of group homomorphisms:

H1(A, Inv(E)) → H3
sym(A, k×) → π0(Exsym(A, E)) → π0(Funsym(A, Pic(E))) → H4

sym(A, k×).

(8.17)

Proof. This follows from Theorem 2.38.

8.5 The group of symmetric extensions of a symmetric fusion category

Let G be a finite abelian group and let t ∈ G be a central element such that t2 = 1. Let A be a finite

Abelian group. In this Section we compute the group

Exsym(A, E) := π0(Exsym(A, E))

of symmetric A-extensions of E = Rep(G, t).

Theorem 8.26. There are group isomorphisms

Exsym(A, Rep(G)) ∼= H2(G, Â)⊕H1(A, Z2), (8.18)

Exsym(A, Rep(G, t)) ∼= H2(G/〈t〉, Â) if t 6= 1. (8.19)

Proof. Let us first consider symmetric A-extensions of Rep(G). They are of the form Rep(G̃, t̃), where

G̃ is a central extension

1→ Â→ G̃
π−→ G→ 1 (8.20)

and t̃ is a central element of G̃ such that t̃2 = 1 and π(t̃) = 1. Thus, every symmetric A-extension of

Rep(G) is completely determined by the pair consisting of a cohomology class in H2(G, Â) corresponding

to the isomorphism class of the group extension (8.20) and t̃ ∈ (Â)2 = H1(A, Z2). The corresponding

map Exsym(A, Rep(G))→ H2(G, Â)⊕H1(A, Z2) is a group isomorphism. It is clearly injective. To see

that it is surjective note that the elements of H2(G, Â) form a subgroup ExTan(A, Rep(G)) of Tannakian

A-extensions of Rep(G) while the elements of H1(A, Z2) form the subgroup of split extensions.

Now consider a symmetric A-extension C of Rep(G, t) with t 6= 1. It contains a unique maximal

Tannakian subcategory C0 of index 2 which is a Tannakian A-extension of Rep(G/〈t〉). We have a group

homomorphism

f : Exsym(A, Rep(G, t))→ ExTan(A, Rep(G/〈t〉)) = H2(G/〈t〉, Â) : C 7→ C0. (8.21)

We claim that f has an inverse given by the induction

g : ExTan(A, Rep(G/〈t〉))→ Exsym(A, Rep(G, t)) : T 7→ Rep(G) �Rep(G/〈t〉) T , (8.22)
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where the tensor product of fusion categories over a symmetric fusion category is defined in [11, Section

2.5].

Indeed, we have f ◦ g = Id since the maximal Tannakian subcategory of Rep(G) �Rep(G/〈t〉) T is

Rep(G/〈t〉) �Rep(G/〈t〉) T ∼= T . To check that g ◦ f = Id we observe that there is a surjective symmetric

tensor functor F : C0 � Rep(G, t) → C given by embedding of factors. Since the intersection of C0 and

Rep(G, t) in C is Rep(G/〈t〉) we see that F factors through C0 �Rep(G/〈t〉) Rep(G, t). The latter fusion

category has the same Frobenius-Perron dimension as C so that C ∼= C0 �Rep(G/〈t〉) Rep(G, t).

Corollary 8.27. Exsym(A, sVect) = 0.

Below we describe the exact sequence (8.17) computing the group of symmetric extensions. This is

meant to illustrate our obstruction theory and give an alternative proof of Theorem 8.26.

Proposition 8.28. There are group isomorphisms

π0(Funsym(A, Picsym(Rep(G)))) ∼= H2(G, Â), (8.23)

π0(Funsym(A, Picsym(Rep(G, t)))) ∼= Ker
(
H2(G, Â)

Ξt−→ Hom(G/〈t〉, (Â)2)
)
, (8.24)

where

Ξt : H2(G, Â)→ Hom(G/〈t〉, (Â)2) : m 7→ m(t, −)m(−, t)−1. (8.25)

Proof. Let us consider the Tannakian case first. Let G′ = [G, G] and Ĝ = Hom(G, k×). We have a

homomorphism of short exact sequences

0 // Ext(G/G′, Â) //

α

��

H2(G, Â) //

β

��

Hom(A, H2(G, k×)) // 0

0 // H2
sym(A, Ĝ) // π0(Funsym(A,Picsym(Rep(G)))) // Hom(A, H2(G, k×)) // 0.

(8.26)

Here α is the duality isomorphism. The homomorphism β is defined as follows. An element m ∈ H2(G, Â)

gives rise to a central group extension

1→ Â→ G̃
π−→ G→ 1. (8.27)

The category Rep(G̃) is a symmetric A-extension of Rep(G) and, therefore, yields a symmetric monoidal

functor α(m) : A → Picsym(Rep(G)). The first row of (8.26) is split exact [29, Theorem 2.1.19] and

the second row comes from assigning to a symmetric functor a group homomorphism. Hence, β is an

isomorphism. This proves (8.23).

In the super-Tannakian case we have an exact sequence

0→ H2
sym(A, Ĝ)→ Funsym(A,Picsym(Rep(G, t)))→ Hom(A, H2(G, k×))

q∗−→ Hom(A, (Ĝ)2), (8.28)
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where q∗ is induced by the second canonical class of Picsym(Rep(G, t)),

q : Picsym(Rep(G, t)) = H2(G, k×)→ Inv(Rep(G, t))2 = (Ĝ)2 : µ 7→ µ(t, −)

µ(−, t)

see Theorem 6.5. Combining (8.28) with the commuting square

H2(G, Â)
Ξt //

��

Hom(A, (Ĝ)2)

��
Hom(A, H2(G, k×))

q∗ // Hom(G, (Â)2)

(8.29)

we obtain (8.24).

Recall that isomorphism (2.15) identifies H4
sym(A, k×) with Hom(A2, k

×) = (̂A2). Combining this

with the isomorphisms H2(Z2, Â) ∼= Â/(Â)2 ∼= (̂A2) we obtain

H4
sym(A, k×) ∼= H2(Z2, Â). (8.30)

Proposition 8.29. The obstruction homomorphism π0(Funsym(A, Picsym(E)))→ H4
sym(A, k×) in (8.17)

is given by

Funsym(A, Picsym(E)) ∼= Ker(Ξt) ↪→ H2(G, Â)
res−−→ H2(〈t〉, Â) ∼= H4

sym(A, k×), (8.31)

where the first isomorphism is (8.24), the last one is (8.30), Ξt is defined in (8.25), and res is the

restriction map in cohomology.

Proof. For a symmetric monoidal functor F : A → Picsym(E)) let a = a(F ) ∈ H4
sym(A, k×) be the

obstruction to lifting it to a symmetric monoidal 2-functor. The isomorphism (2.15) expresses a as an

element of (̂A2) in terms of its components a(x, x, x, x), a(x, x|x), and a(x|x, x), x ∈ A2. We have

a(x, x|x) = a(x|x, x) = 1 while the value of a(x, x, x, x) is found as follows. Let us view the E-module

equivalence Mx,x : F (x) �E F (x)
∼−→ E coming from the monoidal functor structure of F as an element

of Inv(E) = Ĝ. Then a(x, x, x, x) is equal to the value of the self-braiding of Mx,x, i.e. to the evaluation

Mx,x(t). Note that the map

A2 → Ĝ : x 7→Mx,x|〈t〉

is a homomorphism, since

Mx,xMy,y = Mxy,xyMx,yMy,x, x, y ∈ A2,

and Mx,yMy,x|〈t〉 = M2
xy|〈t〉 = 1.

By (2.15), a is identified with the homomorphism

A2 → k× : x 7→Mx,x(t). (8.32)
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That this map coincides with the restriction map Ker(Ξt) ↪→ H2(G, Â)
Res−−→ H2(〈t〉, Â) follows from

commutativity of the following diagram

H2(G, Â)
s //

Res

��

H2
sym(G/[G,G], Â)

∼ // H2
sym(A, Ĝ)

��

H2(〈t〉, Â)
∼ // H2

sym(A, 〈̂t〉),

(8.33)

where s denotes a splitting of the first row of (8.26).

Thus, for t = 1 the exact sequence (8.17) gives rise to a split short exact sequence

0→ Hom(A, Z2)→ Exsym(A, Rep(G))→ H2(G, Â)→ 0, (8.34)

while for t 6= 1 it becomes

H1(G, Â)
Res−−→ H1(〈t〉, Â)→Exsym(A, Rep(G, t))→

Ker
(
H2(G, Â)

Ξt−→ H1(G/〈t〉, H1(〈t〉, Â))
)

Res−−→ H2(〈t〉, Â).
(8.35)

The isomorphism Exsym(A, Rep(G, t)) ∼= H2(G/〈t〉, Â) from (8.19) can be recovered by comparing the

sequence (8.35) with the exact sequence coming from the Lyndon-Hochschild-Serre spectral sequence

[13, 32]:

H1(G, Â)
Res−−→ H1(〈t〉, Â)→H2(G/〈t〉, Â)

Inf−−→

Ker
(
H2(G, Â)

Res−−→ H2(〈t〉, Â)
)

Ξt−→ H1(G/〈t〉, H1(〈t〉, Â)).
(8.36)

8.6 The Pontryagin-Whitehead quadratic function and zesting

Let B be a braided tensor category and let A be an Abelian group. Fix a homomorphism

f : A→ Picbr(B) : x 7→ Cx (8.37)

that extends to a braided monoidal 2-functor A→ Picbr(B). That is, there is a braided extension

C =
⊕
x∈A

Cx.

Let c denote the braiding of C.

Let Exfbr(A, B) ⊂ Exbr(A, B) be the 2-subgroupoid of extensions corresponding to f . Our goal here

is to describe π0(Exfbr(A, B)).

An extension of (8.37) to a braided monoidal functorA→ Picbr (B) amounts to choosing B-equivalences

Cx �B Cy
∼−→ Cxy, x, y ∈ A, satisfying coherence conditions. Any two such equivalences differ by a tensor
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multiplication by an invertible object Lx,y ∈ Zsym(B). Hence, any extension C̃ ∈ Exfbr(A, B) is equal to

C as an abelian category and has the tensor product

X⊗̃Y = Lx,y ⊗X ⊗ Y, X ∈ Cx Y ∈ Cy, x, y,∈ A. (8.38)

To get associativity and braiding constraints of C̃ it is necessary to have isomorphisms

ξx,y,z : Lxy,z ⊗ Lx,y
∼−→ Lx,yz ⊗ Ly,z, κx,y : Lx,y

∼−→ Ly,x, x, y, z ∈ A, (8.39)

i.e. L = {Lx,y}x,y∈A must be a 2-cocycle in Z2
br(A, Inv(Zsym(B))). These constraints are given by

(X⊗̃Y )⊗̃Z = Lxy,z ⊗ Lx,y ⊗X ⊗ Y ⊗ Z
ξx,y,z−−−→ Lx,yz ⊗ Ly,z ⊗X ⊗ Y ⊗ Z

cLy,z,X−−−−−→ Lx,yz ⊗X ⊗ Ly,z ⊗ Y ⊗ Z = X⊗̃(Y ⊗̃Z)
(8.40)

and

X⊗̃Y = Lx,y ⊗X ⊗ Y
κx,y−−−→ Ly,x ⊗X ⊗ Y

cX,Y−−−→ Ly,x ⊗ Y ⊗X = Y ⊗̃X (8.41)

for all objects X ∈ Cx, Y ∈ Cy, Z ∈ Cz, x, y, z ∈ A, where we omit the associativity constraints of C.

This is a braided version of the construction introduced in [23, Section 8.7]. Such extensions were

considered in [6] where they were called zestings of C. Recently, a more general construction was studied

in great detail in [14]. In Propositions 8.32 and 8.33 below we compute obstructions and give a parame-

terization of such extensions. Our treatment of equivalence classes of zesting extensions and obstructions

seems to be different from that of [14, Section 4].

By Proposition 5.3 the Whitehead bracket

[−, −] : Picbr(B)× Inv(Zsym(B))→ k×

satisfies cM,ZcZ,M = [M, Z]IdZ⊗M for all Z ∈ Inv(Zsym(B)) and M ∈M, where M ∈ Picbr(B).

Define a group homomorphism

PW 1
C : H1

br(A, Inv(Zsym(B)))→ H3
br(A, k

×) : Z 7→ QZ , (8.42)

where QZ is identified with the quadratic from

QZ(x) = [Cx, Z(x)] , cZ(x),Z(x), x ∈ A. (8.43)

Define a quadratic function

PW 2
C : H2

br(A, Inv(Zsym(B)))→ H4
br(A, k

×), (8.44)

by setting the components of PW 2
C (L) for a braided 2-cocycle L to be

PW 2
C (L)(x, y, z, w) = cLx,y,Lz,w , (8.45)

PW 2
C (L)(x, y|z) = 1, (8.46)

PW 2
C (L)(x|y, z) = [Cx, Ly,z], x, y, z, w ∈ A. (8.47)
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Definition 8.30. We will call (8.42) and (8.44) the first and second Pontryagin-Whitehead maps, cf. [23,

Section 8.7].

Remark 8.31. The maps PW 1
C and PW 2

C depend on the homomorphism f : A→ Picbr(B) : x 7→ Cx.

Proposition 8.32. Let L be a 2-cocycle in Z2
br(A, Inv(Zsym(B))). One can choose isomorphisms (8.39)

so that the associativity and braiding isomorphisms (8.40), (8.41) satisfy the pentagon and hexagon axioms

(i.e. give rise to a tensor category) if and only if PW 2
C (L) is trivial in H4

br(A, k
×).

Proof. Define a cochain a ∈ C3
br(A, k

×) by a(x, y, z) = ξx,y,z, a(x|y) = κx,y for all x, y, z ∈ A, where ξ

and κ are isomorphisms (8.39).

In the diagrams below we will omit the the tensor product sign and the associativity constraints of C.

The pentagon for the associativity constraint (8.40) becomes the diagram

Lxyz,wLxy,zLx,yXY ZW
ξx,y,z

tt

ξxy,z,w // Lxy,zwLz,wLx,yXY ZW
cLz,w,Lx,y

**
Lxyz,wLx,yzLy,zXY ZW

cLy,z,X

��

ξx,yz,w

**

Lxy,zwLx,yLz,wXY ZW
ξx,y,zw

tt
cLz,w,XY

��
Lxyz,wLx,yzXLy,zY ZW

ξx,yz,w

��

Lx,yzwLyz,wLy,zXY ZW

cLy,z,Xtt

ξy,z,w // Lx,yzwLy,zwLz,wXY ZW

cLz,w,X

��
cLz,w,XY **

Lxy,zwLx,yXY Lz,wZW

ξx,y,zw

��
Lx,yzwLyz,wXLy,zY ZW

cLyz,w,X

��

Lx,yzwLy,zwXLz,wY ZW

cLy,zw,X

��

Lx,yzwLy,zwXY Lz,wZW

cLy,zw,X

��
Lx,yzwXLyz,wLy,zY ZW

ξy,z,w // Lx,yzwXLy,zwLz,wY ZW
cLz,w,Y// Lx,yzwXLy,zwY Lz,wZW,

(8.48)

while the hexagons are the diagrams

Lxy,zLx,yXY Z
cLx,yXY,Z // Lxy,zZLx,yXY

κxy,z //

c−1
Lx,y,Z

��

Lz,xyZLx,yXY

c−1
Lx,y,Z

��
Lx,yzLy,zXY Z

ξ−1
x,y,z

OO

cXY,Z

**

Lxy,zLx,yZXY
κxy,z // Lz,xyLx,yZXY

ξ−1
z,x,y

��
Lx,yzXLy,zY Z

c−1
Ly,z,X

OO

cY,Z

��

Lx,yzLy,zZXY

ξ−1
x,y,z

OO

κy,z

��

Lzx,yLz,xZXY

Lx,yzXLy,zZY

κy,z

��

Lx,yzLy,zZXY
ξ−1
x,z,y // Lxz,yLx,zZXY

κx,z

OO

Lx,zyXLz,yZY
c−1
Lz,y,X // Lx,yzLy,zXZY

ξ−1
x,z,y //

cX,Z

OO

Lxz,yLx,zXZY,

cX,Z

OO

(8.49)
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and

Lx,yzXLy,zY Z
κx,yz // Lyz,xXLy,zY Z

cX,Ly,zY Z //

cX,Ly,z

��

Lyz,xLy,zY ZX

ξy,z,x

��
Lx,yzLy,zXY Z

cLy,z,X

OO

κx,yz // Lyz,xLy,zXY Z

ξy,z,x

��

cLy,z,X

GG

Ly,zxLz,xY ZX

cLz,x,Y

��
Lxy,zLx,yXY Z

ξx,y,z

OO

κx,y

��

Ly,zxLz,xXY Z

cX,Y Z

44

Ly,zxY Lz,xZX

Lxy,zLy,xXY Z
ξy,x,z //

cX,Y

��

Ly,zxLx,zXY Z

κx,z

OO

cX,Y

��

Ly,zxY Lz,xXZ

cX,Z

OO

Lxy,zLy,xY XZ
ξy,x,z // Ly,xzLx,zY XZ

cLx,z,Y // Ly,xzY Lx,zXZ,

κx,z

OO

(8.50)

for all x, y, z, w ∈ A and X ∈ Cx, Y ∈ Cy, Z ∈ Cz, W ∈ Cw.

After cancelling internal polygons commuting by the functoriality of the tensor product of C, naturality

of c, and the Yang-Baxter equation, we see that the clockwise compositions given by the perimeters of

(8.48), (8.49), and (8.50) are

cLx,y,Lz,w d(a)(x, y, z, w), d(a)(x, y|z), and cX,Ly,zcLy,z,X d(a)(x|y, z), respectively.

Comparing this with the definition of PW 2
C (L) we get the result.

Proposition 8.33. There is a fibration F → π0(Exfbr(A, B))→ B, where the base B is the set of zeroes

of PW 2
C and the fiber F is the cokernel of PW 1

C .

Proof. The assertion about the base follows from Proposition 8.32.

Let C, C̃ be A-extensions of B corresponding to the same braided monoidal functor A → Picbr (B).

Then C̃ = C(ω,ς) for some (ω, ς) ∈ H3(A, k×). An equivalence of extensions C(ω,ς) ∼−→ C is given on

homogeneous component Cx, x ∈ A, by X 7→ Z(x) ⊗X, X ∈ Cx for Z(x) ∈ Inv(Zsym(B)). The tensor

property of this equivalence means that Z : A → Inv(Zsym(B)) is a homomorphism, while its braided

property translates to commutativity of the diagram

Z(x)⊗X ⊗ Z(y)⊗ Y
cZ(x)⊗X,Z(y)⊗Y //

cX,Z(y)

��

Z(y)⊗ Y ⊗ Z(x)⊗X

cY,Z(x)

��
Z(xy)⊗X ⊗ Y

ς(x,y) cX,Y // Z(xy)⊗ Y ⊗X,

(8.51)

for all x, y ∈ A, X ∈ Cx Y ∈ Cy. Here c denotes the braiding of C.
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Comparing the compositions in (8.51) we see that

ς(x, y) = cZ(x),Z(y) cY,Z(x)cZ(x),Y , for all Y ∈ Cy,

and so the corresponding quadratic form is ς(x, x) = [Cx, Z(x)] cZ(x),Z(x) = QZ(x), x ∈ A.

8.7 Quasi-trivial braided extensions

Let B be a braided tensor category. We saw in Example 5.6 that the braided 2-categorical group Picbr(B)

contains a full 2-categorical subgroup Pic1br(B) consisting of braided B-module categories M such that

M ∼= B as a B-module category.

Definition 8.34. Let A be a finite group. We say that a braided A-graded extension of B is quasi-trivial

if it contains an invertible object in every homogeneous component.

Equivalently, an A-extension of B is quasi-trivial if the corresponding homomorphism A→ Picbr(B)

factors through Pic1br(B).

Remark 8.35. A quasi-trivial extension is a special type of a braided zesting considered in [14]. Namely,

it is a zesting of C(A, 1) � B.

Let Exbr−qt(A, B) denote the 2-groupoid of quasi-trivial braided A-extensions of B. We have an

equivalence of 2-groupoids

Exbr−qt(A, B) ∼= 2-Funbr(A, Pic1br(B)).

Since objects of Pic1br(B) are of the form Bν , ν ∈ Aut⊗(IdB) (see Example 5.6), any braided monoidal

2-functor A→ Pic1br(B) (and any extension in Exbr−qt(A, B) comes from a group homomorphism

f : A→ Aut⊗(IdB).

Example 8.36. Given f as above, there is a canonical quasi-trivial A-graded braided extension B(f)

of B such that B(f) = B � VectA as a tensor category and its braiding is given by

cX�x,Y�y = f(x)Y cX,Y , X, Y ∈ B, x, y ∈ A,

where x ∈ A denote the simple objects of VectA.

Hence,

Exbr−qt(A, B) =
∨

f∈Hom(A,Aut⊗(IdB))

Exfbr−qt(A, B),

where Exfbr−qt(A, B) is the 2-subgroupoid of quasi-trivial extensions corresponding to f . Furthermore,

Exf1br−qt(A, B) = Exf2br−qt(A, B) if and only if f2 = f1∂(Z) for some Z ∈ Inv(B).
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The Pontryagin-Whitehead maps (8.42) and (8.44) in this situation are given by

PW 1
B(f)(Z)(x) = f(x)Z(x) cZ(x),Z(x), Z ∈ Hom(A, Inv(Zsym(B))), (8.52)

and

PW 2
B(f)(L)(x, y, z, w) = cLx,y,Lz,w , (8.53)

PW 2
B(f)(L)(x, y|z) = 1, (8.54)

PW 2
B(f)(L)(x|y, z) = f(x)Ly,z , L ∈ H2

br(A, Inv(Zsym(B))), (8.55)

for all x, y, z, w ∈ A.

Corollary 8.37. There is a fibration F → π0(Exfbr−qt(A, B))→ B, where the base B is the set of zeroes

of PW 2
B(f) and the fiber F is the cokernel of PW 1

B(f).

Thus, quasi-trivial A-extensions of B are obtained by choosing a homomorphism f : A→ Aut⊗(IdB),

deforming (“zesting”) the tensor product and constraints of B(f) by means of L ∈ Z2
br(A, Inv(Zsym(B)))

such that PW 2
B(f)(L) = 0 via (8.38) - (8.41), and then twisting the result by means of a braided 3-cocycle

(ω, ς) ∈ Z3
br(A, k

×). Corollary 8.37 gives a description of equivalence classes of such extensions.
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