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Abstract—The tuning process for a robotic prosthesis is a
challenging and time-consuming task both for users and
clinicians. An automatic tuning approach using reinforcement
learning (RL) has been developed for a knee prosthesis to
address the challenges of manual tuning methods. The algorithm
tunes the optimal control parameters based on the provided knee
joint profile that the prosthesis is expected to replicate during
gait safely. This paper presents an intuitive interface designed
for the prosthesis users and clinicians to choose the preferred
knee joint profile during gait and use the autotuner to replicate
in the prosthesis. The interface-based approach is validated by
observing the ability of the tuning algorithm to successfully
converge to various alternate knee profiles by testing on two
able-bodied subjects walking with a robotic knee prosthesis. The
algorithm was found to converge successfully in an average
duration of 1.15 min for the first subject and 2.31 min for the
second subject. Further, the subjects displayed different
preferences for optimal profiles reinforcing the need to tune
alternate profiles. The implications of the results in the tuning of
robotic prosthetic devices are discussed.

I. INTRODUCTION

Robotic prostheses are gaining increasing prevalence
among people with amputations due to their active torque
production capability to perform various tasks in a natural
way[1]. Conventional passive prostheses used currently fail to
actively input the energy into the joints during locomotion,
severely impeding natural gait. In contrast to such passive
devices, robotic prostheses help lower limb amputees to
achieve a normative gait replication by delivering active power
input. Studies have shown that active devices decreased
metabolic consumption during level-ground walking [2, 3] and
enhanced stability and balance [4, 5]. In addition, these devices
are shown to adapt to different terrains [6, 7].

Several control methods have been implemented to control
active lower limb prostheses and orthotic devices ranging from
simple push-off controllers to neuromuscular models [8]. Of
these controllers, the finite state machine (FSM) impedance
control scheme is one of the most used approaches in research
and commercial applications [6, 9]. The FSM-based
impedance controller consists of several states, each of which
has its own realization of impedance controller with specific
impedance parameters [9-11] that need to be tuned for optimal
operation. The current approach for tuning is performed by a
clinician based on empirical observations and qualitative
feedback from the user. The process is often challenging, time-
consuming, and heavily reliant on the clinician's expertise,
potentially leading to inconsistent results [11, 12].
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To address the limitations of the manual tuning process, an
autotuning approach using reinforcement learning has been
proposed specifically for robotic lower limb prostheses [13].
The algorithm has been validated on a robotic knee prosthesis.
The autotuning algorithm tunes the impedance parameters of
each state with the goal of recreating the knee profile observed
during the normal gait of able-bodied subjects [14]. The
autotuning approach has been successfully demonstrated on
transfemoral amputees using the robotic knee prosthesis [15].
However, it is an open question whether tuning the prosthesis
control parameters to replicate knee profile observed in able-
bodied people yields an optimal gait and preference in the
amputee users. Since gait biomechanics of transfemoral
amputees is affected by the physiological changes due to
amputation and loss of proprioceptive feedback from the
prosthesis, duplicating normative gait kinematics might not be
the goal of amputee users. Moreover, the properties of the
prosthetic foot used in the prosthesis are also found to affect
the gait biomechanics and preferred gait pattern.

Now the question is whether the policy learned by
reinforcement learning is capable of adapting to the preferred
knee profile of amputee users and, more importantly, how to
define the optimal and user-preferred prosthesis control in gait
during the prosthesis tuning process. One intriguing idea is to
give the prosthesis user the freedom to choose the knee control
parameters. This concept has been investigated by several
groups. However, they only considered semi-active devices
maintaining constant stiffness throughout the gait cycle [16] or
focused on simulating various available passive devices [17].
In most FSM impedance control with over 9 parameters to tune
for each gait cycle, designing a user tuning interface is
challenging and has several requirements. (1) The interface
must be user-friendly to provide an intuitive way for adjusting
the robotic knee behavior as desired. (2) The interface-
controller complex must be safe to use since inappropriate
control can lead to instability in gait. In addition, (3) the
interface must be time-efficient to achieve the tuning goal
since longer tuning time brings extra fatigue and pain for
prosthesis users. Thus, the direct provision of tuning many
impedance values to the user might confuse the user with no
technical background.

This study aimed to develop a new user-controlled
interface (UCI) that allowed the user to define the desired
prosthesis knee impedance control efficiently and safely (Fig.
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Fig. 1. A screenshot of the UCL. The NKK profile displayed in
red while the adjustable profile is denoted in blue. Safety bounds
are provided for the subject to ensure safe exploration of various

profiles.

1). This design was combined with our previous RL based
prosthesis auto-tuning algorithm that can tune prosthesis
impedance parameters to meet the desired normative knee
motion. Nevertheless, we do not know whether the auto-tuning
algorithm can quickly adapt to varied knee motion targets
defined by the user interface. Hence, before testing with the
amputee population, the feasibility of the approach was
verified based on two conditions: 1) if the autotuning
algorithm can tune the impedance parameters to different knee
profiles in reasonable duration without endangering the safety
of users, and 2) if the subjects can perceive the differences
between the profiles to select the optimal knee profile.

Our main contribution includes (1) a new UCI platform that
allowed the prosthesis user to intuitively customize the robotic
prosthesis control, (2) integration of the UCI to the previously
developed RL-based automatic prosthesis impedance tuning
system, (3) validation of the robustness of RL algorithm policy
in adapting to various knee profiles for different users, and (4)
preliminary validation of the UCI on two able-bodied subjects
as a precursor to testing with amputee populations.

II. METHODS

The aim of the paper was to develop a user-controlled
interface that is intuitive, efficient, and safe to define the
desired prosthesis control by the user. We validated its utility
in obtaining a user-preferred profile for autotuning of the
prosthesis controller using reinforcement learning. This
section describes the reinforcement learning-based prosthesis
tuning algorithm, the user interface, and the experiment
designed to validate the approach using a robotic knee
prosthesis.

A. Reinforcement Learning based autotuning

One of the biggest challenges of the finite state impedance
controller is to find the optimal impedance parameters
(stiffness, damping, and equilibrium angle) for each state of
the controller. In our previous work, we have proposed an
approximate policy iteration-based RL approach as a solution
to overcome this challenge [18], which was used as a basis for
this study. To implement the RL algorithm, the human-
prosthesis system is formulated as a discrete-time nonlinear
system as follows,

where each impedance control parameter update is
accomplished with the k discrete time step. State and action
vectors at time k are presented as x; € R? and u, € R® where
F represents unknown system dynamics. The control policy is

T E R2—>R3. At each time step, a stage cost, U(xy, uy), is
assigned to indicate how well a state-action pair performs. For
effective real-time control, the stage cost is formulated in a
quadratic form as shown in (3),

U(Xka uk) = XERxXk + uERuuk (3)

where R, € R”?and R, € R*3are positive definite weight
matrices. In addition, the cost-to-go function of Q(xy, uy) is
defined as

QU i) = Ul w) + 7241 P70 (x5, m(x))) (@)
with the discount factor of y. Let the current policy be & and
the Q value be in (4). It should be noted that the system shown
in (1) reaches xy,; after u; is applied at state x; and the
control policy 7 is followed thereafter.

The Bellman optimality equation is used as a benchmark
for the optimal cost function of

Q' (%o W = Ulxo) +1Q” (xier, ' i) (5)
where the optimal control policy " (x,) can be found by
T (x) = argmuin Q* (X ) (6)
k

Bellman optimality equation shown in (5) is iteratively solved
through policy iteration as detailed in [18].

While implementing the algorithm, the state and action
weight matrices were designed to prioritize the peak error
within the cost function since the peak error is more
responsive to phase parameter changes than duration error,
which is dependent on the human gait pattern. Convergence
is achieved when the error between normative knee
kinematics (NKK) and robot knee kinematics is within the
bounds in each of the four phases for the tuned impedance
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Fig. 2. Functioning of the RL algorithm. The error in the peak
points is used in the reward function to generate the new profile.

Xier1 = F(Xk’uk)’ k=0,1,2,.. (1) The plot on the top shows the difference between observed knee
U = Tr,(xk) (2) profile and target knee profile at the beginning of the trial and the
bottom plot shows the comparison at after convergence.
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parameters. The error bounds for the algorithm were set as 2°
spatially and 2% of gait cycle time temporally.

In this study, the robustness of the policy obtained through
the RL algorithm to changes in knee profile as preferred by
the users is analyzed. The algorithm was implemented in
MATLAB and was integrated to work in real-time with the
finite state controller implemented in LabVIEW.

B.  Design of User Controlled Interface

The control interface was designed to allow the subject to
intuitively alter the knee kinematics based on their preference.
The interface displays NKK of able-bodied subjects in red and
the adjustable knee profile in blue. The control points for each
phase (CP1-CP4) can be adjusted based on the user’s
preferences to generate a profile for the autotuning algorithm.
The interface facilitates two ways of modifying the knee
profile for tuning. The first method was onboard profile
modification, in which the sliders provided in the interface
can be used to adjust the location of the control points.

Additionally, a remote profile modification was provided
for the users to modify the profile while they are interacting
with the robotic prosthesis. An infrared remote control
coupled with Arduino Mega 2560 was used for remote profile
modification. The position of each control point can be altered
by pressing the corresponding number on the remote followed
by up and down arrows. It should be noted that the temporal
locations of the control points are fixed. Experimentally
derived safety bounds have been implemented into the system
to avoid risks of fall due to abnormal profiles. The safety
bounds were represented in the interface through dashed lines.
A safety bound of +4° from NKK was chosen for the first
control point and +8° for the other three control points to
ensure safety while also ensuring sufficient range for users to
explore modified profile characteristics.

The knee profile generated by the UCI relying on the user’s
preferences was then loaded into the LabVIEW. LabVIEW,
in turn, continuously runs the high-level RL-based autotuning
algorithm and low-level impedance controller within the FSM
framework to control and tune the robotic knee prosthesis
(Fig. 3). The tuned controller then consists of optimal
impedance values for all four sequential gait phases such that
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Fig. 3. The hierarchical design architecture of the system.

Fig. 4. The experimental setup for validation of the UCI approach.
The robotic prosthesis is attached through an adapter to the right
limb of the able bodied subject. The interface is displayed on the
screen in front of the subject to facilitate modification of the knee

profile.

the knee profile follows the profile set through the control
points.

C. Experimental setup and protocol.

A pilot study was conducted to verify the feasibility of the
UCI approach on two able-bodied subjects with no prior
neurological or physiological conditions. The study was
conducted with the approval of the Institutional Review
Board of the NC State University, with both subjects
providing informed consent. The experimental setup
consisted of the robotic prosthesis, a visual display for UCI,
and a Bertec treadmill on which the subjects, wearing the
robotic prosthesis via an adaptor (Fig. 4), were instructed to
walk at a constant speed of 0.6 m/s during the trials. The
purpose of the study was to verify if the algorithm can
converge to different knee profiles chosen by subjects
robustly and safely within a reasonable time. In addition, we
examined if the subjects could perceive the differences
between the profiles. So, the experiment was divided into two
parts: the tuning trials and the comparison trials.

The purpose of the tuning trials was to verify if the tuning
algorithm can successfully converge to the user-specified
profile within a reasonable time. To verify the convergence,
the first trial was performed with the normalized knee
kinematics. The subject was then asked to vary the first
control point (CP1) above and below the normalized knee
profile by a fixed value for the next two trials while the other
three control points were maintained at the NKK profile. The
final two trials are then conducted by varying CP2 while the
other three points are maintained at the NKK level. Each
tuning trial was run for a maximum of 6 minutes, in intervals
of 2 min. A 2 min rest was provided to the subjects after every
2 min interval of walking to prevent fatigue.

The tuning trials had to be limited to 5 trials to prevent
fatigue in the subjects and to perform the experiment within a
reasonable duration. The first two control points were chosen
since the previous study showed that the prosthesis user was
more sensitive to changes in controller impedance in the
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stance phase [19]. The tuning for each modified profile was
performed with a predetermined fixed starting point.
Additionally, the tuning was also performed by using the last
profile tuned values as the starting point to analyze the
convergence of the algorithm.

The purpose of the comparison trials was to observe if the
subjects perceive any differences between the different knee
profiles when the profile was altered across the control point.
For the two control points considered the study, the above and
below variation conditions were compared with each other as
well as the NKK profile. So, for each control point, there were
6 pairs of comparisons resulting in 12 comparison trials. For
each comparison trial, the subject was asked to walk on the
treadmill while the robot simulated the tuned values of the
first profile for 40 sec followed by the second profile for 40
sec. The order of the comparison pairs was randomized to
reduce bias. Further, to prevent fatigue, 2 min of rest was
provided after every two trials.

III. RESULTS

Prior to the prosthesis tuning session, each subject’s
opinion on the interface's ease of use was evaluated. Both
subjects reported the operation of the interface to be intuitive
and straightforward. We also studied the effectiveness and
efficiency of our UCI system for tuning prosthesis control.
The effectiveness of the UCI approach was evaluated by the
convergence behavior of the autotuning algorithm to meet the
user-defined knee kinematics in gait as well as the ability of
subjects to perceive the differences between profiles.
Efficiency was estimated through the duration needed for the
autotuning algorithm to meet the desired values.

A. Autotuning convergence and efficiency

The convergence criteria for the algorithm were to have the
four control points of the knee profile to be within 2° of the
target control points and within 2% temporally. Based on the
above criteria, the autotuning algorithm achieved
convergence across all conditions for both subjects. Further,
the amount of time required to converge was evaluated for
each profile tuning. When the tuning was performed with
random predetermined initial parameters for the subjects, the
average time was found to be 4.1 and 3.24 min, respectively,
for each subject. Additionally, once the autotuning was
performed for the NKK profile, the tuned parameters were
used as the starting point for the altered profiles. The duration
for autotuning from these starting parameters was observed to
be 1.15 and 2.31 min, respectively. Fig. 5 shows the
convergence behavior across all tuning trials for a
representative subject from a random starting point. Fig. 6
shows the convergence behavior of the same representative
subject for tuning using previously tuned parameters as a
starting point. It is interesting to note that a change in one
control point results in errors in the other control points,
which indicates the possible association of impedance
parameters across phases during tuning.

B. Perception of altered knee profiles and user safety

To evaluate whether subject could perceive differences
between the profiles, pair wise comparisons were performed
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Fig. 5. The observed error plots of each control point during
tuning across different profiles for a representative subject when
tuning is performed from a random starting point. The plots
show that the prosthesis knee profiles converges to the target in
all the tuning trials in under 30 iterations.

between altered profiles at each control point and with the
NKK profile. Subject 1 preferred altered profiles over NKK,
with a slight preference for hyperextension of the knee
(reduced CP angle) at both control points. Subject 2 preferred
the NKK profile over the altered profiles with no apparent
preference for either altered profile when compared together.
While there was no apparent relationship between control
point angle and the preference of the subjects, the comparison
trials showed that each subject has their own individual
preference for the optimal knee profile, which might not
necessarily be the NKK profile. The profile preference of
each subject during pairwise comparisons is shown in Table

6193

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 20,2022 at 22:53:32 UTC from IEEE Xplore. Restrictions apply.



Control Point 1 Convergence

8
NKK
6 CP1 below NKK
CP1 above NKK
—_4 CP2 below NKK
2 . CP2 above NKK
T2 AN
2o 7
w
2 )
[
o4
6
8
1 2 3 4 5 6 7 8

Count of Parameter Updates
Control Point 2 Convergence

Peak Error (deg)
o &H A M O N B O ®
i

-
N

3 4 5 6 7 8
Count of Parameter Updates
Control Point 3 Convergence

Peak Error (deg)
@® o B N O N B O @
1
1

™1 2 3 4 5 6 7 8
Count of Parameter Updates
Control Point 4 Convergence

Peak Error (deg)
o & A M O N B O ®
|
|
1
[
|
|
|
|
|
|

-
%)

3 4 5 6 7 8
Count of Parameter Updates

Fig. 6. The observed error plots of each control point for a
representative subject when tuning is performed using parameters
of previous tuned profile. The plots show that the prosthesis knee

profiles converges to the target in all the tuning trials in under 8
iterations.

TABLE 1. THE PROFILE PREFERENCE OF THE SUBJECTS IN PAIRWISE

COMPARISONS
Subject 1 Subject 2
CPI CcP2 CPI CcpP2
NP vs CP 1 = CP? NP NP
NPvsCP | CPl ~ NP NP
CPtvs CP | = CPl = CPl

NP: Normative profile; CP: control point; 1: increase;l:decrease
~: No differentiation in preference
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1. More importantly, neither of the subjects reported a sense
of instability in balance either during comparison or during
the tuning process, partly due to limits set on maximum errors
from control points and safety bound used in our
reinforcement learning algorithm [18].

IV. DiscussIioN

In this study, we present an intuitive UCI that enables the
robotic prosthesis users to tune a robotic powered knee
prosthesis based on their own preference. The proposed
platform simplifies the complex process of tuning a large
number of impedance parameters, generally performed by
certified clinicians under strict timing and fatigue related
limitations. This UCI empowers amputees by giving them
control of their device. The utility of the approach is based on
two main factors: 1) if the autotuning algorithm can safely and
successfully configure the impedance parameters based on
user inputs in a reasonable time, and 2) if the user can perceive
the differences in robotic mechanics and relate it to the
changes made through the interface. This platform can be
used to investigate user preference in prosthesis mechanics
and be potentially used as a clinical tool for prosthesis control
personalization.

A. Performance of the UCI approach

To verify if the autotuning algorithm could efficiently
converge to the user preferred profiles, profiles with
alterations in control points 1 and 2 were chosen. As observed
in the results, the algorithm ensured user safety while the
impedance parameters converged for both subjects under 4.1
minutes, showcasing the ability of the learned policy to adapt
to changes in knee profile. The subjects did perceive
differences in profiles and were not adversely affected by
changes to the robotic knee profile. The tuning process
converged in 4 min, which outperforms the time taken by
manual tuning methods to meet the desired knee kinematics
during gait. However, an additional amputee tests are needed
to quantify the performance of the policy in achieving their
desired prosthesis performance. The tuning time can be
further reduced by using optimal initial set of control
parameters. During the study, the tuned parameters of the
prior profile were used as initial parameters for the next
profile. This approach led to convergence at an average time
of 1.15 and 2.31 min for the subjects (Fig. 7). As selecting
optimal initial parameters could further reduce tuning time,
the users would have an increased chance to explore multiple
knee profiles to choose a personally optimal profile.

B. Implications for amputee populations

The results showed that the two subjects demonstrated
different preferences for the knee profile. Ideally, they would
have preferred the NKK profile since it is based on able-
bodied subject’s knee profile. The preference might have been
related to the socket attachment design or due to the difference
in ankle joint behavior of the robotic prosthesis. These effects
could be more pronounced in amputee populations due to
further variations in residual limb as well as socket
attachments and lack of proprioceptive feedback. Hence,
there is a strong possibility that the optimal knee profile of
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the current study were chosen as the tuned parameters of the
previous trial.

amputee populations is different from the NKK.

In general finite state controllers have 9-16 parameters to
be tuned and the manual tuning of all the impedance values is
difficult, when possible. Our study also showed that they were
codependent, leading to further complications during tuning.
Our proposed UCI, on the other hand, allowed the user to
adjust the knee motion, which is more intuitive compared to
them adjusting the impedance parameters. The multi-
dimension prosthesis control was effectively handled by the
autotuning algorithm. Since our new approach uses RL to find
optimal high-dimension parameters and human subjects are
only expected to modify the knee behavior, we believe that
this approach would better aid amputee populations in
adapting the prosthesis according to their preference.

C. Future Scope

The current study only verifies the safety and feasibility of
the UCI approach using able-bodied subjects. While this
study is a necessary step to validate the idea of user-preferred
prosthesis control, the approach needs to be validated with
transfemoral amputee populations. Ensuring a faster response
to changes in profiles would further strengthen the cause-
effect relationship, thereby aiding amputees in understanding
the effect of different profiles and selecting the optimal
profile. Therefore, autotuning algorithms with faster
convergence or initial impedance parameters are to be
developed.

The current control points are temporally fixed, limiting the
alternate profiles that users can explore. The possibility of
manipulating temporal features of the control points could
help generate profiles for a broader range of tasks, including
stair climbing and slope walking. Finally, understanding the
biomechanical and metabolic implications of the chosen
profiles would help understand the underlying mechanisms
that govern the human-machine system and pave the way for
adaptable robotic devices for patient-specific and patient
preferred assistance.
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