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Entropy Minimization Versus Diversity
Maximization for Domain Adaptation

Xiaofu Wu

Abstract— Entropy minimization has been widely used in
unsupervised domain adaptation (UDA). However, existing works
reveal that the use of entropy-minimization-only may lead to
collapsed trivial solutions for UDA. In this article, we try to
seek possible close-to-ideal UDA solutions by focusing on some
intuitive properties of the ideal domain adaptation solution.
In particular, we propose to introduce diversity maximization
for further regulating entropy minimization. In order to achieve
the possible minimum target risk for UDA, we show that diversity
maximization should be elaborately balanced with entropy min-
imization, the degree of which can be finely controlled with the
use of deep embedded validation in an unsupervised manner. The
proposed minimal-entropy diversity maximization (MEDM) can
be directly implemented by stochastic gradient descent without
the use of adversarial learning. Empirical evidence demonstrates
that MEDM outperforms the state-of-the-art methods on four
popular domain adaptation datasets.

Index Terms—Domain adaptation, entropy minimization,
image classification, transfer learning, Visual Domain Adap-
tion (VisDA) challenge.

I. INTRODUCTION

HE recent success of deep learning depends heavily

on the large-scale fully labeled datasets and the devel-
opment of easily trainable deep neural architectures under
the backpropagation algorithm, such as convolutional neural
networks (CNNs) and their variants [1], [2]. In practical
applications, a new target task and its dataset (target domain)
may be similar to a known source task and its fully labeled
dataset (source domain). However, the difference between the
source and target domains is often not negligible, which makes
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the previously trained model not work well for the new task.
This is known as domain shift [3]. As the cost of massive
labeling is often expensive, it is very attractive for the target
task to exploit any existing fully labeled source dataset and
adapt the trained model to the target domain [4]-[10].

This domain adaptation approach is aiming to learn a dis-
criminative classifier in the presence of domain shift [11], [12].
It can be achieved by optimizing the feature representation to
minimize some measures of domain shift, typically defined as
the distance between the source and target domain distributions
or its degraded form, such as maximum mean discrepancy
(MMD) [13], [14] or correlation distance [15].

With the invention of generative adversarial networks
[16], various adversarial methods have been proposed for
the purpose of unsupervised domain adaptation (UDA) [12],
[17]-[19], where the domain discrepancy distance is mini-
mized through an adversarial objective with respect to a binary
domain discriminator. The domain-invariant features could be
extracted whenever this binary domain discriminator cannot
distinguish between source and target samples [12], [17].

In recent years, there is also a broad class of domain
adaptation methods, which employs entropy minimization as
a proxy for mitigating the harmful effects of domain shift.
The entropy minimization is performed on the target domain,
which may take explicit forms [20]-[24] or implicit forms
[17], [25]. Without any further regularization, it may produce
trivial solutions with insufficient prediction diversity [26], [27],
where unlabeled target samples are prone to be pushed into
majority categories.

Often, UDA faces the challenging problem of hyperpa-
rameter selection, where the best configuration should be
determined without resort to labels in the target dataset.
Fortunately, deep embedded validation (DEV) [28] tailored
to UDA was recently proposed to solve this difficulty, which
embeds adapted feature representation in the validation proce-
dure to yield unbiased estimation of the target risk.

In this article, we make contributions toward close-to-ideal
domain adaptation with entropy minimization.

1) We propose a minimal-entropy diversity maximiza-

tion (MEDM) method for UDA. Instead of minimizing
the cross-domain discrepancy, MEDM tries to find a
close-to-ideal domain adaptation solution' by balancing
between entropy minimization and prediction-diversity

IFor the ideal domain adaptation, we mean that it can achieve the minimum
value of the sum of two risks, namely, the source risk and the target risk.
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Fig. 1. Comparison of EMO and MEDM: the use of entropy minimization often induces peaky prediction with low entropy, and EMO may result in

trivial solutions with a single-type peaky prediction. MEDM tries to maximize the batchwise diversity of the predicted categories, which could push entropy

minimization away from trivial solutions.

maximization. The novel use of diversity maximization
is shown to be very simple but effective for pushing
entropy minimization toward better UDA solutions.
2) We provide both theoretical and experimental results
to analyze the domain adaptation solution under the
framework of MEDM.
Extensive experiments show that MEDM outperforms
state-of-the-art methods on four domain adaptation data-
sets, including Visual Domain Adaption (VisDA)-2017,
ImageCLEF, Office-Home, and Office-31. In particular,
it boosts a significant accuracy margin on the largest
domain adaptation dataset, the VisDA-2017 classifica-
tion challenge.?

3)

The rest of this article is organized as follows. A simple
domain adaptation method with entropy-minimization-only
(EMO) is introduced, and its insufficiency is discussed in
Section II. In Section III, we propose a novel minimal-entropy
diversity-maximization method, and its theoretical justification
is also given. Simulation results are described in Section IV.
Related works are briefly discussed in Section V. Finally,
Section VII concludes this article.

II. INSUFFICIENCY OF ENTROPY-MINIMIZATION-ONLY
A. Entropy-Minimization-Only

Consider the problem of classifying an image x in a
K -classes problem. For UDA, we are given a source domain
Dy = {(x};y)}~, of ny labeled examples and a target
domain D, = {x}}'}’: , of n; unlabeled examples. The source
domain and the target domain are sampled from joint dis-
tributions P(x*; y*) and Q(x';y"), respectively, while the
independent identically distributed (i.i.d.) assumption is often
violated as P # Q. Hence, the problem is to exploit a bunch
of labeled images in D; for training a statistical classifier that,

2Source code is available at https://github.com/AI-NERC-NUPT/MEDM

during inference, provides probabilities of a given test image
x; € D, belonging to each of the K classes. In this article,
we focus on a deep neural-network-based classifier y = f(x)
(in general, the classifier fy depends upon a collection of
parameters #), which provides probabilities of x belonging
to each class as
Jo(x) = [P(y = 1lx), ..., P(y = K|x)]. 1

The goal is to design the classifier y = fy(x) such
that the target risk ¢,(fp) = Ew.yy~olfo(x") # y'] can
be minimized. Since the target risk cannot be computed in
the scenario of UDA, the domain adaptation theory [29],
[30] suggests to bound the target risk with the sum of
the cross-domain discrepancy D(P; Q) and the source risk
&(fo) = Egs.yy~pr[fo(x*) # y°]. By jointly minimizing the
source risk and the cross-domain discrepancy D(P; Q), var-
ious domain adaptation methods were extensively proposed,
which differs mainly in the choice of D(P; Q).

For supervised learning on the source domain, the classifier
is trained to minimize the standard supervised loss for any
given batch of S C D;

1
Li0,8) =—= D €0, fo(x)) )
IS (x,y)eS
with
K
€, 9) = (y,9) =—D_y;log; 3)
j=1

and |S| denotes the cardinality of the set S.

Recently, label smoothing (LS) was proposed in [31] to
refine the cross-entropy loss with noisy labels, which may
improve the accuracy of a multiclass neural network. With LS,
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{(y, ) in (2) is replaced by the smoothed version of
K
3.9 == (1 —a)y;+a/K)logy; @)
j=1

where o denotes the smoothing parameter, which is empir-
ically set to 0.1. In [32], the power of LS from the view
of optimization was investigated, and it was shown that an
appropriate LS can help to speed up the convergence by
reducing the variance and improve the generalization accuracy.
Furthermore, LS encourages the representations of training
examples from the same class to the group in tight clusters
[33], which may be more advantageous for the task with a
large number of classes, for example, the transferring task over
Office-Home.

To adapt to the unlabeled target domain, a large class of
domain adaptation methods also minimizes the entropy loss

1
LO,T)=—— > (folx),log fy(x:))

(5)
|T| x €T

for any given batch of 7 C D, as an efficient regularization
technique. Therefore, with a batchwise training approach,
EMO is to solve the following problem:

min Es,7[£L(0,S) + AL (0, T)] (6)

where E[-] denotes the expectation.

The EMO presented in (6) was first proposed in [35] for
semisupervised learning, where a decision rule is to be learned
from labeled and unlabeled data, and EMO (6) enables to
incorporate unlabeled data in the standard supervised learn-
ing. For the scenario of UDA considered in this article,
the difference is that unlabeled samples are sampled from the
target-domain distribution Q, which may differ considerably
from the source-domain distribution P.

B. Peaky Prediction, Cross-Domain Discrepancy, and
Insufficiency of EMO

The rationality of EMO for the purpose of UDA can be
illustrated in Fig. 1, where the use of entropy minimization
induces peaky predications with low entropy for unlabeled
target samples. By enforcing the supervised loss over source
samples, peaky predications over both source and target sam-
ples can be well expected, which happens to be the case for
the ideal UDA classifier f* (performs well for both domains),
namely,

[r=arg ﬁiﬁ[fs(f) + ()] (N

where H is the space of hypothesis classifiers. Indeed, the fully
supervised classifier f minimizing (7) (assuming labeling is
accessible for both source and target domains) always leads
to peaky predictions with low entropy for f,* for well-defined
UDA tasks, as observed in experiments.

One of the potential problems in EMO is that the explicit
use of entropy minimization (over target samples) may lead
to trivial solutions, where a single class may dominate [26],
as demonstrated in the Appendix. In practice, this problem can
be partially alleviated by the use of small 4 in (6).

TABLE I
ACCURACY (%) ON OFFICE-31 WITH RESNET-50

Method | A=W | WA
DAN [23] 83.8 62.7
RevGrad [17] 82.0 67.4
MADA [34] 90.0 66.4
EMO(A=0.1)(6) | 910 | 68.1

As shown in Table I, EMO (4 = 0.1) performs not bad over
two typical transferring tasks on Office-31, including A — W
and W — A. Note that EMO does not explicitly minimize any
cross-domain discrepancy D(P; Q). When the training goes
on, the target entropy loss decreases, and the test accuracy
increases steadily, as observed in experiments.

We also investigate the effect of the inclusion of MMD loss
in EMO. The resulting algorithm, EMO + MMD, seeks to
solve the following problem:

min Es 7[£:0.8) + 2Lc0.T) +ydi(P, Q)]. 2.y >0
(8)

where d,?(P, Q) denotes the multiple-kernel MMD loss [13].
With 2 = 0.1 and y = 1.0 in (8), the evolution of MMD
loss and test accuracy for both EMO and EMO + MMD
can be plotted in Figs. 2 and 3, respectively. As shown,
the inclusion of MMD loss could lead to improved test
accuracy, which may saturate soon as the training iteration
goes on. Without an explicit inclusion of the MMD loss,
the decrease in the MMD loss can also be observed during
training, as indicated in Fig. 2; especially at the beginning of
the training, the reduction in its absolute value, however, is not
very significant.

For EMO + MMD, experiments show that the MMD loss
computed at some intermediate layers could lead to little
performance improvement but some unpredicted fluctuations
on the test accuracy. It should be emphasized that the entropy
loss focuses on the class predictions, while the MMD loss
focuses on the features. For an end-to-end training approach,
we believe that the use of the final class predictions is
more beneficial than the intermediate features for the purpose
of seeking UDA classifiers [19], [36]. Although the simple
inclusion of MMD loss in EMO could lead to improved
performance, the performance improvement is still limited
compared to the state-of-the-art UDA algorithms. Therefore,
it is interesting to explore the entropy minimization further to
seek more powerful UDA classifiers.

Note that the minimization of the target risk ¢,(fy) could
push the network prediction fy(x;) toward the true solution
yi = [yi,...,yk] with y € {0,1},>, yx = 1, namely,
fo(x;) = [0,...,1,...,0], which results into the minimum
value of entropy (zero). This means that entropy minimization
is a necessary condition for the minimization of the target
risk € (fp). Hence, entropy minimization may be more direct
and simpler for end-to-end training of 0 in order to minimize
the target risk, compared to the use of more complicated
cross-domain discrepancy. Unfortunately, as a necessary but
not sufficient condition for minimization of the target risk
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Fig. 2. Evolution of MMD loss for EMO (4 = 0.1) and EMO + MMD
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Fig. 3. Evolution of test accuracy for EMO (4 = 0.1) and EMO + MMD
(A =0.1 and y = 1.0) during training.

€(fy) [26], this simple technique may result into trivial
solutions.

Problem 1: As entropy minimization is necessary but not
sufficient for minimization of the target risk, it is natural to
ask if we can pose some further regularization to push the
optimizer to find the global minima instead of the trivial local
minima.

III. MINIMAL-ENTROPY DIVERSITY MAXIMIZATION

The use of EMO may produce trivial solutions, as shown
in Fig. 1. By noting that a trivial solution shown in Fig. 1
often has just one category, a nontrivial domain adaptation
method may resort to producing sufficient category diversity
in its solution.

A. Batchwise Diversity

Consider that two batches of input samples (S, 7') are input
to the network during training, where S C Dy, 7 C D, with
the same batch size of B = |7 | = |S|. With each unlabeled
image x, € 7 as input, the output softmax predictions over the
network fy can be written as fy(x,). Then, one can compute

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the predicted category distribution over 7 as

1
AT) =5 > fole) 214140, k] )

x €T

where

1
G =7 D> PO =klx)
x, €T

and Z,le gx = 1. Note that (7)) is computed over T, which
is dynamically changed during the batch-based training.

For measuring the category diversity in a given target batch
T, we define the batchwise diversity £,(0, 7) as the entropy
of Q(7) =141, G2, - - -, k] (9). Formally, this category diver-
sity over 7 can be calculated as

K

La0,T) 2 H@T)) = - D dilog .
k=1

(10)

As this diversity metric does not require any prior informa-
tion about the true category distribution q over D;, its com-
putation is easy to implement in practice. Note that random
shuffling should be employed in training for approximating
the ground-truth value of H(q) over the target domain.

B. Entropy-Minimization Versus Diversity-Maximization
The objective of MEDM is to

Hlein ES,T['CS(H’S) +/1'C€(9»T) _ﬁﬁd(Q»T)] (ll)

where 4, > 0 are weighting factors. Given A and f, this
involves the optimization of # for the minimization of a
single total loss (11), which can be directly implemented by
stochastic gradient descent without use of adversarial learning.

Note that (11) includes a diversity maximization term,
which may prevent the entropy term £, (6, 7') from converging
to sufficiently small value. In what follows, we show that
this can be well alleviated by the selection of A and g for
finely controlling the tradeoff between entropy-minimization
and diversity-maximization.

As shown in (11), our proposed MEDM may encourage
to make predictions evenly across the batch, which, however,
does not necessarily produce the evenly distributed categories.
Let q = [q1, ..., qxk] be the true category distribution of the
target dataset, where g; denotes the proportion of samples of
the kth class among all target samples.

Theorem 1: Consider the EMO method (f = 0) in (11).
If there exists a solution 8* of (11) with L£.(6*,7) = 0,
we have that

E7[£a(07.T)] = H(a")

where q* = [¢], ..., qk] is the inferred category distribution
of the target dataset when inferring over the network 6*.

Proof: 1In the case of f = 0, diversity maximization is
not included in (11). Note that

£.(0".T) = 0.
Since the entropy is always nonnegative, we have that

—(fo(x),log fo(x)) =0 Vx, 7.
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Hence, the network prediction fj(x;) for any x, € 7 should
present a peaky form, namely, fy(x;) — [0,...,1,...,0].

Given a random batch of samples 7 inputting to the network
0*, the expectation of §;(7) (9) can be computed as

1
= —  (g{IT1) = q;.

1
Er{gu(T)} = —E7{ > f(x) 7

|T| x, €T
Therefore,
ET{L4(0",T)} = E-{H@)} = H(q").

|
Without the use of diversity maximization, EMO often
results in trivial solutions, namely, maxg; > 1 — max; g},
where the predicted single-class samples may dominate among
others. With the use of diversity maximization, it may encour-
age to make prediction evenly across the batch since the
maximum value of L£;(0*,7) could be achieved whenever
q° = [I/K,...,1/K]. In fact, there exists a tradeoff by
adjusting the parameters 4, £ as justified in what follows.
Lemma 1: Consider the EMO method (f = 0) in (11).
If there exists a solution #* of (11) with £.(0*,7) = 0,
we have that

Er[L4(0*.T)] < H(q)

where q = [q1, ..., gk] is the ground-truth category distribu-
tion of the target dataset.

Proof: Without loss of generality, we consider that the
network fy(x) can be decomposed into two subnetworks,
namely, fp(x) = C(F(x)), where F denotes a feature extrac-
tion subnetwork and C denotes a classifier over the feature
space F. For the purpose of domain adaptation, it is often
assumed that P(y|F(x)) = Q(y|F(x)).

Let Xy = {xJ)2, and X; = {x}},. Then, whenever
x; € FT'(F(Xy) N F(X;)), one can expect that the network
can give a correct prediction with minimal entropy. While
x, € FFY(F(X;) — F(X)) and L,(0*,T) = 0, the network
(6*) encourages to make prediction toward a single class since
there are simply no other constraints to be enforced. This
means that, when inferring over the network 6*, the inferred
category distribution q* = [g{, ..., g ] over the target domain
has to meet the constraint of H(q*) < H(q), where q is the
ground-truth category distribution of the target dataset. This
completes the proof by using Theorem 1. [ |

According to Lemma 1, MEDM works as follows. For
a given domain-adaptation task, MEDM starts with f =
0, namely, EMO. It is straightforward to find the smallest
possible A* for EMO in achieving nearly minimal entropy
of L£,(0*,7) = 0. Then, we begin to train MEDM by
fixing A* and increases S from 0. The use of nonzero f
in MEDM could encourage the network predications toward
diverse categories, while the requisite of minimal entropy
makes a peaky prediction, which should not deviate from the
source domain due to the use of supervision loss over the
source domain.

Let fy- be the ideal domain-adaptation classifier, which
minimizes the sum of source and target risks [30], namely,
for = argming,cn €,(fo) + €(fs), with H denoting the

space of classifiers. Therefore, when inferring target samples
over fy«, one can expect peaky predictions or predictions
with low entropies. Hence, Theorem 1 may still hold in
this case. By restricting H to be the solution space of (11)
with 1, > 0, we expect that the same conclusion holds.
In fact, extensive experiments show that an explicit inclusion
of entropy minimization in (11) can easily drive the trained
CNN model toward small predictive entropy, even coexisting
with diversity maximization. Therefore, we believe that the
ideal domain-adaptation classifier under the framework of (11)
may output predictions with low entropies, which means
that Theorem 1 may still hold, as shown in the following
conjecture.

Conjecture 1: Consider the perfect domain-adaptation solu-
tion of fa(f “#) under the framework of (11), namely,

L : i i
fg(* ﬂ):arg%mex(fg ﬁ))—ket(fa( /f)>.

Y, (12)

We have that
Er[Lq(07,T)] ~ H(q")

where q* = [q], ..., gx] is the inferred category distribution
over the target domain with the network 6*.

Since the target risk for fe(f*”g 7 s expected to be small,
we have that q* — q and H(q*) — H(q). With random
shuffling for batch-based training, £;(0*,7) — H(q*) holds
with a high probability whenever the training process for (11)
under the setting of (1%, f*) converges. This may partially
support the reasonability of the use of (11).

Although we do not know the perfect domain-adaptation
solution of f, (#5.p "), one can search over the space of (4, ) and
further resort to the validation technique [28]. The essential
process can be stated as follows. When £ = 0 in (11), the use
of explicit entropy minimization under the end-to-end training
could lead to a solution of 0* with £;(0*,7) — 0. When
f increases from 0, we would expect that the category diver-
sity (10) increases correspondingly, which can help to find a
better solution with L;(0*,7) — H(q). The problem now is
how to determine the best value of A and f in (11) for finding
a close-to-perfect domain adaptation solution. Fortunately, this
was recently investigated in [28].

C. Model Selection via Deep Embedded Validation

For the proposed MEDM, the selection of hyperparameters
(2 and p) is of great importance for the final performance. For
UDA, the model selection should be decided without access
to the labels in the target dataset. Fortunately, the recently
proposed DEV [28] has been proven very efficient for model
selection, which embeds adapted feature representation into
the validation procedure to obtain an unbiased estimation of
the target risk with bounded variance.

Consider that the feature extractor F' is an end-to-end train-
ing solution of (11), it is closely connected to the parameters
Aand B in (11), i.e, F £ F; 5. Let A& = {4;}L, be a finite
collection of 4;, where 1; < 1, < --- < Ap. Let B = {B; }/:1
be a finite collection of f;, where fi < p» < --- < fy.
Therefore, a model selection procedure for MEDM can be
shown in Algorithm 1, which makes a full search of two
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Algorithm 1 Model Selection Procedure in MEDM
Require: D; = Dyyin U Dyay, Dy
’11L = Mi}f:vﬁlv = {ﬁj }/=1
1: Training Initialization: f <« 0.
2. for 1 < Ay,..., A, do
3: fOI‘ﬁ(—ﬁ],...,ﬁde
4 Train the network 6;; over Dy, and D;:

0ij = argrr})in E[L;0,8)+ ALO,T)— pLy(0O,T)]

end for

: end for

: Deep Embedded Validation [28]:

1) Get DEV Risks of all models R = {GetRisk(8;;)}
over Dya

2) Pick the best (i*, j*) = argmin<j<z 1<j<v Rij

S o v

hyperparameters A and f and picks the best solution in the
end.

In many experiments, we also tried a fast model selection
procedure, with which MEDM starts by fixing f = 0 at first
and finds the smallest possible 1* in achieving nearly minimal
entropy of L£,(0*,7) = 0. Then, it increases £ from 0 to 1
for searching the best £* with 4 keeping fixed at 1*. Although
many experiments support this fast model selection procedure,
there are some cases in which the nearly minimal entropy of
L.(0*,7) = 0 is not easy to justify, especially for MEDM
with LS (4).

D. Discussion

Given two classifiers f, f* € H, and define the target
disparity between f and f* as

&(f, ) = Ewnol £ () # ()]

By using the triangle inequalities, it is straightforward to
bound the target risk of f as

a(f) <a(f) +ealf f).

Suppose now that f* be the ideal classifier of (7) for
minimizing the sum of both source and target risks. The
philosophy behind MEDM is to minimize ¢,(f, f*). Note that
the ideal classifier f* is not available, and its performance
is always bounded by that of an empirical fully supervised
classifier f)*, namely, € (f*) > € /(f)). For an empirical fully
supervised classifier f, we mean that it can ideally access
labels for both source and target samples. Suppose now that
the ideal classifier f* works well and may perform very close
to fF; it could present similar properties as those of f).
Empirically, we observe that a deep-learning-based solution
of f* for minimizing (7) has the following two properties.

) L.(fF,T)=0.

2) E7[La(f5.T)]=H(q") = H(q).

Here, q* = [qf, ..., qk] is the inferred category distribution
over the target domain when inferring with f*.

The above observation means that an ideal classifier for

minimizing the sum of source risk and target risk may lead to

13)

(14)
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TABLE 11
ACCURACY (%) OF RESNET-50 MODEL ON VISDA-2017

Method Synthetic — Real
GTA [38] 69.5
MCD [19] 69.8
CDAN [39] 70.0
MDD [40] 74.6
MEDM 79.6
MEDM-LS 80.2

both entropy minimization and a nearly constant diversity over
any fully randomized target batch. Therefore, MEDM seeks
to find such a solution to meet both the above requirements
by balancing between entropy minimization and diversity
maximization.

IV. EXPERIMENTS

We evaluate MEDM with state-of-the-art domain adapta-
tion methods for various transferring tasks, which includes
VisDA-2017, ImageCLEF-DA, Office-Home, and Office-31
datasets. VisDA-2017 is known as the largest and highly unbal-
anced DA dataset, and ImageCLEF-DA is a small but balanced
dataset, while both Office-Home and Office-31 are slightly
unbalanced DA datasets with a large number of classes (65 for
Office-Home and 31 for Office-31). In what follows, MEDM
always means the use of the standard cross-entropy loss of (3),
while MEDM-LS means the use of LS version of (4).

A. Experimental Setting

Throughout the experiments, we employ deep neural
network architecture detailed as follows. It has a pretrained
ResNet-50/101, followed by two fully connected layers,
FC-1 of size 2048 x 1024 and FC-2 of size 1024 x K.
Batch-normalization, ReLU activation, and dropout are
only employed at the FC-1 layer. The dropout rate is
set to 0.5. The Adam optimizer is employed with a
learning rate of 0.0001. The batch size is set to 32.
The learning rates of the layers trained from scratch
are set to be 100 times those of fine-tuned layers from
the pretrained ResNet. For model selection, we assume
that 4,5 < {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9.1.0}.
A finer search of 1 and f may lead to possibly better
performance but with an increased computational burden.

We report the test accuracy results of MEDM, which
are compared with state-of-the-art methods: deep adapta-
tion network (DAN) [13], reverse gradient (RevGrad) [17],
domain adversarial neural network (DANN) [46], resid-
ual transfer network (RTN) [34], multiadversarial domain
adaptation (MADA) [45], generate to adapt (GTA) [37],
maximum-classifier-discrepancy (MCD) [19], conditional
domain adversarial network (CDAN) [38], margin dispar-
ity discrepancy (MDD) [39], batch spectral penalization
(BSP) + CDAN [40], stepwise adaptive feature norm (SAFN)
[42], sliced Wasserstein discrepancy (SWD) [41], Source
HypOthesis Transfer (SHOT) [44], batch nuclear-norm maxi-
mization (BNM) [27], and MRKLD+LRENT [43]. Note that
SANF' denotes our reexperiment with reference to SAFN.
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TABLE III
ACCURACY (%) OF RESNET-101 MODEL ON THE VISDA DATASET (* DENOTES OUR RE-EXPERIMENT RESULTS)

Method plane  beycl bus car horse  knife mcycl person plant sktbrd train  truck | mean
DAN [13] 87.1 63.0 76.5 42.0 90.3 429 85.9 53.1 49.7 36.3 858 207 61.1
RevGrad [17] 81.9 77.7 82.8 443 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD [19] 87.0 60.9 83.7 640 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
CDAN [39] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 819  38.0 73.7
BSP+CDAN [41] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 779 82.1 38.4 75.9
SWDT [42] 88.0 80.0 79.0  89.0 90.0 67.0 84.0 75.0 86.0 63.0 84.0  28.0 76.0
SAFNT [43] 93.6 66.2 84.8 71.6 94.3 81.8 91.2 78.1 90.1 55.6 88.6 20.8 76.4
MRKLD+LRENT [44] 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 739  68.8 78.1
SHOT [45] 92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 843 493 79.6
MEDM 93.5 80.4 90.8 70.3 92.8 87.9 91.1 79.8 93.7 83.6 86.1 38.7 82.4
MEDM-LS 93.1 742 86.0 68.7 939 87.2 91.8 80.4 929 83.1 88.0 498 824
TABLE IV
ACCURACY (%) ON IMAGECLEF-DA DATASET FOR UDA WITH RESNET-50
Method H I—-P P—1 I—-C C—1 C—P P—C \Avg
DAN [13] 75.0+£04 862402 933+02 84.1+£04 698+04 91.3+04 | 833
RTN [34] 75.6+03 86.8£01 95.3+£01 869+03 727+03 922404 | 849
RevGrad [17] 75.0£06 86.0+£03 962+04 87.0+05 743+£05 91.5+0.6 | 85.0
MADA [46] 75.0+£03 879402 960+03 888+03 7524+0.2 922+0.3 | 85.8
CDAN [39] 77.7+£03 90.7£02 97.7£03 91.3+03 742402 94.3+0.3 | 877
SAFNT [43] 780+£04 91.7£05 962+0.1 91.14+03 770405 94.7£0.3 | 88.1
SWDT [42] 79.0£03 92.0+0.2 93.0+03 89.0£03 73.0+£0.2 94.0+0.3 | 87.7
MEDM 785+05 93.0+05 96.1+0.2 928+05 77.2+0.7 955+04 | 88.9
MEDM-LS 78.2 93.3 97.2 93.0 78.3 95.5 89.3
TABLE V
ACCURACY (%) ON OFFICE-HOME FOR UDA WITH RESNET-50
Method ||Ar—Cl Ar—Pr Ar—Rw Cl—Ar Cl-Pr Cl-Rw Pr—Ar Pr—Cl Pr-Rw Rw—Ar Rw—Cl Rw—Pr|Avg
DAN [13] 436 570 679 458 565 604 44.0 436 677 63.1 51.5 74.3 |56.3
DANN [47] || 45.6 593 70.1 47.0 585 609 46.1 437 68.5 63.2 51.8 76.8 |57.6
JAN [48] 459 612 689 504 597 61.0 458 434 703 63.9 524  76.8 |58.3
CDAN [39] || 50.7 706 760 576 700 700 574 509 773 70.9 56.7 81.6 |65.8
MDD [40] 549 737 778 600 714 71.8 612 536 78.1 72.5 60.2 82.3 |68.1
SAFNT [43]|| 445 64.6 712 560 653 704 580 446 704 65.9 614 709 [61.9
SWDT [42] || 50.5 70.1 712 59.0 703 684 580 50.6 754 70.9 614 733 |649
BNM [27] 523 739 800 633 729 749 61.7 495 79.7 70.5 53.6 822 |67.9
SHOT [45] || 569 781 810 679 784 781 67.0 546 818 73.4 58.1 84.5 |71.6
MEDM 57.1 76.1 80.0 62.0 727 760 623 534 812 69.9 59.8 839 |69.5
MEDM-LS || 575 775 832 69.1 789 80.7 666 549 834 74.9 59.8 854 |72.5

B. VisDA-2017

The VisDA challenge [48] aims to test domain adaptation
method’s ability to transfer source knowledge and adapt it
to novel target domains. As the largest domain-adaptation
dataset, the VisDA dataset contains 280k images across
12 categories from the training, validation, and testing
domains. The training domain (the source domain) is a set
of synthetic 2-D renderings of 3-D models generated from
different angles and with different lighting conditions, while
the validation domain (the target domain) is a set of realistic
photographs. The source domain contains 152397 synthetic
images, and the target domain has 55388 real images.

Note that the target domain is highly unbalanced, where
the number of samples for each category is [li,...,l12] =
[3646, 3475, 4690, 10401, 4691, 2075, 5796, 4000, 4549,
2281, 4236, 5548]. Therefore, the VisDA-2017 also serves to
Jjustify the suitability of MEDM for highly unbalanced dataset.
The ground-truth category distribution can be calculated as

q= 1/(2321 INM, ..., 112]). Then, the entropy of q can be
directly computed as H(q) = 2.3927.

Table II compares various methods with the pretrained
ResNet-50 architecture, while Table III with the pretrained
ResNet-101. Our method performs the best in the final mean
accuracy among various methods. It surpasses the second
best (SHOT) by 2.8% in the final mean accuracy for the sce-
narios of both ResNet-50 and ResNet-101. With ResNet-101,
either MEDM or MEDM-LS achieves the record mean accu-
racy of 82.4%.

C. ImageCLEF-DA

ImageCLEF-DA is a publicly available dataset for image-
CLEF 2014 domain adaptation challenge. It has 12 common
categories shared by the three public datasets: Caltech-256
(C), ImageNet ILSVRC 2012 (), and Pascal VOC 2012 (P),
which are also considered as three different domains. For
12 common categories, they are airplane, bike, bird, boat,

Authorized licensed use limited to: Temple University. Downloaded on August 03,2022 at 22:29:13 UTC from |IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VI
ACCURACY (%) ON OFFICE-31 DATASET FOR UDA WITH RESNET-50

Method | A=W D—W W — D A—D D— A W—A | Avg
DAN [13] 83.8+04 96.8+0.2 99.5 £0.1 78.4+0.2 66.7 £0.3 62.7+0.2 | 81.3
RevGrad [17] 82.0+£04 96.9+0.2 99.1£0.1 79.7+£04 68.2+0.4 67.4+0.5 | 822
MADA [46] 90.0£0.1 97.44+0.1 99.6 £0.1 87.8+0.2 70.3 £ 0.3 66.4 0.3 85.2
CDAN [39] 94.1+0.1 98.6+0.1 100.0£0.0 92.9+0.2 71.0+0.3 69.3+0.3 | 87.7
BSP+CDAN [41] 93.3+£0.2 98.24+0.2 100.0£0.0 93.0+0.2 73.6 £0.3 72.6 £0.3 | 885
MDD [40] 945+03 984+0.1 100.0£0.0 935+0.2 74.6 0.3 72.2+0.1 88.9
SAFNT [43] 90.1+£0.6 98.6+0.2 99.8 £0.0 90.7 £ 0.5 73.0+0.2 70.2+0.3 | 87.1
SWDT [42] 90.4+0.3 98.7+0.1 99.9+0.1 94.7+£0.2 70.3+£0.3 70.5+£0.1 87.4
MRKLD+LRENT [44] 89.4+0.7 989+04 100 £ 0.0 88.7 £ 0.8 72.6 + 0.7 70.9+ 0.5 86.8
BNM [27] 90.3 91.5 98.5 100.0 70.9 71.6 87.1
SHOT [45] 90.9 98.8 99.9 93.1 74.5 74.8 88.7
MEDM 93.4+£06 98.8+0.1 100.0 0.0 93.4+0.5 74.2+0.2 754+04 | 89.2
MEDM-LS 93.4 99.2 99.8 93.2 75.1 75.4 89.3
TABLE VII

EFFECT OF £ ON DIVERSITY MAXIMIZATION OVER VISDA-2017 (GROUND-TRUTH CATEGORY DIVERSITY H (q) = 2.3927)

B || plane becycl bus  car  horse  knife mcycl person  plant sktbrd train  truck | mean | diversity
0.0 89.6 0.1 94.7 2.1 88.5 99.2 89.0 72.0 58.0 2.0 77.1 0.4 56.0 1.7862
0.1 91.4 62.5 86.2 1.9 90.7 93.3 89.0 79.4 89.2 36.5 86.9 0.7 67.3 1.9952
0.2 91.6 77.6 66.4 1.6 90.7 83.4 89.4 78.6 89.7 74.9 89.6 0.3 69.5 2.0619
0.3 94.4 76.2 873 61.1 91.1 79.6 88.0 80.0 92.3 78.9 89.7 35.0 79.4 2.2446
0.4 92.7 83.1 822 658 89.2 89.9 79.8 78.6 91.3 71.7 90.9 33.8 79.6 2.2493
0.5 94.2 77.8 80.9 584 90.9 25.9 81.4 76.1 89.1 67.6 89.7 40.1 72.7 2.2704
bottle, bus, car, dog, horse, monitor, motorbike, and people. E. Office-31

ImageCLEF-DA is a balanced dataset with 50 images in each
category and 600 images in each domain. We consider all
domain combinations and build six domain-adaptation tasks:
l]—-P,P—->I1,1—-C,C—-1IC— P,and P — C.

Table IV shows the classification accuracy results for
various methods on the ImageCLEF-DA dataset with the
ResNet50 architecture. The result of the MEDM is obtained by
only training 100 epochs, which, however, neatly outperforms
the other deep adaptation methods among five adaptation
tasks: I — P, P - I, C — I, C — P,and P — C.
The best average accuracy (88.9%) is achieved by MEDM,
which improves SAFN by about 0.8%. As shown, MEDM-LS
performs even slightly better than MEDM.

D. Office-Home

Office-Home [49] is a typical dataset with a large number
of classes (65 classes), which containing 15500 images from
four visually very different domains: Artistic images, Clip
Art, Product images, and Real-world images. We consider
all domain combination among these four domains, resulting
12 domain-adaptation tasks.

Table V shows the classification accuracy results on the
Office-Home dataset with the ResNet50 architecture. The
result of the MEDM (or MEDM-LS) is obtained by only
training 100 epochs. As shown, MEDM-LS still outperforms
SHOT by about 0.9% mean accuracy, while MEDM performs
inferior to SHOT. Since both SHOT and MEDM-LS employed
LS, this means that the use of LS may lead to a considerable
performance gap for domain adaptation over Office-Home.
Note that Office-Home has a large number of classes (65),
which may be a potential reason for achieving a better perfor-
mance advantage with LS.

Office-31 is a standard benchmark dataset for visual domain
adaptation, which has 4652 images and 31 categories collected
from three domains: Amazon (A), Webcam (W), and DSLR
(D). The Amazon (A) domain contains 2817 images down-
loaded from amazon.com. We consider all domain combina-
tions, resulting in six domain-adaptation tasks.

For the transferring tasks over Office-31, we employ
the same neural network architecture as ImageCLEF-DA.
We compare the average classification accuracy of each
method on ten random experiments and report the standard
error of the classification accuracies by different experiments
of the same transfer task. In all experiments, we train each
model for 100 epochs, and exceptions include D — A and
W — A, where 200 epochs are employed.

We report the classification accuracy results on the Office-31
dataset, as shown in Table VI. Office-31 has three domains of
different sizes, which results in unevenly distributed classes in
each domain.

Among various domain-adaptation methods, MEDM still
performs the best for the mean accuracy. MEDM performs
the best for three adaptation tasks, D — W, W — D, and
W — A, while MDD [39] performs the best for the three
remaining tasks.

F. Ablation Study

1) Effect of  on Diversity Maximization: The superiority of
MEDM in the VisDA challenge shows that it is very effective
for a highly unbalanced target dataset although the category
diversity is expected to achieve its maximum value when
the inferred categories are uniformly distributed. We guess
that it works well due to the collaboration in meeting both
requirements, namely, the minimization of entropy and the
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TABLE VIII
EFFECT OF 4 ON TRANSFERABILITY FOR W — A

A+ Le | Acc A+ Le | Acc
1.0+0 | 0.0 | 43.1 1.0+0.2 | 0.0 | 53.3
08+0 | 00 | 459 0.8+0.2 | 00 | 565
06+0 | 00 | 498 06+02 | 00 | 657
04+0 | 0.1 54.0 04+0.2 | 0.1 74.3
03+0 | 02 | 62.2 03+02 | 02| 755
02+0 | 03 | 63.2 02+02 | 03 | 745
0.1+0 | 04 | 68.1 0.1+02 | 04 | 723

maximization of category diversity, where the parameter f
(11) is used to balance two individual requirements.

To investigate the choice of S on the final performance,
we also show the accuracy of MEDM with ResNet-50 by
fixing A = 1.0 and varying f from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.
As shown in Table VII, we observed that E7{L;(7)} after
training 10 epochs is always less than the entropy of the
ground-truth target category distribution H(p) = 2.3978,
which means that the maximization of £;(7") under the con-
straint of entropy minimization does not necessarily produce
the uniformly distributed categories. When f < 0.3, it results
into poorer performance as some categories (car/truck) simply
fail to be identified. With the increase in £, the practical
diversity also grows. When S increases to 0.5, it also results
into significantly worse performance compared to f = 0.4.
Essentially, individual entropy minimization may automati-
cally tradeoff with diversity maximization if the values of A
and [ are properly validated by the use of DEV [28].

2) Effect of A on Transferability: Entropy minimization
in MEDM can be adjusted by varying A. As shown in
Algorithm 1, MEDM encourages the use of small 4 whenever
the target entropy approaches zero as the training iteration
goes on. When f = 0, the transferability is achieved by
minimization of both the supervised loss on the source domain
and the entropy loss on the target domain. With small A and
keeping the (target) entropy small enough at the same time,
it is expected that the end-to-end training of (11) ensures better
transferability.

To investigate the choice of 4 on the final performance,
we also show the accuracy of MEDM on the task W — A
on the Office-31 dataset when A takes its value from {0.2,
0.3, 0.4, 0.6, 0.8, 1.0} and g € {0.0,0.2}. With the smallest
possible value of 4 for L£.(6;,7) — 0, MEDM can achieve
the best performance with a suitable choice of £, as shown
in Table VIII. This means that the better transferability could
be ensured with smaller possible value of 4 if £.(6;,7) — 0
is satisfied at the end of training.

3) McNemar Test for Comparing EMO and MEDM: We
consider to compare EMO (4 = 0.2 and accuracy = 63.4%)
and MEDM (4 = 0.2, f = 0.2, and accuracy = 74.0%) on
the task W — A for the Office-31. To apply McNemars test
[50], we test these classifiers on the target domain. For each
example x € D;, we record how it was classified and count the
following four items, nog, 01, 719, and nj;, where ng is the
number of examples misclassified by both EMO and MEDM,
no; is the number of examples misclassified by EMO but not
by MEDM, nj, is the number of examples misclassified by
MEDM but not by EMO, and ny; is the number of examples
misclassified by neither EMO nor by MEDM.

Let

(Inor — ol — 1)?
noi +nio
be the investigated statistics, which is distributed (approxi-
mately) as y? with 1 degree of freedom. In the considered
scenario, we finally arrive at ¢ = 147.4 with ng; = 401 and
njo = 102. If the null hypothesis is correct, the probability that
¢ is greater than )(12’0.9999 = 14.4 is less than 0.0001. Hence,
we can reject the null hypothesis in favor of the hypothesis
that the two algorithms have very different performance.

‘= (15)

V. RELATED WORKS

A. Domain Adaptation

In recent years, domain adaptation has been extensively
studied. The main idea is to find domain-invariant feature
representations, which enables the learned classifiers from the
source domain to generalize well to the target domain. Some
recent works on this topic include [51]-[53]. Li ef al. [51] con-
sidered to incorporate domain-invariant feature learning with
preserved category-discriminative information. An explicit
feature map and feature selection method was proposed
in [52]. By learning a neural embedding model to bridge
cross-domain distribution divergence, Wang er al. [53] pro-
posed to transform both source and target samples into a
common feature-embedding space within a regularized risk
minimization framework. Instead of using feature alignment,
there are some approaches focusing on the direct adaptation
of the classifier [4], [27], [39].

Among various domain-adaptation approaches, we shall
briefly review the related works on entropy minimization in
what follows.

B. Entropy-Minimization Methods

Entropy minimization was first proposed in [35] for semisu-
pervised learning. In many UDA scenarios with very limited
domain-shift between source and target domains, it may work
well. When the effect of domain-shift increases, the use
of entropy regularization is often not enough for achieving
sufficient discrimination capability in the target domain [26].
Hence, various ancillary adaptation techniques were invoked,
such as covariance alignment [26], batch normalization [22],
or learning by association [20].

It was argued in [26] that entropy minimization could
be achieved by the optimal alignment of second-order sta-
tistics between source and target domains, and therefore,
a hyperparameter validation method was proposed for bal-
ancing the reduction of the domain shift and the super-
vised classification on the source domain in an optimal way.
In [22], a novel domain alignment layer was introduced for
reducing the domain shift by matching source and target
distributions to a referenced one, and entropy minimization
was also explicitly employed, which was believed to pro-
mote classification models with high confidence on unla-
beled samples. Long ef al. [34] used entropy minimization
in their approach to directly measure how far samples are
from a decision boundary. Satio ef al. [55, Appendix] pro-
posed an entropy-based adversarial dropout regularization
approach, which employed the entropy of the target samples in
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implementing min—-max adversarial training. In [38], entropy
conditioning was employed that controls the uncertainty of the
classifier predictions to guarantee the transferability, which can
help the proposed CDAN to converge to better solutions.

By noting that not all samples in the target domain are
transferable and negative results for entropy minimization
may incur if the entropy of these nontransferable samples
is forcefully minimized, Wang et al. [55] proposed a novel
attention-weighted entropy loss, where the weighting attention
value of a given target sample is generated according to its
transferability. By minimizing the attention-weighted entropy
loss, the proposed domain adaptation method can alleviate
the effect of negative transfer. Zhang et al. [S56] proposed to
reduce interdomain discrepancy with adversarial learning and
diminish intradomain discrepancy using entropy minimization.
Note that entropy minimization in [56] is performed not only
over the target domain but also over the source domain.

After the submission of this article, the reviewers bring [27],
[43], [44], [57] to our attention.

Our method differs with [44] in several aspects. First,
the proposed diversity is calculated in a batchwise manner,
while Liang er al. [44] proposed to compute the diversity
over the whole target domain. Second, our method introduces
two weighting parameters (f, y) for balancing entropy mini-
mization and diversity maximization, and the determination of
(S, y) is essential to the superiority of the proposed MEDM
algorithm. Note that Liang et al. [44] employ the sum of
entropy loss and diversity loss in the final loss without any
consideration of weighting. Finally, we provide the theoretical
justification for balancing entropy minimization and diver-
sity maximization, which constitutes a major difference with
SHOT [44]. Compared to our method, Saito et al. [57] also
employ entropy minimization for feature learning. However,
it is a semisupervised domain adaptation method, where the
adaptation is achieved by alternately minimizing the target
prediction entropy with respect to the feature encoder and
maximizing it with respect to the final classifier. Note that the
neural network in [57] consists of the feature encoder followed
by the classifier. MEDM, however, is to minimize a single loss
with respect to the whole network. Therefore, minimizing both
entropy and negative diversity (or diversity maximization) is
with respect to the whole network for MEDM. We also noticed
that entropy maximization with respect to the final classifier
in [57] is used to achieve some diversity over the predicted
categories, while our method explicitly enforces a well-defined
diversity over the predicted categories.

Our method is also similar to [27], and both methods
address the problem of prediction discrimination and diversity.
However, the way to remedy the problem is very different. Our
method adjusts the weighting factors for balancing prediction
entropy and diversity, while Cui et al. [27] employ BNM for
ensuring both high prediction discriminability and diversity.
In [43], confidence regularized self-training framework was
proposed for achieving balancing between self-training loss
and confidence regularizer through the weighting factor «.
Note that experiments show that the proposed self-training
methods are not sensitive to the weighting factor o, while
our method is sensitive to the weighting factors y and f.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4.  Predicted category distribution (9) for both MEDM (blue) and
EMO (6) (red) for a batch of target samples after a training iterations of 10000:
EMO results into a trivial solution, where digit-1 dominates among others.

VI. CONCLUSION

Entropy minimization has been shown to be a powerful
tool for domain adaptation. However, entropy minimization
is insufficient for the minimization of the target risk, and
trivial solutions are often observed. In this article, we propose
to employ diversity maximization for further regulating the
minimal-entropy domain-adaptation methods. We show there
exists a tradeoff for entropy minimization and diversity max-
imization toward the close-to-ideal domain adaptation. With
the recently proposed unsupervised model selection method,
we show that the proposed MEDM outperforms state-of-the-art
methods on several domain adaptation datasets, boosting a
large margin, especially on the largest VisDA dataset for
cross-domain object classification.

APPENDIX
TRIVIAL SOLUTION DEMONSTRATION FOR
ENTROPY-MINIMIZATION-ONLY METHOD

In this appendix, we consider the transfer task of SVHN —
MNIST for demonstrating the trivial solutions of EMO.

The MNIST handwritten digits database has a training
set of 60000 examples and a test set of 10000 exam-
ples. The digits have been size-normalized and centered in
fixed-size images. SVHN is a real-world image dataset for
machine learning and object recognition algorithms with a
minimal requirement on data preprocessing and formatting.
It has 73257 digits for training and 26032 digits for testing.
We focus on the task SVHN — MNIST in experiments.

We employed the CNN architecture used in [17]. The
number of training iterations is set to 50 000, and the learning
rate is set to 0.001. We run ten experiments for computing
average accuracy and its deviation.

First, we show that EMO simply results in a trivial solution,
as indicated in Fig. 4, where digit-1 dominates among other
categories for the model trained with EMO (6) (4 = 1).
By inferring several target batches over the trained model,
we observed that digit-1 always dominates for EMO. For
MEDM, the predicted category distribution, however, is very
close to the true uniform distribution.

Authorized licensed use limited to: Temple University. Downloaded on August 03,2022 at 22:29:13 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: ENTROPY MINIMIZATION VERSUS DIVERSITY MAXIMIZATION FOR DOMAIN ADAPTATION 11

TABLE IX
AVERAGE ACCURACY (%) FOR SVHN — MNIST

Method | Acc
RevGrad ( [17]) 73.9
ADDA ( [34]) 76.0
DTN ( [59]) 84.4
TRIPPLE ( [23]) 86.2
COREL ( [15]) 90.2
MECA ( [60]) 95.2
MEDM(Ours) | 98.7+0.3

Then, we compare our method with six methods in Table IX
for UDA, including state-of-the-art methods in visual domain
adaptation: RevGrad [17], adversarial discriminative domain
adaptation (ADDA) [25], domain transfer network (DTN)
[58],TRIPPLE [23], CORrelation ALignment (CORAL) [15],
and minimal-entropy correlation alignment (MECA) [26].
MEDM performs the best, and it achieves the average accuracy
of 98.7%, which improves 3.5% compared to MECA.
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