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Abstract. We present an analysis of the long-term performance of the W. M. Keck observatory
laser guide star adaptive optics (LGS-AO) system and explore factors that influence the overall
AO performance most strongly. Astronomical surveys can take years or decades to finish, so it is
worthwhile to characterize the AO performance on such timescales in order to better understand
future results. The Keck telescopes have two of the longest-running LGS-AO systems in use
today, and as such they represent an excellent test-bed for processing large amounts of AO data.
We use a Keck-II near infrared camera 2 (NIRC2) LGSAO surve of the Galactic Center (GC)
from 2005 to 2019 for our analysis, combining image metrics with AO telemetry files, multi-
aperture scintillation sense/differential imaging motion monitor turbulence profiles, seeing
information, weather data, and temperature readings in a compiled dataset to highlight areas
of potential performance improvement. We find that image quality trends downward over time,
despite multiple improvements made to Keck-II and its AO system, resulting in a 9 mas increase
in the average full width at half maximum (FWHM) and a 3% decrease in the average Strehl ratio
over the course of the survey. Image quality also trends upward with ambient temperature,
possibly indicating the presence of uncorrected turbulence in the beam path. Using nine basic
features from our dataset, we train a simple machine learning (ML) algorithm to predict the
delivered image quality of NIRC2 given current atmospheric conditions, which could eventually
be used for real-time observation planning and exposure time adjustments. A random forest
algorithm trained on this data can predict the Strehl ratio of an image to within 18% and the
FWHM to within 7%, which is a solid baseline for future applications involving more advanced
ML techniques. The assembled dataset and coding tools are released to the public as a resource
for testing new predictive control and point spread function-reconstruction algorithms. © 2022
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.8.2.028004]
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1 Introduction

Since its inception, the use of laser guide star adaptive optics (LGS-AO) in astronomy has vastly
improved scientific image quality, but it has not yet matched the performance of space tele-
scopes, which are limited only by the instrument performance and the diffraction of their primary
apertures. A new wave of ground-based telescopes is currently being planned for the near
future,1–3 but further research must be done on the performance of current AO systems to both
avoid known pitfalls and improve upon current performance levels. Once put into practice,
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Table 1 Most relevant parameters used in the analysis of the Keck-II AO system. Display names
are in bold.

Source Variable name Units Description

NIRC2 image strehl n/a Strehl Ratio: ratio of peak intensity of a point source
to that of a diffraction-limited point source of the
same magnitude

FWHM mas FWHM intensity of the point spread function of
a point source

NIRC2 header az deg Telescope Azimuth

Airmass n/a Integrated air density along the line of sight

aolbfwhm arcsec Low-bandwidth wavefront sensor FWHM
(LB-FWHM)

lsamppwr Watts Laser Power of the guide star

lgrmswf nm RMS WF Residual on the low-bandwidth wavefront
sensor

aoaomed ADN WFS AOA camera Median Subaperture Light

tubetemp °C Telescope Tube Temperature: average of
15 sensors on the telescope tube/structure

MKWC seeing MASS arcsec Integrated MASS seeing

MASSPRO m1∕3 Average C2
n seeing profile

MASSPRO_half, _1,
_2, _4, _8, _16

m1∕3 C2
n profile at 0.5, 1, 2, 4, 8, and 16 km above the

telescope pupil (MASSPRO 0.5 km, 1 km, etc.)

DIMM arcsec DIMM seeing

MKWC weather
(CFHT)

wind_speed m/s Mean Wind Speed

wind_direction deg Mean Wind Direction in degrees from north

Temperature °C Air temperature at the CFHT weather station

relative_humidity % Relative Humidity as a fraction of the saturation
point

Pressure millibar Mean atmospheric pressure

K2AO temperature k2ao_nirc2_temp °C AO bench temperature near NIRC2
(AO Bench: NIRC2).

k2ao_wfs_temp AO bench temperature near the WFS
(AO Bench: WFS).

K2ENV temperature k0_temperature Outdoor Air temperature at Keck Observatory

k2_dome_temp Dome Air temperature at Keck-II

k2_primary_temp Temperature of the Keck-II Primary mirror

k2_secondary_temp Temperature on the Keck-II Secondary mirror
structure
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such research could improve the long-term stability of AO Systems in general, which is crucial
for fields or applications that require observations to take place over the span of years or decades.
Any long-term astronomical survey making use of AO could benefit greatly from improved
stability, with specific applications including microlensing,4 exoplanet imaging,5 observations
of low-mass binary stars,6 and Galactic Center (GC) research.7 Though the precise results of this
analysis will be specific to the Keck-II telescope at the W. M. Keck Observatory, broader trends
in our findings could shed light on other AO systems in use today.

The Keck-II telescope is one of the largest ground-based telescopes currently in operation,
and it also has one of the longest-running astronomical applications of an LGS-AO system in the
world,8,9 which presents a good opportunity to study the performance of an AO system on a long
timescale and under a multitude of different weather and seeing conditions. The goals of this
project are twofold: the first is to analyze the performance of the Keck-II LGS-AO system to
determine potential problems or improvements, and the second is to develop a preliminary pre-
dictive tool for the AO-corrected image quality of an observation given real-time weather and
seeing conditions. To accomplish these goals, we use LGS-AO observations of the GC taken
with Keck-II’s near-infrared camera (NIRC2), along with the corresponding weather and seeing
information from the Mauna Kea Weather Center (MKWC),10 AO telemetry data from Keck
servers, and temperature measurements from internal Keck data to characterize current AO
performance. We then use weather and seeing information to train and test basic performance
prediction algorithms for accuracy, with the NIRC2 Strehl ratio and full width at half maximum
(FWHM) used as targets for image quality.

Similar analyses of AO performance have been done on the Gemini Planet Imager (GPI) (see
Refs. 11 and 12) specifically looking at the effects of certain variables on the resulting image
quality. In another study (see Ref. 13), machine learning (ML) techniques are used to predict
Gemini image quality given environmental and observational factors. Though exact results are
specific to each telescope, these papers provide a starting point for the analysis in this research.
As in Ref. 13, our strategy is to first find correlations and connections between environmental
factors in the data and the delivered image quality, and then to use a subset of this data to train
and test quality prediction algorithms. Though there have been other in-depth studies of AO
performance,14–16 at the time of this paper, and to the authors’ knowledge, there has been no
tool developed to predict the quality of LGS-AO observations in real-time for the Keck-II tele-
scope. If successfully implemented, such a tool would be very useful for observation planning,
allowing the prioritization of targets with higher predicted image quality on a given night over
those which might yield poorer scientific results.

2 Observations

2.1 NIRC2 Data

The primary data used in this project are images of the GC obtained using the Keck-II LGS-AO
system and the NIRC2 camera (PI: K. Matthews), which is specifically designed for use with
AO. The observations are part of a long-running survey to measure the orbits of stars around
the GC over a period of roughly 14 years (2005–2019).17 Images used in this research are of the
central 10″ region of the GC, approximately centered on Sagittarius A*7,17,18 (ICRS Coordinates:
RA 17 45 40.03599 DEC -29 00 28.1699). All images are taken in the Kp-band (center
λ ¼ 2.124 μm and bandpass ¼ 0.351 μm) and in the narrow-field mode of NIRC2. With these
settings, NIRC2 has a field of view of ∼10 00 × 10 00. The plate scale was 9.952 mas∕pixel
until 2014, after which the AO system and NIRC2 camera were realigned, changing the plate
scale to 9.971 mas∕pixel.19 We use cleaned frames processed through the standard NIRC2
reduction pipeline, which corrects for geometric distortion and differential atmospheric refrac-
tion. The Strehl ratio and FWHM are calculated from the image and header data using Keck
Observatory’s LGS-AO data reduction and analysis software.20 These values are good measures
of the delivered image quality and are used frequently as indicator/target variables in both our
analysis of the full dataset and in ML testing. More information about the observational
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parameters and processing of NIRC2 images can be found in Refs. 8, 9, 18, 19, 21–26. A sum-
mary of the dataset can be found in Table 2.

2.2 CFHT Data

The meteorological data for this study come from the weather tower at Canada–France–Hawaii
Telescope (CFHT) and can be found on the MKWC website,10 with samples taken every minute.
We gather metrics such as pressure, temperature, wind speed and direction, and relative humid-
ity, and use these in both analyzing current system performance and in training the predictive
algorithm.

2.3 Seeing Data

The seeing data studied here also come from the MKWC archives.10 This seeing information
includes both multiaperture scintillation sensor (MASS) and differential imaging motion monitor
(DIMM) readings, which measure the atmospheric seeing, or turbulence strength, in different
ways. The seeing is recorded as the atmospheric induced image blurring, in arcseconds of angu-
lar resolution, at a wavelength of 500 nm and at zenith.27 The MASS instrument makes mea-
surements based on the principle that the spatial scale of intensity fluctuations changes with the
height of the atmospheric layer that produces them. It uses four concentric apertures to measure
the intensity fluctuations for a star near the zenith and fits a six-layer atmospheric profile, C2

nðzÞ,
to the data by assuming a Kolmogorov turbulence model and that the scale of the turbulence is
small. The results are then corrected for zenith angle (ζ) and reported at ζ ¼ 0. It should be noted
that the MASS instrument does not report C2

nðzÞ directly, but instead the integrated turbulence in
each layer in the free atmosphere (>0.5 km)27

EQ-TARGET;temp:intralink-;e001;116;432MASSi ¼
Z

zi;max

zi;min

C2
nðzÞwðzÞdz; (1)

where i is the layer measured, z is the elevation, and wðzÞ is the idealized response function of
the MASS instrument. Turbulence measurements for each layer are reported in units of m−1∕3,
and an aggregate MASS statistic, which represents the free atmosphere seeing, is reported in
arcseconds.

The DIMM instrument makes a much more straightforward measurement of the seeing, pro-
ducing one value for the entire integrated atmosphere (up to ≈30 km). It measures the AO cent-
roid fluctuations of a single star (not at zenith) and makes a correction for the zenith seeing.27

Results are reported as the FWHM of a point source at a wavelength of 500 nm (in arcseconds).
When the MASS and DIMM instruments are in use, measurements are recorded every few
minutes. This data are used for both analysis and prediction, as current conditions can be easily
obtained from the MKWC website.10

2.4 Temperature Data

We were able to obtain more detailed temperature measurements from Keck Observatory for the
years from 2000 to 2020, from which we extracted three sets of temperature measurements
relevant to Keck-II: K2AOtemps (from the AO bench and electronics room), K2L4temps (from
the laser enclosure), and K2envMet (from the dome, telescope, and surrounding environment).
Note that the temperature sensor labeled for the secondary mirror (see Table 1) is actually on the
telescope structure behind the mirror, and thus more closely tracks the structure/sky temperature
rather than the temperature of the mirror itself. In addition, the NIRC2 and wavefront sensor
(WFS) temperatures come from sensors on the Keck-II AO bench near these instruments rather
than the instruments themselves. This data are used in the analysis portion of the project to follow
up on our initial findings in Sec. 3.2. However, such detailed temperature readings are not readily
available to observers at Keck, and as such must be omitted from the training of the predictive
algorithm.

Ramey et al.: Analyzing long-term performance of the Keck-II adaptive optics system

J. Astron. Telesc. Instrum. Syst. 028004-4 Apr–Jun 2022 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 20 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Table 2 Table of observational data, calculated from the analysis sample. Strehl ratio, FWHM,
MASS, and DIMM represent the median quantities for the observing run.

Date (UT) Strehl ratio FWHM (mas) MASS (as) DIMM (as)

July 26, 2004 0.36 58.50 None None

July 30, 2005 and July 1, 2005 0.21 60.88 None None

June 30, 2005 0.34 60.81 None None

July 17, 2006 0.36 58.11 None None

June 20, 2006 and June 21, 2006 0.31 61.67 None None

May 3, 2006 0.34 58.50 None None

May 21, 2006 0.24 67.03 None None

August 10, 2007 and August 12, 2007 0.26 62.86 None None

May 17, 2007 0.34 59.64 None None

July 24, 2008 0.29 63.30 None None

May 15, 2008 0.30 53.66 None None

July 24, 2009 0.24 66.80 None None

May 1, 2009; May 2, 2009; May 4, 2009 0.32 63.35 None None

September 9, 2009 0.32 61.51 None None

August 15, 2010 0.30 58.54 0.11 0.34

July 6, 2010 0.31 62.10 0.15 0.39

May 4, 2010 and May 5, 2010 0.30 63.19 0.14 0.55

August 23, 2011 and August 24, 2011 0.33 60.82 0.20 0.49

May 27, 2011 0.26 66.42 None None

July 24, 2012 0.33 60.13 0.10 0.48

May 15, 2012 and May18, 2012 0.29 61.97 None 0.41

April 26, 2013 and April 27, 2013 0.23 72.52 0.21 0.52

July 20, 2013 0.34 59.82 None None

July 31, 2013 0.09 106.28 None None

April 18, 2014 0.18 88.94 None 1.33

April 19, 2014 0.10 123.12 1.29 1.27

August 4, 2014 0.26 66.08 0.40 0.94

August 6, 2014 0.35 57.23 0.08 0.74

July 3, 2014 0.23 74.09 0.19 0.57

July 4, 2014 0.19 78.90 0.41 0.73

Mar 19, 2014 0.10 102.46 0.57 1.04

Mar 20, 2014 0.22 68.27 0.59 0.55

May 11, 2014 0.25 68.37 0.26 1.02
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3 Methods

3.1 Data Compilation

As NIRC2 FITS files are the primary observations for this study, all other data are secondary and
must be cross-matched with these images. Telemetry files are unique for each observation, but
weather, seeing, and temperature data are taken periodically on different timescales, and as such
their timestamps do not always match up exactly with NIRC2 observations. For a first pass at the
data, we match each NIRC2 file with a telemetry file (if available) and pull the closest data points
available within a day for all other secondary observations. The relevant data columns from each
observation type are then extracted to a separate file as a pandas dataframe.28 Any data columns
that cannot be found for a specific NIRC2 file are initially recorded as null.

To clean the data, we first remove rows with negative Strehl ratios or with FWHM values
below 50 mas or above 150 mas, as these are nonphysical or very poor quality for NIRC2 LGS-
AO images of the GC in the near-IR. Some NIRC2 observations are unable to be paired with
secondary readings (e.g., observations that predate the seeing/temperature instruments, had prob-
lems with the weather tower, or have no associated telemetry), and this results in null values in
weather, seeing telemetry, or temperature fields. Additionally, any secondary observations taken
>5 min from the primary observations are considered invalid and changed to null when filtering
the data table. Rows with a number of invalid or missing secondary observations are still con-
sidered in our analysis of system performance (Sec. 3.2), but due to the nature of our chosen ML
models (described in Sec. 3.3), any entries with missing values in weather or seeing columns
must be taken out or replaced before training the predictive algorithm. Histograms of the most
relevant variables, indicating which observations compose the analysis and prediction samples,
are shown in Fig. 1.

3.2 Performance Analysis

We first plot the nightly Strehl ratio and FWHM values over the full GC survey in Fig. 2, with
green arrows indicating relevant entries in the general Keck AO engineering logs. As the figure

Table 2 (Continued).

Date (UT) Strehl ratio FWHM (mas) MASS (as) DIMM (as)

May 19, 2014 0.29 65.15 0.18 0.60

August 9, 2015, August 10, 2015,
and August 11, 2015

0.35 59.79 0.18 0.56

March 31, 2015 0.20 76.61 0.22 0.38

April 1, 2015 and April 2, 2015 0.22 72.90 0.18 0.43

May 14, 2015 0.13 93.24 0.60 0.52

May 3, 2016 0.31 64.08 0.20 0.47

May 17, 2016 0.25 68.79 0.28 0.55

August 8, 2017, August 9, 2017,
August 10, 2017, and August 11, 2017

0.31 60.57 0.18 0.54

August 23, 2017, August 24, 2017, and
August 26, 2017

0.28 66.07 0.23 0.64

July 18, 2017 0.27 65.10 0.17 0.36

July 27, 2017 0.13 92.90 None 0.59

May 4, 2017 and May 5, 2017 0.28 66.19 None 0.50
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Fig. 1 Histograms of feature data before and after filtering. The analysis sample has all invalid
values replaced with null, while the prediction sample has all rows with null or invalid values
removed. Note: the MASS, DIMM, and MASSPRO panels represent a subsample (40% to
60%) of the full analysis dataset where these values were available.

Fig. 2 Image quality on each observing night over the full GC survey. Boxes indicate the first and
third quartiles, with green points showing outliers and medians marked in blue. Annotations indi-
cate entries in the general Keck AO engineering logs over the period of observation (see Table 5
for log entry details). The red slope lines and error regions represent a simple linear least-squares
fit of the data using numpy.polyfit. These show that average image quality decreases over the
survey period.
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shows, there has been a gradual trend toward poorer image quality since the start of the survey,
with more outliers in recent years compared with previous observations (see Sec. 4.1 for more
detailed information). This indicates that the performance of the system has degraded over the
past decade, despite multiple improvements being made to instrumentation29–33 (see Figs. 2 and
9 for AO engineering log entries). The origin of this phenomenon is unknown, but potential
causes include long-term changes in atmospheric seeing or weather, issues with telescope align-
ment and phasing operations, or degradation of AO system performance over time. This will be
explored further in Sec. 4.1. This long-term trend should additionally be verified with other
instruments on Keck-II, or with data from other surveys, to confirm the scope and significance
of the issue. We also perform a correlation analysis of all relevant variables with the Strehl ratio
and the FWHM, shown in Figs. 3 and 7. All correlation values represent Pearson coefficients
[Eq. (2)] unless otherwise specified

EQ-TARGET;temp:intralink-;e002;116;592Pearson rxy ¼
P

n
i¼1ðxi − xÞðyi − yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1ðxi − xÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1 ðyi − yÞ2

p : (2)

High-altitude seeing measurements, measured by the MASS and MASSPRO, show a strong
correlation with the image quality. This is expected, as turbulence in higher layers of the atmos-
phere is more difficult for AO systems to correct. However, we can also see that the outdoor air
temperature and telescope tube temperature are correlated with image quality (r ∼þ0.3 for
Strehl ratio), which is an unexpected result, as this ranks just behind the seeing in terms of
correlation strength. We confirm these correlations visually by plotting the relevant variables
versus image quality in Figs. 4–6. The LGS-AO system should theoretically be able to correct

Fig. 3 Correlation plot of relevant variables. Strong positive correlations are shown in red while
strong negative correlations are shown in blue. The strongest correlators with the Strehl ratio and
FWHM are the MASS/MASSPRO seeing, outdoor temperature, and tube temperature.
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Fig. 4 Plot of variables related to seeing and AO correction. As expected, most seeing variables
correlate with image quality.

Fig. 5 Plot of variables relating to the weather conditions atop Mauna Kea during sample obser-
vations. The image quality shows a moderate linear dependence on both the outdoor and tele-
scope tube temperatures (r ∼þ0.3 for Strehl, −0.3 for FWHM).

Fig. 6 Plot of observational parameters versus Strehl ratio and FWHM. None of these correlate
very strongly with image quality.
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for outdoor turbulence at any temperature, so there could be an internal effect causing the system
performance to degrade at lower temperatures. This will be explored further in Secs. 4.2 and 5.
Figure 6 includes the difference between the telescope’s azimuth and the wind direction in order
to check whether directional wind effects (vibrations, eddy currents, etc.) could be causing per-
formance issues. Keck-II currently does not have accelerometers installed, but if vibrational
effects were an issue, we would expect to see a stronger correlation between the telescope’s
angle relative to the wind and the image quality in the farthest right plots of Fig. 6. As there
is not a strong correlation between these two variables, we choose to focus on other potential
issues affecting the image quality for the majority of this paper. We search for other correlations
of note in Fig. 3, which shows the Pearson coefficient of each pair of variables as a heat map,
but do not find any others that appear surprising or out of place.

Fig. 7 Flattened Pearson correlation plot between image quality metrics and studied variables.
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3.3 Predictive Algorithm

The creation of an image-quality prediction algorithm necessitates different data processing
methods than those used in Sec. 3.2: a predictive algorithm can only be trained on data available
before an observation is made, with the exception of its targets (Strehl ratio and FWHM). For
example, if we used telemetry files to train an algorithm, we would need to have relevant telem-
etry files available every time we wanted to predict the current image quality. As those files are
only available after an observation is made, however, the prediction would be rendered useless,
as the true Strehl ratio and FWHM would already be determined by the observation itself. As
such, we are limited to data from the CFHT and MASS/DIMM files in building and training our
MLmodel, since these can be obtained in real-time. From the weather and seeing data, we extract
only those variables that we expect to have a high impact on overall image quality, shown in the
left column of Table 3. This data then become the input to our ML algorithm, also known as a
feature matrix. We continue to use the Strehl ratio and FWHM as metrics for the image quality,
which become the target variables for our algorithm.

3.3.1 Data transformation

We first standardize the data, which set the mean of each feature/column to zero and the standard
deviation to one. This is a way to save processing time in models that use a method known as
gradient descent in training, and it is an essential step before a principal component analysis
(PCA).34 The PCA algorithm returns a basis set of orthogonal components, found by taking
the eigenvalues of the feature correlation matrix. Components are listed by their explained
variance, or how to spread out the data are along with the given component, and the explained
variance ratio [Fig. 8(a)] refers to the explained variance of one component divided by the sum
total of explained variances among all the components. While this cannot predict anything from
the data on its own, as it does not use the target variables, it has the potential to condense the
feature matrix into only a few of its components without losing a significant amount of infor-
mation. In addition, certain ML algorithms rely on input features being uncorrelated, which can
also be achieved through PCA.

We start with a linear PCA—using the feature data as-is, rather than transforming it into a
higher-dimensional space first. To eliminate a component, we need its explained variance ratio to
be below the desired threshold (we choose 1%). As shown in Fig. 8(a), none of the components
has an explained variance ratio below this threshold, as removing the last component would still
eliminate >1% of the information contained in our data. This implies that the data are already
fairly uncorrelated in the linear regime, although higher-order dependencies are still possible.

Table 3 Feature and target variables used to
train predictive algorithms.

Features Targets

Wind speed Strehl ratio

Wind direction FWHM

Temperature

Humidity

Pressure

Azimuth

Airmass

MASS seeing

DIMM seeing
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The composition of the components in terms of the original feature data is shown in Fig. 8(b).
The principal component (component 0) shows that the temperature, wind speed/direction, and
MASS/DIMM seeing all play large roles in the feature variance, which confirms the correlations
found in Sec. 3.2. Based on the PCA, we do not eliminate any features from our data in this
iteration of the project, although we do use these nine components in the training of ML models.
More advanced methods of feature selection are possible, such as using a Kernel PCA instead of
a linear one. However, as this is meant to be a relatively simple test of basic ML models, we leave
these to be explored in future work.

3.3.2 Models tested

As we do not know what form the final algorithm should take, we test several ML models,
largely chosen for their simplicity and/or adaptability to our problem, as well as their value
as proofs-of-concept. We have ∼6000 data points to start with, which reduce to ∼2000 after
the data set is cleaned. The amount of data is much greater than the number of features, so
overfitting is less of a problem, and we are less limited in our choice of models as a result.
We select three algorithms to start with: random forest regression, support vector regression,
and an artificial neural network (ANN).

Random forest regression35 is particularly suited to our problem, as it is able to model non-
linear relationships between feature and target data with relative ease. It relies on a simple deci-
sion tree as its most basic predictor, and each decision tree is trained on a slightly different subset
of the data to predict the image quality. The individual results from each decision tree are then
averaged to give the final target value. This is a method that is generally very accurate, while also
being fairly robust to outliers and overfitting, so it serves as a good test case for our research
goals.

Support vector regression36 is an adaptation of a simple linear regression, but it makes use of
a mathematical technique to maximize the “margins” between the fitted function and the spread
of the data. This makes it more robust than a simple linear regression, although both are straight-
forward to implement with the sklearn package. This model is potentially useful because of a
mathematical construct known as the kernel trick, which allows it to fit nonlinear functions with
a relatively short computation time. One potential drawback to this method, however, is that, to
use the kernel trick, one must know the approximate shape the solution should take to get the best
results (e.g., a sine wave, a fourth-order polynomial, etc.).

ANNs37 are a very powerful tool in ML. They use a series of layers to reduce data, with
each layer containing individual “neurons.” Each layer has a series of weights, which are learned
in the training process, and a propagation function to transmit data between neurons. Once
the desired performance has been reached, the weights are fixed and the network is used
only for prediction. This method is intended to solve problems the way a human or animal
brain does and is thus one of the more complicated ML models available. Though it is very

Fig. 8 (a) Explained variance ratios and (b) composition of components for a linear PCA on fea-
ture variables. No component explains <1% or >25% of the feature variance, making it difficult to
remove any from consideration. The composition of the components reveals that temperature,
wind speed/direction, and MASS/DIMM seeing are all large factors in the principal component
(component 0), meaning they account for the most significant variation in feature data.
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powerful, it has the potential to pick up on correlations that result from noise or bad data, and
great care must be taken in the training and testing process in order to avoid overfitting. With the
right controls, however, it is possible to get an algorithm that will generalize well to real-world
problems.

3.3.3 Model selection and validation

To compare and evaluate these algorithms, we test the accuracy of each one on data that was not
used in the training process.We first split the data into training and testing sets and train eachmodel
using the training set only. The model is then used to predict the targets for the test set, and the
results are compared with the true values to get an estimate of the test error, also known as the
out-of-sample error or the generalization error, which approximates how the model will perform in
reality. We can take this one step further by using the cross-validation error, which involves split-
ting the data into a number of equal sections (typically 5) and training/testing the algorithm on each
resulting train/test split. The results of each test run are then averaged to get the final cross-
validation error. This is generally a more robust validation method than simply using the test
error, as it is less susceptible to random chance and can provide an estimate of the variability
of the algorithm’s performance. However, all validation methods generally tend to overestimate
the true error slightly, as they rely on artificially limiting the size of the training set, which tends to
make the algorithm less accurate. This introduces a trade-off in computation time versus precision
of results, as using more splits in cross-validation is statistically more informative but also more
complex.

To compare between models, we start by reporting the results of the most successful version
of each algorithm on a simple 80% to 20% train–test split (see Table 8). Finding the most
successful version of each type of predictor is done using a grid search algorithm.38 We use
the GridSearchCV function from the sklearn package,39 which internally implements k-fold
cross-validation. A grid search is used to determine the optimal hyperparameters for each algo-
rithm, training multiple different versions on slightly different parameter sets until the test error is
minimized. For example, a random forest algorithm includes such hyperparameters as the num-
ber of decision trees used, the maximum depth of each decision tree, and the maximum number
of features that can be considered by any individual tree, and changing any of these can impact
the accuracy of the algorithm. A list of the hyperparameter values searched for each algorithm
studied here can be found in Table 4. The Grid Search method returns the version of each algo-
rithm with the lowest cross-validation error after it has searched all sets of hyperparameters.
Once the best version of each algorithm is found, we test it on the remaining 20% of data and
evaluate the results (see Table 8).

Table 4 Grid search parameters for each ML algorithm tested. More information can be found in
scikit-learn’s API Ref. 40.

Algorithm Parameter Values Step

Random forest n_estimators 5 to 500 10

max_depth 5 to 100 5

max_features 1-#features 1

SVR deg 1 to 10 1

C 0.1 to 5 0.1

ANN hidden_layer_sizes (1) to (10), (1,1) to (20,20) 1
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4 Results

4.1 Trends in Image Quality

As shown in Fig. 2 and Table 6, Strehl and FWHM values on an average observing night have
degraded over time. Based on a simple linear fit (numpy.polyfit40), the average Strehl has
decreased by roughly 3% and the average FWHM has increased by roughly 9 mas over the
course of this 14-year survey. This degradation in quality happens despite multiple system
improvements being made to Keck-II and its AO system29–33 in the intervening years. As this
data have been taken by one research group, on one instrument, and with one target, it is ideal for
exploring long-term trends in AO performance. However, the lack of data diversity (e.g., in guide
star brightness, target location, etc.) also makes it difficult to determine the source of this

Table 5 Description of Keck AO engineering terms from Figs. 2 and 9.

AO log entry Description

V2/Nuller Nulling interferometer integration with AO system

Nuller Sci Interferometer used for science

Last IF Interferometer no longer used

hline Rotator Field derotator (K-mirror)

IR camera Refers to the IR boresight camera on the secondary mirror

SFP Simulator fiber positioner

WYKO Phase-shifting interferometer to measure DM flatness

LBWFS Low-bandwidth wavefront sensor

ACAM Optical acquisition camera for the AO system

WFS Fast wavefront sensor

NGL Next-generation laser

CLS Center launch laser

TOPTICA laser Next-generation sodium laser (from TOPTICA photonics)

Table 6 Slopes and slope errors of relevant image quality and seeing parameters over time.
Strehl, FWHM, MASS, and DIMM, all show degradation, although temperature increases.

Slope Slope error

Strehl ratio (year−1) −0.0023 0.0003

FWHM (mas/year) 0.6385 0.0454

MASS (as/year) 0.0117 0.0016

DIMM (as/year) 0.0186 0.0012

Temperature (deg) 0.0776 0.0071

Airmass (year−1) 0.0027 0.0003
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apparent degradation. A closer examination of the available data may still allow us to propose
several potential underlying causes as a starting point for further research.

4.1.1 Instrumental changes

If the cause of the degradation is instrumental, it could be reflected in Keck AO engineering log
entries, which we have included in Fig. 2 as green arrows. More detailed logs are included in
Fig. 9, with a zoomed-in portion of the timeline, for reference. As the installation of Keck-II’s
center-launch system (CLS) in 201430 occurred near a period of increased variance in image
quality, it may be a potential cause of the degradation. While a CLS provides a more concen-
trated and better-shaped guide star than a side-launch laser, the signal-to-noise ratio may be
reduced due to laser light scattering back into the telescope.30 The CLS also requires more optical
components than a side-launch laser, theoretically making the laser’s return power lower than it
would be otherwise.30 This is confirmed in an internal study of the CLS performance done at
Keck,41 which shows a dimming of the laser by 0.5 magnitudes. While this decrease in return
power was mitigated by the installation of a more powerful laser (TOPTICA) in 2016,31 there
was not a proportionate increase seen in image quality compared with data taken pre-CLS.

Another internal study done after the new laser was installed42 only compares the on-sky
performance from post-CLS observations, and reports nearly the same average image quality
after the CLS and TOPTICA installations as that found in a similar study in 2008.32,43 (All
images were taken on NIRC2 and in the K-band, though there may have been differences
in methods.) It is possible, therefore, given the data used in this study and that found in previous
performance reviews, that the upgrades installed on Keck-II since 2007 have not only failed to
improve the on-sky performance, but may have even degraded it in some cases. If this is the case,
a solution may be just around the corner. Current estimates show that an upgrade to the real-time

Fig. 9 Image quality per observing night over the full data sample. Arrows and annotations re-
present entries from Keck Observatory’s detailed AO engineering logs.
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controller (RTC) may be necessary to fully realize the gains of the brighter TOPTICA laser, and
this will likely increase the on-sky performance beyond its current level. An RTC upgrade is
currently underway at Keck-II44 and is planned to be completed in 2022.

4.1.2 Atmospheric trends

It is possible, however, that this phenomenon is not related to instrumentation at all, but rather
environmental factors. As shown in Table 6, the MASS and DIMM seeing have similar trends
overtime to those seen in the Strehl Ratio and FWHM. The MASS seeing increases by 163 mas
and the DIMM seeing increases by 260 mas over the course of the survey, meaning an observing
run today is more likely to have poor seeing than an observing run at the start of the survey. As
we know the image quality to be highly correlated with seeing, this could be the only required
explanation for performance degradation over time, although it would be difficult to determine
this solely from the data available. In fitting a line to the temperature over time, however, we find
that temperature increases over the survey, which should cause the image quality to go up
slightly if the correlations found in Sec. 3.2 are correct. A more formal analysis of temporal
changes in image quality, controlling for seeing and temperature, would be able to shed more
light on the situation, although we leave this investigation for future work.

4.1.3 Observational or experimental factors

Although there are over 5000 individual images in this sample, they represent <50 observing
runs in total, all taken during the summer months. With such a relatively small number of truly
independent samples, it is possible that several nights or weeks of bad seeing and weather, or
simple human errors during observing could throw off the dataset as a whole and weigh the
overall trend line toward poorer results. A similar analysis of other long-running image surveys
(from Keck or another ground-based telescope) could circumvent this issue. However, it is dif-
ficult to find long-running surveys such as this one with controlled targets, exposure time, guide
star brightness, etc., and it is the stability of all of these factors that have allowed us to perform
such a detailed correlation analysis in this case.

4.2 Temperature Correlations

To confirm our previous findings from MKWC temperature readings, we perform a correlation
analysis on more detailed temperature data from the Keck dome, telescope, and AO bench
(described in Sec. 2.4). We plot the correlation matrix of the new temperature data in Fig. 10,
including temperature differences with the outside air. The top 15 largest correlations with image
quality, among individual temperatures or temperature differences, are shown in Table 7, and
temperatures for several example nights of observation are shown in Fig. 11. There are several
potential sources of turbulence that we investigated in this part of the project. Since the image
quality improves as the outdoor and tube temperatures get warmer, it is likely that the issue stems
from a source that is routinely warmer than its surroundings, although other scenarios are
possible.

4.2.1 Dome seeing

If the air in the telescope dome were routinely warmer than the outdoor air, it would cause con-
vection in the dome itself, which would be difficult to correct with AO. Based on Table 7, the
image quality is more strongly correlated with the dome air temperature than it is with most other
temperatures or temperature differences, including the dome-outdoor temperature difference.
This indicates that the dome air plays a large role in the image quality, although the direction
of the correlation is not as expected. As a general trend, the Strehl ratio improves as the dome air
gets warmer, which indicates that dome seeing is not necessarily the problem here. As only the
temperature correlations are taken into account in Table 7, underlying factors such as mirror or
instrument temperatures could be driving this trend without having an obvious impact on image
quality.
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4.2.2 Mirror seeing

The difference in temperature between the primary mirror and the dome air is also moderately
correlated with the image quality, which could indicate mirror seeing as a potential issue. Due to
its size, the primary mirror is more resistant to changes in temperature than the dome air, as we
can see in Fig. 11. The primary temperature remains mostly constant throughout each night,
while the dome and outdoor temperatures show larger fluctuations. This could lead to a scenario
in which the primary mirror maintains a higher temperature than the dome air during certain parts
of the night, causing turbulence across its surface and degrading the image quality. Indeed, in
Table 7, the dome-primary temperature difference ranks in the top three correlations for both
Strehl ratio and FWHM (r ¼ 0.26 to 0.29). The correlation direction indicates that the image
quality degrades when the primary mirror is warmer than the dome air, which supports the
hypothesis that mirror seeing is an issue impacting the image quality.

4.2.3 Low-wind effect

Another potential source of turbulence is the low-wind effect45 (LWE), in which the telescope
structure radiates heat faster than the dome or mirrors and cools to lower temperatures during the
night. This can cause differing air temperatures across the telescope pupil, which, in the absence
of other wind or convection effects in the dome, can degrade the quality of AO images. Although
the telescope body is routinely colder than its surroundings (Fig. 11), we have not found the
image quality to be strongly correlated with the wind speed (Fig. 5) as we would expect it to be if
this effect were taking place. The correlation between the outdoor-tube temperature difference
and image quality is also fairly low (r ¼ 0.17 to 0.19), and this is true for the dome-tube temper-
ature difference as well (r ¼ 0.13 to 0.15). However, there are currently no temperature sensors

Fig. 10 Correlations among temperature variables from the Keck-II dome, telescope, and AO
instruments. The largest correlation comes from the dome temperature.
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Table 7 Top 15 highest Pearson correlation coefficients between tem-
perature readings and image quality. All temperature differences
between components are also included in this analysis.

Temp. location(s) r

FWHM coefficients

Dome air −0.42

Dome air–primary −0.29

Dome air–AO bench: NIRC2 −0.26

Primary–tube temperature 0.24

Outdoor air–dome air 0.24

Primary–secondary 0.23

Tube temperature −0.21

Dome air–AO bench: WFS −0.21

AO bench: WFS −0.19

Outdoor air–secondary 0.18

Secondary −0.17

Outdoor air–tube temperature 0.17

AO bench: NIRC2 −0.15

Dome air–tube temperature −0.13

Outdoor air −0.12

Dome air–secondary 0.12

Strehl ratio coefficients

Dome air 0.42

Dome air–AO bench: NIRC2 0.27

Dome air–primary 0.26

Secondary 0.25

Primary–tube temperature −0.25

Tube temperature 0.24

Primary–secondary −0.24

AO bench: WFS 0.23

Dome air–AO bench: WFS 0.21

Outdoor air–dome air −0.21

Outdoor air 0.21

Primary 0.20

Outdoor air–secondary −0.19

Outdoor air–tube temperature −0.19

AO bench: NIRC2 0.18

Dome air–tube temperature 0.15

Ramey et al.: Analyzing long-term performance of the Keck-II adaptive optics system

J. Astron. Telesc. Instrum. Syst. 028004-18 Apr–Jun 2022 • Vol. 8(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 20 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



on the telescope spiders themselves, which are typically thought to be the biggest factors in
causing the LWE. There are other temperature sensors near the spiders, which could be a good
approximation depending on their location. Measuring the temperature on or near the telescope
spiders could help rule out this effect as a potential cause of performance issues. More active
phase control of the primary mirror is currently being investigated, and could also help correct
for the LWE if it is found to be a problem.

4.2.4 AO enclosure hatch

Large temperature differences between the dome and the AO enclosure could cause turbulent
flows through the AO enclosure hatch, which connects the two. The temperatures recorded on
the AO bench (near the WFS and NIRC2 instruments) are consistently higher than the dome and
outdoor temperatures on the nights tested, lending credence to this hypothesis. The dome-NIRC2
temperature difference also ranks fairly highly in Table 7, indicating that it is moderately corre-
lated with image quality.

4.2.5 Summary

The correlation between AO image quality and temperature appears to be a complex one involv-
ing both the dome air and the differential temperatures between various telescope components.
The overall trend is such that the image quality is higher when the dome air is warmer than both
the primary mirror and the AO bench, and when the dome air is warmer in general. This indicates
that mirror seeing, turbulence from the AO hatch, dome seeing, or some combination of all three
could be causing a degradation in image quality. Further research and data collection are needed,
both to confirm or refute these hypotheses and, eventually, to correct for this effect.

Fig. 11 Temperature measurements from the dome, outdoor air, and several main telescope com-
ponents over the course of four observation nights on NIRC2.
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4.3 Predictive Algorithm

After performing a grid search over each algorithm’s hyperparameters as described in Table 4,
we list the results of the best-performing functions in each category in Table 8. We find that the
algorithm with the best overall performance is the random forest regressor. This is logical for our
relatively naive approach, as it is the most adaptable of the algorithms tested given the relatively
simple feature set and model-selection method. The error distributions for both the Strehl ratio
and FWHM are shown in Figs. 12 and 13 contains a plot of the Strehl and FWHM predicted
values and percent errors against the true values. We see a sharp increase in Strehl percentage
error as the Strehl ratio itself gets lower, as shown in Fig. 13. This could be due to the fact that
Strehl calculations themselves become less accurate at lower Strehl,46 which could interfere with
the accuracy of our predictive algorithm in that range. These preliminary results are encouraging,
however, in that predictions of image quality are more than 90% accurate on the tested FWHM
data (80% for Strehl) with these nine parameters alone.

5 Discussion and Future Work

From our analysis, we find several areas for further investigation and potential improvement of
the Keck-II LGS-AO system. The mean/median image quality of NIRC2 images has degraded
slightly over time (Figs. 2 and 9 and Table 6), despite a series of improvements to the Keck-II
telescope and AO system.29–33 It is unclear whether these problems stem from the NIRC2

Table 8 Mean absolute errors (top of each row) and mean absolute percentage errors (bottom of
each row) for each ML algorithm tested.

Algorithm

Best training error Best testing error

Strehl FWHM Strehl FWHM

Random Forest 0.01 1.96 mas 0.03 5.42 mas

4.55% 2.49% 17.48% 6.69%

SVR 0.04 6.8 mas 0.04 7.33 mas

19.27% 8.48% 25.29% 8.71%

ANN 0.04 6.38 mas 0.04 7.15 mas

17.7% 8.22% 27.83% 8.89%

Fig. 12 Histogram of random forest Strehl and FWHM error values. Errors are distributed roughly
evenly about zero, with heavier tails in one direction.
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instrument itself, the AO system overall, the Keck-II telescope, or other environmental or sys-
tematic factors, but a similar analysis using additional Keck-II instruments or data from other
surveys could help to clarify this point. A study of the Keck AO logs and similar temporal trends
in seeing point to the CLS or a broader environmental change in seeing as possible avenues of
further research. As the decrease in image quality seems to happen more strongly in later years,
studying the relationship between image quality and time while controlling for the effects of
seeing and/or temperature may reveal more about the causes of this trend.

In addition, we find that the image quality in this survey tends to degrade when the ambient
temperature is lower. Similar studies of the GPI (see Refs. 11 and 12), have found that
temperature differences in the beam path can have a major impact on system performance,
which could also be the case at Keck. At Gemini, mirror seeing was found to be causing
atmospheric turbulence within the telescope dome. This may be a contributing factor to the
performance degradation seen in this data, however, in this case, the image quality does not
appear to be highly correlated with the outdoor-primary temperature difference, as it is in the
GPI exoplanet survey studies data, although it does show a correlation with the dome-primary
temperature difference. This indicates that another factor discussed in Sec. 4.2, such as AO hatch
turbulence, dome seeing, or the LWE, could be involved, and further investigation is needed to
determine the exact cause. For example, the Keck-II telescope has many more temperature sen-
sors available in and around the tube and dome than we have been able to obtain for this study.
More specific and localized data could greatly benefit this research and could be requested for
future iterations of this project.

In creating an image quality prediction algorithm, we were able to train a simple random
forest model to predict the Strehl ratio to within 18% (0.03) and the FWHM to within 7%
(5.42 mas), which is a good starting point for future iterations of this research. Our current
algorithm performs worse at lower Strehl ratios and higher FWHM values, however, which
is something that should be addressed before creating a formal observing tool. Other necessary
improvements include gathering more data as inputs such as turbulence parameters (r0, τ0, θ0),
guide star brightness, etc., training the algorithm on a larger data set, or including observations of
other targets. In Ref. 14, MASS and DIMM seeing are shown to have significant predictive
power on the image quality, as is the case in this study, but the variable with the largest predictive
power is found to be the fried parameter, r0, which can be estimated from the seeing. Future work
could significantly benefit from the inclusion of r0 in the training of the predictive algorithm,

Fig. 13 (a) Percentage errors and (b) random forest Strehl and FWHM predicted values plotted
against the true values. The predicted Strehl ratio and FWHM are less accurate at smaller values
when accuracy is considered as a percentage of the true value.
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as it may improve the resulting accuracy. A higher level of accuracy for this algorithm, and
the eventual development of an observing tool, would mean higher-quality imaging data from
NIRC2 in the future, as this would enable better target selection and exposure time adjustments
during each observing run.

Over the course of this project, we have identified several avenues for future research into the
Keck-II LGS AO system, including potential long-term issues affecting AO performance, and
have trained a preliminary algorithm for image quality prediction during observing runs. The full
dataset is available from UC Berkeley47 and the code library used to create it is located at this
GitHub link: https://github.com/jlyke-keck/KeckAoTelemetry. It is our hope that the dataset and
coding tools can be used by others to further improve Keck-II observations, so that the facility
may be better used in pursuit of new research and discoveries going forward.
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