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ABSTRACT 

Interannual variability of the winter AR activities over the Northern hemisphere is 

investigated. The leading modes of AR variability over the North Pacific and North Atlantic 

are first identified and characterized. Over the Pacific, the first mode is characterized by a 

dipole structure with enhanced AR frequency along the AR peak region at about 30°𝑁 and

reduced AR frequency further north. The second mode exhibits a tri-pole structure with a 

narrow band of positive AR anomalies at about 30°𝑁 and sandwiched by negative anomalies.

Over the Atlantic, the first mode exhibits an equatorward shift of the ARs with positive 

anomalies and negative anomalies located on the equatorward and poleward side of the AR 

peak region at about 40°𝑁, respectively. The second mode is associated with the

strengthening and eastward extension of the AR peak region which is sandwiched by 

negative anomalies. A large ensemble of atmospheric global climate models from the 

Coupled Model Intercomparison Project phase 6 (CMIP6), which shows high skills in 

simulating these modes, is then used to quantify the roles of sea surface temperature (SST) 

forcing versus internal atmospheric variability in driving the formation of these modes. 

Results show that SST forcing explains about half of the variance for the Pacific leading 

modes, while that number drops to about a quarter for the Atlantic leading modes, suggesting 

higher predictability for the Pacific AR variability. Additional ensemble driven only by 

observed tropical SST is further utilized to demonstrate the more important role that tropical 

SST plays in controlling the Pacific AR variability while both tropical and extratropical SST 

exert comparable influences on the Atlantic AR variability. 

1. Introduction

Atmospheric rivers (ARs), defined as filaments of intense moisture transport in the

atmosphere, exert profound impacts on the global hydrological cycle and regional weather 

extremes. Despite covering only about 10% of the latitude circumference in the midlatitudes 

at any given time, it is estimated that they are responsible for more than 90% of the poleward 

moisture transport (Zhu and Newell 1998). ARs are important water suppliers for many 

regions around the world. On the one hand, they contribute significantly to the annual total 

precipitation to regions, such as the North American west coast, western Europe and 

Southern South America (Dettinger et al. 2011; Rutz and Steenburgh 2012; Lavers and 

Villarini 2015; Viale et al. 2018). For example, it is estimated that California receives up to 

50% of its annual total precipitation from ARs (Dettinger et al. 2011). On the other hand, 
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they are also responsible for many weather extremes, such as extreme precipitation (Lavers 

and Villarini 2013; Leung and Qian 2009; Lamjiri et al. 2017; Ma et al. 2020b), extreme 

wind events (Waliser and Guan 2017) and rain-on-snow events (Guan et al. 2016; Bozkurt et 

al. 2021; McGowan et al. 2021). Recently, their presences in the tropics and the polar regions 

are also starting to get recognized (Woods and Caballero 2016; Mattingly et al. 2018; Nash et 

al. 2018; Thapa et al. 2018; Francis et al. 2020). ARs play complex roles in influencing the 

polar climate. Studies show that ARs can induce sea ice losses and ice sheet melting 

(Mattingly et al. 2018; Woods and Caballero 2016), but they can also cause anomalous snow 

accumulation (Gorodetskaya et al. 2014). With ARs shifting poleward in both the present and 

future climate (Zhang et al. 2021; Gao et al. 2016; Ma et al. 2020a), it’s likely that ARs will 

exert stronger influences on  the polar climate. 

Considering the important roles that ARs play in the climate system, it is critical for both 

disaster preparation and water resource management to understand what controls their 

variability for timescales ranging from subseasonal-to-seasonal (S2S) to interannual. At the 

S2S timescale, Madden-Julian Oscillation (MJO) provides the dominant source of 

predictability for AR activities over the North Pacific (Guan et al. 2012; Zhou et al. 2021), 

but its role is also modulated by the Quasi-biennial Oscillation (QBO) (Mundhenk et al. 

2018; Baggett et al. 2017). By analyzing six decades of observed data, Guirguis et al. (2019) 

find that Arctic Oscillation, Eastern Pacific Oscillation and Western Pacific Oscillation 

strongly modulate subseasonal AR activities over Northern California, for which Northern 

California tends to receive more precipitation during boreal winter when these modes are in 

their negative phase. At the interannual timescale,  Gershunov et al. (2017) find that 

landfalling ARs over the western North America during boreal winter are modulated by the 

Pacific Decadal Oscillation and the “blob” of warm SST off the Pacific Northwest (Bond et 

al. 2015). ENSO, as the dominant mode of SST variability at the interannual timescale, has 

also been shown to exert strong influences on the AR landfalls along the North American 

west coast, with such influences being dependent on the ENSO flavors (Kim et al. 2017; 

Xiong and Ren 2021).  

While ENSO can provide predictability for AR activities at the interannual timescale, 

internal atmospheric variability, which is intrinsic to the atmosphere, can also strongly 

modulate AR variability (Teng and Branstator 2017; Zhang et al. 2018; Dong et al. 2018; 

Kumar and Chen 2017; Chen and Kumar 2018; Deser et al. 2018; Cash and Burls 2019). One 
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of such examples is the well-known failed 2016 winter rains in Southern California. The 

winter of 2015/16 was associated with a major El Nino event with magnitude comparable to 

the 1997/98 event. Historically, strong El Nino events tend to cause wet rainy seasons over 

California. This led to heightened expectations that the multi-year drought that California was 

experiencing at that time would finally be alleviated in 2016. However, the anticipated high 

rainfall in Southern California did not materialize that winter, leaving the drought continuing 

into 2017. A later modelling study suggests that this failed rainfall is not a response to the 

boundary forcing and attributes the cause to internal atmospheric variability (Zhang et al. 

2018). Indeed, using a large ensemble of models from the Atmospheric Model 

Intercomparison Project (AMIP) participated in CMIP5 (Taylor et al. 2012), Dong et al. 

(2018) shows that about 80% of the interannual variability of winter precipitation in 

California is controlled by internal atmospheric variability. However, this view has been 

challenged recently. Using the newly defined ENSO Longitude Index, Patricola et al. (2020) 

argues that the failed 2016 winter rains in Southern California can be explained by the spatial 

pattern of the El Nino, rather than internal atmospheric variability. Given such complex 

interplay between the SST forcing and internal atmospheric variability in modulating AR and 

precipitation variability, a natural question to ask is what relative roles SST forcing versus 

internal atmospheric variability play in driving the interannual AR variability. 

In this study, we will address the question posed above for the winter AR variability over 

the Northern hemisphere. To the best of our knowledge, only few studies have focused on the 

leading modes of winter AR variability over the North hemisphere so far, but the AR 

response to climate forcing is often dominated by the leading modes of low frequency 

variability. For example, by applying empirical orthogonal function (EOF) analysis to the 

integrated water vapor transport (IVT) field induced by ARs, Dong et al. (2018) identifies the 

two leading modes of winter AR variability over the North Pacific. They show that the first 

mode correlates strongly with the interannual variability of extreme precipitation along the 

U.S. west coast. Over the North Atlantic, Li et al. (2022) identifies the first three modes of 

SST-forced winter AR variability using a 30-member ensemble of AMIP-style simulations. 

They also identify the large-scale climate modes behind these leading modes. In the first part 

of this study, we will first systematically identify and characterize the leading modes of 

interannual AR variability in the North Pacific and North Atlantic during winter in 

observation. A large ensemble of AMIP-type models from CMIP6 is then evaluated on their 

performance in simulating these modes (Eyring et al. 2016). After showing that these models 
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are capable of producing AR climatology and variability with high fidelity, we systematically 

quantify the roles of SST forcing versus internal atmospheric variability in driving the 

interannual variability of these modes. For the forced component of AR variability, the 

relative roles of tropical SST versus extratropical SST are also explored.  

This paper is structured as follows. In section 2, we will first describe the observed 

datasets and the model datasets. We will then describe the AR detection algorithm and the 

EOF method used to extract the leading modes of AR frequency anomalies in observation.  

The singular value decomposition (SVD) method used to derive the leading modes of AR 

anomalies for the covariance between observation and models is also described in this 

section. Major findings will be presented in sections 3 and 4. A brief conclusion will be 

provided in section 5. 

2. Data and method 

a. Observations and model datasets 

This study focuses on the Northern Hemisphere winter season (December, January and 

February (DJF)) from 1979 to 2014, which covers the longest overlapping period between the 

observations and model datasets. The observed AR statistics are based on the daily mean of 

the 6-hourly horizontal winds and specific humidity at 1000, 850, 700 and 500 mb levels 

from the ECMWF Interim reanalysis (ERA-Interim) (Dee et al. 2011) with spatial resolution 

of 1.5° × 1.5°. The detrended winter AR frequency anomalies are used to define the leading 

modes of AR variability on the interannual timescale, to be described in section 2c. Monthly 

sea level pressure from ERA-Interim is used to characterize the large-scale circulation 

associated with the leading modes of AR variability. Daily precipitation covering the period 

from 1996 to 2014 from Global Precipitation Climatology Project (GPCP) (Huffman et al. 

2001) is used to examine the winter mean and extreme precipitation anomalies associated 

with the leading modes of AR variability. In this study, the winter mean precipitation is 

defined as the total precipitation summed over all the daily precipitation during winter. 

Extreme precipitation is defined as the total precipitation summed over all the winter days 

with daily precipitation exceeding the 95th percentile of the winter daily precipitation. To test 

the robustness of the results, we also examine the daily precipitation calculated from the 12-

hour accumulated precipitation from ERA-Interim, which covers the entire study period. The 
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observed SST is from the Hadley Centre Sea Ice and Sea Surface temperature dataset 

(HadISST) (Rayner et al. 2003). 

AMIP models driven by observed changes in SST and sea ice are useful tools to study 

how boundary forcing drives the observed interannual variability of the atmosphere. To 

quantify the contributions of the SST/sea ice forcing versus the internal atmospheric 

variability in driving the interannual variability in ARs, a large ensemble of AMIP-type 

models participated in CMIP6 (i.e., 30 AMIP6 models) are used in this study. Some of the 

models contain more than one ensemble member, but only the first member with the tag 

“r1i1p1f1” is used. Details on the models’ name, institution, horizontal resolution and the 

number of ensemble members used for each model are described in Table S1.  Similar to 

ERA-Interim, daily horizontal winds and specific humidity at 1000, 850, 700 and 500 mb in 

the AMIP datasets are used to calculate the AR statistics.  

In addition, we examine another model ensemble by including nine additional members 

for four of the models in the AMIP ensemble (i.e., ACCESS-ESM, CESM2, IPSL and 

MIROC6), making the ensemble size of each of these four models to be ten. We repeat the 

analysis with this 40-member ensemble. The results based on this 40-member ensemble (not 

shown) are very similar to those based on the 30-member ensemble described in the previous 

paragraph. Therefore, only the results based on the 30-member ensemble are presented here 

except for Figs. 6 and 7.  

Two additional ensembles from the CESM1 are also employed to investigate the roles of 

tropical SST versus extratropical SST in driving the AR variability. Similar to the AMIP 

models described above, one ensemble, which consists of 10 members, is driven by the 

observed global SST and sea ice and is termed “Global Ocean Global Atmosphere” (GOGA). 

Another ensemble, which also consists of 10 members, is driven by the observed SST only in 

the tropical ocean from 28°𝑆 to 28°𝑁 and climatological SST poleward of 35°. A linear 

interpolation zone is set between 28° and 35°. This ensemble is termed “Tropical Ocean 

Global Atmosphere” (TOGA). Daily horizontal winds and specific humidity at the lowest 

model level, 850, 500 and 200 mb are used to calculate AR statistics for these two ensembles. 

b. AR detection algorithm 

We employ the IVT-based AR detection algorithm developed by Guan and Waliser 

(2015). This algorithm detects ARs globally and is shown to compare favorably with other 

AR detection algorithms (Guan and Waliser 2015). Many criteria, which are commonly used 
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in other AR detection algorithms, are also employed in this algorithm, but the global 

algorithm used here helps identify large-scale AR activity patterns rather than local features. 

We will outline the major steps taken by this algorithm to detect ARs here. Readers are 

referred to Guan and Waliser (2015) for a more detailed description of the algorithm. Our 

analysis focuses on the winter mean AR frequency, which is defined as the fraction of time a 

grid point experiences AR condition in a given winter. 

This algorithm first identifies contiguous regions of elevated IVT (“objects”) based on the 

seasonally and regionally dependent 85th percentile of IVT magnitude or 100 kg m-1 s-1, 

whichever is larger. To ensure coherence of the detected object, at least half of the grids of 

the object should have the IVT direction within 45° of the object mean IVT direction. Since 

ARs are important for poleward moisture transport, the detected object is required to exhibit a 

mean poleward IVT of at least 50 𝑘𝑔 𝑚−1𝑠−1. A detected AR should also be longer than 

2000 km and with a length-to-width ratio greater than 2. IVT is calculated by vertically 

integrating the moisture flux from the lowest vertical level to the highest vertical level using 

the 4 levels available for each dataset. The IVT threshold is calculated by using the entire 

study period of each individual dataset. Since this algorithm detects ARs based on a 

percentile threshold, the results in this study are not sensitive to the different vertical levels 

used among datasets (not shown).  

c. Analysis Methods 

EOF analysis is used to identify the leading modes of winter AR frequency anomalies 

over the North Pacific and North Atlantic, with the frequency weighted by the square root of 

the cosine of latitude. Following Barnes and Polvani (2013) and Ma et al. (2021), North 

Pacific and North Atlantic are defined as the regions from 0 to 90°𝑁 and 135°𝐸 to 125°𝑊, 

from 0 to 90°𝑁 and 60°𝑊 to 0, respectively. Shifting the boundaries of these defined regions 

in either direction for a few degrees would not affect the results shown in this study. To 

evaluate the performance of AMIP models on simulating the leading modes in winter AR 

variability, centered pattern correlation is used to measure the spatial pattern similarity 

between the modes identified in observation and those derived from AMIP models. As we 

will show later, AMIP models generally show high skills in reproducing these leading modes, 

but biases still exist.  

To quantify the contributions of SST/sea ice forcing versus internal atmospheric 

variability in the interannual variability of the observed leading modes, a combined SVD 
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analysis (Wallace et al. 1992; Bretherton et al. 1992) between observation and AMIP 

ensemble is used in this study. Following Mori et al. (2019), SVD analysis of the covariance 

matrix of winter AR frequency anomalies between observation and simulations is used to 

derive the leading modes of interannual AR variability. The spatial patterns derived from this 

covariance method are quantitively similar to those from the EOF analysis that is based on 

the variance of observations or individual simulations. But the leading modes obtained from 

this covariance method would explain the maximum squared temporal covariances between 

the observation and simulations over the analysis domains. 

To carry out the SVD analysis, we first regrid all detrended winter AR frequency 

anomalies relative to their own climatology to a common spatial resolution of 1.5° × 1.5°. 

This can ensure that both observation and simulations have the same spatial dimension. A 

covariance matrix is then constructed between the observed AR anomalies and the simulated 

AR anomalies. More specifically, 30 members, one from each of the 30 AMIP models, are 

concatenated in the time dimension to form a matrix with time dimension size of 1050 (35 

winters x 30 members, the row dimension).  

𝑀 = [
𝑚𝑜𝑑𝑒𝑙1 ⋯ 𝑚𝑜𝑑𝑒𝑙30

⋮ ⋱ ⋮
⋮ ⋯ ⋮

] 

To match the time dimension size of 1050 in the simulations, we duplicate the observed time 

series 30 times to form a matrix for the observed anomalies. 

𝑂 =  [
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ⋯ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

⋮ ⋱ ⋮
⋮ ⋯ ⋮

] 

The product of the two matrices along the time dimension forms a covariance matrix on 

which we carry out the SVD analysis (Eq. 1).  

 
𝐶𝑜𝑣[𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛, 𝑚𝑜𝑑𝑒𝑙𝑠] =

1

1050 − 1
(𝑂𝑀𝑇) (1) 

The left and right singular vectors derived from this covariance matrix with largest singular 

values depict the spatial patterns of the leading modes of interannual winter AR variability in 

observation and simulations, respectively. The associated expansion coefficients (ECs) are 

obtained by projecting the detrended winter AR frequency anomalies onto the singular 

vectors, giving the time series for the 35-winter period in observation (also duplicates 30 

times) and simulations in each ensemble member. 
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As will be shown in Figure 5, we evaluate models’ skill in simulating AR variability 

which is defined as the standard deviation of winter AR frequency. 

𝑠𝑡𝑑(𝑓) 

where 𝑓 is the time series of winter AR frequency for a mode with dimension of 35 (i.e. 35 

winters). We further decompose the AR variability in models into a forced component driven 

by boundary forcing: 

𝑓𝑜𝑟𝑐𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑠𝑡𝑑(𝑓)̅ 

where 𝑓 ̅is the ensemble mean time series of winter AR frequency, and an internal variability 

component: 

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

35
(∑ 𝑠𝑡𝑑(𝑓𝑎𝑙𝑙

𝑦
− 𝑓̅𝑦)

35

𝑦=1

) 

where 𝑦 denotes the winter of the 𝑦𝑡ℎ year and 𝑎𝑙𝑙 represents all models. For example, 

𝑓𝑎𝑙𝑙
1  represents the AR frequency of the 1st winter (i.e. 1980) of all models (i.e. 30). 

3. Observed EOF modes and model evaluations 

a. The observed leading modes of winter AR variability based on EOF analysis 

Figure 1 shows the observed leading EOF modes of winter AR anomalies over the North 

Pacific and the associated anomalies of sea level pressure, IVT, 850 mb zonal wind and 

integrated water vapor (IWV). The positive phase of the EOF mode is defined such that the 

anomalous AR frequency is enhanced over the U.S. west coast. The first mode is 

characterized by enhanced AR frequency over the AR maximum region and reduced AR 

activities further north (Fig. 1a). The spatial pattern of this mode is very similar to the first 

mode of the North Pacific winter AR variability based on AR IVT identified in Dong et al. 

(2018) (see their Fig 3c). The band of enhanced AR frequency extends northeastward and 

depicts higher than normal AR frequency along the North American west coast, especially 

along the U.S west coast. The associated sea level pressure anomaly pattern shows a low 

anomaly over the northeast Pacific, indicating southeastward shift of the Aleutian low (Fig. 

1c). This low anomaly induces a cyclonic pattern in the IVT anomalies and enhances onshore 

IVT toward the west coast of North America. In agreement with the presence of a low 

anomaly over the northeast Pacific, the 850 mb zonal wind strengthens and extends eastward 
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on the equatorward side of the climatological jet and weakens on the poleward side (Fig. 1e). 

This associated wind anomaly pattern also bears strong resemblance to the first EOF mode of 

850 mb zonal wind anomalies over the Pacific (Fig. S1). Indeed, the principal component 

(PC) associated with AR variability correlates significantly with the PC of the 850mb zonal 

wind anomalies with correlation coefficient of 0.78. This implies that the interannual 

variability in ARs is mostly controlled by the variability in circulation. Moreover, the 

associated IWV shows positive anomalies over the eastern Pacific near/along the North 

American west coast (Fig. 1g). Both the positive anomalies in wind and IWV contribute to 

enhanced AR frequency along the North American west coast. Further away from the eastern 

Pacific, negative IWV anomalies are seen nearly everywhere, even over regions with 

enhanced AR frequency. This again suggests a stronger role wind variability plays in 

regulating the AR variability.  

The second mode depicts a narrow band of slightly enhanced AR frequency poleward of 

the AR maximum region, accompanied by negative AR anomalies on both sides of this 

positive AR anomaly (Fig. 1b). This mode also shows strong similarity to the second mode of 

the North Pacific winter AR variability in Dong et al. (2018) (see their Fig. 3f). The 

associated sea level pressure anomaly pattern shows a high anomaly over the central 

subtropical Pacific and a low anomaly over the northeast Pacific (Fig. 1d). This dipole pattern 

in sea level pressure resembles the North Pacific Oscillation (Rogers 1981). Compared to the 

1st mode, the low anomaly is shifted northward and weaker in intensity (Fig. 1d and 1c), 

resulting in weaker IVT anomalies directed toward the northwestern U.S. and British 

Columbia.  . Consistent with the sea level pressure anomalies, the associated wind anomalies 

show strengthening and eastward extension of the jet (Fig. 1f). Since there is no significant 

IWV anomaly over the region off the west coast (Fig. 1h), the enhanced AR frequency there 

is mostly due to the strengthening of the winds. 
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Figure 1. Observed AR frequency anomalies (a), (b), sea level pressure and IVT anomalies (c), 

(d), 850 mb zonal wind anomalies (e), (f), IWV anomalies (g), (h) associated with the first and second 

EOF modes of winter AR anomalies over the North Pacific, respectively. The values (i.e., 27.9% and 

15.4%) in the title of (a) and (b) indicate the percentage of variance explained by each EOF. Patterns 

are the regression coefficients obtained by regressing their anomaly fields onto the respective 

standardized principal components (PCs) (i.e., linear regression between the time series of the 

anomaly fields and the time series of the standardized PCs). Solid contours in (a), (b), (c), (d), (e) and 

(f) indicate the climatology of the respective field. Shaded contours show the anomalies. Stippling 

indicates regions with anomalies significant at 95% confidence level based on Student’s t test.  

 

Since ARs contribute significantly to both the mean and extreme precipitation for many 

regions around the world, Figure 2 displays the mean and extreme precipitation patterns 
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associated with these leading AR modes. Consistent with the AR anomaly pattern (Fig. 1a), 

the first mode is associated with both enhanced mean and extreme precipitation over the 

eastern Pacific and along the U.S west coast (Fig. 2a and 2c). Reduced mean and extreme 

precipitation are found over the central north Pacific from about 30°𝑁 to 50°𝑁. Significant 

anomalies are also found in the tropics south of 20°𝑁, where no significant AR anomaly is 

found. Since most of the tropical precipitation is controlled by convective activities rather 

than ARs that are typically associated with cold fronts, significant precipitation anomalies 

over these latitudes likely result from the anomalies of these non-AR weather systems which 

covary with the AR mode. As shown in Figure 2b, the mean precipitation anomalies 

associated with the second mode show a band of enhanced precipitation over regions at 

around 40°𝑁 stretching across the Pacific from about 180° to the coast of northwest U.S. 

Significant negative precipitation anomalies are also found over the coastal regions of 

northwest Pacific and central Pacific equatorward of the positive precipitation band. The 

negative anomalies over these regions are also significant for the extreme precipitation (Fig. 

2d). Note that the GPCP covers a relatively short period. To test the robustness of the results, 

precipitation from ERA-Interim, which covers the whole period, is used to reproduce the 

above results. The anomaly patterns based on ERA-Interim are very similar to those based on 

GPCP, further corroborating the robustness of the results (Fig. S2). 

 

 

Figure 2. As in Figure 1, but for mean precipitation (a), (b) and extreme precipitation (c), (d) 

anomalies associated with the first and second EOF modes of winter mean AR anomalies over the 
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North Pacific, respectively. Precipitation anomaly patterns are obtained by regressing their anomaly 

fields onto the respective standardized principal components (PCs) (i.e., linear regression between the 

time series of the precipitation anomaly fields and the time series of the standardized PCs). Stippling 

indicates regions with anomalies significant at 95% confidence level based on Student’s t test.  

   

We next switch to the leading EOF modes of ARs over the Atlantic, with the positive 

phase indicating enhanced AR frequency over the western Europe. The first mode shows 

substantial increases in AR frequency around 30°𝑁 stretching from the southeast of the U.S. 

to the Iberian Peninsula and northwest Africa (Fig. 3a). Reduced AR activities occur over 

higher latitudes stretching from northeast of the U.S. to the northwest of Europe. Consistent 

with the first mode of the North Atlantic winter AR variability in Li et al. (2022) (see their 

Fig. 2a), this pattern indicates the equatorward shift of ARs. Slightly higher than normal AR 

condition is also found over the Labrador Sea. Moreover, the first AR mode is closely related 

to the North Atlantic Oscillation (NAO) (Hurrell et al. 2003) or a meridional shift of the 

Atlantic jet. The associated sea level pressure anomaly pattern shows a negative NAO-like 

pattern, with a positive anomaly poleward of about 70°𝑁 and a low anomaly over the north 

Atlantic from 30°𝑁 to 50°𝑁. This low anomaly induces a cyclonic anomaly in the IVT field, 

causing strong onshore IVT anomalies over the Iberian Peninsula and northwest Africa (Fig. 

3c). Consistent with the equatorward shift of ARs, the associated zonal wind anomaly pattern 

also shows an equatorward shift of the jet with weakening of the winds on the poleward side 

and strengthening of the winds on the equatorward side of the jet (Fig. 3e). The associated 

IWV anomalies tend to have the same signs with the AR anomalies: regions with positive 

(negative) AR anomalies are also regions with positive (negative) IWV anomalies (Fig. 3g).  

As shown in Figure 3b, the second mode over the Atlantic shows enhanced AR frequency 

over the AR maximum region and reduced AR frequency on both sides, indicating the 

narrowing of the AR peak region rather than the shift by the first mode (Fig. 3a). This mode 

is also identified as the second mode of SST-forced North Atlantic winter AR variability in 

Li et al. (2022) (see their Fig. 4a). Compared to the spatial pattern in Li et al. (2022), the 

anomalies of this mode identified here extend more northeastward. This mode results in 

heightened AR activities over most of the coastal regions along the western Europe. The 

associated sea level pressure anomaly pattern shows a dipole structure with a low anomaly 

located at north Atlantic from 40°𝑁 to 70°𝑁 and a high anomaly from 20°𝑁 to 40°𝑁. This 
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dipole structure enhances onshore IVT along the Europe west coast and also causes 

strengthening and eastward extension of the jet (Fig. 3d and 3f). 

 

 

Figure 3. As in Figure 1, but for the North Atlantic: observed AR frequency anomalies (a), (b), 

sea level pressure and IVT anomalies (c), (d), 850 mb zonal wind anomalies (e), (f), IWV anomalies 

(g), (h) associated with the first and second EOF modes of winter AR anomalies, respectively. 

Patterns are obtained by regressing their anomaly fields onto the respective standardized principal 

components (PCs). Solid contours in (a), (b), (c), (d), (e) and (f) indicate the climatology. Shaded 

contours show the anomalies. Stippling indicates regions with anomalies significant at 95% 

confidence level based on Student’s t test.  
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The two AR modes over the Atlantic also result in different regional impacts on 

precipitation. The first mode over the Atlantic is associated with widespread declines in 

precipitation over the North Atlantic, including large areas along the west coast of Europe 

and eastern Greenland. Significant decreases in extreme precipitation are only found over the 

high latitude regions of North Atlantic at around 70°𝑁. But significant increases in 

precipitation are found over regions at around 30°𝑁, especially over Iberian Peninsula (Fig. 

4a). The Iberian Peninsula also tends to experience higher than normal extreme precipitation 

(Fig. 4c). Consistent with its AR anomaly pattern (Fig. 3b), the second mode tends to 

enhance both the mean and extreme precipitation over the Iberian Peninsula and Britain (Fig. 

4b and 4d). Again, the results shown here are consistent with those based on the precipitation 

data from ERA-Interim (Fig. S3). 

 

 

Figure 4. As in Figure 3, but for mean precipitation (a), (b) and extreme precipitation (c), (d) 

anomalies associated with the first and second EOF modes of winter AR anomalies over the North 

Atlantic, respectively. Patterns are obtained by regressing their anomaly fields onto the respective 

standardized principal components (PCs). Stippling indicates regions with anomalies significant at 

95% confidence level based on Student’s t test. 

b. AMIP model evaluation 

Before using the AMIP models to quantify the contributions of SST/sea ice forcing versus 

internal atmospheric variability to the interannual variability of the leading modes in AR 
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variability, we first evaluate their skills on simulating these modes shown in Figure 1 and 3. 

Figure 5a and 5b show the winter AR frequency climatology and AR variability defined as 

the standard deviation of winter AR frequency in observation and simulations, respectively. 

Overall, AMIP models can reproduce the climatology of AR distribution very well. They 

capture both the pattern and magnitude of the AR frequency over both the Atlantic and 

Pacific, except that the AR frequency over the AR maximum region in the Pacific is slightly 

underestimated. In terms of interannual variability, AMIP models reproduce both the spatial 

distribution and magnitude of the variability with high fidelity. They capture the maximum 

variability on the equatorward side of the climatological AR peak region. Decomposition of 

the AR variability in models shows that both the boundary-forced variability and the 

internally driven variability maximize over the equatorward side of the AR peak region (Fig. 

5c and 5d), and that internally driven variability dominates over the boundary-forced 

variability at nearly all grid points.  We also note that, for the leading AR modes, the 

percentage of variability explained by the boundary forcing can be greater than that for each 

grid point, which will be elaborated in section 4.   

 

 

Figure 5. Observed (a) and simulated ensemble mean (b) AR climatology (solid contours) and 

variability (shaded contours). AR variability is defined as the standard deviation of the winter mean 

AR frequency. (c) and (d) show the forced and the internally driven components of the total 
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variability in the AMIP models for each grid point. Forced variability is calculated as the standard 

deviation of the ensemble mean winter AR frequency across the 35 winters. Internally driven 

variability is estimated by the multi-year average of the standard deviations across all model 

anomalies relative to the ensemble mean (i.e. after removing the forced component).  

 

We next extract the leading modes of AR variability in the AMIP models using EOF 

analysis and evaluate how well models simulate the spatial structure of the observed leading 

modes using centered pattern correlation. Centered pattern correlation is the grid-by-grid 

spatial correlation between two anomaly spatial maps. The anomalies are computed by 

removing their own spatial mean from each map (centered). It measures the similarity of the 

spatial patterns between two maps. When performing EOF analysis on observations and 

simulations to extract the leading modes of the same field, the order of the leading modes in a 

model may not match those in observations. To resolve this problem, we apply the EOF 

swapping method (Lee et al. 2021, 2019). For each ocean basin, we retain the first 3 leading 

modes identified in a model and calculate the pattern correlations between the first mode in 

observation and each of the 3 leading modes in the model. The mode in a model which has 

the highest correlation with the observed mode is then identified as the matching mode. 

Similarly, to identify the corresponding second mode in a model, the pattern correlations 

between the observed second mode and each of the remaining 2 modes in the model are 

calculated. The simulated mode with the highest pattern correlation is identified as the second 

mode.  

Figure 6 shows that AMIP models generally have high skills in reproducing the spatial 

structure of the observed modes, with the ensemble mean pattern correlations being 0.85, 

0.69, 0.85 and 0.75 for the first and second modes in the Pacific and Atlantic, respectively. 

Models tend to simulate the first mode of each basin better compared to the second mode. 

Also, the box and whisker plots on the right show that the distribution for the 30-member 

ensemble, with one member from each of 30 AMIP models, is similar to that of the 40-

member ensemble, with ten members from each of 4 AMIP models. This suggests that inter-

member spread within one model is comparable to the inter-model spread, indicating that 

internal atmospheric variability is an important factor in causing the spread in skills, and that 

individual model biases play a less important role.  
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Moreover, the analysis on observation in section 3a has suggested that there is a tight 

relationship between the AR variability and circulation variability on the interannual 

timescale. That is, the PCs of the EOF modes derived from AR variability are strongly 

correlated with the corresponding PCs of the EOF modes derived from 850 mb zonal wind 

variability. Figure 7 shows that models are able to simulate this tight interannual relationship 

between AR variability and wind variability. The ensemble mean correlations for the PCs of 

the corresponding first and second AR/wind modes over the Pacific and Atlantic are 0.80, 

0.69, 0.84 and 0.72, respectively. The observed correlations generally fall within the 25th-

75th percentile range of the inter-model spread, except for the second mode in the Atlantic 

which falls at the high end of the model spread.  

In summary, the above results on the model evaluation suggest that AMIP models are 

capable of simulating the observed winter AR variability over the Northern hemisphere with 

high skills, justifying their uses to further investigate the roles of SST/sea ice forcing versus 

internal atmospheric variability in driving the observed AR variability. 

 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-22-0089.1.
Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Authenticated gchenpu@ucla.edu | Downloaded 08/25/22 01:04 AM UTC



19 

File generated with AMS Word template 2.0 

 

Figure 6. Centered pattern correlations between observation and simulations of the AR anomalies 

associated with the first (a), (c) and second (b), (d) EOF modes of AR variability over the North 

Pacific and North Atlantic, respectively. Values at the lower left corner indicate the ensemble mean 

pattern correlations. Four of the models (ACCESS-ESM, CESM2, IPSL and MIROC6) have ten 

members. Their ensemble means are indicated by a red star. The box and whisker plots on the right 

show the inter-model spreads of the pattern correlations for the 30-member AMIP ensemble with only 

the first member of each model (“AMIP”) and the 40-member ensemble from the four models which 

each has 10 members (“AMIP Subset”). The box shows the 25th and 75th percentile of the spread. The 

upper and lower whiskers are defined by the formula 75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 + 1.5 × (75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 −
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 25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) and 25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 1.5 × (75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 −  25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒), 

respectively. Values outside of the whiskers are considered as outliers. The orange horizontal lines 

show the median while the red stars ensemble means.  
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Figure 7. As in Fig. 6, for correlations between the principal components (PCs) associated with 

the EOF modes of AR anomalies and the corresponding PCs associated with EOF modes of 850 mb 

zonal wind anomalies for the first (a), (c) and second (b), (d) modes over the North Pacific and North 

Atlantic, respectively. Values at the lower left corner indicate the ensemble mean correlations. Four of 

the models (ACCESS-ESM, CESM2, IPSL and MIROC6) have ten members. Their ensemble means 

are indicated by a red star. Green dots represent the observed values. The box and whisker plots on 

the right show the inter-model spreads of the correlations for the 30-member AMIP ensemble 

(“AMIP”) and the 40-member ensemble from the four models which each has 10 members (“AMIP 

Subset”). The box shows the 25th and 75th percentile of the spread. The upper and lower whiskers are 

defined by the formula 75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 + 1.5 × (75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 −  25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) and 

25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 1.5 × (75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒), respectively. Values outside of the 

whiskers are considered as outliers. The orange horizontal lines show the median while the red stars 

ensemble means.  

4. Internal atmospheric variability versus SST/sea ice forced variability 

a. SVD modes of ARs and associated SST patterns 

Having evaluated the EOF modes of individual models with the observed EOF modes, we 

next extract the SVD modes of ARs based on the interannual covariance between observation 

and models. This SVD analysis yields a pair of spatial patterns with the largest squared 

temporal covariances between observation and models. The SVD patterns for observation 

with the largest squared covariances resemble the observed EOF patterns that explain the 

largest percentages of AR variance (Figs. 1, 3 and 8), and the SVD patterns for models 

provide estimates for all the AMIP models. 

Figure 8 shows that the SVD patterns of the AMIP models successfully reproduce the 

spatial structures in observation over both the Atlantic and Pacific, although there are minor 

differences between observation and simulations for the first mode over the Pacific and the 

second mode over the Atlantic. Specifically, for the first mode in the Pacific, models are able 

to capture the negative anomalies over the central north Pacific north of 30°𝑁. They also 

produce a band of strong positive anomalies at the AR peak region. However, the positive 

anomalies in the ERA-Interim are tilted more northeastward and impinging toward the 

northwest US, while the positive anomalies in the AMIP models are more zonally oriented, 

making California as the regions mostly affected by this mode. For the second mode over the 

Atlantic, despite models being able to reproduce the tri-pole pattern with positive anomalies 
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at the AR peak region and negative anomalies on both sides, the positive anomalies in the 

models shift southwestward compared to observation. 
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Figure 8. Leading modes of AR anomalies obtained from the SVD analysis of the covariance 

between observation and simulations. First (a), (b) and second (c), (d) modes of AR anomalies over 

the North Pacific. First (e), (f) and second (g), (h) modes of AR anomalies over the North Atlantic. 

Left and right panels display results from observation and simulations, respectively. The values in the 

title of each subpanel indicate the percentage of squared covariance explained by each SVD. Anomaly 

patterns in observation are obtained by regressing AR anomalies onto the standardized expansion 

coefficients (ECs) of 35 winters. Regressions in simulations are based on the 1050 winters across all 

ensemble members (30 members, each has 35 winters). Solid contours indicate climatology of winter 

AR frequency. Shaded contours represent anomalies. Stippling indicates regions with anomalies 

significant at the 95% confidence level based on Student’s t test.  

 

The SST anomaly patterns corresponding to these leading SVD modes are displayed in 

Figure 9 by regressing the SST anomalies onto the standardized ECs of the observation and 

the ensemble mean EC of the AMIP models for the 35 winters. Over the Pacific, the first 

mode of AR variability is associated with an SST pattern which resembles the positive phase 

of ENSO (Fig. 9a and 9b). Indeed, the observed nino3.4 index is strongly correlated with the 

ensemble mean EC of the AMIP models at 0.76. Widespread of warm anomalies extend from 

the eastern equatorial Pacific and reach the western equatorial Pacific. The warm anomalies 

spread toward the extratropics along the eastern Pacific and reach the north Pacific above 

40°𝑁. Encircled by the positive anomalies, negative SST anomalies originated from western 

equatorial Pacific extend northeastward and southeastward in the Northern and Southern 

Hemispheres, respectively. Significant positive SST anomalies are also found in the Indian 

Ocean. Moreover, the SST anomalies associated with the second AR mode also show 

positive anomalies over the equatorial eastern Pacific (Fig. 9c and 9d). However, compared to 

the pattern associated with the first mode, the positive anomalies are more confined zonally 

in observation (Fig. 9c), and both zonally and meridionally in models (Fig. 9d). The negative 

anomalies originating from the equatorial western Pacific extend more eastward and 

northward. This SST anomaly pattern over the Pacific bears strong resemblance to the North 

Pacific Mode (NPM) (Deser and Blackmon 1995; Park et al. 2012). Widespread positive 

anomalies are also found over the Indian Ocean and western Pacific along the East Asian 

coast. Further analysis shows that the SST patterns over the Pacific associated with the first 

and second modes of AR variability also resemble the first and second leading EOF modes of 

the observed interannual SST variability over the North Pacific (Fig. S4).  
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For the Atlantic AR modes (Fig. 9e, f, g, and h), the associated SST anomaly patterns 

over the Pacific are very similar to those associated with the AR modes of the Pacific, but 

with slightly smaller magnitude and shrinked areas with significant anomalies. Stronger and 

significant SST anomalies are found over the Atlantic, highlighting an important role that 

Atlantic SST plays in modulating the AR variability locally.  
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Figure 9. As in Fig. 8, but for SST anomalies associated with the leading modes of AR 

anomalies obtained from the SVD analysis of the covariance between observation and simulations. 

First (a), (b) and second (c), (d) modes of SST anomalies over the North Pacific. First (e), (f) and 

second (g), (h) modes of SST anomalies over the North Atlantic. Left and right panels show results 

from observation and simulations, respectively. Anomaly patterns in observation are obtained by 

regressing the SST anomalies onto the expansion coefficients (ECs) of the 35 winters. Anomalies in 

simulations are based on the ensemble mean EC. Stippling indicates regions with anomalies 

significant at the 95% confidence level based on Student’s t test. 

The results in Figure 9 also indicate that the SST patterns in observation tend to be less 

coherent and significant compared to the SST patterns obtained from simulations, and the 

differences are especially pronounced for the Atlantic modes (Fig. 9e and 9g). Since the SST 

patterns from simulations are obtained by regressing the SST anomalies onto the ensemble 

mean EC, these SST patterns are thus associated mostly with the forced AR variability. 

Therefore, the differences between SST patterns in observation and simulations imply a large 

fraction of internally driven variability contained in the observed ECs, especially for the 

modes in the Atlantic.  

b. Relative roles of SST/sea ice forcing versus internal atmospheric variability in driving AR 

variability 

We next quantify the roles of SST/sea ice forcing versus internal atmospheric variability 

in the leading modes of AR interannual variability using the coefficient of the determination 

(𝑟2) approach (Figure 10). Indeed, internal atmospheric variability plays an important role in 

driving the AR variability over both the Pacific and Atlantic as indicated by the large inter-

model spread in the ECs. Over the Pacific, about half of the variance in the leading modes 

can be explained by the SST forced variability, but that fraction drops to about a quarter for 

the Atlantic modes, confirming that internal atmospheric variability indeed plays a more 

important role in driving the AR variability over the Atlantic.  

Given such an important role internal atmospheric variability plays in the AR variability, 

can it alone drive the formation of the leading AR modes shown in Figure 8? To answer this 

question, we apply EOF analysis to the intra-ensemble AR anomalies based on model 

simulations. To obtain the intra-ensemble AR anomalies, for each model, we first removed 

their own winter AR frequency climatology from the winter AR frequency time series. After 

that, the ensemble mean anomalous winter AR frequency was calculated which represents the 
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forced AR variability. This forced component was then removed from the anomalous winter 

AR frequency of each model to get the internally driven component. Finally, we concatenated 

the internally driven components from all models together to obtain the intra-ensemble AR 

anomalies. Results from this analysis identify leading modes nearly identical to those based 

on the SVD analysis of the covariance between observation and models or the EOF of 

individual models or observation (compared Figures 1, 3, 8 and S5), suggesting that the 

leading modes forced by SST can also occur naturally due to internal atmospheric variability. 

These results are also consistent with Ma et al. (2021) in which they discover similar leading 

modes of AR variability by using an ensemble of models driven by the climatological annual 

cycle of SST from the Polar Amplification Model Intercomparison Project (PAMIP).  

Given that both SST/sea ice forcing and internal atmospheric variability play such 

important roles in shaping the AR variability, their contributions to the magnitude of the total 

variance are further quantified. We estimate the total variance by calculating the variance of 

the ECs corresponding to the leading SVD modes during the 35 winters. The total variance of 

each mode in models is based on ECs across all models. Figure 11 indicates that AMIP 

models underestimate the variance for all modes, with the largest underestimate for the 

second Atlantic mode. We further estimate the magnitude of the forced variance in models by 

calculating the variance of the ensemble mean EC of each mode. The forced variance 

accounts for about half of the total variance for the Pacific modes, while that number drops to 

about 40% and 30% for the first and second Atlantic modes, respectively. These results 

further support that AR variability over the Atlantic is more strongly modulated by internal 

atmospheric variability compared to the Pacific AR variability.  

Lastly, we investigate how much of the total observed variability in the AR EOF modes is 

regulated by the leading EOF modes of SST over each of the ocean basins by using the 

coefficient of determination (𝑟2) approach. The first SST mode over the Pacific associated 

with ENSO significantly correlates with both the first modes of the Pacific and Atlantic and 

explains about 30% and 17% of their observed total variance, respectively. The second SST 

mode over the Pacific, which resembles the NPM, exerts strong influences on the second 

Pacific AR mode, and explains about half of the observed total variance of this mode. 

Moreover, we perform EOF analysis on the SST anomalies over the North Atlantic (Figure 

S6). The first mode shows a tri-pole pattern of SST anomalies over the North Atlantic, which 

resembles the SST anomaly pattern of the second AR mode over the Atlantic. Similar to the 
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SST anomaly pattern of the first AR mode over the North Atlantic, the second mode in SST 

also shows a dipole pattern over the North Atlantic. Consequently, the leading modes of AR 

variability over the North Atlantic are also related to the leading SST modes over the North 

Atlantic. The first and second SST modes in the Atlantic explains about 20% of the observed 

total variance of the second and first modes of AR variability, respectively.   

 

 

 

Figure 10. Expansion coefficients (ECs) for the first (a), (c) and second (b), (d) SVD modes of 

AR anomalies over the North Pacific and North Atlantic, respectively. Black and teal curves show 

ECs for the observation and ensemble mean EC for simulations, respectively. R2 between the 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-22-0089.1.
Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Authenticated gchenpu@ucla.edu | Downloaded 08/25/22 01:04 AM UTC



28 

File generated with AMS Word template 2.0 

observed ECs and the corresponding simulated ensemble mean EC are shown at the lower left corners 

of each panel. The shading shows the 2.5th and 97.5th percentile range of the model spread. 

 

 

 

Figure 11. Magnitude of the total variance (yellow bars) in observation and simulations (blue 

bars). Red stars indicate the magnitude of the forced variance. Markers indicate the contributions of 

different SST modes to the total variance of the observed leading SVD modes of AR anomalies. The 

values for each mode are scaled by the observed total variance. See the text for more information on 

how the statistics shown in this figure are calculated. 

c. Tropical versus extratropical SST in driving the forced AR variability 

Based on the SST patterns associated with the leading modes of AR variability (Figure 9), 

significant SST anomalies can be seen over both the tropical and extratropical oceans, 

suggesting both play roles in driving the forced AR variability. To better understand the 

relative roles of tropical SST versus extratropical SST in driving the forced AR variability, 

we analyze two additional ensembles based on CESM1. One ensemble with 10 members, 

termed “GOGA”, is driven by observed SST globally. Another ensemble also with 10 

members, termed “TOGA”, is driven by observed SST only in the tropics. Despite their 

smaller ensemble size compared to the 30-member AMIP ensemble, they are still useful in 

providing an estimate on the relative roles of tropical SST versus extratropical SST in AR 
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variability. The same combined SVD analysis is applied to the covariance matrix between 

observation and simulations based on GOGA.  

Results show that GOGA is able to reproduce both the leading SVD modes of AR 

variability over the Pacific and the first mode over the Atlantic. The strengthening and 

eastward extension of ARs associated with the second mode over the Atlantic are too weak in 

the models (Fig. S7). Compared to the results based on the AMIP ensemble, the 10-member 

GOGA underestimates the fraction of forced variance in the first Pacific mode while 

overestimating that in the second Atlantic mode (Fig. 12). The fraction of forced variance for 

the second Pacific mode and first Atlantic mode are consistent with those based on the AMIP 

ensemble. They explain about half and a quarter of the total variance, respectively, for the 

second Pacific mode and the first Atlantic mode. Consistent with the results based on the 

AMIP ensemble, AR variability in the Pacific is more strongly controlled by the SST 

variability compared to the AR variability in the Atlantic. For the forced variability, the role 

of the tropical SST variability dominates over the extratropical SST variability for both the 

leading modes over the Pacific, explaining about 77% and 71% of the total forced variability, 

respectively. Over the Atlantic, tropical SST explains about 49% and 56% of the total forced 

variability for the first and second mode, respectively, suggesting comparable role tropical 

SST versus extratropical SST plays in driving these modes.  
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Figure 12. Same as Figure 10, but for the results based on the GOGA and TOGA ensembles. 

5. Conclusions 

A better understanding of the mechanisms controlling the interannual AR variability is 

crucial for water resource management and hazard warning (Paltan et al. 2017; Henn et al. 

2020; Dettinger et al. 2011; Ralph et al. 2006). In this study, we identify and characterize the 

leading modes of AR variability over both the Pacific and Atlantic during boreal winter, with 

distinct precipitation patterns and impacts over different coastal regions, similar to Dong et 

al. (2018) and Li et al. (2022). Over the Pacific, the first mode is characterized by a dipole 

structure with substantial enhanced AR frequency over the AR peak region and reduced AR 

activities further north (Fig. 1a). The second mode depicts a tri-pole pattern with a band of 
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positive anomalies extended from west Pacific at about 30°𝑁 to northeast Pacific, 

accompanied by negative anomalies on both sides (Fig. 1b). The first AR mode in the Pacific 

significantly modulates precipitation along the U.S. west coast while the second mode mostly 

affects precipitation over the U.S. Northwest and British Columbia (Fig. 2). Over the 

Atlantic, the first mode represents the equatorward shift of the ARs, with significant impacts 

along the entire west coast of Europe, while the second mode represents strengthening and 

eastward extension of the AR peak region, with the effects confined more toward the 

southern part of the west coast (Fig. 3a and 3b). It is worth mentioning that, given the strong 

correlation between the leading modes of AR variability and the corresponding leading 

modes of 850 mb zonal wind variability, the spatial patterns of the leading AR modes 

identified in this study do not depend on the AR detection algorithms used. Indeed, these 

leading modes of AR variability can also be identified in nearly all of the Tier 1 AR 

catalogues based on the global AR detection algorithms participated in the Atmospheric 

River Tracking Method Intercomparison Project (not shown; Shields et al. 2018). As such, 

the AR modes identified here can serve as metrics to evaluate the AR variability in climate 

models. 

We have quantified, perhaps for the first time, the relative roles of SST forcing versus 

internal atmospheric variability in driving the interannual variability of the leading AR modes 

by using a large ensemble of AMIP-type models participated in the CMIP6. We first show 

that the AMIP models have high skills in simulating many aspects of these modes, including 

their spatial structure and the strong coupling between circulation variability and AR 

variability. 

Then, a combined SVD analysis using both observation and AMIP models is adopted to 

extract the leading modes of AR co-variability between observation and models.  Based on 

the SVD analysis, the forced variability explains about half of and a quarter of the total 

variance for the leading AR modes over the Pacific and the Atlantic, respectively. These 

results suggest higher predictability of the AR variability over the Pacific compared to the 

Atlantic. The associated SST patterns for the leading modes over the Pacific bear marked 

resemblance to the corresponding leading modes of North Pacific SST, characterized by an 

ENSO-like (Xiong and Ren 2021; Kim et al. 2017) and an NPM-like (Deser and Blackmon 

1995; Park et al. 2012) anomalous SST pattern, respectively. Further analysis reveals that 

these two Pacific SST modes also play some roles in the corresponding leading modes of 
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Atlantic AR variability. Additionally, a model ensemble driven by observed SST only in the 

tropical oceans is used to quantify the relative importance of tropical versus extratropical SST 

in exciting these leading modes of AR variability. Results show that tropical SST variability 

dominates over extratropical SST variability and contributes more to the total forced AR 

variability over the Pacific. Over the Atlantic, the tropical and extratropical SST play 

comparable roles in the formations of the leading modes of AR variability.  

 Our findings may have important implications for the interannual variations of boreal 

winter precipitation. While the SST variability modes, such as ENSO or NPM, provide some 

sources of predictability for the North American west coast, the predictability is limited by 

the internal variability of the atmosphere (Teng and Branstator 2017; Zhang et al. 2018; Dong 

et al. 2018; Kumar and Chen 2017; Chen and Kumar 2018; Deser et al. 2018; Cash and Burls 

2019), especially for the well-known failed 2016 winter rains in Southern California (Zhang 

et al. 2018; Patricola et al. 2020). Dong et al. (2018) estimates that about 80% of the 

interannual variability of winter precipitation in California is controlled by internal 

atmospheric variability, but we find that internal atmospheric variability only accounts for 

about half of the variability in the two Pacific AR modes. As both AR modes can influence 

the North American west coast (Fig. 2), this indicates that the winter precipitation related to 

the two AR modes may be more predictable. Our analysis also indicates that SST variability 

over the Pacific basin can influence the AR variability not only locally over the Pacific, but 

also remotely over the Atlantic (Fig. 9), similar to the remote influence of ENSO on NAO (Li 

and Lau 2012; Brönnimann 2007; Zhang et al. 2019). Moreover, the leading AR modes 

forced by SST can appear as the dominant pattern in the AR response to Arctic sea ice loss 

(Ma et al. 2021) and also occur naturally due to internal atmospheric variability (Fig. S5). 

Further research is needed to better understand the mechanisms of internal atmospheric 

variability in driving AR variability at shorter timescales. This can potentially improve AR 

forecast at S2S timescale. Overall, the results presented in this study not only improve our 

physical understanding of the AR variability, but may also lead to better seasonal AR 

prediction over the densely populated regions, such as the North American west coast and the 

Western Europe. 
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