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In recent years, deep learning has achieved tremendous success in image segmentation for computer vision 3
applications. The performance of these models heavily relies on the availability of large-scale high-quality 4
training labels (e.g., PASCAL VOC 2012). Unfortunately, such large-scale high-quality training data are often 5
unavailable in many real-world spatial or spatiotemporal problems in earth science and remote sensing (e.g., 6
mapping the nationwide river streams for water resource management). Although extensive efforts have 7
been made to reduce the reliance on labeled data (e.g., semi-supervised or unsupervised learning, few-shot 8
learning), the complex nature of geographic data such as spatial heterogeneity still requires sufficient training 9
labels when transferring a pre-trained model from one region to another. On the other hand, it is often 10
much easier to collect lower-quality training labels with imperfect alignment with earth imagery pixels (e.g., 11
through interpreting coarse imagery by non-expert volunteers). However, directly training a deep neural 12
network on imperfect labels with geometric annotation errors could significantly impact model performance. 13
Existing research that overcomes imperfect training labels either focuses on errors in label class semantics 14
or characterizes label location errors at the pixel level. These methods do not fully incorporate the geometric 15
properties of label location errors in the vector representation. To fill the gap, this article proposes a weakly 16
supervised learning framework to simultaneously update deep learning model parameters and infer hidden 17
true vector label locations. Specifically, we model label location errors in the vector representation to partially 18
reserve geometric properties (e.g., spatial contiguity within line segments). Evaluations on real-world datasets 19
in the National Hydrography Dataset (NHD) refinement application illustrate that the proposed framework 20
outperforms baseline methods in classification accuracy.
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1 INTRODUCTION33

In recent years, deep learning techniques (e.g., U-Net [50], DeepLab [8], SegNet [3]) have achieved34
tremendous success in image segmentation [18, 23, 41, 72]. The performance of these models heav-35
ily relies on large-scale high-quality ground-truth training labels (e.g., PASCAL VOC 2012 [16],36
Cityscapes [10]). Unfortunately, such large-scale high-quality training data are often unavail-37
able in many real-world spatial or spatiotemporal problems in earth science and remote sens-38
ing due to expensive and time-consuming field surveys or visual interpretation of earth im-39
agery [14, 15, 26, 30, 33, 56]. Indeed, lacking high-quality ground-truth benchmarking datasets40
has been identified as one of the major challenges in developing deep learning technologies41
for spatial and spatiotemporal data in earth science applications by several recent survey arti-42
cles [4, 39, 60, 62, 74].43

One important application is the National Hydrography Dataset (NHD) refinement. Sur-44
face water is an irreplaceable resource for human life and environmental sustainability. The45
NHD of the U.S. Geological Survey (USGS) is the current most up-to-date, comprehensive,46
and widely used dataset on surface water features (e.g., rivers, streams, canals, lakes) for the47
United States [57]. It serves as a cornerstone for many scientific applications, such as assess-48
ing the quantity and quality of present and future water resources, modeling climate changes,49
evaluating agricultural suitability, mapping flood inundation, and monitoring environmental50
changes [21, 27–29, 31, 40, 47, 51–54, 65, 67]. In recent years, with the increasingly available high-51
resolution remote sensing data (e.g., high-resolution optical imagery, 3D Lidar point clouds, radar52
imagery), the USGS has started refinements of theNHD to a higher resolution [44]. High-resolution53
NHD provides unique opportunities for scientific communities to study problems at fine scales that54
were not possible before, such as hyper-resolution national water forecasting and precision agri-55
culture. The current refinement process involves training deep learning models on high-resolution56
remote sensing imagery to automatically delineate river stream channels [58, 68]. However, deep57
learning models often require manually annotating large amounts of high-quality training labels58
by well-trained experts, which is slow, tedious, and expensive [64]. Considering the problem at a59
national scale, the scarcity of high-quality training labels quickly becomes a major bottleneck.60
Although extensive efforts have been made in the machine learning community to reduce the61

reliance on labeled data (e.g., semi-supervised [20, 73] or unsupervised learning [5], few-shot or62
zero-shot learning [63], co-training [24, 71], or meta-learning [25, 61]), the complex nature of geo-63
graphic data such as spatial heterogeneity still requires sufficient training labels when transferring64
a pre-trained model from one region to another [26]. On the other hand, it is often much easier65
to collect lower-quality training labels by non-expert volunteers (e.g., Amazon Mechanical Turk,66
Tomnod.com by DigitalGlobe). However, such training labels often have geometric annotation67
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errors [30, 59]. These errors can be due to manual annotation mistakes, particularly if the anno- 68
tators are non-experts and thus unable to fully interpret some image pixels or if the annotators 69
interpret background imagery displayed at a coarse resolution (e.g., on a small screen of a smart- 70
phone) [11, 13, 19, 22, 26, 55, 56]. Annotation errors can also come from GPS errors when a field 71
crew travels on the ground to delineate the boundary of a land parcel. These geometric annotation 72
errors can significantly impact the effectiveness of existing deep learning algorithms. 73
Training effective deep learningmodels based on imperfect annotation labels on high-resolution 74

earth imagery is non-trivial for several reasons. First, the annotation errors in vector labels lead 75
to erroneous class labels of training pixels. This issue may not cause much trouble for polygon 76
segments where annotation errors only impact pixels near segment boundaries, but it is critical 77
for polyline labels since an error of vector location may lead to a completely different set of pixels 78
being labeled as the positive class (e.g., river streams). Second, the problem requires a learning al- 79
gorithm to infer true label locations and train neural network parameters simultaneously. In other 80
words, there are both unknown deep neural network parameters and hidden true label locations. 81
Furthermore, there are other challenges related to the unique characteristics of earth imagery seg- 82
mentation. For instance, the geographic space is continuous and often much larger than the input 83
shape of most existing deep neural networks designed for regular camera photos (which is only a 84
few hundred by a few hundred pixels). In addition, the input features contain more spectral chan- 85
nels or topographic layers than camera photos. Thus, we cannot directly transfer a pre-trained 86
deep convolutional neural network (e.g., VGG16, ResNet50) based on camera photos to earth im- 87
agery datasets. In addition, the input feature imagery in remote sensing data is often noisy and 88
may not indicate perfect line patterns. Finally, the problem is computationally intensive due to a 89
large number of potential true polyline label locations in continuous space, as a polyline label is 90
determined by the combination of its vertices. 91
Existing research that addresses training label errors often focuses on errors in label class se- 92

mantics, assuming label locations to be correct or irrelevant (e.g., samples are independent and 93
identically distributed). Techniques include simple data cleaning to filter noise [17], choosing rel- 94
atively noise-tolerant models [1, 12], designing robust loss function [42, 46, 48], and learning 95
noise distribution [32, 38, 49, 66, 66]. Thus, these techniques cannot address the location errors 96
in the ground-truth labels. There are a few studies on label location errors in image segmenta- 97
tion [2, 7, 70]. These methods often focus on jointly refining misplaced pixels on object edges or 98
boundaries (e.g., active contour based on the level set method [2], edge pixel matching [70]) and 99
thus cannot be applied to our problem where the labels are buffered polylines (e.g., river streams) 100
instead of object edges. [42] models location errors of polyline training labels as shifts of square 101
pixel patches in eight-neighbor directions, but the use of square patches is too rigid for location 102
errors in vector labels. There are other relevant works that focus on capturing label ambiguity or 103
uncertainty [34–36, 43]. The main difference is that these works assume the training labels to be 104
non-unanimous due to different opinions of several experts, and all of the different opinions are 105
considered correct. In contrast, we assume that there is a single correct true label location (that is 106
unknown and not perfectly aligned with the given label location). There are also works focusing 107
on generative models for vector sequences (e.g., synthetic vector graphics [6, 37], trajectories [45]). 108
Other works rely on interactive active learning to address imperfect labels [69], but this approach 109
requires human experts in the loop. 110
This article proposes a weakly supervised spatial deep learning framework for earth imagery 111

segmentation based on imperfect polyline vector labels with geometric annotation errors. Specifi- 112
cally, we directly model label location errors in the vector representation. To partially maintain the 113
geometric properties of polyline labels (e.g., contiguity within segments) and reduce the number 114
of combinations of candidate true polyline locations, we represent a polyline label as a sequence 115
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of independent line segments. We model the location error of each segment as shifting in the116
perpendicular direction. Such a design decision proves to be simple and effective. Based on the117
location error model, our framework jointly updates deep learning model parameters and infers118
hidden true label segment locations through iterations. Results on real-world remote sensing im-119
agery data for NHD refinement show that our trained model has significantly higher accuracy120
than baseline methods.121

2 PROBLEM STATEMENT122

2.1 Preliminaries123

Definition 2.1. A spatial raster framework is a tesselation of the two-dimensional (2D) plane into124
a regular m by n grid, wherem and n are the numbers of rows and columns. Note thatm and n125
are usually much larger than the input shape of a typical deep convolutional neural network, e.g.,126
beyond a few thousand. Thus, we often need to cut the framework into square patches or windows127
(e.g., 224 by 224 pixels) as the input of a deep learning model.128

Definition 2.2. In a raster framework, there exist multiple explanatory feature layers, denoted as129
X ∈ R

m×n×F , where F is the number of input feature channels. Examples are spectral bands of130
remote sensors (red, green, blue, near-infrared), digital elevation, and its topographic derivatives131
(slope, curvature).132

Definition 2.3. There also exists a class layer, denoted as Y ∈ {0, 1}m×n . For example, in the NHD133
refinement application, the two classes are stream and non-stream. For simplicity, we only consider134
binary classes in this article, but the study can potentially be generalized to multi-class scenarios.135

Definition 2.4. A polyline is a connected sequence of line string segments, denoted by its vertices136
L =< p1, p2, . . . , pnp

>, where pi ∈ R2×1 is the 2D coordinates of a vertex and np is the number of137
vertices in the polyline. Polylines provide a vector representation (alternative to the raster repre-138
sentation) of spatial class labels. For example, a river stream can be represented by a polyline along139
its center.We can add a buffer on a polyline to reflect the river width. The ground-truth labels often140

contain a set of polylines, denoted as L = {L(i ) |1 ≤ i ≤ N }. In reality, it is often very slow and141
expensive to annotate polyline labels that are perfectly aligned with high-resolution earth imagery.142

Instead, we may be given a set of imperfect polylines, denoted by L̃ = {L̃(i ) |1 ≤ i ≤ N }, that are143
not well aligned with the true-positive class pixels.144

Note that in the above definition, we denote a polyline as a sequence of varying-length line145
segments between vertices. Alternatively, we can also denote a polyline by a sequence of equal-146
length polyline segments, i.e., L =< L1, L2, . . . , LnL

>.147

Definition 2.5. We can convert class labels from the vector representation L to the raster repre-148
sentation Y. The process is called rasterization. Specifically, after buffering a polyline, the rasteri-149
zation process assigns all pixels that are covered by the buffered polyline in the positive class (e.g.,150
stream) and leaves the background pixels in the negative class (e.g., non-stream). Thus, the raster151
representation Y and vector representation L are two alternative formats of class labels.152

2.2 Problem Definition153

Based on the definitions above, we now formally define the problem below.154
Input:155

• Explanatory feature layers X156

• Imperfect polyline labels in the vector format L̃ = {L̃(i ) |1 ≤ i ≤ N }157
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Fig. 1. A real-world problem example in streamline segmentation from high-resolution earth imagery.

• A fixed buffer width d for polyline labels 158
• A type of base image segmentation model, e.g., U-Net, DeepLab 159

Output: 160

• A deep learning model Y = f (X,Θ), where Θ is the set of parameters 161

• Refined polyline labels L = {L(i ) |1 ≤ i ≤ N } as a by-product 162

Objective: 163

• Maximize classification accuracy of the deep learning model f 164
• Maximize the quality of refined labels L 165

Constraint: 166

• L̃ has a maximum error distance Δmax 167
• The input explanatory feature layers can be noisy 168

Figure 1 provides a real-world example in streamline segmentation from high-resolution earth 169
imagery. The input ground-truth training labels (polyline in pink color) are misaligned with the 170
true stream pixels (in gray color) in the earth imagery. Thus, directly training a deep learningmodel 171
from the imperfect label will lead to poor classification performance. Given the earth imagery with 172
an imperfect polyline label (in the left of Figure 1) as well as a base deep learning model (e.g., 173
U-Net [50], DeepLab [8]), the problem aims to learn a deep learning model and refine the polyline 174
label as a by-product (in the middle of Figure 1), such that the model class prediction is accurate 175
(in the right of Figure 1). 176

3 THE PROPOSED APPROACH 177

This section introduces our proposed weakly supervised learning framework. In our framework, 178
we assume that unobserved true polyline label locations L are hidden variables. Our goal is to 179
update neural network parameters and infer the hidden true label locations at the same time. Our 180
probabilistic formulation consists of two components: the relationship between observed imper- 181
fect label locations and the hidden true location and the relationship between hidden true label 182
locations with the earth imagery features. The specific formulation is shown in Equation (1). In 183
this equation, P (L̃|L) captures the distribution of location errors in the polyline label and P (L|X,Θ) 184
captures the relationship between the true label and earth imagery features (such a relationship 185
can be learned by a neural network with parameters Θ). Given an imperfect label location L̃ and 186
imagery features X, our objective is to find the most likely true label location L and learn neural 187
network parameters Θ at the same time. Note that here we express the probabilities of label loca- 188
tions without specifying the exact random vector definition of L and L̃. Our purpose is to illustrate 189
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Fig. 2. Illustration of the proposed weakly supervised learning framework for polyline labels.

the main idea first and leave the details in Section 3.1 and Section 3.2.190

L,Θ← argmax
L,Θ

P (L̃|L)P (L|X,Θ) (1)

In order to solve the optimization problem in Equation (1), our framework uses an iterative ap-191
proach. We can initialize neural network parameters by pre-training the model on input imperfect192
labels, as listed in step (1) below. Then we can iteratively infer the most likely true label locations193
and update neural network parameters, as listed as step (2) and step (3) below. We can repeat the194
iterations of steps (2) and (3) until the model converges (i.e., the validation performance no longer195
improves).196

(1) Initialize neural network parameters Θ0 from imperfect labels197
(2) Fix Θ0, refine true polyline location L0: L0 ← argmaxL P (L̃|L)P (L|X,Θ0)198

(3) Fix L0, retrain neural network parameters Θ0: Θ0 ← argmaxΘ P (L̃|L0)P (L0 |X,Θ)199

Our main idea is also illustrated in Figure 2. The input includes imperfect polyline label L̃ (in200
the left of Figure 2) and explanatory feature layers X (in the right of Figure 2). There can be201
multiple possible candidate true label locations L (in the middle of Figure 2). Our objective is to202
infer the most likely true label location L and train the neural network parameters Θ at the same203
time. The iteration process is highlighted by the arrows. In each iteration, we first fix the neural204
network parameter Θ and infer the most likely true label location L among all candidates (the205
green arrows in Figure 2). Then we use the inferred most likely true label location L to update206
neural network parameters Θ for the next iteration (the red arrow in Figure 2). The iteration207
continues until the model converges (i.e., validation performance no long improves). In this208
example, we use a single polyline label for simplicity. The idea can be easily extended to a set of209

polyline labels L̃ by assuming that different polyline labels are independent from each other.210
However, several challenges exist in the implementation of the proposed framework. First, the211

number of possible true labels L is exponential to the number of vertices (actually, the number212
can be infinite considering that the space is continuous). This makes it very hard, if possible, to213
model P (L̃|L) in the continuous space. Thus, we have to discretize the location error of polyline214
labels. In other words, we can only consider a limited number of candidate true label locations215
for each observed imperfect label location. Second, when inferring true label locations, we also216
need to make a good balance between exploration (keeping a wide range of candidate true labels217
to avoid overfitting to a particular wrong label, especially when the neural network has not been218
well trained yet) and exploitation (focusing on a narrow range of candidate true labels for refine-219
ment). We discuss the implementation strategies to address the above challenges in the following220
subsections.221

3.1 Statistical Model of Label Location Error P (L̃|L)222

This subsection aims to design statistical models for geometric errors between observed polyline223
labels and the hidden true polyline labels. For simplicity, we only introduce the model of P (L̃|L)224
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for each individual polyline, assuming different polylines to be independent. This assumption 225
is reasonable as different polylines in a real-world scenario often represent different geographic 226
objects (e.g., different river streams). 227
However, modeling P (L̃|L) is still non-trivial since there can be an infinite number of potential 228

true polylines in the continuous space. Even if we fix the number of vertices in a true polyline 229
location, the total number of potential true polylines is still exponential to the number of ver- 230
tices (which can easily reach hundreds to thousands). It is computationally infeasible to model a 231
joint conditional probability mass function for P (L̃|L) without some independence assumption on 232
vertices of L. 233

To address the above computational challenge, we make several assumptions. First, we con- 234
sider each polyline label as a sequence of independent equal-length polyline segments, i.e., L =< 235
L1, L2, . . . , Lk , . . . , LnL

>. Thus, we can now independently model P (L̃k |Lk ) for each polyline seg- 236
ment. Second, we also assume that the observed imperfect segment is generated by shifting a true 237
label segment along its perpendicular direction (i.e., parallel shifting). In other words, we assume 238
an observed imperfect segment has the exact same vector shape with the hidden true label seg- 239
ment. The only difference is in their locations. We assume the segment shifting error to follow the 240
perpendicular direction in order to reduce the interference between consecutive segments. Third, 241
we further assume that the shifting error distance is a discrete random variable with a fixed num- 242
ber of C choices (i.e., Δ, 2Δ,. . . , Δmax = CΔ, where Δ is the unit of location error distance, and 243
Δmax is the maximum range of location error distance). Therefore, for each observed imperfect 244
segment L̃k , we have C candidate true segment locations, denoted as {Lk,c |1 ≤ c ≤ C}. Under 245

these assumptions, we can model P (L̃k |Lk,c ) as a probability mass function. For simplicity, we can 246

assume a uniform distribution of location errors, i.e., P (L̃k |Lk,c ) = 1
C
for any 1 ≤ c ≤ C . In our for- 247

mulation, Δ andC are two hyper-parameters that can be determined by the data characteristics in 248
a specific application. For example, Δ can be the size of one or two pixels, andC can be calculated 249
by a rough estimate of the maximum error distance Δmax . 250

The idea is illustrated in Figure 3. Figure 3(a) shows the location errormodel from the hidden true 251
location’s perspective. Given a true location Lk , the observed imperfect label location L̃k is shifted 252
from the true location by different distances along the perpendicular direction. In this example, the 253
number of possible error distances is five (i.e.,C = 5). Thus, P (L̃k |Lk ) = 1

5 for every error distance. 254
Figure 3(b) shows the location error model from the observed imperfect polyline’s perspective. 255
The observed imperfect polyline (in black) is partitioned into three equal-length segments and 256
there are five candidate true segment locations for each observed segment (including the observed 257
segment itself). Following the same location error model in Figure 3(a), we have P (L̃k |Lk,c ) = 1

5 for 258
every possible true segment location Lk,c . In this article, our implementation assumes a uniform 259
distribution of location error distances for simplicity. Alternatively, we can also assume a relatively 260
lower probability for a larger error distance (in this case, we assume that the true segment location 261
tends to be close to the observed segment). 262

3.2 Estimating Posterior Probability of True Segment Locations Based on Features 263

This step aims to estimate the posterior probability of a true segment location based on explana- 264
tory feature layers, i.e., P (L|X,Θ) in Equation (1). As discussed earlier, the probability P (L|X,Θ) 265
can be estimated by the class predictions of the current neural network parameters Θ. There are 266
several implementation issues that need to be resolved. First, the base neural network model is 267
trained on square patches (e.g., 224 by 224 pixels) instead of the entire raster framework. A label 268
segment can cross the border of several patches. Second, there are a large number of polyline seg- 269
ments. Evaluating the predicted class probability of each of them repeatedly is time-consuming. 270
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Fig. 3. Statistical model for polyline segment location error. The red, green, and blue segments are different

sets of candidate true segment locations (best viewed in color).

ALGORITHM 1: The overall learning algorithm

Input:

• X: Earth imagery pixel features

• L̃ = {L̃(i ) |1 ≤ i ≤ N }: A set of imperfect polyline labels

• d : a fixed buffer width for line segments

Output:

• Θ: Neural network parameters

• L = {L(i ) |1 ≤ i ≤ N }: A set of refined polyline labels as a by-product

1: Pre-train a neural network Θ0 based on imperfect labels (X, L̃)
2: Partition each polyline L̃(i ) into fix-length segments ˜L(i ) =< L̃

(i )
1 , L̃

(i )
2 , . . . , L̃

(i )
k
, . . . , L̃

(i )
nL

>

3: For each imperfect segment L̃
(i )
k
, generate candidate true segments {L(i )

k,c
|c} through perpendicular shift

4: while the model is not converged do

5: Compute P (L
(i )
k,c
|X,Θ0) by model prediction for all {L(i )

k,c
|i,k, c} with buffer d

6: Select the top candidate c0 ← argmaxc P (L̃
(i )
k
|L(i )
k,c

)P (L
(i )
k,c
|X,Θ0) for every input segment L̃

(i )
k

7: Handle a tie with (1) outermost first, (2) random selection, or (3) default to imperfect segment

8: Update Θ0 by model re-training based on selected label segments

9: return Θ0, {L(i )
k,c0
|i,k }

Considering that these probabilities need to be evaluated for every iteration, the total time cost271
can be very large.272
To address the computational challenges above, we design several implementation strategies.273

First, to address the issue that a segment can cross the patch border and reduce the number of274
redundant class predictions for separate segments, we choose to predict the class probabilities of275
all patches only once within each iteration and mosaic their probability maps together into the276
entire raster framework. In this way, the combined probability map can be reused to evaluate dif-277
ferent segment probability P (Lk |X,Θ) without repeatedly running the neural network prediction.278
Specifically, to estimate the predicted probability for each segment Lk , we created a bounding box279
of the buffered segment and extracted the pixels within the buffer of the polyline segment. Then,280
P (Lk |X,Θ) is calculated by the predicted probabilities for class 1 on all pixels within the polyline281
segment buffer. In order to avoid the bias toward large segment buffer size, we normalized the total282
probabilities within a buffer (by the number of pixels).283

3.3 Overall Algorithm Flow284

Now we introduce the overall algorithm flow. Algorithm 1 provides an overview of the al-285
gorithm structure. The algorithm first pre-trains a deep learning segmentation model (e.g.,286
U-Net, DeepLab) based on imperfect input polyline labels (after buffering and rasterization). The287
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Fig. 4. An example of the algorithm flow. The red, green, and blue segments are different sets of candidate

true segment locations (best viewed in color).

preprocessing step generates a set of candidate true segment locations for every input segment. 288
The candidate generation follows our implementation strategy in Section 3.1 and Figure 3. Then, 289
the algorithm goes through iterations. In each iteration, the model first predicts the class proba- 290
bilities of all pixels in the training and validation windows in the raster framework. It calculates a 291
weight for every candidate true segment location, which is measured by the location error model 292
and deep learning model output class probabilities (steps 5 and 6). Note that if a deep learning 293
model predicts near-zero class probability for all candidates, we have three strategies (details in 294
the next paragraph). Based on the selected candidate true segment locations, we re-train the neural 295
network model (step 8) and continue to the next iteration. The iteration stops when the validation 296
accuracy no longer improves. Figure 4 illustrates the entire algorithm flow. From the discussion 297
above, we can see that the time cost of the algorithm is linear to the number of polyline segments 298
(due to the independence assumption between consecutive segments). 299

One important implementation issue is that the predicted class probabilities from the neural 300
network may contain systematic errors; e.g., a polyline segment can be missed in the predicted 301
class probability map (false negatives). In practice, we observe this case frequently at the first 302
few algorithm iterations when the neural network model is inaccurate (due to the low quality 303

of input labels). In this case, the predicted class probabilities P (L
(i )
k,c
|X,Θ0) are equally near zero 304

for all candidates c . Thus, we need to design a strategy to select candidate true segment locations 305
without overfitting to a particular poor polyline. We considered three different strategies: (1) select 306
the default observed segment, (2) select the outermost segment with the largest location distance, 307
and (3) randomly select a segment among all candidates. 308
The strategy made in this step is very important. As discussed earlier, when inferring true label 309

locations, we need to make a good balance between exploration (keeping a wide range of candidate 310
true labels to avoid overfitting to a particular wrong label, especially when the neural network has 311
not been well trained yet at the first few iterations) and exploitation (focusing on a narrow range of 312
candidate true labels for refinement). From this perspective, selecting the outermost segment label 313
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Fig. 5. The effect of candidate segment selection in empty probability area. The shaded area is the predicted

stream class probability from a model trained on three selected candidates, which are shown in red, green,

and blue, respectively. The input label segment and the hidden true label segment are shown in black and

red, respectively (best viewed in color).

will provide the most benefit, as it will help to train a model that will predict the stream class into a314
wide range of areas beyond the input imperfect line buffer. The random selection strategy is in the315
middle and will provide a modest range of predicted stream class areas. The strategy of selecting316
the default input segment is the worst, as it easily leads to overfitting to the input imperfect line317
and get stuck in it. This effect is illustrated in Figure 5. A model trained on the outermost segments318
have the best chance of covering the true label location in red color (Figure 8(c)), a model trained

Q2
319

on the random candidate has a modest range of coverage (Figure 8(b)), but a model trained on320
the default input segments will have a serious overfitting issue (Figure 8(a)). Although a model321
trained from the outermost candidates has the widest range of stream class prediction (containing322
false positives), we anticipate that the predicted range will be narrower (more focused) in the later323
iterations. This is observed in our experiments on real-world data. Note that these choices are324
only made when the predicted pixel class probabilities are equal for all candidates (they are all325
near zero). If the class probabilities from the neural network are non-zero on candidate segments,326
we still select the top candidate with the highest probability.327

Another implementation detail is the measure of training and validation performance during328
the training iterations. There are no manually refined (“perfect”) segment labels being provided329
from the input. Thus, the training and validation performance is all based on the currently refined330
label segments through candidate selection. We assume that the iterations will gradually improve331
the label quality. In the evaluation on real-world datasets, we find that this assumption works well332
for model validation. However, we acknowledge that the performance of the proposed learning333
framework can collapse if the original input labels are completely wrong.334
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4 EVALUATION 335

The goal is to compare the proposedmodel with the baselinemethods in classification performance. 336
We will also analyze the training curves and parameter sensitivity of the proposed model. All 337
experiments were conducted on a deep learning workstation with 4 NVIDIA RTX 6000 GPUs 338
connected by NV-Link (eachwith 24GBGPUmemory) and 128GB RAM. For the base deep learning 339
model, we used U-Net [50] and DeepLab [8]. 340
Dataset Description: We evaluated our proposed method in a real-world application of NHD 341

refinement based on high-resolution remote sensing data. We used two datasets collected from 342
the Rowan Creek in North Carolina and Panther Creek in Iowa. The input features include earth 343
imagery from the National Agriculture Imagery Program (NAIP) with red, green, blue, and 344
near-infrared channels; digital elevationmodel; Lidar point cloud intensity; and slope derived from 345
elevation. The input imperfect streamline location shapefile was collected from an earlier coarse 346
version of NHD and visually interpreted coarse background imagery (these polylines are not well 347
aligned with the stream pixels). The ground-truth streamline polyline labels for testing are manu- 348
ally refined by hydrologists (this true location was hidden from our model in training and valida- 349
tion and was only used for testing). All imagery was resampled into a 1-meter resolution. We used 350
a 2-meter buffer and a 16-meter buffer to rasterize the polylines in two study areas respectively 351
due to different river widths. 352
In each dataset, we split the study area into two disjoint parts: the upper part is for testing, and 353

the lower part is for training and validation. For the first dataset, we randomly selected 698 win- 354
dows for training and 40 windows for validation. The training windows and validation windows 355
are not overlapping with each other to keep independence. We augmented training and valida- 356
tion windows by flipping horizontally and vertically as well as 90-degree rotation. Thus, the total 357
number of training and validation windows was 2,792 and 160, respectively. We randomly selected 358
200 windows in the upper part for testing. The window size is 224 by 224 pixels. For the second 359
dataset, the total number of training and validation windows was 1,008 and 60 after augmentation. 360
The number of test windows was 300. Note that for class labels in the training and validation win- 361
dows, we used imperfect lines that are refined by the current iteration. We only used manually 362
refined lines in testing windows. 363
Model Architecture:We did experiments with two kinds of segmentation models as our base 364

model: U-Net and DeepLabv3+. We used the U-Net model with a 224 by 224 input shape imple- 365
mented in Keras.1 The U-Net model consists of an encoder-decoder structure. The encoder has six 366
double-convolution layers and five max-pooling layers. The numbers of output channels for those 367
convolution layers are 32, 64, 128, 256, 512, and 1,024, respectively. There is batch normalization 368
within each convolutional layer before ReLU (rectified linear unit) non-linear activation. The de- 369
coder of the model upsamples the encoded feature map to a higher resolution based on transpose 370
convolution. The decoder concatenates upsampled global features with the corresponding local 371
features from the encoder. 372
We used the DeepLabv3+ model [9] with an input shape of 224 by 224. It was implemented in 373

Keras.2 The DeepLabv3+ model has an encoder-decoder structure. The encoder applies Atrous 374
Spatial Pyramid Pooling (ASPP) with four different rates to detect multiple-scale features. The 375
encoder uses an output stride of 16. Then the encoder features are first bilinearly upsampled by 376
a factor of 4 and then concatenated with the corresponding low-level features from the network 377
backbone that have the same spatial resolution. Then another bilinear upsampling by a factor of 378

1https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model.
2https://github.com/rishizek/tensorflow-deeplab-v3-plus.
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4 is applied to obtain the original resolution. Note that the network backbone ResNet-101 in the379
original paper cannot be utilized for our tasks, because there is no available pre-trained model380
for the earth image with seven input spectral bands. The network backbone we used is four381
double-convolution layers and four max-pooling layers. We initialized the backbone model ran-382
domly and trained it with the DeepLab model together.383
ModelHyper-parameters: For the U-Net model, we used double-convolution layers and batch384

normalization. The dropout rate is 0.2. The mini-batch size is 32. We used the Adam optimizer and385
negative of dice co-efficient as the loss function. The dice co-efficient loss function is the same as386
F1-score except that it allows for soft predicted class probabilities. We used a decaying learning387
rate that reduced the learning rate by half if the validation loss did not improve over five epochs388
(with an initial learning rate of 10−1 and a minimum learning rate of 10−5). We also used early389
stopping to stop model fitting if the validation loss did not improve over 20 epochs. We used a390
maximum of 50 epochs in model pre-training and each iteration.391
For the DeepLabv3+ model, the backbone model has four double-convolution layers and max-392

pooling layers. The dropout rate in the backbone model is 0.2, and we did not use dropout in393
the ASPP and upsampling part. The mini-batch size is 32. We used the Adam optimizer. The loss394
function is the same as the U-Net model, i.e., negative of dice coefficient. We used a decaying395
learning rate that reduced the learning rate by half if the validation loss did not improve over five396
epochs (with an initial learning rate of 0.05 and a minimum learning rate of 10−5). We also used397
early stopping to stop model fitting if the validation loss did not improve over 20 epochs. We used398
a maximum of 50 epochs in model pre-training and each iteration.399
For candidate true shape location generations in our method, we split the input imperfect poly-400

lines into small chunks (each with a length of 10 meters). For simplicity, we generated candidate401
true locations by shifting the segment in perpendicular directions (15 candidates above and 15402
candidates below, 31 in total including the input shape segment itself). The perpendicular distance403
between two candidate segments was 1.5 meters. Within each iteration, we re-trained our model404
from scratch with the newly inferred label locations.405
EvaluationMetrics:We used precision, recall, and F1-score on the streamline class to evaluate406

candidate methods.407

4.1 Comparison on Classification Performance408

We first compared the overall classification performance between the baseline U-Net model and409
our proposed model. The setup was the same as described at the beginning of this section. The410
results on two datasets are summarized in Tables 1 and 2. The first column in the confusion ma-411
trices was the number of pixels predicted into the non-stream class. The second column in the412
confusion matrices was the number of pixels predicted into the stream class. We can see that413
on the first dataset, the pre-trained U-Net model from the imperfect ground-truth label has very414
poor precision and recall in the streamline class (the overall F1-score was 0.46). In contrast, our415
proposed U-Net with iterations improved the precision from 0.39 to 0.66 and improved the re-416
call from 0.57 to 0.68. The overall F1-score in our method is 0.67, significantly higher than the417
baseline U-Net model. A close look at the confusion matrix shows that our method reduces the418
number of false positives from 147,480 to 48,658 (by 67%) and reduces the number of false nega-419
tives from 79,854 to 44,303 (by 55%). The metrics confirm that our proposed method significantly420
enhanced the baseline image segmentation model when the ground-truth segment labels are im-421
perfect. We observe an improvement in our method against the baseline DeepLab model (from 0.42422
to 0.64 in F1-score). The same levels of improvements are also observed in the second dataset in423
Table 2.424
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Table 1. Comparison of Classification Performance on the First Dataset

Method Class Confusion Matrix Precision Recall F Score

U-Net
Non-stream 9,750,497 147,480 0.99 0.99 0.99
Stream 79,854 57,369 0.39 0.57 0.46

Our Method on U-Net
Non-stream 9,849,319 48,658 1.00 1.00 1.00
Stream 44,303 92,920 0.66 0.68 0.67

DeepLabv3+
Non-stream 9,764,563 133,414 0.99 0.99 0.99
Stream 64,381 72,842 0.35 0.53 0.42

Our Method on DeepLabv3+
Non-stream 9,844,775 53,202 1.00 0.99 0.99
Stream 47,433 89,790 0.63 0.65 0.64

Table 2. Comparison of Classification Performance on the Second Dataset

Method Class Confusion Matrix Precision Recall F-score

U-Net
Non-stream 13,617,128 101,758 0.95 0.99 0.97
Stream 657,808 676,106 0.87 0.51 0.64

Our Method on U-Net
Non-stream 13,392,213 326,673 0.99 0.98 0.99
Stream 69,322 1,264,592 0.79 0.95 0.86

DeepLabv3+
Non-stream 13,623,101 95,785 0.93 0.99 0.96
Stream 997,758 336,156 0.78 0.25 0.38

Our Method on DeepLabv3+
Non-stream 13,274,401 444,485 0.99 0.97 0.98
Stream 146,311 1,187,603 0.73 0.89 0.80

Table 3. Comparison of Classification Performance on Default Candidate Selection Methods

Method Class Confusion Matrix Precision Recall F-score

Outermost first
Non-stream 9,849,319 48,658 1.00 1.00 1.00
Stream 44,303 92,920 0.66 0.68 0.67

Randomly select
Non-stream 986,0471 37,506 0.99 1.00 0.99
Stream 58,946 78,277 0.68 0.57 0.62

Default to input
Non-stream 9,865,697 32,280 0.99 1.00 0.99
Stream 79,881 57,342 0.64 0.42 0.51

4.2 The Effect of Default Candidate Segment Selection 425

We compared the effect of default candidate true segment selection when there are low probabil- 426
ities on all candidates. As discussed in Section 3.2, this situation happens frequently in the first 427
couple of iterations when the labels have not been well refined yet. It is very important to select 428
the candidates that keep a wide range of exploration without focusing on a narrow range (to avoid 429
overfitting). The experiment results confirm our analysis. We compared three different strategies 430
of candidate selection when none of the candidate true segment locations are confident based on 431
current neural network model class probability predictions. From the results in Table 3, we can see 432
that the strategy of selecting the input imperfect segment produces the worse results. The reason 433
is that default to the input segment leads to the model overfitting to the narrow range of the input 434
polyline segment. In contrast, selecting random segment location produces significantly better re- 435
sults due to a wider range of spatial footprints to avoid overfitting. Selecting the outmost segment 436
provides the best results as it explores the largest range of potential locations. 437
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Fig. 6. Training curves of different Iterations.

4.3 The Learning Curve of Different Iterations438

In order to understand the influence on the training process of each iteration, we plotted the train-439
ing and validation F1-score (based on the current inferred “true” label location) after each iteration440
in Figure 7. The F1-score after each iteration was from the re-trained U-Net model (through up to441
50 epochs) based on the currently inferred label location. We can see that the F1-score continued442
improving during iterations. The training and validation F1-scores in the first iteration (slightly443
above 0.2) are worse than those of the pre-trained U-Net model. The F1-scores significantly im-444
prove in the second and third iterations and converge at the sixth iteration (with a validation445
F1-score of 0.60).446
In order to examine the detailed model learning process, we also plotted the training curves447

(training and validation loss over every epoch) within each iteration. Those training curves are448
shown in Figure 6. As the iteration continues, the gap between training loss and validation loss449
decreased. We also observed that the converged training and validation loss was lower through450
the iterations, largely due to the continual improvement over label locations.451
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Fig. 7. The converged F1-scores on training and validation datasets after each iteration.

Fig. 8. Visualization of the inferred true label location, manually refined (true) label location, and initial

imperfect line location (best viewed in color).

4.4 Inference of True Label Locations 452

We also visualized the inferred (selected) true label locations during the iteration. Figure 8 showed 453
the comparison of our inferred true label locations (in brown) with the manually refined true label 454
locations (in blue) as well as the initial imperfect label locations (in red). The actual footprint of 455
the river channel was also shown in the background imagery, including a true color earth imagery 456
in Figure 8(a) and a binary map in Figure 8. From the comparison, we can see that our inferred 457
true label locations (those selected candidate segments in brown) are far closer to the manually 458
refined true label locations (in blue) than the initial imperfect label (in red). These visualized results 459
verified that our iteration framework could infer the true label locations while training the U-Net 460
model. What was even more interesting was that our algorithm seemed to make the best efforts in 461
inferring true label locations. For example, when the initial imperfect label line segments (in red) 462
are not well oriented with the true line location (in blue), our selected candidates (in brown) still 463
crossed over with the blue line as much as possible. And when the initial imperfect label line had 464
the same orientation as the true line, our inferred line location was almost perfectly aligned with 465
the true line. 466

4.5 Interpretation of Final Prediction Map 467

We also visualized the predicted streamline class maps in the test region from our model and the 468
U-Net model. Due to limited space, we selected one representative sub-area in the test region 469
to have a zoomed-in view. The results are shown in Figure 9. Figure 9(a) shows the manually 470
refined streamline labels, which are the “perfect” ground truth in testing. Figure 9(b) shows the 471
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Fig. 9. Visualization of the final predicted class maps in the test region.

Fig. 10. Time cost of candidate selection and model re-training during different iterations.

predicted streamline locations by the baseline U-Netmodel.We can see that it containedmany false472
positives (false streamlines predicted) and false negatives (missing true streamlines). For example,473
the upper right branch of the stream was barely identified by U-Net. The upper left branch was474
also not continuous in the U-Net predictions. In addition, there are false stream segments in U-Net475
predictions on the top. In contrast, our results (shown in Figure 9(c)) are far better with fewer false476
positives and false negatives. We also did a careful examination of the entire predicted maps over477
the entire region and found similar trends as shown in this figure.478

4.6 Analysis of Computational Time Costs479

We evaluated the computational efficiency of our proposed EM framework. The experiments480
were conducted on our deep learning workstation with 4 NVIDIA RTX 6000 GPUs connected by481
NV-Link (each GPU has 24GB memory). Model training was conducted on all four GPUs through482
the distributed training tool in Tensorflow. The time costs between iterations are summarized in483
Figure 10. The blue bars and red bars show the time costs of candidate selection (re-generating484
rasterized true label map) in the CPU and model re-training in the GPUs, respectively. From the485
results, we can see that the candidate selection part took far less time than the model training and486
its time cost was relatively stable across iterations. The time cost of model training varied across487
iterations due to early stopping. The longest training time was around 10 minutes in one iteration.488
The numbers are highly dependent on the hardware platform.489
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5 CONCLUSION AND FUTURE WORKS 490

We investigated deep learning models for earth imagery segmentation from imperfect ground- 491
truth labels with geometric annotation errors. The problem is important for broad applications in 492
earth sciences, such as refining the National Hydrologic Dataset through high-resolution remote 493
sensing imagery. However, the problem is non-trivial due to the requirement to infer the true 494
geometric label locations and update neural network parameters simultaneously. We propose a 495
generic deep learning framework to simultaneously infer hidden true label locations and train 496
deep learning model parameters. Evaluations on real-world datasets confirm that the proposed 497
framework significantly outperformed the baseline method. 498
For futurework, we plan to continue to improve our proposedweakly supervised learning frame- 499

work. For example, one limitation of the current framework is that the refined polylines are discon- 500
tinuous between segments (although their location footprints align better with the true polylines). 501
We plan to improve our polyline refinement component to generate continuous polylines. We also 502
plan to generalize our framework from polyline labels to polygon labels. Another potential future 503
direction is using deep reinforcement learning to automatically annotate labels. 504
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