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ABSTRACT

When electrified transit systems make grid aware choices, improved
social welfare is achieved by reducing grid stress, reducing system
loss, and minimizing power quality issues. Electrifying transit fleet
has numerous challenges like non availability of buses during charg-
ing, varying charging costs and so on, that are related the electric
grid behavior. However, transit systems do not have access to the in-
formation about the co-evolution of the grid’s power flow and there-
fore cannot account for the power grid’s needs in its day-to-day
operation. In this paper we propose a framework of transportation-
grid co-simulation, analyzing the spatio-temporal interaction be-
tween the transit operations with electric buses and the power
distribution grid. Real-world data for a day’s traffic from Chat-
tanooga city’s transit system is simulated in SUMO and integrated
with a realistic distribution grid simulation (using GridLAB-D) to
understand the grid impact due to transit electrification. Charging
information is obtained from the transportation simulation to feed
into grid simulation to assess the impact of charging. We also discuss
the impact to the grid with higher degree of transit electrification
that further necessitates such an integrated transportation-grid co-
simulation to operate the integrated system optimally. Our future
work includes extending the platform for optimizing the charging
and trip assignment operations.
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physical systems; « Computing methodologies — Modeling
and simulation; - General and reference — Cross-computing
tools and techniques.
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1 INTRODUCTION

Transportation in the modern world is responsible for extensive
environmental impact, namely air pollution and emission of vast
amounts of greenhouse gases, posing a severe threat to energy
security. In the United States, the transportation sector accounts
for 28% of the total energy use [11]. Transitioning to greater use of
public transit systems can remarkably reduce energy use, thus pro-
viding a positive impact on society and the environment. However,
even public transit systems require substantial amounts of energy;
for example, public bus transit services in the US are responsible
for at least 19.7 million metric tons of CO2 emission annually [17].
Electric vehicles (EVs) can have a much lower environmental im-
pact than comparable internal combustion engine vehicles (ICEVs)
[26] [27], especially in urban areas. However, in addition to the
cost!, the increasing electrification of transportation raises critical
problems of the impact of EV charging on the power grid as well as
the location and schedule of charging. This issue comprises several
key concerns.

First, the locations of charging stations have to be strategically
located to minimize nodal losses. Second, the electric utility opera-
tors have to balance the distribution network and estimate the daily
needs considering the variation in demand. The service areas of
the buses span major residential and commercial areas, which have
already stressed electric supply feeders. Therefore, both a large
number of buses charging at night in the depot (for low rates and
minimizing disruption in transit) and individual buses charging
en-route (at extremely high rates) can significantly affect grid re-
liability. For example, grid-agnostic charging assignments might
result in power supply and demand imbalances, reduced power
quality, excessive nodal losses, and price peaks. Since the charging
times and locations of EVs drive this problem, it is imperative to un-
derstand the spatio-temporal interaction between mobility and the
electric grid’s distribution system. Third, the transit operators must

EVs are also much more expensive than ICEVs - typically, diesel transit buses cost
less than $500K, while electric ones cost more than $700K ($1M with charging infras-
tructure) [28].
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also minimize the cost of charging EVs. Finally, the transit operators
must also determine buses to trip assignments. The advantage of
EVs over ICEVs depends on the route and time of day (e.g., the
benefit of EVs is higher in slower traffic with frequent stops and
lower on highways), hence the assignment can significantly affect
energy usage and the environment [28].

Several efforts have attempted to manage the power grid along
with route optimization and planning for the electric buses [23]
[12] [34] [22]. However, these solutions are often decoupled. Large
scale agent-based simulation platforms such as SUMO [18] and
MATSim [16] have been crucial for planning future transportation
scenarios, but they must be interfaced with micro-scale modeling
systems for co-simulation with the power grid. For example, a
system that works in this way can simulate a transit system using
SUMO or MATSim and then analyze it in the context of the power
distribution grid (e.g., using GridLAB-D [8]). Such a system can be
used for integrated transit and power grid analysis (e.g., to analyze
"a peak-day scenario where a major event in the downtown area
leads to a sudden spike in demand on the transit system [13]. This
not only constrains the road and transit systems but may cause
a surge in power demand on the city’s power distribution grid").
Further, it can also analyze the impact of different numbers of
charging slots on the operating availability of electric vehicles.

In the past, we have developed TRANSIT-GYM [30], a SUMO-based
general-purpose transit simulator carefully calibrated for the city of
Chattanooga, TN. This has been achieved by careful calibration of
the underlying model. Note that for the simulator to remain viable,
it is crucial to keep the physical transit network of the city and the
simulated transit network in sync. Overall, the simulation engine
is capable of providing road-based traffic measurement output,
including macroscopic values such as the mean speed, the mean
density, and the mean occupancy of road edge during specified
time intervals. For each bus stop, we output the simulated schedule:
time of arrival and departure, stopping place, and the number of
persons that boarded and got off the bus. The passenger itineraries
are configurable and are simulated based on input demand models
provided by the local transportation planning office. For each transit
vehicle, we can provide the current speed and acceleration

In this paper, we extend the TRANSIT-GyMm [30] and focus on
bridging the gap between these two facets and develop an inte-
grated simulation model that can replicate the complete function-
ing of the electric buses, their routes and charging schedules along
with the real-time impact of charging them on the power grid. We
demonstrate our system within the context of the city of Chat-
tanooga. The system is designed such that the electric buses can
dynamically interact with the power grid, causing changes in the
grid load depending on whether they are charging or not. In this
way, we can reliably perform integrated electric vehicle and elec-
tric grid simulations, and have a view of a complete scenario of
buses moving along their route, getting discharged, stopping at the
needed charging station, and recharging. The entire schedule of the
vehicles can be simulated for any required period. Further, we can
have improved simulation scenarios for the functioning of an elec-
tric vehicle, as the load on the power grid is an important factor to
consider for charging all types of EVs. The effect on the power grid
can be instantaneously generated in our simulated environment.
Although this paper is limited to the discussion of the co-simulation
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environment, our ongoing work is focused on the optimization of
transit trip plans and schedules for charging electric buses.

2 RELATED RESEARCH

It is important to emphasize that the overall problem is the inte-
grated co-simulation and online optimization procedures that can
address electric vehicle charging and route optimization while min-
imizing grid impact and transit operation costs. Pettet et al. [23]
bring together optimizing bus charging for electric buses taking
into consideration the grid load. The grid load is crucial to consider
as it impacts the proper function of the entire electric grid of the
city under consideration. Exacting too much from it may cause
blackouts and additional infrastructure repairs. One of the crucial
aspects of this model is the electric grid simulations. A simulation
platform using Gridlab-D and smart grid sim is demonstrated by
Hansen et al. in [15]. While it fails to take into account the opti-
mizations of bus scheduling and grid loads, it provides a reference
framework for the electrical simulations that are undertaken and is
a fundamental example to show the integration between an electric
simulator and the load balancing of a smart grid. The work provides
a starting point for further simulation-based integrations.

Note though integrated transit and electric simulations are lack-
ing, some works approach the charge scheduling problem entirely
from the perspective of transit operations. For example, Paul and
Yamada [22] provides a k-Greedy Algorithm-based approach for
bus charge scheduling. Their work is one of the early efforts to
address the issue of maximizing bus travel for each EV and in effect
reducing emissions. Zhang et al. [34] use a bilevel optimization (us-
ing a genetic algorithm) to address the issue of the cost to operate
electric vehicles by transit agencies. On the other hand, the extent
to which the charger and battery configurations in an already ex-
isting environment can cope with a city’s transit requirements is
discussed by El-Taweel et al. in [12].

Another aspect of electric transit systems is the day ahead trad-
ing for bus depot operators to minimize the cost of electricity and
battery degradation cost which has been addressed by Rafique et al.
in [25]. It aims at minimizing the cost of electricity by using a two-
stage multi-objective stochastic optimization technique based on
a mixed-integer linear programming approach. The calculation of
battery degradation is a vital cog in the operation of all EVs and
the precise penalty cost for battery capacity degradation is added
to the objective function to account for the exploitation of Vehicle
Grid flexibilities. Similarly, Alizadeh et al. in [1] study collaborative
and non-collaborative effects on pricing, when the owners of the
vehicles are cooperating compared to when they are not - highlight-
ing the improved benefits of cooperation(aggregation) of electric
vehicle fleets. Lastly, there have been efforts to address the electric
vehicle routing, optimization, and charging at a macro scale that
studies this as an interdisciplinary problem to address the issue
economically, environmentally, and to aid in social welfare [7, 10, 19].

However, most of these optimizations do not emphasize the need
and the capability of coupled micro-simulations that can capture
dynamics (node losses, surges, load loss) that will impact operations
at the community scale. Further, the simulations are mostly focused
on electric optimization. The movement of electric vehicles is not
generally prioritized. The charge levels used are usually drawn
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Figure 1: Sequence Diagram of co-simulation, describing the interaction between the transit and the power grid simulation

off of energy estimates and the stochasticity introduced by the
variation of degrading battery capacity and charging patterns is
not clearly stated. This calls for the true integration of an electric
and transit environment that will facilitate a smoother and more
dynamic scenario for EVs to operate in and to locate, monitor, and
instruct them.

Our approach to solving this problem emphasizes the need for
firmly grounding the simulation concepts within the performance
as observed in the real world. Collecting and integrating multi-
modal, spatiotemporal datasets is a challenging problem [33]. Our
prior work with the city of Chattanooga developing approaches
for assigning mixed-fleet vehicles to routes showed that operations
teams can generate savings and reduce carbon emissions by opti-
mizing scheduling [2], [28]. These optimization approaches require
accurate predictive models of energy consumption [3]. It is also
important to note that the energy consumption of various vehicle
classes (such as electric, hybrid, and diesel) responds to covariates
such as weather, traffic, and elevation differently [32].

Our previous work in multi-modal data collection, energy con-
sumption model, and scheduling motivates the development of
E-Transit-Bench. Specifically, we aim to provide an integrated
Transportation-Grid simulation that can be used both in day-to-day
scheduling and optimization as well as future planning.

3 OUR APPROACH

The integrated simulation is designed to make the individual un-
derlying components work in unison, namely, the power grid simu-
lation (using GridLAB-D) and the vehicle transit simulation (using
SUMO). The information exchange that goes on between these
simulators needs to be carefully handled as it is time-sensitive. This
information exchange is performed with the use of the Hierarchi-
cal Engine for Large-scale Infrastructure Co-Simulation (HELICS)
[21], an open-source co-simulation framework. The Co-simulator
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coordinator is responsible for time synchronization and acts as an
agent between grid models in GridLAB-D and the python federate.
There are dedicated computations modules programmed in Python
to perform computations that interact with python federate, that
utilize the various parameters or information from the interface. All
of these components work in tandem and run the entire simulation
platform synchronously. The work is described in Fig 1.

The co-simulation is based on a publish-subscribe model. GridLAB-
D subscribes to the state of charge (SoC) values from the transit
simulator when the EV arrives at the charging station. This trans-
lates to the grid as an additional load that follows a charging profile,
predefined for the EV battery and the charger at the charging station.
The charger profile is also season-dependent to ensure the charging
time and the impact on the grid behavior are realistic. GridLAB-D
publishes the parameters needed to compute the Grid Impact Score
(GIS). Further expansion of the Transit-Grid co-simulation will
include energy market decisions and also Transit systems sched-
uling that will add additional publications and subscriptions from
the various entities being co-simulated. The details of the publish
and subscribe mechanism applied to power grid simulation can be
found in an application involving multiple federate integrated into
a time-synchronized co-simulation in references [5, 6, 9].

The python federate is the instructor for all the other compo-
nents, storing crucial instructions and passing them to the other
components. The transit routes, power grid profiles, and other pa-
rameters are stored in memory for use by the respective simulators
before the system is started. The Start message from the python
federate instructs both the grid simulator and the transit simulator
to begin their simulation cycles. This message is passed through the
co-simulator coordinator onto the power grid simulator. The times-
tamps are synchronized for the execution to begin. The power grid
starts generating its load and GIS and the transit sim emulate the
movement of the buses on their designated routes and schedules.
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The simulation goes on for the specified time duration. During
this time, it can monitor the movement of all the individual vehicles
(electric buses) as well as the state of charge (SoC) of the vehicles.
The important checks that go on in the simulation are: (i) checking
the SoC of electric buses and how much it has depleted, and (ii)
checking for any changes in the grid load. The SoC of the bus
drops as it moves around in its set route. When the SoC is below
a critical level, then the bus needs to charge soon, else, it may
run out of charge and stop in its tracks. We want to avoid that
scenario and direct the bus to a charger as soon as possible. As
soon as the bus moves on to the charging location and charging
begins, its movements are stopped and the power consumption
is added to the grid, in the grid simulation. The grid load is then
measured throughout the period of charging the bus and can be
done for multiple charging buses at a time. This is important as
it provides an understanding of how much power is drawn from
the grids at the charging stations and more importantly, how much
the grid is affected by this usage and its effects on the surrounding
neighborhoods.

Once the bus reaches the desired charge level, it is disconnected
from the grid. The power draw at that charger is reduced to zero.
The transit sim then resumes the movement of the bus along its
planned route for the rest of the duration. This cycle can go on
whenever the buses are low on a battery charge or are pre-planned
to charge. Data about all the required parameters (like SoC, bus
movement, weather, trips completed, and so on) can be collected
and stored during this period. This technique helps us devise more
efficient and battery-healthy bus routes.

The simulation ends when it has run for the desired duration.
The python federate gets the message from both the grid simu-
lator and the transit simulator that their execution has stopped.
Subsequently, the federate performs any necessary post-processing
on the collected data (like grid analysis, and bus efficiency). After
these are performed, the program terminates, marking the end of
the integrated simulation cycle.

3.1 Transit Simulation

The task of energy estimation for the electric buses requires us
to know about the movement of these vehicles. It is necessary to
know the time, location, route, speed, state of charge (SoC), and
some other parameters of the vehicles, for proper measurements
and calculations. The movement of vehicles is simulated using
the transit-gym model [30]. The buses under consideration can be
diesel-powered, diesel-electric hybrid, or electric-powered.

This section discusses the procedures undertaken to perform the
simulations and generate the data required for further processing.
We are trying to emulate the actual movement of buses for an
entire day. The various steps undertaken during this simulation are
shown.

3.1.1  Simulating a day’s activity. The General Transit Feed Speci-
fication (GTFS) [20] provides the transit data for the specific day
we want to simulate. This data contains the details about all of the
transit buses that run during the day. It includes the concerned
agency, the dates for the service to run, the different routes, the
shapes forming the routes with their distances, the bus stops on
each of the routes, the times when buses arrive and leave those
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stops, and most important - it contains all the trips per day that the
agency plans to undertake with this schedule, indexed by trip id.
This value can be filtered and changed to meet each day’s demand
by reducing the number of trips that are undertaken. A specific
route may be traversed multiple times a day, going back and forth
between the originating stop and destination stop.

The GTFS data can be further analyzed to produce comprehen-
sive information about all the trips (aggregating the arrival times
at stops, heading off the bus, its block id, and trip id). A block id
implies the sequence of trips that the same vehicle has to make.
There are other details that we want to incorporate into the model,
by using the vehicle types used. The transportation demand is also
modeled into the system to give an estimate of the number of peo-
ple wanting to take the transit, along with the actual number of
people that are getting on and off the bus. The Traffic Control Inter-
face (TraClI) allows for controlling the SUMO simulator to extract
detailed information.

In the process, we want to generate the trips - their trajectory
and the route paths being traversed (in the form of edges). Taking
into consideration all these multiple factors discussed, we can feed
them to our simulator (SUMO). The simulator can be configured to
run for a set duration of time (most commonly, 24 hours).

The final step in this is to form the details of each trip that
were earlier defined in the GTFS. The simulator generates results
that consist of the unique trip id, bus types, bus stops, arrival and
departure times, and the route that the trip served. The list of trips
generated from the simulation successfully emulates the trips that
would have been made by the transit agency during a specific day.

3.1.2  Energy Estimation. With all the trips generated, we need to
know how much energy is used by each of the buses on the spe-
cific routes. Therefore, predictive models are required to estimate
the vehicle’s energy needs. As SUMO is a continuous, microscopic
simulator the predictive models are also microscopic in nature. The
microscopic models take as input distance covered, speed, accelera-
tion, weather, and elevation change and predict energy consumed at
one-second intervals. There are three classes of vehicles (diesel, hy-
brid and electric), each of which responds to the input features, and
impacts the grid, differently [32]. Therefore, separate energy con-
sumption models are trained for each of the three-vehicle classes.
The energy models are built on artificial neural networks, in ac-
cordance with current state-of-the-art [2]. Energy demands at the
trip level are derived by aggregating predictions along with the
scheduled trips in GTFS.

Each of the trips is processed through its respective model and
its speed, acceleration, distance covered, time taken, and weather
conditions are analyzed. These parameters help define the total
energy consumption for each trip. As one bus may travel multiple
trips (denoted by the same block id), the cumulative energy use
can also be measured for the entire day’s running for the bus. The
trips generated here contain a mix of ICE buses and electric buses.
For ICE buses, the energy use is in gallons of fuel consumed. For
the electric buses, the total energy used by them is considered
in terms of kWh (kilowatt-hours). Since our primary focus is on
electric buses, we separate them from the rest and continue further
analysis, such as finding the grid impact score (it is detailed in
further sections).
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Figure 2: (a) Taxonomy Feeder Model with Charger Location. (b) Load induced on charger when charged from a specific State of

Charge. (c) 24-hr external load on the simulated power grid.

The total energy use, in turn, is used to generate the state of
charge (SoC) metric. SoC is the primary metric of concern - low
SoC indicates the bus needs to be charged soon. An electric bus
usually starts the day’s first trip with a high SoC (almost 90% of its
battery capacity). It gradually uses up the battery’s energy through-
out the day’s trip, lowering its SoC. Thus, we can estimate the
SoC of the electric buses from the simulated results, which can be
further provided to the grid simulator, to perform the de-coupled
co-simulation.

Next, we describe the case study from our partner community
in Chattanooga that will be useful in understanding the simulation
operation. Then, we proceed to discuss the various steps involved
in the grid simulations and incorporate the information from the
Transit simulations into the EV or electric bus charging and analyze
its impact on the grid behavior. This section also provides the details
of quantifying the impact of EV charging on the grid performance
through a formulated grid impact score that includes the voltage
measurements, losses in the system, and total distribution system
load.

3.2 Case study of Chattanooga

In our simulation environment, the data is obtained from the Chat-
tanooga Area Regional Transportation Authority (CARTA). The
GTFS generated is from the actual day’s trips for Jan 11, 2022, for
24 hours, from 12 AM to 11:59 PM. This data contains the various
trips and the associated buses. To model the grid aspect (discussed
in the next section) we use a taxonomy feeder with 265 nodes (R5-
12.47-1) and a root node voltage of 13.8 kV that includes overhead
lines, underground cables, triplex lines, and triplex meters. The
medium voltage parts of the distribution feeder at the primary and
secondary distribution systems are usually modeled using over-
head lines and underground cables. These parts of the network
feed the large commercial loads and tertiary distribution networks,
where the terminal loads are located. The terminal connections to
the low voltage consumer loads at the residential level are usually
connected using triplex lines and the corresponding meters at such
nodes in the distribution feeder are called triplex meters. The feeder
represents a sub-urban and urban feeder section that has potential
connectivity to other feeders and models the representative archi-
tecture from Chattanooga®. The structure of the feeder is shown in

2The actual city feeder architecture is security-critical and cannot be shared publicly
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Fig 2a. The feeder structure is similar to the real feeder profile of the
Chattanooga region and hence is chosen for the present analysis.

3.2.1 Distribution Grid Components. Transportation electrification
has a direct relation to power grid operations. The EV charging can
cause sudden spikes of load increase in the distribution grid that
can cause issues like imbalance, increased losses in the network,
and drop-in voltages due to the increased load. The location of
the charger along with the amount of charging load should be
considered along with the detailed grid models to evaluate the grid
impact accurately.

In the current work, the location of the charger is chosen to be
closest to the largest load in the system mimicking a large commer-
cial location®. The charging station is modeled with two chargers.
The simulation of the electric bus and its impact on the grid is con-
sidered with a winter seasonal profile and a corresponding charging
profile is considered, based on the charging loads given in refer-
ence [4]. The charger load on the grid is determined by a linear
function (an approximation based on data presented in [4]). This
load function (Fig. 2b) describes the expected increase in the load
per phase on the grid when the EV gets charged. This exercise can
be repeated for advanced chargers and improved charging profiles
too, and the developed framework can easily integrate it into the
power grid models through the load that is reflected on the grid
during a charging event. Fig. 2b also gives the charger load per
phase and the derived 3-phase charger load function. The peak

3-phase load due to the charger (Pgiarger

for a single charger at the charging station. The charging current
and the charging power depend on the SoC of the battery when it
is charging. This profile is different for different kinds of batteries
and chargers. Based on the data available in reference [4], an aver-
age linear approximation is constructed that is used to model the
increase in the load on the distribution system as a function of the
SoC of the battery. Depending on the charging station models, the
rate of charging and the load on the grid can be modeled. These
are also dependent on the season, the charging time is slower in
winter as compared to summer.

The loads in the power distribution feeder are modeled with two
load profiles: commercial; and residential load profiles. The largest
3-phase balanced loads in the feeder are modeled as commercial

) is approximately 1 MW

31n future work, we will work on optimizing the location based on the analysis enabled
by the co-simulation discussed in this paper.
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Figure 3: (a) Overall steps to integrate the transportation and energy simulations.(b) The Transit system provides energy used
at every instant. We use the following linear function to estimate the SoC (this is calibrated for the electrical vehicles in

Chattanooga Fleet.).

loads. The remaining loads in the feeder are modeled as residential
loads with a residential load profile. The commercial and residential
load profiles are also considered for the winter season and shown
in Fig. 2c. These load profiles for the loads are assumed for a typical
weekday in winter in the US.

3.3 Modeling and Simulating the Impact on
Electric Grid

Note the electric simulation used in this study (as implemented
by GridLAB-D) is a quasi-steady-state time series analysis with an
unbalanced distribution system power flow at every second. This
simulation is configured with the feeder described in the previous
section and configured with weather profiles from the city. The
steps involved in utilizing the Transit simulation output to simulate
the charging of the electric buses for the corresponding SoC and
time are described in the flowchart shown in Fig. 3a. Estimating the
SoC based on total energy consumed is one important step in the
present decoupled co-simulation analysis. The Transit simulation
records the energy consumed in every trip along with the amount
of discharge of the battery (in terms of a drop in SoC with respect
to full charge). This information is represented through a linear
regression fit using all the discharge and energy consumption val-
ues for all trips simulated for a day in the Transit simulations. The
resultant linear function is shown in Fig. 3b. Using the SoC-Energy
relation, the end SoC is computed for every electric bus in simu-
lation at the end of its day’s trip or when SoC reached values in a
range of 15% — 20%.

3.4 Grid Impact Score

A key aspect of our analysis is the generation of grid impact score
(GIS) which is a modified version of the grid score introduced in
[24]. This requires collation of charging load, daily load, and load
flow analysis is performed to monitor nodal voltage deviations,
phase imbalances, line losses, and the apparent power drawn from
the feeder head to analyze equipment thermal loading. These mea-
surements are:
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e Nodal voltage deviation of the phases ¢ € {a,b, c},

Ui,gs — Unom

Al)i,¢ = (1)

Unom

o Imbalance factor [31] of the circuit after charging at node i at
time ¢ approximated by

]___Z)ZN 1-vV3-6a @)
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where,
4 4 4
vt +0ul +o
ab bc ca (3)

N (Uib + 01278 +02,)%
and v; and vy are the positive and negative sequence voltage, and
Uab» Upe, Ucq are the phase voltages corresponding to the phases
ab, be, ca.

Total line losses L in underground cables (L"9), overhead lines
(L°") and triplex lines (L'¥)after charging in the distribution
feeder for charger at node i,

Li =LY + LM+ L™ (4)

e Apparent power drawn from the feeder head (substation) f cor-

responding to the node i where the charger is placed at time
t,

Sf = Z Vf,qglf’(]g, Vo (5)
¢
where, the complex voltage and current at the feeder f are de-
noted by V¢ and If.
Now, we introduce a novel metric to measure the impact on grid.
This grid impact score(GIS) g; is given by,

-5 [W lmvi’j' w Li + w Re{Li}
gi Zn Wn ! ied 3 Avmax zImax ’ Re{Lmax}
Re{S¢}
sw—2 | ()
Re{Sox
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need for optimizing trip assignment [28]. (b) Distributions of bus occupancy at specific hours on route 4.

Here, Avmax,> Imax > Lmaxs nggx denote the maximum allowable
limits of nodal voltage deviation, imbalance factor, total system loss
and the apparent power drawn, respectively. Based on the above
measurands in (2)-(5), a novel grid score metric of charging at node
i at time t is defined, where, w,, Vn € {1,2,3,4}’s are the various
weights associated with the additive terms in (6) (normalized volt-
age violation, imbalance factor, loss, and apparent power drawn at
feeder’s head). These weights are introduced so that the planner
can choose to prioritize each contributing factor in the metric dif-
ferently. Uniform contribution from the contributing factors would
require each weight to be equal to 1. The joint grid score of multiple

chargers’ charging impact at a particular time can be derived using

an extension of the expression in (6). The time variable ¢ is dropped

for simplicity in the above derivation. The purpose of introducing

the grid impact score is it include in the planning and operation

decisions of the grid. This would enable the transit to make grid-
friendly choices resulting in reduced loss (otherwise to be borne by

all the users), and power quality issues and would aid in different

infrastructure upgrades benefiting everyone.

4 CASE STUDY

The simulator and its working are put to test here, as we discuss
simulating the operations of the electric buses and the effect on the
electric grid due to charging them. We look into two scenarios -
first, for a regular day’s traffic for the present day. The second case
is for the forecasted use of electric vehicles, as the EV load on the
grid is projected to be 15-30% of the total capacity, by 2050 [29].
The figures in our modeled assumptions are not far away from the
expected rise.
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4.1 Analysis of the day of operation

We now introduce the analysis of a day from January 11, 2022, as
described in Section 3.2. The traffic and trip data are generated
for the provided GTFS (obtained from the local transit agency),
to find the energy usage for the electric buses. Figure 4a shows
the maximum passenger occupancy across all trips grouped by
routes. Figure 5b shows the aggregated passenger density. Figure 5a
describes the energy efficiency in miles per gallon (we convert
the kWh from electric vehicles to gallons per mile - this is done
according to the standard conversion factor as defined by the United
States Environmental Protection Agency 1) Figure 4b shows the
cumulative energy consumed and distance traveled across all trips
on each route.

Table 1: Summary of five different charging scenarios that
were simulated

Bus # SoC at Charging Instant (%) Charging Start Time Charging End Time
1 49.93 12:00 12:18
2 24.30 14:17 14:47
3 33.65 15:12 15:38
4 15.68 15:35 16:11
5 66.75 18:14 18:23

The energy estimator runs through all the generated trips accord-
ing to the steps discussed earlier. It can provide a comprehensive
consumption metric not only for each trip, but also for blocks of
trips, and for each vehicle that ran. The SoCs for the electric ve-
hicles are then generated (Fig. 6a) and made available to the grid

“https://www3.epa.gov/otaq/gvg/learn-more-technology.htm



e-Energy °22, June 28-July 1, 2022, Virtual Event, USA

Sen, R, et al.

\— Energy consumed —— Distance covered

150 100 1=
0.8 —

0.6} _ 100

0.

~
T

Number of buses

Ey

Energy consumed (in mi/gal)
Distance covered (in miles)

H

0.77
0.76
0.75
0.74
£0.73
0.72
0.71
0.7
0.69

ﬂ

HHHO oLmifl

42
15

11:28

12:28

13:24

14:38
5

10:15
15:04
15:35
16:13
16:
17

Time

(@)

Speed (in mithr)

(b)

10 15
Time (hrs)

©

20 25

Figure 6: Results from the transit simulation for a day in January in Chattanooga. (a) SoC change for one bus with sequential
trips. (b) Average speed of the electric buses across all trips for 24 hours (c) Grid Impact Score across 24 hrs.

288 80 200 40
287 | —Phase A —Phase B —Phase C 70 .
—~ I~ < 30
2286 Z 60 150 2 @
%285 7 50 z 220
g 2 g o
3 284 2 40 00 £ ©
-
5283 =30 o I -
S 20 08 0
281 10 —Real Loss —Reactive Losses F] CH#l CH#2 - CHA#3  CH#4  CH#S
280 0 0 Charging instances
0 5 10 15 20 25
Time (hrs) 0 ’ l%me(hrsl)s 2 » m Usage (non-peak) Usage (peak)
(a) (b) (©

Figure 7: Results from the transit simulation for a day in January in Chattanooga. (a) Node Voltage at the charger location. (b)
Total Feeder Loss (c) Usage charge breakdown in 5 charging instances (Table 1).

simulator for analysis of the GIS. The average speed of the electric
buses is shown in Fig. 6b. During the simulation, we constantly
check the SoC of the vehicles and then estimate when the vehicle is
ready for charging (once it finishes its trip in the transit simulation).
Table 1 shows the summary of the inputs to one of the simulations
discussed in Section 4.1. The end SoC for each bus is assumed to be
80% of its capacity. For the time duration between 15:35 hours to
15:38 hours, both the chargers at the charging station are actively
charging the buses and during the rest of the charging cycles, only
one charger at the charging station is actively charging based on
the schedule of the Transit system. The grid simulation results are
summarized below. Figures 7a and 7b demonstrate the impact of
charging on the grid performance. The results show the voltage
at the charging node and the total feeder losses. The voltage dips
during charging due to an increase in the load and since the charger
is located at the end of the feeder the loss increase in the system
during the charging times can be observed clearly.

A grid impact score (GIS) is determined for the given scenario
and location of the charger. This GIS will depend on various pa-
rameters like the location of the charger, seasonal impact on the
charging profile, etc. For the presented simple case of low penetra-
tion of electric buses that has five electric buses charging at various
times that are modeled in a 24-hour day-long simulation, the GIS
is computed and its variation in 24 hours duration is shown in Fig.
6c. The GIS is relatively higher during charging (compared to the
instant just before charging) as there is a significant drop in voltage
and an increase in the system losses.

However, as other electric vehicles in the city are considered
and modeled to be charged in the area at the same time, the GIS
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would be much higher. A hypothetical case of high penetration of
electrical vehicles is described next.

4.2 Impact of additional electrical vehicles

For this part of the study, we estimate the presence of additional
electric vehicles that are charging in the vicinity. To analyze this,
the charging loads for the previous scenario are increased by 10
times. In this scenario, the GIS increases and may cause serious
disruption to the grid. Fig. 8c shows the comparison of the GIS and
how it increases under high penetration of other electrical vehicles
considering no other changes in the grid models. However, with the
evolving grid-edge technologies like real-time retail market designs,
and increased integration of renewable energy sources (RES), the
GIS is expected to be significantly higher. The deviation terms in the
GIS formulation are usually normalized by the maximum allowable
deviation - corresponding to each of the factors (e.g., voltage, loss,
etc). Thus, in case of no grid-related constraint violation, its value
should be within 0 and 1. However, in this case, the normalization
factor is chosen to be the maximum observed deviation in the lower
EV penetration scenario for ease of comparison. Therefore, in this
paper, the GIS value is allowed to exceed 1. In case of using the
framework for the charging optimization problem in the future, the
high penetration scenario is likely to cause constraint violations
leading to GIS values exceeding 1, and thus such scenarios would
be discarded.

Note that the Grid Impact Score (GIS) is a reflection of grid per-
formance parameters like voltages, systems losses, etc. Figures 8a
and 8b shows the impact of high penetration of electrical vehicles
and the integration of the charging infrastructure with the grid.
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The losses and the voltage drop in the system are more profound in
this case, however, these can be addressed by optimally scheduling
the EV (in our case, electric bus) charging to distribute these peaks
caused by the sudden increase in the charging loads. The GIS used
for these computations can be utilized as an indicator for determin-
ing the optimal operation of the integrated transit-grid systems.
These results indicate that considering various kinds of distributed
energy resources (DERs) along with large-scale electrification of
transportation will impact the grid behavior and will need coordi-
nated efforts to avoid unwanted disruptions to the operations of
the transportation and the grid infrastructure.

4.3 Charging Cost

CARTA and the electric utility’s rate structure are used to obtain
the cost of the charging model. The total cost of electricity for
recharging a bus’s battery does not only depend on how much
energy is consumed from the grid but also, on the rate at which
energy is drawn, i.e., power (kilowatts). The distribution utility
(EPB) bills two types of charges a large customer-usage charge and
a demand charge. The usage charge is proportional to the energy
used. This rate varies from peak to non-peak hours. Moreover, the
peak hours vary in season. The demand charge is proportional to a
portion of power drawn and applies only if it aggravates the peak
load. Based on EPB’s rates structure for commercial, government,
and industrial consumers, as shown in the GSA-2 rate [14], the
worst case and best-case costs for recharging the buses during the
stated times would be following as shown in Table 2. In addition
to the rate structure outlined in GSA-2, to introduce a time-of-use
usage charge, the peak time usage charge is assumed to be 1.5 times
the non-peak usage charge. The usage charge breakdown of the
charging instance shown in Table 2 is shown in Fig. 7c. The demand
charge for any of the instances, if applied, would be $5886.

Table 2: Electric Bus Charging Cost

Case Usage Charge ($) Demand Charge ($)
Best case (non-peak) 71 0
Worst case (peak) 106 5836

4.4 Discussion

The electrified transit operates in tandem with the underlying grid
system. However, electrified transit’s day-to-day operation often

540

does not consider the grid’s health. The transportation system also
has limited visibility into the grid. Some grid-related preferences
are baked into the offline, coarse pricing model of the charging.
This leaves room for additional improvement in planning and op-
eration that would be optimal for both systems. The framework
of the transportation-grid model presented in the paper provides
additional knobs for the integrated transit-grid system to account
for bringing greater social welfare by achieving the following goals:

® Reduced loss: As we can observe from Fig. 8b, the loss is often
significant due to the event of charging for the high penetration
of electric bus charging scenario. The loss also varies from node
to node. Any additional loss occurring in the system burdens not
only the EV fleet owner but all the customers by driving the cost
of production up.

Scaling down infrastructure upgrade cost: By considering GIS into
a scheduling algorithm, infrastructure upgrades could be scaled
down, in the process bringing additional benefits for the cus-
tomers by allowing for lower transportation costs.

Absorbing solar energy: The framework is also capable of inte-
grating weather-dependent distributed energy resources models
in the form of high solar energy scenarios, encouraging charging
during these peak production hours.

Enabling all of the above with the framework would ensure that
increased social benefit is achieved when the two entities (the
power grid and the transit agency) cooperate.

5 CONCLUSION

Electrification of the transit fleet provides numerous societal ben-
efits including a reduction in greenhouse gas emissions, reduced
cost, and improved environmental health. However, owing to the
substantial need to charge electric buses, it can cause major im-
balances in power supply and demand leading to grid instability.
Therefore, in this paper, we presented a grid-aware approach and
a simulation platform that can co-evaluate the grid impact of an
electrified transit system. A framework is presented to combine
detailed, agent-based simulations of public transportation, and the
power flow of the power grid distribution system. Both the systems
independently represent realistic daily conditions such as the tran-
sit’s traffic flow, energy use, schedules, etc. for the transportation
systems and also for power flow occurring due to nodal demands
at the distribution systems. The systems interact and influence
each other with a common point of coupling taking place when
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the charging of buses takes place. We further validated our exper-
iments using real world data and presented a detailed case study
to demonstrate our approach. The initial results presented here
show how we can capture and quantify several charging events’
impacts on the grid to further optimize the integrated operation.
This framework can further be used for developing and testing algo-
rithms for grid-aware transit operations. The framework is capable
of including customized charging profiles making it future proof to
account for newer charger models and improved charging profiles
that reflect as the load on the grid. The GIS can be used as a metric
in future optimal charging solution methods where it can reflect
on the feasible and infeasible regions for optimal charging. In the
future, we also plan to work on developing a decision agent in our
platform that uses machine learning techniques for optimizing the
charging and trip assignment operations.
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