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Abstract—Simultaneous Localization and Mapping (SLAM) al-
gorithms perform visual-inertial estimation via filtering or batch
optimization methods. Empirical evidence suggests that filtering
algorithms are computationally faster, while optimization meth-
ods are more accurate. This work presents an optimization-based
framework that unifies these approaches, and allows users to
flexibly implement different design choices, e.g., the number and
types of variables maintained in the algorithm at each time. We
prove that filtering methods correspond to specific design choices
in our generalized framework. We then reformulate the Multi-State
Constrained Kalman Filter (MSCKF) and contrast its performance
with that of sliding-window based filters. Our approach modular-
izes state-of-the-art SLAM algorithms to allow for adaptation to
various scenarios. Experiments on the EuRoC MAYV dataset verify
that our implementations of these algorithms are competitive with
the performance of off-the-shelf implementations in the literature.
Using these results, we explain the relative performance character-
istics of filtering and batch-optimization based algorithms in the
context of our framework. We illustrate that under different design
choices, our empirical performance interpolates between those of
state-of-the-art approaches.

Index Terms—SL.AM, estimation, control, computer vision.

I. INTRODUCTION

N SIMULTANEOUS Localization and Mapping (SLAM), a
I robotic agent maps its uncharted environment while locating
itself in the constructed map [1]. Applications include military
map construction, search-and-rescue missions, augmented and
virtual reality, and 3D scene capture [2]-[4].

Typical modern SLAM algorithms consist of front and back
ends. The front end performs feature extraction, data association,
and outlier rejection on raw sensor data. The back end then
uses dynamics and measurement models for inference over
the processed data, and produce compatible state estimates.
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Back end algorithms are often considered one of two classes—
Gaussian filtering or batch optimization based. Filtering meth-
ods iteratively refine the distribution of recent states under a
Gaussian prior [5]-[7], while optimization methods iteratively
estimate states as solutions to an optimization problem, with
objective constructed from inertial measurement unit (IMU) and
image reprojection error terms. In particular, factor graph-based
approaches efficiently solve optimization problems over past
variables via factorization schemes that maintain the sparsity of
the underlying least squares problem [8]-[11]. Keyframe-based
methods are optimization-based approaches that retain only a
small subset of maximally informative frames (“keyframes”)
in the optimization window arbitrarily spaced apart in time,
while dropping all other poses [12]. Empirically, both classes
of algorithms attain state-of-the-art performance, though the
latter often attain higher accuracy at the cost of longer compute
times [2], [12], [13].

Prior literature contrasted theoretical and empirical properties
of filtering and batch optimization algorithms. Scaramuzza and
Fraundorfer compared filtering and bundle adjustment-based
methods for visual odometry [14], [15]. Frese et al. surveyed
the use of grid-based and pose graph-based SLAM algorithms
from a practitioner’s perspective [16]. Huang and Dissanyake
conducted a theoretical study of the consistency, accuracy,
and computational speed of filtering, optimization-based, and
pose-graph SLAM [17]. Khosoussi et al. exploited sparsity in
SLAM problems by conditioning on estimates of robot orienta-
tions [18]. Strasdat et al. conducted Monte Carlo experiments
on visual SLAM algorithms [19], revealed that including more
features in the back end increased accuracy more (compared to
including more frames), and concluded that bundle adjustment
outperforms filtering, since its computation time increases less
drastically with the number of features.

In this work, we build upon prior literature by formulating a
unified optimization-based framework for the SLAM back end
that encompasses a large class of existing, state-of-the-art SLAM
algorithms. We use this unified framework to recast the Ex-
tended Kalman Filter (EKF), Multi-State Constrained Kalman
Filter (MSCKF), and Open Keyframe Visual-Inertial SLAM
algorithm (OKVIS) as optimization-based back-end algorithms,
and compare the empirical performance of the reformulated
MSCKEF with that of sliding-window optimization-based back-
end algorithms, including the keyframe-based approach of Open
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Keyframe Visual-Inertial SLAM [12]. Somewhat surprisingly,
the MSCKF outperforms sliding window filters of compara-
ble sizes on several datasets, despite not performing multiple
Gauss-Newton updates. We use our generalized framework to
analyze these empirical findings.

II. SLAM: FORMULATION ON EUCLIDEAN SPACES

A. SLAM on Euclidean Spaces

SLAM estimates two types of variables: states and features.

The state at each time ¢, denoted x; € R%, encodes infor-
mation describing the robot, e.g., camera positions and ori-
entations (poses). Feature positions available at time ¢ in a
global frame, denoted {f; ;|j =1,...,p} C R, can be ob-
tained by analyzing information from image measurements
{2517 =1,...,p} C R% and state estimates; these describe
the relative position of the robot in its environment.

States and features are described by an infinitely differentiable
(i.e., C*) dynamics map g : R% — R% and a C*>° measure-
ment map h : R% x R% — R% via additive noise models:

wy ~ N(0,%,), (1)
v, ~N(0,3,), )

Typ1 = g(x) + wy,

zj = h(e, fr5) + ve g,

where 3, € R%*d 3 > 0and 3, € R%* ¥, > 0.

For localization and mapping, SLAM algorithms maintain a
full state (vector) T; € R?, in which a number of past states and
feature positions are concatenated. The exact number and time
stamps of these states and features vary with the design choice of
each SLAM algorithm. For example, sliding-window filters de-
fine the full state T7 := (T¢—n41,-- -, &1, frp—qtis- s ftp) €
R?, with d := d,n + drq, to be a sliding window of the most
recent n states, consisting of one pose each, and the most
recent estimates, at time ¢, of a collection of ¢ features [5], [6].
Batch optimization methods, on the other hand, maintain all
states and features encountered in the problem up to the current
time [8]-[11].

Equations (1) and (2) do not involve overparameterized state
variables, e.g., quaternion representations for poses, which are
discussed in Section III.

B. SLAM as an Optimization Problem on Euclidean Spaces

SLAM estimates state and feature positions that best en-
force constraints posed by given dynamics and measurement
models, as well as noisy state and feature measurements col-
lected over time. This is formulated as the minimization of
the sum of weighted residual terms representing these con-
straints. For example, weighted residuals associated with the
prior distribution over 7; € R, the dynamics constraints be-
tweenstates T;, T;+1 € R andthe reprojection error of feature
f; € R corresponding to the state z; € R% and image mea-
surement z ; € R%, may be given by /% (Z7 — p0) € R,
Su(@ip1 — g(2:)) € R%, and 3,2 (215 — h(wi, fi)) €
R respectively (here, 1 <i¢ <n—1,1 < j < q). We define
the running cost, ¢ : R%="+454 — R as the sum of weighted
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norm squares of these residuals. For example, for a sliding-
window filtering algorithm for SLAM:

t—1

c(@z) = |7 — poll3.0 + > i — 9@
i=t—n+1

P t
D D D ER R ICN ] SR E)

j=p—q+1li=t—n+1

where ||v]|% := v Av for any real vector v and real matrix A of
compatible dimension.

To formulate SLAM as a nonlinear least-squares problem,
we stack all residual terms into one residual vector C'(Z7). For
example, for the sliding-window filter given above:

o) = | (5@ - )

(Sa2nin = glwn) - (522 - glw))

-
(EU 1/2(Zt—n+1,p—q+1 — h(in1, ft’p_q+1))) o
T
(251/2(zt,n+1_,p — h(x4—nt1, ft,p))) e
-
(Z;l/Q(Zt’p7q+1 - h(xh ft,p*lI+1))> e

T
(251/2(2':&,17 — h(xy, ft,p))) } € R d=tnad.

Thus, ¢(7;) = C(7;) " C(7;), and the SLAM problem is now
reduced to the nonlinear least squares problem below:

min .¢(7;) = min .C (%) ' O(77) )

Section IV introduces the main algorithmic submodules used to
find an approximate solution to (4).

III. SLAM: FORMULATION ON MANIFOLDS

Here, we generalize the SLAM formulation in Section II to
the case where dynamical states are defined on smooth man-
ifolds rather than Euclidean spaces. SLAM often involves the
orientations of rigid bodies, which evolve on a smooth manifold
embedded in an ambient space, e.g., rotation matrices expressed
as unit quaternions. In such situations, we use boxplus () and
boxminus (H) operators, defined below, to perform composition
and difference operations in the iterative algorithm presented in
Section IV, while enforcing constraints imposed by the mani-
fold’s geometric structure.

Suppose the full state = evolves on a smooth manifold M,
with dim(M) = n. For each x € M, let 7, : U, — V, be a
diffeomorphic chart from an open neighborhood U, C M of
x € M to an open neighborhood V,, C R"™ of 0 € R"™. Without
loss of generality, suppose 7, (x) = 0. The operators B : U, X
Ve, —=UzyandB: U, x U, — V, are defined by:

zB6=m,"(0) 5)
yBr=m, (y) (6)
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In essence, B adds a perturbation § € R", in local coordinates,
to a state x € M, while B extracts the difference § € R"”, in
local coordinates, between states z, ' € M covered by the same
chart. Below, “0” often describes an error or increment to a
nominal state on the manifold.

A. Manifold Examples

This subsection gives examples of the HH, H and 7 operators
for manifolds that occur widely in SLAM: the set of unit quater-
nions, H,,, and the set of rotation matrices, SO(3).

Each g € H,, is expressed as ¢ = (g, ¢, ) where ¢, € R and
@, € R3 denote the scalar and vector (imaginary) parts, respec-
tively, with |lq|] = \/¢2 + ||@ ||2 = 1 (JPL convention). Here,
the coordinate map 7 : H,, — R3 is defined as the Log map on
H,; its inverse 77! is the Exp map. Specifically, we write each
q € H, as g = (cos(4), sin(£)) for some 6 € [0,7], & € R®
with |||| = 1, i.e., the quaternion ¢ implements a rotation about
the axis & by 0 radians counterclockwise. Then, 7 : H, — R3
and 7! : B,(0) — H,, are defined by: (B, (0) := {z € R3:
lz]|]2 < 7} denotes the image of )

m(q) = Log(q) = 04,
71 (05) = Exp(0&) = (cos(6/2), sin(6/2)3).

The H and H maps are then implemented via the standard
quaternion product % : H,, x H,, — H,:

o BW = g x Exp(d)
ga Bgp = Log(g, " * a)
For SO(3), we define B and B similarly, i.e.,
R, B& =R, Exp(&)
R,B Ry, = Log(R R.)

Often, the full state in a SLAM problem exists in the Cartesian
product of a finite collection of manifolds, since it contains poses
and features on their own manifolds. For a product manifold
My x My, with projection, increment, and difference maps al-
ready defined on M and M, we define Hand Hon M x My
by:

(91,92) B (&1,62) = (g1 B &, 92 B &)
(91,92) B (h1,h2) = (91 B hi,92 B ho)

B. SLAM as an Optimization Problem on Manifolds

The SLAM problem can be formulated on manifolds using
modified cost functions, where plus and minus operations are
replaced with B and H when necessary. (Appendix Al).

IV. MAIN ALGORITHM

A. Algorithm Overview

This section details submodules for a general SLAM algo-
rithm, using state variables and cost terms defined in Sections II
and III. We first introduce a formulation on Euclidean spaces.
Below, denote the state and concatenated cost vector by z; € R
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and C' : RY — R?c respectively. (e.g., the sliding window filter
in Section II would correspond to d = d,n + dyq and d¢ =
(2n — 1)d, + nqd.). The SLAM problem is then equivalent
to solving the nonlinear least-squares problem (4), reproduced
below:

min.¢(77) = min..||C (%) 3.
Tt T

B. Gauss-Newton Descent

Gauss-Newton descent minimizes ¢(T;) via Gauss-Newton
steps (Alg. 3), by iteratively approximating ¢(Z7) about a given
linearization point Z;* as a linear least-squares cost term, i.e.,

min.c(77) = min.|[77 - pelfa +o@ —z") (D

forsome p; € R%and 3, € R?*?, The theorem below describes
the linearization procedure required to obtain ji; € R% and 2, €
R4*4, and the approximation involved.

Theorem 4.1: (Gauss-Newton Step) Let T;* € R? be a given
linearization point, and suppose J := 37% € Réexd has full
column rank. Applying a Gauss-Newton step (Alg. 3) to the
cost ¢(Z7), about 7;* € R yields the new cost:

c(@) = | — pell§0 + 0@ — 77),
where 1, € R% and 3y € R4 are given by:
S ()7
e — T — (JT LT C(@).

Proof: See Appendix (Section B2). |

C. Marginalization of States

The marginalization step (Alg. 4) reduces the size of the
SLAM problem by removing states that are no longer rele-
vant, thus improving computational efficiency. First, we par-
tition the overall state 7; € R? = R *4x into a marginal-
ized component Ty \; € R | to be discarded from 77, and a
non-marginalized component Ty ¢ € R, to be kept. Then,
we partition ¢(77) into two cost terms: ¢ (77 x ), which depends
only on non-marginalized state components, and ¢z (77, T¢,07)
which depends on both marginalized and non-marginalized state
components:

c(T7) = Tk, Tar) = c1(Tk) + 2(Tk, Tar)

1C1(@R)|15 + [|C2 (K, Zar) |13

Here, C,(Tx) € R4t and Cy(Tx,Tar) € R denote the
concatenation of residuals associated with ¢;(Tx) and
c2(Tx, Tar) (With de = do1 + de2). To remove T7 a7 € R9M
from the optimization problem, observe that:

min¢(Tz) = min
Tt Tt, K Tt, M

(e1(Ter) + co(Tri, Trar))

— min (11Cs (770 + min | Ca(omre, 7))
t, M

Tt K
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To remove T; 57, we approximate the solution to the inner
minimization problem by a linear least-squares cost, i.e.:

min [|Cy(Tz 0, Te,n) 13 ~ [Tk — Ty x5
Tt, M t, K

for some i i € R« and ¥, x € R¥x*dx  Since
|Co(Trx, Tear)||3 is in general non-convex, we obtain
Ty, i and 3 i by minimizing the first-order Taylor expansion
of ||Co(Tr x, Te.ar)||3 about some linearization point. Below,
Theorem 4.2 details the derivation of 1, ; and it, % - (For the
proof, see Appendix B3).

Theorem4.2 (Marginalization Step): LetT;* € R?be a given
linearization point, and suppose J := g—% € Rexd has full

aC doxdg ._ _oC
7T eR LIy = 3W€

Rdcxdar - 1f C (T, Trx) were a linear function of T7 =
(Tt Tr.i ), then applying a Marginalization step (Alg. 4) to the
cost ¢(Ty), about the linearization point Tp* = (2} ., z} ;) €
R4, yields:

column rank. Define Jg :=

min ¢(Ty i, Trar) =min . (cl(xt,K) + min cz(xt,K,mt7A1)> ,

o Tt K ZTt, M
®)
where Y ;¢ € RIx*4x and y; i € R9% are given by:
_ -1
Lo = (T [I— In(Iapdn) " ag] Jx) s ©)
p i =17 e — So S [T = T (g Jar) " T ag] Ca(f).
(10)

D. Main Algorithm on Manifolds

The Euclidean-space framework above can be directly ex-
tended to a formulation on manifolds, by using concepts in
Section III to modify the dynamics and measurement maps in
Section II, as well as the cost functions, Gauss-Newton steps, and
marginalization steps in Sections IV-B, IV-C. When appropriate,
plus and minus operations must be replaced with B and H
(Appendix A2).

V. EQUIVALENCE OF FILTERING AND OPTIMIZATION
APPROACHES

Here, we demonstrate the equivalence of filtering and batch
optimization-based SLAM algorithms, using the Extended
Kalman Filter (EKF, in Section V-A) and Multi-State Con-
strained Kalman Filter (MSCKE, in Section V-B), as examples.
Although similar results exist in the optimization literature, they
do not analyze algorithmic submodules unique to SLAM, e.g.,
feature incorporation and discarding [20]. For an introduction to
the classical formulations of EKF and MSCKF SLAM, please
see Appendices C2, C4.

A. Extended Kalman Filter (EKF), on Euclidean Spaces

At each time ¢, the EKF SLAM algorithm on Euclidean
spaces maintains the full state vector Z; := (z, fi1,..., fi.p) €
Rd=tpds consisting of the most recent state z; € R4 and
feature position estimates f; 1,..., fip € R9s. At initialization
(t = 0), no feature has been detected (p = 0), and the EKF
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full state is simply the initial state 7o = o € R%, with mean
o € R and covariance ¥y € R *4=_ Suppose, at the current
time ¢, the running cost cpx 4o : R4 TPds — Rd=trds jg:

CEKFL0 = ||T — Mt||§;17

where 7 := (x4, fi1,- .., fr,p) € R%=TP4 denotes the EKF
full state at time ¢, with mean yi; € R%*P4s and covariance ©; €
R(detpds)x(detpds) First, the feature augmentation step ap-
pends position estimates of new features f 41, ..., fp+p € RYr
to the EKF full state x4, and updates its mean and covariance.
In particular, feature measurements z; ,,41,..., 2 ptp € R4-
are incorporated by adding measurement residual terms to the

current running cost cgi r,¢,0, Creating a new cost CEg p1 :
Réa+p+2)ds 5 R:

CEKF,t,l(it? ft,p+17 RN ftvl)"!‘p/)
p+p
= ||z — Mt||22;1 + Z 2tk — (e, ft,k)||22;1'
k=p+1

In effect, cg k F+,1 appends positions of new features to Z;, and
constrains it using feature measurements residuals.

Next, the feature update step uses measurements of fea-
tures contained in Z; to update the mean and covari-
ance of Z;. More precisely, feature measurements z; 1., :=
(2t1,---,2t,p) € RPY=, of the p features fi,..., f, included
in x4, are introduced by incorporating associated measurement
residuals

to the running cost cpk 0, Creating a new cost Cpr r¢,2 :
Ré=+Pds 5 R:

P
corre2(@) = 8 = pell5a + Dz = h(ze for) 3
k=1

A Gauss-Newton step then constructs an updated mean f; €
R%+Pds and covariance ¥; € R(%=+rds)x(detrds) for 7, cre-
ating a new cost cppy 3 1 R& TPl — R:

corr3(E) = & — |21,
t

which returns the running cost to the form of cgx 7 10.

The state propagation step propagates the EKF full state
forward by one time step, via the EKF state propagation map
g : Rd=tpds o Ratpds

To propagate z; forward in time, we incorporate the dynamics
residual to the running cost cggr,,0 to create a new cost
CEKF,t4 " R2d=tpdy 5 R:

cerFta(Tt, o) = || T *WH%A + |41 — g(xt)llézul.
t

In effect, cpxF,,4 appends the new state x4 € R% to 7,
while adding a new constraint posed by the dynamics residuals.
A marginalization step, with & g := (@4q1, fra,. .., frp) €
R%=+Pds and 74 pr := 24 € R%, then removes the previous
state 2; € R% from the running cost. This step produces a mean
frir1 € R%+Pds and a covariance ¥, € R(detpds)x(datpdy)
for the new EKF full state, Z; 1 := Z; . The running cost
is updated to cpg F 41,0 : R%TP — R:

CEKF,t+1,0(9Et+1) = ||i’t+1 - ,u't+1H§];Jlr1u
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which returns the running cost to the form of cgx Ft0-

The theorems below establish that the feature augmentation,
feature update, and state propagation steps of the EKF, presented
above in our optimization framework, correspond precisely to
those presented in the standard EKF SLAM algorithm (Alg.
5) [5], [21]. (For proofs, see Appendix C3).

Theorem 5.1: The feature augmentation step of standard EKF
SLAM (Alg. 6) is equivalent to applying a Gauss-Newton step
0 CExFt1: Rdatpdy)+p'dy — R, with:

cerFi,1(Tts frprts - frprp)
p+p
= |2 — ﬂt”;;l + Z |zt — h(it,ft,k)”%;l-
k=p+1

Theorem 5.2: The feature update step of standard EKF SLAM
(Alg. 7) is equivalent to applying a Gauss-Newton step on
CEKFt2": Ré=tprds R, with:

P
cerF2(Te) o= [T = “t”Qz;l + Z 2t — h(ze, ft,k)”zz;l-
k=1

Theorem 5.3: The state propagation step of standard EKF
SLAM (Alg. 8) is equivalent to applying a Marginalization step
to cpr e R2eTPd — R, with:

cpkpea(Te 1) = [T = TlL o + oo — g(@o) 15
t

where jt,K = ($t+1; ft,la ceey ft,p) c Rd=tpds and LfﬁmM =
Ty € R4,

Remark V.1: In practice, Gauss-Newton steps for pose aug-
mentation can be delayed and done with feature updates.

B. Multi-State Constrained Kalman Filter (MSCKF), on
Manifolds

The MSCKEF algorithm maintains a full state, £, € Ay X
(&)™, containing the most recent IMU state, zvy € Ximu and
n recent poses, (1, ...,T,) € (X,)™

Ty = (T MU, 1, - - -, Tn) € Xivu X ()",

with mean gy € Xjmy X (&))" and covariance X, €
R (dvutnds)x(dmutndz) — Ag new poses are introduced, old
poses are discarded, and features are marginalized to update z,
the mean iy, covariance ¥;, and n € N accordingly.

At initialization (f = 0), no pose has yet been recorded (n =
0), and the full state ¢ is the initial IMU state Zo My € Xmu,
with mean g € Xy and covariance Xy € Rmuxdmu  Thus,
Zo = po optimizes the initial running cost carscx F0 @ Ximu —
R in our algorithm:

cmscrF,0(To) = [|Z0 B /‘0“2251'

Suppose that, at the current time ¢, the running cost ¢y scx Ft,0
XIMU X (Xp)n — XIMU X (Xp)n is:

emscrro(T) = |7 8 /Lt||22217
Where It e ‘)(IMU X (Xp)n and Et - R(dIMU+ndm)X(dIMU+’ndm)

denote the mean and covariance of the full state Z; :=

(TLMU, X1, - - - Tp) € Xmu X (&))" at time ¢, consisting of

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Algorithm 1: EKF SLAM on Euclidean Spaces, as an
Iterative Optimization Problem.

Data: Prior N (10, X0) on 2 € R%  noise covariances .,
3., dynamics map g, measurement map h, time
horizon T'.

Result: Estimates &, € R%, vVt € {1,--- T}

[

Jo(@) = llwo — poll§1
0

2 p+ 0.

3 fort=0,1,---T do

4 (2t,p+15 " » Zt,ptp’) < Measurements of new features.

s | cost « coste + P 2k — hlwe, fo)l2 s

6 e < (ﬂtvg(xhzt,p%»l)a"' 7€(xt>zt,p+p’)) €
Réa+w+p)dy

7 Dt it, cost; <— 1 Gauss-Newton step on cost;, about fiz
(Alg. 3).

s | pept+yp

9 (zt,1,+++ , 2t,p) < Measurements of existing features.

10 costy < costy + > b, [[ze.k — h(zy, fk)H;;l

1 [, f)t, cost; <— 1 Gauss-Newton step on cost, about fi,
(Alg. 3).

12 .’i}t < ﬂi e Rdm-‘rpdf‘

13 if ¢ < T then

14 costy — costy + [|zi41 — g(azt)||22_1

15 Jht1, 2t+1,COSte — 1 Marginalizgtion step on

coste+1 With xar = x4, about (fiz, g(fiz)) (Alg. 4).
16 CoSty1 < Hmt+1 — MtJrlH;—l
t+1

17 end

18 end

19 return Zo,--- , 27

the current IMU state and n poses. When a new image is re-
ceived, the pose augmentation step adds a new pose T, 41 € X),
(global frame) to Z, derived from z!MY € Xy, the IMU
position estimate in the global frame, via the map ¢ : Xy X
(Xp)n X Xmu — XAy, 1.e.,

=, IMU
Tpy1 =9 ($ta xn-i,-l) € Xp.

The feature update step uses features measurements to update
the mean and covariance of Z;. In MSCKEF, features are discarded
if (A) unobserved in the current pose, or (B) n > Ny,ax, a speci-
fied upper bound, in which case | Nyax | /3 of the n poses, evenly
spaced in time, are dropped after features common to these poses
are marginalized. Let S, ; and S, 5 denote sets of pose-feature
pairs (z;, f;) from cases (A) and (B) above, respectively, and let
Sy denote the set of features to be marginalized (Alg. 9). These
constraints are then incorporated into the running cost, creating
anew cost carsckr,2 @ Xmu X (Ap)" — R:

emscrr2(Ty)

>

(zi,fj)€52,1USz 2

= 7 Bl + l2sg B h(ai, £7) 131,

where z; ; € R% denotes the feature measurement of fea-
ture j observed from pose z; € X),. By using Gauss-Newton
linearization, we leverage constraints posed by the measure-
ment residuals to construct an updated mean for Z;, denoted
it € Xy X (X),)™, and an updated covariance for #;, denoted
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3, € Rldmutndz)x(dmutnds) ~Ag g result, our cost will be up-
dated to CMSCKF,t,3 * XimMu X (Xp)n — R:

cmsckFe3(Te) = || T EImH%,l’
t

which assumes the form of cyrsc K F 1,0

The state propagation step propagates the full state by incor-
porating dynamics residuals into the running cost cyrsc K F.t,0,
creating anew cost cprscx Fii,4 @ Xmu X (Ap)" x Ximu — R:

cMSCK Fa(Tes Teg1,MU)
= |2y EWII%A + [|zi41,mu B QIMU(xt,IMU)“QZ;L
t

Ineffect, cprsc K F,t,4 appends the new IMU variable z; 1 imu €
Xmu to the current full state Z; € vy x (A,)", and con-
strains this new full state via the dynamics residuals. A
marginalization step, with Z; x = (Ty41,MUs T15 .-+, Tn) €
Ximu X (X,)™ and 4 pr := x4 mu € Ximu, then removes the
previous IMU state, x; vy, from the running cost. This pro-
duces a mean ;11 € Xmy X (X},)™ and a covariance ;41 €
R (dvutnds)x(dmut+ndz) for the new MSCKEF full state, 7,1 :=
fft’K = (xt+1,lMU7x17 R ,.’En) € Ximu X (Xp)n The running
cost
is updated to CMSCKF,t+1,0 * Ximu X (Xp)" — R:

eMSCKF4+1,0(Zt41) = || Te41 B /«Lt+1||§;;1r17

which returns the running cost to the form of cprscr Ft,0-

The theorems below establish that the feature augmentation,
feature update, and state propagation steps of the MSCKE,
presented above in our optimization framework, correspond
precisely to those presented in the standard MSCKF (Alg. 9) [6].
(For proofs, see Appendix C5).

Theorem 5.4: The pose augmentation step of the standard
MSCKEF (Alg. 10) is equivalent to applying a Gauss-Newton
step to cprSCKFt1 : Ximu X (Xp)n X Ximu — R, with:

cMmscr P (Tt Tng1)
= 12 B pell3r + € Hlznsr Bo(@e ani)li3,
and taking € — 0 in the resulting (augmented) mean p; and
covariance ;.
Theorem 5.5: The feature update step of the standard MSCKF
(Alg. 11) is equivalent to applying a Marginalization step to
CMSCKF,t2 * Ximu X (Xp)n x RISslds — R, with:

crscFe2(Tt, fs))

>

(zi,f)€S2,1US: 2

= 1@ B puells + 20 B Ao, £) 00,

where fs, € RIS714s denotes the stacked vector of all feature
positions in Sy (see Alg. 9).

Theorem 5.6: The state propagation step of the standard
MSCKEF (Alg. 11) is equivalent to applying a Marginalization
Step o cprScK Fyt,4 ¢ Ximu X (Xp)n X Ximu — R, with:

emscrF,a(Tt, Tep1,mU)

= (2 BElE + lzerimo B g (@eamo) |15 -
t
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Algorithm 2: Multi-State Constrained Kalman Filter
(MSCKF) on Manifolds, as Iterative Optimization.

Data: Prior N (o, X0) on znvu,0 € Ximu, noise covariances
Yw, Xv, dynamics gimu, measurement map h, time
horizon T', Pose transform ¢ (IMU — global) , € > 0.
Result: Estimates z; for all desired timesteps
te{l,---,T}.
1 costy + ||wo B pol|%;, - (Initialize objective function).
2 SZ7 Sm, Sz,h Sz,z < ¢
3 (n,p) < (0,0)
4 fort=0,---,7T do

5 while new pose x,1 € A}, recorded, new IMU
measurement not received do

6 costy — costy + €| zpr1 B (Fe, 20|13

7 Wi, 3¢, costy <— 1 Gauss-Newton cost; (Alg. 3),

about (pu¢, 9 (pe, zh4)) with € — 0.

8 {2n41,;} + Feature measurements at ,1
9 Sz 4 52U {(@nt1, fj)|f; observed at n + 1}
10 n<n+1
11 if n > Npax — 1 then
12 Se < {zilimod 3=2, and 1 <: < n.}
13 Saq {(l’l,f]) S Sz|l’z S
Sz, feature j observed at each pose in Sz}
14 end
1s Sz + {(xi, f;) € S:|f; not observed at z, }.
16 costy —
costy + Z(xi,fj)eszJUSz,z l|z:,; B h(zi, ft,j)HE;1
17 L, ft, cost; <— 1 Gauss-Newton step on costy,
about p; (Alg. 3)
18 Ty ot € Ximu X (Xp)n
19 S, SZ\(SZJ @] {(ml,f])|mz S Sz})
20 Reindex poses and features in ascending order.
21 () < (p— |S¢lim — | Sa)
22 end
23 if t <T then
24 costy ¢ costy + ||z¢+1,mu B glMU(l't,[MU)H;;L
25 [t+1, 2¢4+1,costy <— 1 Marginalization step on costy,
about (7ir, g(pe.mu)) (Alg. 4)
26 end
27 end
28 return Zo, - T € Xy X (Xp)"
with jt,K = (xt+1,IMU7 Tlyenny ZEn) S XIMU X (Xp)n and

Ty, = Ty MU € XiMu-

C. State-of-The-Art SLAM Algorithms

Our framework balances the need for computational effi-
ciency, estimation accuracy, and map precision, tradeoffs ob-
served in design choices of existing SLAM algorithms.

e FExtended Kalman Filter (EKF): [5], [21], [22] -The EKF
iteratively updates position estimates of the current pose
and all observed features; all past poses are marginalized.
This design favors computational speed over localization
precision. A variant, the iterated Extended Kalman Fil-
ter (IEKF), takes multiple Gauss-Newton steps before
marginalization to tune the linearization point. This im-
proves mapping and localization accuracy but increases
computation time.

®  Multi-State Constrained Kalman Filter: [6],[7], [23]—The
MSCKEF iteratively updates a full state, with the current
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Fig. 1. Localization on Vicon Room 2 (medium). Drift from ground-truth is
plotted against the distance traveled along the ground-truth trajectory, sampled
at 5 mintervals. (Note: MSCKF and iMSCKEF curves almost overlap). We apply
trajectory alignment as in [29].

IMU state and n past poses; here n < Ny, a specified
upper bound that trades off accuracy and computational
speed.Features are stored separately.

o Sliding Window Smoother, Fixed-Lag Smoother: [10], [24],
[25]—The fixed-lag smoother resembles the MSCKEF, but
performs multiple steps of Gauss-Newton descent be-
fore the marginalization step, to tune the linearization
point.This improves mapping and localization accuracies
at the cost of increasing computation time.

® Open Keyframe Visual-Inertial SLAM (OKVIS): [12]—
OKVIS updates a sliding window of “keyframes”, poses
deemed most informative,which may be arbitrarily spaced
in time.Keyframe poses leaving the sliding window, and as-
sociated landmarks, are marginalized. This design aims to
improve estimation accuracy by maximizing information
encoded by the stored poses, without increasing computa-
tion time.

® GraphSLAM and Bundle Adjustment: [21], [26] —These al-
gorithms solve the full SLAM problem, with no marginal-
ization. Their state estimation can be more accurate than
the above algorithms, but also far slower.

VI. EXPERIMENTS

This section describes the empirical performance of different
marginalization schemes on pose tracking of real-world data. We
examine the MSCKEF [6], a standard sliding window filter, and
the keyframe-based OKVIS algorithm [12], each implemented
as an incremental optimization algorithm of the form presented
in this letter.

A. Simulation Settings

Experiments are performed on the EuRoC MAV dataset of
stereo image sequences and IMU data [27]. We standardize
the front-end across all experiments and implementations, using
BRISK keypoint features with brute-force matching. Outlier re-
jection between the two cameras in the stereo setup is performed
using a simple epipolar constraint test, and outlier rejection

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

between stereo frames taken at subsequent timesteps is per-
formed with reprojection distance test using the latest estimate
of the feature position and camera pose. We use GTSAM in
C++ in the back-end to construct and update costs, compute
Jacobians, and implement Gauss-Newton and marginalization
steps [8], [27]. To construct dynamics and measurement maps,
we collect on-board IMU odometry measurements, and apply the
IMU pre-integration scheme in [28]. (Appendix D). We apply
trajectory alignment as in [29].

B. Results and Discussion

Localization root-mean-squared error on Vicon Room and
Machine Hall sequences from the Euroc MAV dataset are pre-
sented in Table 1. Due to space constraints, only the estimator
drift on the V2_02 sequence is plotted (Fig 1). First, we analyze
standard sliding window filters of window size n = 5, 10, 20
frames. Features are marginalized when they are only visible
in the oldest frame in the optimization window. EKF and iEKF
are also included, and are implemented as sliding window filters
with window size 1. For the former, only 1 Gauss-Newton step
is taken, and in the latter, steps are taken until convergence.
Next, we implement MSCKF as an incremental optimization
algorithm (Section V-B), with window size n = 5, and with two
optimization schemes: (1) the standard formulation, with one
Gauss-Newton step after marginalization, and (2) a version that
takes multiple Gauss-Newton steps until convergence (“Iterated
MSCKE;” or iMSCKF). Finally, we implement OKVIS with
IMU window size n = 3, 10, keyframe window size k = 5, and
marginalization and keyframe selection schemes identical to
those in Leutenegger et al. [12].

Our experiments show that, overall, OKVIS outperforms
baseline sliding window filters, even when the latter has a
larger window size. Moreover, our MSCKF implementation
outperforms sliding window filters and OK VIS, even under chal-
lenging camera motions, despite the latter maintaining nonlinear
constraints between camera poses and landmarks, and taking
multiple Gauss-Newton steps per iteration. This persists even for
sliding window filters with larger window sizes. Taking multiple
Gauss-Newton steps in the iMSCKEF estimator did not noticeably
improve performance over the standard MSCKEF, as illustrated
in Fig. 1.

In contrast with sliding window filter and OKVis imple-
mentations of comparable sizes, the MSCKF recovers better
from localization errors, by employing a marginalization scheme
that always maintains poses arbitrarily far in the past. This is
because older poses represent higher baselines and thus supply
better localization information [7]. For instance, the MSCKF
maintains the first pose in the estimator for a long time, rendering
subsequent estimates more consistent with the initial pose, and
thus minimizing drift at the start of the trajectory. In contrast,
although OKVIS allows keyframes to be maintained arbitrarily
far in the past, keyframes are usually roughly evenly spaced
and form a sliding temporal window in camera motions. Thus,
earlier poses are quickly marginalized, causing estimates to drift
more at the start of the trajectory. Furthermore, the MSCKF
includes features in the optimization window only after they
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TABLE I
ROOT-MEAN-SQUARED ERROR IN TRANSLATION AND ROTATION ON VICON ROOM AND MACHINE HALL SEQUENCES FROM THE EUROC MAV DATASET. WE APPLY
TRAJECTORY ALIGNMENT AS IN [30]
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[[ Data MSCKF(n=5) __ iMSCKF(n=5) _ OKVIS(n=10k=5) _ OKVIS(n=3,k=3) SWE(n=10) SWF(n=20) SWE(n=5) EKF iEKE I
VI_01 _ 0.09m, 2.87 0.09m, 2.87° 0.20m, 3.62 0.23m, 3.68 0.36m, 3.12° 0.36m, 4.72 1.00m, 8.22 1.10m, 8.79 0.04m, 59.10
VI_02  0.15m, 1.52 0.16m, 1.55° - - 0.33m, 3.90° 1.16m, 4.69 0.30m, 3.68° 0.75m, 8.13 0.42m, 5.48°
V1_03 1.00m, 4.84° 1.12m, 4.90° 0.42m, 6.49° 0.46m, 6.99 - 6.36m, 25.85 0.79m, 6.47° 14.84m, 24.58° 1.83m, 8.69°
V2_01 _ 0.14m, 0.83 0.14m, 0.80° 0.45m, 2.88° 0.39m, 2.58 0.75m, 5.23° 0.23m, 1.71° 0.26m, 1.96° 0.79m, 3.67° 0.48m, 3.58°
V2_02 _ 0.24m, 1.67 0.24m, 1.74° 0.44m, 4.69° 0.38m, 4.13 0.96m, 3.71° 0.75m, 4.49° 1.42m, 2.99° 0.83m, 4.32° 0.47m, 4.14°
MHOI __ 0.07m, 1.03 0.07m, 1.03° 0.63m, 8.44° 0.72m, 11.61° 0.19m, 1.31° 0.11m, 1.14° 0.43m, 4.02° 0.46m, 3.00° 0.42m, 3.11°
MH02 _ 0.14m, 1.05 0.19m, 1.86° 0.76m, 8.79° 0.93m, 9.99 0.23m, 1.89° 0.23m, 1.58 0.28m, 2.80° 0.34m, 2.21 0.50m, 2.68°
MHO03 __ 0.26m, 1.36 0.25m, 1.35° 0.64m, 4.29 0.86m, 5.79 0.32m, 1.77° 0.54m, 1.75 0.25m, 1.60° 1.19m, 4.62 1.33m, 5.23°
MHO04  1.11m, 1.62 1.06m, 1.52° B B 0.79m, 1.75° 0.86m, 1.79 0.59m, 1.28 4.10m, 4.58 521m, 6.32°

have matured, and thus maximally utilizes localization infor- [9] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-

mation with fewer updates. Finally, incorporating only matured
features ensures that each feature is always initialized through
multiple-view triangulation instead of merely stereo triangula-
tion. This minimizes the linearization error when features are
marginalized.

VII. CONCLUSION

This letter presents a framework formulating and analyzing
optimization and filtering-based SLAM approaches as the iter-
ative application of key algorithm submodules, and proves that
it encompasses state-of-the-art filtering algorithms as special
cases. Experimental analysis indicate our formulation is useful
for analyzing various design choices inherent in these existing
SLAM algorithms, and implementing them in a modular fashion
for a wide range of robotics applications, which we are eager to
test on hardware.

As future work, we wish to apply our analysis to the dynamic
SLAM problem, which concerns highly mobile features [2], [30]
in practical multi-agent interactions, e.g., real-life traffic scenar-
ios [31], by designing marginalization strategies for estimators
that jointly track moving and stationary landmarks. We expect
good performance on the dynamic SLAM problem, since it
enables flexible user-selected design choices.

APPENDIX

Please use the following link to access an ArXiV version
with the appendix (https://arxiv.org/pdf/2112.05921.pdf). The
authors will ensure that this link stays active.
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