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A B S T R A C T   

Objectives: Acute kidney injury (AKI) risk increases with age and the underlying clinical predictors may be 
heterogeneous across age strata. This study aims to uncover the AKI risk factor heterogeneity among general 
inpatients across age groups using electronic medical records (EMR). 
Methods: Patient data (n = 179,370 encounters) were collected from an academic hospital between 2007 and 
2016, and were stratified into four age groups: 18–35, 36–55, 56–65, and > 65. Potential risk factors extracted 
for the cohort included demographics, vital signs, laboratory values, past medical diagnoses, medications and 
admission diagnoses. We developed a data driven knowledge mining approach consisting of a machine learning 
algorithm to identify AKI predictors across age strata and a statistical method to quantify the impact of those 
factors on AKI risk. Identified predictors were evaluated for their predictability of AKI in terms of area-under-the- 
receiver-operating-characteristic-curve (AUC) and validated against expert knowledge. 
Results: Among the final analysis cohort of 76,957 hospital admissions, AKI prediction across age groups 18–35 
(16.73%), 36–55 (32.74%), 56–65 (23.52%), and > 65 years (27.01%) achieved AUC of 0.85 (95% CI, 
0.80–0.88), 0.86 (95% CI, 0.83–0.89), 0.87 (95% CI, 0.86–0.90), and 0.87 (95% CI, 0.86–0.90), respectively. 
Compared to expert knowledge, absolute consistency rates of the top-150 identified risk factors for each group 
were 78.4%, 77.2%, 81.3%, and 79.5%, respectively. Impact of many predictors on AKI varied across age groups; 
for example, high body mass index (BMI) was found to be associated with higher AKI risk in elderly patients, but 
low BMI was found to be associated with higher AKI risk in younger patients. 
Conclusions: We verified the effectiveness of the knowledge mining method from the perspectives of accuracy, 
stability and credibility, and used this approach to clarify the heterogeneity of AKI risk factors between age 
groups. Future decision support systems need to consider such heterogeneity to enhance personalized patient 
care.   

1. Introduction 

Acute Kidney Injury (AKI) is a sudden episode of kidney dysfuntion 
that develops rapidly over a few hours to a few days and is common in 
patients [1–3]. Thus, identifying strategies to assess patient risk and 
manage patients according to their susceptibilities and exposures is 
critical for improving patient care and outcomes [4–6]. Although the 
understanding of risk factors for the general AKI population may be 
substantial, the pathogenesis of AKI can differ between older and 
younger patients [7], which may lead to heterogeneity in the impact of 

risk factors associated with patients in different age groups. 
Electronic medical record (EMR) data-driven approach to risk factor 

identification has the potential to accelerate hypothesis generation and 
knowledge discovery. Machine learning methods (e.g., gradient boost
ing machine [8], random forest [9], linear support vector classification 
[10] and deep neural network [11–14]) play an important role in data 
mining and disease prediction. In order to effectively improve doctors’ 
trust in the machine learning models, many interpretable methods have 
been developed to explain the predictions of the black box models [15], 
such as SHAP (SHapley Additive exPlanations) [16] and LIME (Local 
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Interpretable Model-Agnostic Explanation) [17]. 
To our best knowledge, no study has attempted to design a knowl

edge mining approach to uncover AKI risk factor differences among age 
groups using EMR data. In this study, we developed an EMR-data driven 
and machine-learning based knowledge mining approach to elucidate 
heterogeneous risk predictors of AKI across age groups and validated its 
effectiveness with respect to accuracy, stability and credibility. 

2. Materials and methods 

2.1. Study population 

All adult patients (age ≥ 18) admitted to a tertiary academic hospital 
for two or more days from November 2007 to December 2016 were 
included. This study was conducted at the encounter level with a total of 
179,370 inpatient encounters. From those de-identified encounters, we 
excluded cases (a) missing necessary data for outcome determination, i. 
e., less than two serum creatinine measurements and (b) that had evi
dence of moderate or severe kidney dysfunction at admission, i.e., 
estimated Glomerular Filtration Rate (eGFR) less than 60 mL/min/1.73 
m2 or abnormal serum creatinine (SCr) level of > 1.3 mg/dL on the 
admission day. The final analysis cohort contained 76,957 encounters 
(see Fig. C.1). The de-identified data were obtained from the Healthcare 
Enterprise Resource for Ontological Narration (HERON), an i2b2-based 
clinical integrated data repository [18]. The operation of HERON as an 
honest broker research repository was approved by the University of 
Kansas Medical Center Institutional Review Board (Human Subject 

Committee) and is reviewed annually (HSC #12337). 

2.2. AKI definition 

AKI was defined per the KDIGO (Kidney Disease: Improving Global 
Outcomes) creatinine criteria [19] (see Table C.1). Due to the relative 
sparsity of urine output data on the general hospital wards, urine output 
criteria for AKI were not considered. To establish an admission baseline, 
we used the last SCr value during the 2-day window prior to admission if 
available; otherwise, the first SCr value after admission was used as the 
baseline. All SCr levels between admission and discharge were assessed 
on a rolling basis to determine the occurrence of any AKI. 

2.3. Data collection and processing 

We collected 1,888 clinical variables from EMR including basic de
mographics, vital signs, laboratory values, past medical diagnoses, 
medications and admission diagnoses (see Table C.2). SCr and eGFR 
were not included as predictors in the model because they determine the 
outcome variable, AKI vs non-AKI. Admission diagnosis was captured as 
the all patient refined diagnosis related group (APR-DRG). Past medical 
diagnoses were represented by mapping ICD-9 diagnosis codes into the 
Clinical Classifications Software (CCS) major diagnosis categories 
developed by the Agency for Healthcare Research and Quality. Medi
cation exposure included both inpatient and outpatient medications. 
Inpatient medication referred to drugs dispensed during hospitalization 
and outpatient medication included outpatient prescriptions and drugs 

Fig. 1. Knowledge mining approach. (AI: Artificial Intelligence; HI: Human Intelligence).  
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taken at home. We used the RxNorm terminology to standardize the 
drug names. 

We preformed the following data processing: (a) most recent vital 
signs and lab tests were collected and discretized (see Table C.3) (e.g. 
“unknown”, “less than standard value”, “the standard value”, or “more than 
the standard value”); (b) medical history and admission diagnoses are 
binary, representing the presence or absence of disease; (c) used the 
cumulative-exposure-days of medications during the 7-day window before 
the reference point as predictors; (d) performed one-hot-coding on cate
gorical variables (e.g., vital signs and lab tests) to convert them into 
binary representations; and missing values were treated as a separate 
category to preserve information contained in the absence of measure
ment [20]; (e) considered the length of stay as a predictor; (f) removed 
variables whose variance is 0 (e.g., features that are all missing infor
mation); Finally, based on medical significance and age distribution of 
the study cohort, we stratified them into four age groups: 18–35 
(16.73%), 36–55 (32.74%), 56–65 (23.52%), and > 65 years (27.01%). 

2.4. Knowledge mining approach 

As shown in Fig. 1, we designed a novel knowledge mining approach 
combining artificial intelligence (AI) and expert knowledge to system
atically mine AKI risk factor differences among age groups using EMR 
data. There are two main machine learning methods in the framework, 
namely eXtreme Gradient Boosting (XGBoost) [21] and Tree SHAP 
method (TreeExplainer) [16] (see Methods A.1 and A.2). XGBoost is a 

machine learning technique that ensembles many decision trees, and it 
optimizes the model in a stage-wise fashion for prediction. SHAP is an 
approach to interpret model predictions that assigns each feature an 
importance value for a particular prediction. In this study, we used 
SHAP value to evaluate the marginal effects of the XGBoost model. 
Moreover, in order to reduce the influence of sample differentiation and 
enhance the stability and effectiveness of knowledge mining, we used a 
cross-validation strategy to introduce this data drift [22], then obtained 
a weighted average SHAP explanation values (wSHAP), where the 
weight was the area under the receiver operating characteristic curve 
(AUC) [23] of the XGBoost model in each fold and the risk score for each 
variable was derived from the SHAP interpretation using the entire 
dataset. 

To assess the consistency between the knowledge mined by machine 
learning methods and expert knowledge, we first categorized features 
such as risk factors and protection factors according to the wSHAP 
interpretative scores (see Appendix B). For expert knowledge, namely 
human intelligence (HI), we ask multiple clinician annotators to help 
evaluate the relationship between the identified factors and the disease, 
i.e., whether they are risk factors, protective factors, or inability to 
judge. When the consistency rate of AI knowledge and HI knowledge 
exceeds a certain threshold (e.g., 50%), we can think that the knowledge 
mining method is credible and can be further used to explore and mine 
new potential risk knowledge. 

Table 1 
Clinical variable characteristics extracted for patients by age category.  

Variable Age 18–35 (n = 12,873) Age 36–55 (n = 25,197) Age 56–65 (n = 18,098) Age > 65 (n = 20,789) 

AKI NONAKI AKI NONAKI AKI NONAKI AKI NONAKI 

Demographics (Demo); 3(No.); details: age, race, gender; n (%) 
Age 983(7.29) 11,890(92.71) 2,222(8.82) 22,975(91.18) 1,906(10.53) 16,192(89.47) 2,193(10.55) 18,596(98.45)  

Race 
White 660(67.14) 8,038(67.60) 1,537(69.17) 16,652(72.48) 1,444(75.76) 13,024(80.43) 1,767(80.57) 15,463(83.15) 
Black 150(15.26) 1,958(16.47) 420(18.90) 3,808(16.57) 264(13.85) 1,926(11.89) 231(10.53) 1,644(8.84) 
Asian 7(0.71) 147(1.24) 12(0.54) 190(0.83) 17(0.89) 112(0.69) 18(0.82) 151(0.81) 
Other 121(12.31) 1,792(15.07) 253(11.39) 2325(10.12) 181(9.50) 1130(6.98) 177(8.07) 1,338(7.20) 
Male 549(55.85) 6,066(51.02) 1,302(58.60) 12,337(53.70) 1,170(61.39) 9,297(57.42) 1,288(58.73) 10,150(54.58)  

Vitals (Vitals); 5(No.); details: BMI, diastolic BP, systolic BP, pulse, temperature; n (%) 
BMI (kg/m2) 

Unknown 39(4.16) 1209(10.13) 92(4.14) 1848(8.04) 57(2.99) 830(5.13) 65(2.96) 947(5.09) 
<18.5 81(8.63) 563(4.72) 56(2.52) 537(2.34) 44(2.31) 479(2.96) 69(3.15) 680(3.66) 
18.5–24.9 325(34.65) 4076(34.15) 460(20.70) 5133(22.34) 379(19.88) 3630(22.42) 535(24.40) 5542(29.80) 
25.0–29.9 201(21.43) 2594(21.73) 567(25.52) 5879(25.59) 493(25.87) 4454(27.51) 701(31.97) 5950(32.00) 
>30.0 292(31.13) 3493(29.27) 1047(47.12) 9578(41.69) 933(48.95) 6799(41.99) 823(37.53) 5477(29.45)  

Lab tests (Lab); 14(No.); details: Albumin, ALT, AST, Ammonia, Calcium, BUN, Bilirubin, CK-MB, CK, Glucose, Lipase, Platelets, Troponin, WBC; n (%) 
WBC (10^9/L) 

Unknown 0(0.0) 18(0.15) 3(0.14) 27(0.12) 0(0.0) 22(0.14) 1(0.05) 22(0.12) 
<3.5 58(6.18) 559(4.68) 157(7.07) 1354(5.89) 140(7.35) 1015(6.27) 79(3.60) 770(4.14) 
3.5–10.5 442(47.12) 8657(72.53) 1129(50.81) 16942(73.74) 958(50.26) 11878(73.36) 1143(52.12) 14461(77.76) 
>10.5 438(46.70) 2701(22.63) 933(41.99) 4652(20.25) 808(42.39) 3277(20.24) 970(44.23) 3343(17.98)  

Admission diagnoses (DRG); 315(No.); details: University Health System Consortium (UHC) APR-DRG; n (%) 
Cystic fibrosis 121(12.90) 564(4.73) 26(1.17) 125(0.54) 6(0.31) 39(0.24) 0(0.00) 3(0.02) 
Liver transplant 9(0.96) 9(0.08) 68(3.06) 49(0.21) 65(3.41) 69(0.43) 15(0.68) 20(0.11)  

Medical History (CCS); 280(No.); details: ICD9 codes mapped to CCS major diagnoses; n (%) 
Essential hypertension 104(11.09) 886(7.42) 648(29.16) 5834(25.39) 825(43.28) 5968(36.86) 1053(48.02) 8715(6.86) 
Nutritional deficiencies 193(20.58) 1040(8.71) 203(9.14) 1844(8.03) 156(8.18) 1416(8.75) 172(7.84) 1721(9.25)  

Medications (MED); 1271(No.); details: All medications are mapped to RxNorm ingredient; n (%) 
Tazobactam 403(42.96) 2089(17.50) 791(35.60) 3742(16.29) 567(29.75) 2662(16.44) 515(23.48) 2892(15.55) 
Vancomycin 366(39.02) 1936(16.22) 762(34.29) 4485(19.52) 620(32.53) 3656(22.58) 655(29.87) 489(22.53)  

Onset time, days, median [interquartile range] of admission days 
Days 3 [2–6] – 3[2–5] – 3[2–6] – 3[2–6] — 

Note: AKI = acute kidney injury, NONAKI = not acute kidney injury. 
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2.5. Evaluations and statistical analysis 

We verified the effectiveness of the knowledge discovery method 
from three perspectives: the accuracy of information classification, the 
stability of information interpretation, and the consistency with expert 
knowledge. In order to verify the accuracy and reliability of the 
knowledge mining method in identifying AKI, the AUC was used to 
compare the AKI distinguishing ability of original data and weighted 
SHAP explanation scores. Further, we analyze the stability [24] of the 
explanation knowledge on AKI predictors from both macro and micro 
perspectives. The macro perspective represents the stability of feature 
ranking of the whole samples; the micro perspective represents the 
stability of the SHAP output of each feature on the entire samples. Be
sides, to verify the effectiveness of introducing cross-validation strategy 
to reduce the influence of sample differentiation, we compared the 
stability of the weighted SHAP explanation scores and original SHAP 
values. 

In order to prove the rationality and correctness of the weighted 
SHAP interpretation values from the perspective of intuitive visualiza
tion, we applied t-distributed Stochastic Neighbor Embedding (t-SNE) 

[25] to visualize the high-dimensional EMR data by giving each sample 
a location in a two-dimensional space. In terms of credibility, namely the 
consistency rate of the excavated knowledge against expert knowledge, 
in order to simplify the problem reasonably, the feature selection based 
on the wSHAP ranking was used to filter out the most influential and 
representative feature subsets. In addition, based on the existing 
research literature and medical guidelines, we further consulted three 
M.D. physicians (one general internist and two nephrologists) with more 
than 8 years of clinical and research experience to assess the relationship 
between the identified factors and AKI. If there is a conflicting assess
ment, we choose the opinion of the majority (greater than 50%). Two- 
tailed p < 0.05 denoted statistical significance for all comparisons. All 
data processing and analyses were performed using Python 3.7. 

3. Results 

3.1. Characteristics of the study cohort 

Of the 76,957 encounters in the final analysis cohort, 38,887 
(50.53%) patients over the age of 56 years, and 7259 patients (9.43%) 

Table 2 
The accuracy, stability and credibility performances of knowledge mining approach for AKI age groups.  

Evaluation Method Age 18–35 Age 36–55 Age 56–65 Age > 65 

Accuracy XGBoost (AUC,95% CI) Original input samples 0.85 
[0.80–0.88] 

0.86 
[0.83–0.89] 

0.87 
[0.86–0.90] 

0.87 
[0.86–0.90] 

Raw SHAP values 0.93 
[0.90–0.96] 

0.91 
[0.88–0.93] 

0.93 
[0.91–0.95] 

0.91 
[0.89–0.93] 

Weighted SHAP values 0.97 
[0.95–0.99] 

0.94 
[0.92–0.95] 

0.96 
[0.95–0.97] 

0.95 
[0.94–0.96]  

Stability Macro: Mean (SD) Raw SHAP 
values 

0.9571 
(0.0101) 

0.9800 
(0.0048) 

0.9808 
(0.0034) 

0.9879 
(0.0023) 

Weighted SHAP 
values 

0.9977 
(0.0005) 

0.9989 
(0.0002) 

0.9989 
(0.0002) 

0.9993 
(0.0001) 

Micro: Median (IQR) Raw SHAP 
values 

0.45 
(0.25–0.71) 

0.47 
(0.26–0.75) 

0.42 
(0.24–0.68) 

0.47 
(0.28–0.76) 

Weighted SHAP 
values 

0.75 
(0.47–0.92) 

0.64 
(0.40–0.89) 

0.67 
(0.42–0.89) 

0.70 
(0.41–0.91)  

Credibility Y: Yes, consistency  58 61 61 62 
N: No, inconsistency  16 18 14 16 
U: Unknown or cannot judge  76 71 75 72 
Y/(Y + N): absolute consistency rate  78.4% 77.2% 81.3% 79.5% 

Abbreviation: XGBoost: eXtreme Gradient Boosting; LinearSVC: linear support vector machine classification; CI: confidence interval. AUC: the area under the receiver 
operating characteristic curve, SD: standard deviation, IQR: interquartile range. SHAP: SHapley Additive exPlanations. The macro perspective represents the stability 
of feature ranking of the whole samples; the micro perspective represents the stability of the SHAP output of each feature on the entire samples. 

Fig. 2. The t-SNE visualization for age 18–35 group. (A. raw data features and B. the weighted SHAP features).  
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developed some types of AKI. The characteristics of patients by age 
group were shown in Table 1, where the incidence of AKI increases with 
age, from 7.29% in the youngest group to 10.55% in the oldest group. In 
addition, most AKI onset time in terms of the number of days after 
admission occurred within a week with no significant differences be
tween age groups. After date preprocessing, the final number of vari
ables for 18–35, 36–55, 56–65 and > 65 age groups were 1519, 1691, 
1648 and 1631, respectively. 

3.2. Evaluation of the knowledge mining approach 

Table 2 shows that the accuracy, stability and credibility perfor
mances of the knowledge discovery approach in four AKI age groups. For 

18–35, 36–55, 56–65 and > 65 age groups, the optimal AUC obtained by 
the XGBoost model (parameters used are available in Table C.4, see 
Table C.5) were 0.85 (95% confidence interval (CI) 0.80–0.88), 0.86 
(95% CI 0.83–0.89), 0.87 (95% CI 0.86–0.90), and 0.87 (95% CI 
0.86–0.90), respectively. The weighted SHAP explanation values got the 
best performance, namely 0.97 (95% CI, 0.95–0.99), 0.94 (95% CI, 
0.92–0.95), 0.96 (95% CI, 0.95–0.97), and 0.95 (95% CI, 0.94–0.96), 
respectively. Fig. C.2 shows that the cross-validation strategy signifi
cantly enhanced the effectiveness of knowledge discovery. Fig. 2 shows 
the t-SNE visualization of the patient-patient scatter plot for age 18–35 
group, we can see that the weighted SHAP features can provide effective 
explanation information for the identification of AKI. 

The weighted SHAP values obtained the higher stability than the raw 

Fig. 3. Heatmap comparison of 54 risk factors in four age groups. (First, 23, 22, 24 and 19 risk factors were screened out from 4 age groups under the condition of 
mean(wSHAP) > 0.1, then 54 features were obtained by combining them. Empty cells in the figure represents a null value, which means that the impact of this factor 
in this age group is almost 0, i.e., the variable was filtered out during the data preprocessing stage. The higher the weighted SHAP value (darker cell color) the bigger 
its impact on AKI risk.) 
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SHAP values (see Table 2), for instance, the micro stability of 18–35, 
36–55, 56–65, and > 65 age groups increased from 0.45 to 0.75, 0.47 to 
0.64, 0.42 to 0.67, 0.47 to 0.70, respectively. Fig. C.3a-3d shows the 
comparison of the macro and micro stability between raw SHAP values 
and weight SHAP values, where the stabilities of weighted SHAP values 
have been significantly improved. 

From Fig. C.4 we observed an exponential decline in the importance 
of the features, and good accuracy was obtained for the top 150 features 
in each age group. Therefore, we selected the top 150 features of each 
group to analyze the consistency rate of machine learning knowledge 
against expert knowledge. As shown in Table 2, the absolute consistency 
rate achieved for age groups 18–35, 36–55, 56–65, and > 65 was 78.4%, 
77.2%, 81.3% and 79.5%, respectively. Because the consistency rate 
exceeds the 50% threshold, we can think that the knowledge mining 
approach is credible and can be further used to explore and mine new 
potential risk knowledge. 

3.3. Heterogeneity of AKI risk predictors between age groups 

To study the heterogeneity of AKI risk factors between age groups, 
we compared the weighted SHAP values generated by the knowledge 
mining method between the four age groups. Fig. 3 illustrated the 
comparison of 54 risk predictors with an average weighted SHAP value 
greater than 0.1 in at least one age group, and we observed a clear 
difference in the effect of each predictor on AKI risk across age groups. 
Fig. 4a compares the intersection number of top k features of AKI be
tween age groups, suggesting that clinical predictors are heterogeneous 
across age strata. And Fig. 4b shows the relative risk differences between 
166 drugs in four AKI age groups. In the case of medication exposures, 
Fig. C.5 shows the effects of vancomycin, prednisone, and albumin on AKI 
risk. Besides, age differences in some drugs may be related to the disease 
being treated, for example, knowledge networks constructed using 
correlations showed that dornase alfa was highly associated with cystic 
fibrosis (see Fig. 5a-b). 

Table 3 shows the personalized risk factors of patient A and patient B 
randomly selected from the young and older groups respectively, 

Fig. 4. Explore age group heterogeneity of AKI 
predictors. (a) The intersection number of top k 
features for AKI between age groups, the blue line 
represents the intersection number of top k features 
of the four age groups, the red line represents the 
intersection number of top k features between the 
young group (age 18–35) and the old group (age >
65), and the gray dotted line represents the perfectly 
overlapping features; (b) shows the differences in 
the relative risks of 166 drugs, which is the union of 
all drugs selected in the four age groups where their 
weighted SHAP > 0.01. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the web version of this article.)   
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showing that these two patients have different risk factors. For example, 
cystic fibrosis in the young patient A has the highest risk weight (wSHAP 
= 0.743), while the use of tazobactam (wSHAP = 0.404) and the ab
normality of white blood cell (wSHAP = 0.391) in elderly patient B 
suggest a higher risk of AKI. It is worth noting that the factors selected by 
machine learning methods have strong predictive power, but these 
factors are not necessarily direct causal triggers. For example, insulin 
was screened as a risk factor, but it may only be a marker of diabetes, 
that is, patients with diabetes or diabetic nephropathy have a higher risk 
of developing AKI. 

4. Discussion 

Data mining and knowledge discovery techniques have the potential 
to play important roles in clinical decision support for healthcare pro
fessionals. In this study, we developed a novel knowledge mining 
approach to uncover heterogeneous risk predictors of AKI across age 
groups, and validated its effectiveness with respect to accuracy, stability 
and credibility. We selected four age groups for a comprehensive anal
ysis of risk factor heterogeneity between age groups instead of using a 
single model containing age variable because it would be challenging to 
delineate cross-effect of thousands of variables and age in one model. 

Fig. 5. Exploring new potential nephrotoxic drugs. (a-b) Variable impact and correlation network of dornase alfa (MED478) for AKI in 18–35 age group; (c-e) 
esomeprazole (MED510), diazepam (MED572) and zonnisamide (MED1146). Each dot is a person. The x-axis represents days of exposure to medication in the first 7 
days before reference point, and the y-axis is the weighted SHAP value attributed to the variable. Higher weighted SHAP values represent higher risk of AKI due to 
the variable. 

Table 3 
Personalized interpretation of AKI risk predictors.  

Rank Name of positive effect Value wSHAP Name of negative effect Value wSHAP 

AKI patient A from group 1 (age 18–35) 
1 CCS58[’Cystic fibrosis’] 1 0.743 MED1086[’tazobactam’] 0 − 0.113 
2 MED516[’glucose’] 1 0.705 Lab5_3[’BUN, more than the standard value’] 0 − 0.066 
3 days [’Length of stay’] 2 0.584 MED321[’vancomycin’] 0 − 0.051 
4 MED1102[’linezolid’] 7 0.256 Lab4_2[’Calcium,the standard value’] 1 − 0.046 
5 MED338[’protease’] 7 0.216 Lab0_1[’Albumin, less than standard value’] 0 − 0.039 
6 MED478[’dornase alfa’] 7 0.175 BMI_2[’normal’] 1 − 0.035 
7 MED187[’trisulfapyrimidines’] 7 0.144 MED1133[’benzimidazole’] 0 − 0.032 
8 MED677[’polyethylene glycol 3350′] 7 0.140 CCS230[’Acute and unspecified renal failure’] 0 − 0.030 
9 MED659[’ursodeoxycholate’] 7 0.128 Lab9_3[’Glucose, more than the standard value’] 0 − 0.030 
10 Lab5_1[’BUN, less than standard value’] 0 0.112 CCS168[’Medical examination/evaluation’] 0 − 0.027  

AKI patient B from group 4 (age > 65) 
1 MED1086[’tazobactam’] 6 0.404 Lab5_3[’BUN, more than the standard value’] 0 − 0.428 
2 Lab13_3[’WBC, more than the standard value’] 1 0.391 MED516[’glucose’] 0 − 0.202 
3 MED281[’mercaptopurine’] 6 0.200 Lab0_1[’Albumin, less than standard value’] 0 − 0.105 
4 MED1111[’aminobutyrate’] 5 0.101 Days [’Length of stay’] 5 − 0.102 
5 MED691[’influenza a virus’] 5 0.086 MED134[’benzoic acid’] 0 − 0.070 
6 MED103[’n-(hydroxyethyl) ethylenediaminetriacetic acid’] 6 0.086 MED937[’ropivacaine’] 6 − 0.061 
7 Lab13_2[’WBC, the standard value’] 0 0.068 Lab4_1[’Calcium, less than standard value’] 0 − 0.055 
8 BMI_4[’obese’] 1 0.056 MED321[’vancomycin’] 0 − 0.046 
9 MED582[’levofloxacin’] 0 0.053 Lab9_3[’Glucose, more than the standard value’] 0 − 0.036 
10 SBP_4[’stage 2 hypertension’] 1 0.044 MED975[’triflusal’] 6 − 0.028 

Note: wSHAP is the weighted SHAP value obtained by the knowledge discovery model. 
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The heterogeneity of AKI risk factors across age groups mainly in
cludes two aspects: (1) risk factors only exist in a certain age group; 
these differences may be due to the relative age concentration of the 
affected population. For instance, cystic fibrosis, a hereditary exocrine 
gland disease and its patients rarely survive to adulthood, is mostly 
concentrated in younger age groups; in contrast, hypertension was 
identified to only present risk in older population; (2) the risk factors 
existed in multiple age groups, but the risk weights were significantly 
different. For instance, evidence from existing literature [26] suggest 
that African Americans are at higher risk for AKI; however, Fig. C.6 
shows that this phenomenon is not prominent in the young population. 
Moreover, high BMI (body mass index) was found to be associated with 
higher AKI risk in older patients, but low BMI was found to be associated 
with higher AKI risk in younger patients (see Fig. C.7). 

In-depth analyses of some inconsistent results revealed potential 
explanations. For instance, healthcare providers may be more cautious 
or there may already exist clinical decision support tools to guide cli
nicians on using nephrotoxic medications, for example NSAIDs (non- 
steroidal anti-inflammatory drugs) such as ibuprofen and suprofen, in 
patients with poor renal function, which could mislead the AI model to 
produce low-risk result inconsistent with known knowledge. Sometimes 
one approach to minimize risk of nephrotoxic drugs is to change its form 
or route of usage. For instance, bacitracin with severe nephrotoxicity is 
not used systemically, only for topical use and phenol with moderate 
toxicity is often used as a powerful surgical disinfectant. Since our model 
did not consider the route of medication administration, the different 
ways of usage may change the degree of risk obtained from our data, 
resulting in inconsistent conclusions. When inconsistent but explicable 
factors were included, as shown in Table C.6, the explicable consistency 
rates for age groups 18–35, 36–55, 56–65, and > 65 were 87.8%, 87.3%, 
90.7% and 92.3%, respectively. 

The data driven knowledge discovery approach combines machine 
derived knowledge with human intelligence to enable potential dis
covery of new knowledge. Recent studies have found that long-term use 
of proton pump inhibitor (PPI) drugs may have adverse effects on the 
kidney [27,28]; study identified esomeprazole (as one of the PPI) 
showing a higher relative risk of AKI (see Fig. 5c). Similarly, the inci
dence of AKI was higher with diazepam than without it in the 36–55 age 
group (see Fig. 5d). In addition, zonisamide, which was screened only in 
the 18–35 group, has been shown to be associated with a higher risk of 
AKI (see Fig. 5e). Meanwhile, two cases of zonisamide as an antiepileptic 
drug induced AKI have been reported a 29-year-old Japanese man [29] 
and a 33-year-old Caucasian man [30]. 

This study has some limitations. First, although we utilized a large 
cohort observed for up to a decade, they only reflect the population of 
one academic medical center. Second, the granularity of medication 
data extraction may affect the knowledge learned within machine 
learning models [31]. Considering the drug metabolism cycle, in this 
study we only considered medications taken within a week. Third, this 
study explored the entirety of the above mentioned EMR data types 
except for laboratory tests where we only selected certain lab tests based 
on previous literature for AKI prediction [20]. Fourth, we only invited 3 
experts for knowledge evaluation. In the future, more doctors are 
needed to amass and codify more knowledge. Fifth, our data only con
tains whether there is a certain disease, but does not contain the cor
responding severity score of the disease. Sixth, this study used tabular- 
style data lacking strong multiscale temporal structures, and the 
knowledge mining of temporal information and patterns will be 
considered in the future. Finally, this knowledge mining method would 
generate a list of potential new risk knowledge, but whether these new 
risk factors increase the risk of AKI requires rigorous demonstration 
from clinical experiments, and further work is necessary to investigate 
the nature of the association. 

5. Conclusions 

In this study, we leveraged a large EMR dataset to develop a novel 
knowledge mining approach and validated its effectiveness with respect 
to accuracy, stability and credibility. Using this approach, we elucidated 
the heterogeneity of AKI risk factors across age groups, which suggested 
that future clinical care need to consider risk heterogeneity. In addition, 
the data driven knowledge mining method combines machine derived 
knowledge with human intelligence to enable potential discovery of new 
risk knowledge. 
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Summary points 

What was already known on the topic.  

• Acute kidney injury (AKI) risk increases with age and the underlying 
clinical predictors may be heterogeneous across age strata;  

• The treatment of AKI is usually poor; therefore, efforts have been 
made to detect and prevent AKI early;  

• There has been growing interest in harnessing electronic medical 
records to enable potential discovery of new risk knowledge. 

What this study added to our knowledge.  

• We established a knowledge mining approach and verified its 
effectiveness from three perspectives: accuracy, stability and 
consistency;  

• We used this approach to clarify the heterogeneity of AKI risk factors 
between age groups;  

• The study findings implicate that future clinical decision support 
systems need to consider such heterogeneity to enhance personalized 
care for improving patient outcomes.  

• The data driven knowledge mining method combines machine 
derived knowledge with human intelligence to enable potential 
discovery of new risk knowledge. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijmedinf.2021.104661. 
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