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Background: Acute kidney injury (AKI) is a common life-threatening clinical syndrome in hospitalized patients.
Advances in machine learning has demonstrated success in AKI risk prediction using electronic health records
(EHRs). However, to prevent AKI, it is critical to identify clinically modifiable factors and understand their
impact at different prevention windows.

Method: We extracted 4129 clinical variables including demographics, social history, past diagnoses, procedures,
labs, medications, vitals from EHRs for a cohort of 144,084 eligible inpatient encounters. We developed a multi-
view learning framework for XGBoost (MV-XGB) to enhance algorithm attention on modifiable factors. To study
effects of modifiable factors at different time points, we built AKI prediction models at 24-hours, 48-hours, 72-
hours before AKI onset. To characterize the temporal changes in effect of modifiable factors on AKI, we derived
two indicators, inter-class score-difference and exposed-score-difference, based on SHAP values to compare ef-
fects of modifiable factors in different windows.

Result: MV-XGB effectively increased attention on modifiable factors (explained 92.4%-94.1% inter-class score-
difference, i.e., predictive difference between AKI and non-AKI samples) while maintaining good predictive
performance (AUROCs were 0.854, 0.798, 0.765 in models for 24-48-72 h AKI prediction respectively). We
observed that 62% of predicted odds-ratio difference between AKI and non-AKI patients in 24 h can be explained
by factors occurring between 24 and 72 h. Among the important modifiable factors, electrolyte balance explained
38.3% of the inter-class score difference increase between 24 h and 72 h, followed by high-risk medications
(13.7%), care strategy (12.1%), blood pressure (10%), infection (7.8%), and anemia (5.4%). Effects of cardiac
surgery or condition, respiratory ventilation, and anemia remained important longer than 72 h.

Conclusion: Better understanding of the clinically modifiable factors is important to AKI prevention. The proposed
multi-view learning approach improved the identification of modifiable factors of AKI and allowed character-
ization of the temporal dynamics of their potential benefit in intervention.

Electronic health records
Machine learning

1. Introduction

Acute kidney injury (AKI) is a life-threatening syndrome prevalent in
hospitalized patients [1], affecting 10%-15% inpatients in general wards
and > 50% in intensive care units, and its mortality is 20%-50% across
patient populations [2,3]. AKI has many risk factors and their in-
teractions make it difficult to forecast risk in real-time [4,5]. Artificial
intelligence, powered by advances in machine learning, has made
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substantial progress across areas of medicine including AKI prediction
[6-9].

Risk prediction using electronic health record (EHR) is important,
but not the ultimate goal. According to reviews on AKI prevention, lack
of reliable means for renal protection is still a challenge, and limitations
exist in the timely and accurate risk identification, ideal timing of
intervention, and variable effect of intervention in heterogeneous in-
patients [10-14]. Most evidence on AKI prevention were generated from
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randomized controlled trials (RCT), but these trials only determined if
an intervention is effective rather than which intervention is more
important. To enhance AKI prevention, it is critical to identify the
clinically modifiable risk determinants and understand their impact at
different time intervals prior to disease onset [10,12].

EHR analysis is challenging because of its high-dimensional and
heterogeneous nature; for example, a patient can be represented by
different views: physiology status, exposures, and susceptibility. Factors
in some of the views are clinically modifiable and some are not. Tradi-
tional analytical approach either combines all views in learning [6,9] or
model individual views separately [15,16]. Learning from individual
views (e.g., RCT or prediction using specific feature types [17,18]) ig-
nores interactions between variables across views, thus, effectiveness of
the prediction and intervention may vary in real-world settings. On the
other hand, when various views are integrated, the dramatic difference
in scale and size of views and intercorrelation between variables can
hinder both feature selection and effect estimation [19-22]. To address
the challenge, we propose to explore multi-view learning, an emerging
machine learning technique for handling multi-view data that has
different scales and representations [23-25].

Multi-view learning has been applied to integrate different medical
images [26,27], multi-omics data [28-30], and multi-modal medical
data (image, omics, EHR and molecular data) [31-33]. It avoids insuf-
ficient learning or overfitting due to high-dimensional and heterogenous
multi-view data; and can improve model performance with comple-
mentary information among views. For example, Alkhateeb et al. [32]
predicted breast cancer survival from multi-omics data by modeling
each omic separately using self-organizing map and convolutional
neural network (CNN) and incorporating CNN predictions with an
integration layer. Multi-view learning has also been applied for feature
selection to reduce data redundancy [33-36].

In this study, we developed a new multi-view learning framework for
the gradient boosting method XGBoost (MV-XGB) to focus the algorithm
attention on modifiable factors. It is similar to feature selection, but we
mainly reduced the redundancy from non-modifiable variables and
highlighted the effect of modifiable factors. Using MV-XGB, we identi-
fied important modifiable factors. Then, we developed a new strategy to
analyze potential impact of modifiable factors at different times before
AKl-onset, which quantifies and compares constitution of risk difference
between AKI and non-AKI patients in different time windows.

2. Material and methods
2.1. Multi-view learning with XGBoost (MV-XGB)

Most multi-view learning methods are designed to improve gener-
alization and consistency of prediction from different views; however,
the objective of this study is to implement an attention-like mechanism
in modeling to selectively concentrate on certain views (i.e., modifiable
factors) while maintaining reliable prediction performance.

The proposed multi-view learning framework is based on XGBoost
(https://github.com/dmlc/xgboost) [37], a widely-used implementa-
tion of Gradient Boosting Machine (GBM) in EHR-based prediction tasks
[6,38-41]. To avoid local optimum in learning, XGBoost randomly
samples a feature subset in training data in each iteration. Inspired by
multi-view learning, we modified this mechanism to tune view impor-
tance by changing view weights in feature sampling during model
initialization and proposed a re-weighting scheme according to impor-
tance change of features during each iteration to avoid performance
degradation due to some views being excessively valued or undervalued
(https://github.
com/yuanborong/xgboost/tree/changed random seed). Algorithm de-
tails are in Supplement text S1.
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2.2. Study cohort and data preprocessing

De-identified EHRs were extracted from a clinical data repository of
the University of Kansas Medical Center [42,43]. Total 227,054 ad-
missions of adults (age-at-visit > 18) hospitalized for > 2 days at the
University of Kansas Health System (a tertiary hospital) from 2010 to
2018 were collected. AKI was defined using Kidney Disease Improving
Global Outcomes (KDIGO) serum creatinine (SCr) criteria. Prediction
targets were AKI onset (Yes/No) in 24 h, 48 h, 72 h respectively. Thus,
for AKI patients, the data collection windows were 24 h, 48 h, 72 h
before the first AKI-onset; for non-AKI patients, they were 24 h, 48 h, 72
h before the last SCr measurement. Following patients were excluded:
(1) not hospitalized at the prediction point; (2) < 2 SCr records during
stay; (3) initial estimated Glomerular Filtration Rate (eGFR) < 15 mL/
min/1.73 mz; (4) pre-existing renal failure; (5) required renal replace-
ment therapy within 48 h of admission; (6) burn patients. Final cohorts
for 24 h, 48 h, 72 h contained 144,084, 138,942, 118,036 inpatient
encounters and 20,424 (14.18%), 17,350 (12.49%), 13,611 (11.53%)
had AKI respectively. To test generalizability of models, 123,694,
119,200, and 101,620 encounters from year 2010-2016 were used for
model training, and remaining 20,390, 19,742, 16,416 encounters from
year 2017-2018 were held-out for model testing [6,39,40] (cohort
characteristics in Table S1).

For each encounter, we collected data from 6 views: demographic
and social history (e.g., smoking), past diagnoses, procedures, labs,
medications, vitals. Procedures, labs, medications, vitals were modifi-
able views. We treated SCr and blood urea nitrogen (BUN) as the 7th-
view because they are kidney function indicators, not modifiable fac-
tors. Procedures and past diagnoses were binary variables. Drug expo-
sure was encoded as the most recent daily dispensing frequency before
the prediction point, otherwise 0 for non-exposure. Most recent values of
labs and vitals were used, and missing value was encoded as 0. Total
26,665 features were extracted, filtering those with < 0.1% occurrence
rate resulted in 3865-4129 features for 24 h-to-72 h datasets (Table S2).
We did not perform expert knowledge-based predictor pre-selection
because it will limit the algorithm ability to discover new knowledge/
predictors from data. Moreover, XGBoost has been shown to be an
excellent embedded feature selection method [6,40,41,44].

2.3. Analysis of modifiable factor effect in different time windows

We aimed to understand how effect of modifiable factors change
with time through following steps: (1) emphasize learning on modifiable
factors in prediction modeling; (2) quantify constitution of predicted
risk difference between AKI and non-AKI patients in different time
windows; (3) analyze how constituents of the risk difference between
AKI and non-AKI patients change over time.

Correlation between modifiable and non-modifiable factors may
cause underestimation of effect of modifiable factors. Thus, we
enhanced the role of modifiable factors in MV-XGB by increasing the
initial weights of modifiable views, and built models for 24 h, 48 h, 72 h
AKI prediction (see Supplement text S2 for hyperparameter setting). To
show predictive effect changes of views in MV-XGB, we analyzed pro-
portional change of views in top-k predictors as well as change of their
impact to risk prediction. We compared MV-XGB against original
XGBoost (original-XGB) to ensure prediction performance did not
degrade significantly after modifiable factors were valued. Area-under-
the-receiver-operating-characteristic-curve (AUROC) and calibration
were primary measures for the evaluation; sensitivity, specificity, pre-
cision, recall and F1 were also presented. Experiments were repeated 50
times with different random-seed.

We also compared performance of models built with top-k predictors
identified by MV-XGB and original-XGB to show effectiveness of feature
selection in MV-XGB. Then, we used MV-XGB to identify important
modifiable features at different times. To analyze effect of a factor, sum
of absolute SHAP value [45-47] (equation 3 in Supplement text S1) is
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Fig. 1. Proportional change of important predictors between original and multi-view XGB.

typically used but not clinically meaningful, thus, we constructed two suitable for evaluating predictor importance at the population level. In
new indicators based on SHAP: inter-class-score-difference and exposed- contrast, the exposed-score-difference reflects average log-odds-ratio of
score-difference (Supplement text S3). Inter-class-score-difference cal- a predictor for an individual. Thus, we identified important modifiable
culates how many predicted log-odds-ratio differences between AKI and features using MV-XGBs and constitution of predicted risk difference
non-AKI patients can be explained by a feature/view. It is additive, between AKI and non-AKI patients at different time points using the
which means total predicted difference between AKI and non-AKI pa- inter-class-score-difference and evaluated the exposure effect as well as
tients is the sum of differences from multiple views, and the difference its direction for individual using exposed-score-difference. Both in-
from a single view is the sum of differences from each feature in the dicators were calculated by averaging results from the 50 experimental
view. Inter-class-score-difference is sensitive to frequency of a predictor, repetitions.
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Fig. 2. Proportional change of source of inter-class prediction score difference between original and multi-view XGB.

A modifiable factor may have long/short-term effects and synergistic
effect with non-modifiable factors. Since short-term effect may be more
valuable for AKI prevention, we compared inter-class-score-difference of
factors in 24 h, 48 h, 72 h models to understand how risk difference

between AKI and non-AKI patients change across time-windows.

3. Results
3.1. Identification of modifiable factors with MV-XGB

Fig. 1& 2 demonstrate that MV- XGB can significantly enhance the
role of modifiable features. Importance of non-modifiable features in
demographics, social history, and past diagnoses decreased significantly
in MV-XGB models, with their share in top-400 features (Fig. 1)
decreased by an average of 78.4%(24 h)-61.8%(72 h) compared to
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Table 1
Model performance comparison between original and multi-view XGB in pre-
dicting AKI before 24-72 h.

Prediction AUROC (95%-CI) of original AUROC (95%-CI) of MV- P
point XGB XGB

Before 24 h 0.859 ( 0.857-0.861 ) 0.854 ( 0.851-0.858 ) 0.02
Before 48 h 0.801 ( 0.799-0.803 ) 0.798 ( 0.793-0.802 ) 0.18
Before 72 h 0.768 ( 0.765-0.770 ) 0.765 ( 0.761-0.769 ) 0.30

original-XGB, and the decrease in effects expanded to an average of
81.5%(24 h)-67.8%(72 h) with inter-class-score-difference (Fig. 2). The
impact of renal function indicators (non-modifiable) decreased by about
40% on average. As expected, contribution of the modifiable features to
the inter-class-score-difference increased from 83.3% to 87.3% in
original-XGB to 92.4%-94.1% in MV- XGB. Effects of labs and vitals
increased more significantly, and similar results were obtained even
when all modifiable views were combined.

To ensure accurate feature effect estimation, we compared MV-XGB
and original-XGB in Table 1 and Fig. 3. AUROC difference between
original-XGB and MV-XGB were generally insignificant, and both ach-
ieved good calibration. More comparisons are in Table S3 & S4. Models
built with various top-k predictors identified by the two approaches also

°
@
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°
o

Fraction of positives

°
~

Perfectly calibrated
=~ original XGB = 0.0006
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04 06 08 10
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showed similar performance (Fig. S1), which identified ~ 200 important
AKI predictors.

3.2. Temporal dynamics of modifiable risk factors

As stated earlier, inter-class-score-difference measures risk differ-
ence between AKI and non-AKI patients. Table 2 shows that inter-class-
score-difference in 24 h and 72 h models were 2.879 and 1.911
respectively. That indicates risk difference between AKI and non-AKI
patients at 72 h is 66.4% (1.911/2.879) of the difference at 24 h, or
38% (e1°11/e287%) if we transform the inter-class-score-difference to
predicted OR (odds-ratio) difference. Comparing results between 24 h
and 48 h, the above proportions increased to 75.3% and 49.1%
respectively. The effects of modifiable features at 72 h were 48.4%-
86.1% when comparing their effects at 24 h (Table 2). Important
modifiable features in 24 h and 72 h models were significantly different,
among top-20 features (Fig. 4), shares of vitals, labs, procedures, and
medications in the inter-class-score-difference changed from 11.4%,
44.7%, 27.3%, and 3.8% at 24 h to 14.2%, 8.9%, 45.8%, and 16.8% at
72 h. The effects of important modifiable features at 72 h were generally
steady between 24 h and 72 h models while effects of important modi-
fiable features at 24 h significantly decreased in 72 h model. Overall,
labs and procedures contributed the most to the increase in difference

as 48h

Fraction of positives

02 o Perfectly calibrated
original XGB = 0.0004
MV-XGB = 0.0007

0.0 02 08 10

04 0.6
Mean predicted value
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«— original XGB = 0.0003
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Fig. 3. Calibration comparison between original and multi-view XGB.

Table 2

Effect change of views to inter-class score difference between AKI and non-AKI patients.

Feature category Inter-class Score Inter-class Score Inter-class Score Effect in 48 Effect in 72 Account for Score Diff. Account for Score Diff.

Diff. in 24 h (share) Diff. in 48 h (share) Diff. in 72 h (share) h/24h h/24 h decrease from 24 h to decrease from 24 h to
48 h 72h
Demographics & 0.009 (0.3%) 0.019 (0.9%) 0.032 (1.7%) 210.1% 348.9% -1.4% —2.3%
Social History

Vitals 0.174 (6.0%) 0.101 (4.7%) 0.094 (4.9%) 58.1% 54.1% 10.2% 8.2%

Kidney Function 0.161 (5.6%) 0.089 (4.1%) 0.081 (4.2%) 55.6% 50.4% 10.0% 8.2%

Labs 1.024 (35.6%) 0.638 (29.4%) 0.496 (26.0%) 62.3% 48.4% 54.4% 54.5%

Past Diagnoses 0.012 (0.4%) 0.02 (0.9%) 0.032 (1.7%) 170.7% 268.7% —-1.2% —2.1%

Procedures 0.97 (33.7%) 0.829 (38.2%) 0.72 (37.7%) 85.5% 74.2% 19.7% 25.8%

Medications 0.53 (18.4%) 0.471 (21.7%) 0.456 (23.9%) 89.0% 86.1% 8.2% 7.6%

Total 2.879 (100.0%) 2.168 (100.0%) 1.911 (100.0%) 75.3% 66.4% 100.0% 100.0%
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A: Top-20 modifiable predictors in 24h MV-XGB
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Fig. 4. Comparison of Top-20 modifiable features between MV-XGB for 24 h and 72 h.

between AKI and non-AKI patients from 72 h-to-24 h, accounting for
54.5% and 25.8% respectively with measure of inter-class-score-
difference.

3.3. Important modifiable risk factors for intervention in different time
windows

To determine which factors are more important to AKI prevention at
different time, we investigated what increased the risk difference be-
tween AKI and non-AKI patients from 72 h-to-24 h before AKI onset. We
integrated the top-50 modifiable features (highest inter-class-score-
difference) at 24 h, 48 h, and 72 h, and compared their inter-class-
score-difference at different time points. Based on whether inter-class-

score-difference of a feature at 48 h and 72 h is over 40% of its value
at 24 h, we classified them into “important modifiable features at 24-48
h” (24-48 h features, Table 3), “ important modifiable features at 48-72
h” (48-72 h features, Table 3), and “features remained important longer
than 72 h” (features before 72 h, Table 4). Exposed-score-difference of
important medications and procedures is in Table 5 to show their effect
on individuals (feature classification is the same as in Tables 3 and 4).
In Fig. 5, we combined some important modifiable features whose
concepts are similar and estimated their benefits of interventions at
different time windows. If we start intervening “24-48 h features” and
“48-72 h features” in their respective time intervals, the inter-class-
score-difference in 24 h can potentially decrease by 16.6% and 18.4%
respectively. The potential decreases were primarily related to
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Table 3

Important modifiable factors in 24-72 h. Factors presented in this table are union of top-50 modifiable features in MV-XGB for 24-72 h and their inter-class score

difference in the 72 h model is<40% against their effect in 24 h model.

International Journal of Medical Informatics 163 (2022) 104785

Duration of effect View Feature Inter-class score Inter-class score Inter-class score Effect in 48 Effect in 72
maintains > 40% diff in 24 h diff in 48 h diff in 72 h h/24h h/24h
24-48 h VITAL  DBP 0.0556 0.0179 0.0126 32.1% 22.7%
PX Level 2 subsequent hospital care 0.0704 0.0258 0.0146 36.6% 20.7%
Walking training to 1 or more areas, each 15 0.0386 0.0137 0.0064 35.4% 16.6%
min
LAB HCO3 Ser-sCnc 0.0814 0.0265 0.0102 32.6% 12.6%
Calcium SerPl-mCnc 0.0709 0.0264 0.0126 37.3% 17.8%
Anion Gap SerPl-sCnc 0.0515 0.0146 0.0062 28.4% 12.0%
Potassium SerPl-sCnc 0.0476 0.0132 0.0110 27.7% 23.0%
48-72 h PX Level 1 subsequent hospital care 0.0184 0.0118 0.0019 64.0% 10.5%
Injection, piperacillin sodium/tazobactam 0.0160 0.0114 0.0059 71.4% 37.1%
sodium, 1 g/0. 125 g (1. 125 g)
High-dose infusion interleukin-2 (IL-2) 0.0120 0.0092 0.0000 76.8% 0.0%
Collection of venous blood by venipuncture 0.0147 0.0086 0.0032 58.7% 21.5%
X-ray of chest, frontal view 0.0142 0.0086 0.0050 60.3% 35.5%
MED FUROSEMIDE (LASIX) BOLUS FOR 0.0348 0.0217 0.0085 62.3% 24.4%
CONTINUOUS INFUSION
PIPERACILLIN-TAZOBACTAM-DEXTRS 4.5 0.0251 0.0134 0.0064 53.5% 25.7%
GRAM/100 ML IV PGBK
ZOSYN 3.375 GRAM IV SOLR 0.0209 0.0126 0.0059 60.3% 28.5%
DEXAMETHASONE SODIUM PHOS (PF) 1J 0.0138 0.0064 0.0017 46.4% 12.0%
Aldesleukin Injection 0.0114 0.0055 0.0000 48.6% 0.0%
LAB Chloride SerPl-sCnc 0.0872 0.0381 0.0171 43.6% 19.6%
WBC # Bld 0.0716 0.0369 0.0186 51.6% 26.0%
Sodium SerPl-sCnc 0.0613 0.0309 0.0180 50.5% 29.4%
electrolyte  balance [1,10]  (0.330), high-risk medications related features is about 70% on average.

[1,11,13,48-50] (0.118), care strategy (0.104, including level of sub-
sequent hospital care and physical therapy), blood pressure [1,10-13]
(0.086), infection [1,11,12] (0.067), and anemia (including transfusion
of packed cells) [10,13,51] (0.046). These are all well-known AKI risk
factors.

Among important modifiable factors, the changes in electrolyte
balance explained most inter-class-score-difference increase (41.8% in
24-72 h, 38.3% in 24-48 h), its effect largely exists in the 24 h model,
and accounted for 0.251 inter-class score-difference-change between 24
h and 48 h. Four high-risk medications were identified to be associated
with higher AKI risk: aldesleukin (chemotherapy), furosemide (diuretic),
piperacillin-tazobactam and vancomycin (antibiotics). Aldesleukin, furose-
mide, and piperacillin-tazobactam were among the “48-72 h features™.
Aldesleukin had the largest effect at the individual level (Table 5); it
belonged to the “48-72 h features” because many patients had AKI soon
after its exposure (Table S1). Vancomycin maintained a larger effect in
the 72 h model against its effect in the 24 h model (50.0% according to
inter-class-score-difference or 66.9% according to exposed-score-
difference). This is probably due to the long elimination half-life of
vancomycin (4-11 h), especially in patients with impaired renal function
(6-10 days). Blood pressure related to hypoperfusion is known to be
associated with 40% hospital-acquired AKI [1]. We found the decreasing
effect of systolic pressure is slower (compared with diastolic pressure,
DBP, a “24-48 h feature”) and it belonged to the “features before 72 h”,
which may be due to its association with hypertension in older patients
that have a long-term impact on the kidney. Effect of infection in 24-72
h mainly came from white blood count (WBC, explained 0.053 change of
inter-class-score-difference in 24-72 h). The significant effect changes of
care strategy in different time windows may indicate the variability of
patient status in a short time.

From “features before 72 h”, we observed features related to me-
chanical ventilation or respiratory failure, anemia, and cardiac pro-
cedure/condition have a strong impact on AKI (Table 5). Their effects
have been studied extensively [10,13,51-56]. Our findings suggest ef-
fects of these events would last a long time. According to inter-class-
score-difference, effects of features related to mechanical ventilation
or respiratory failure and cardiac procedure/condition at 72 h are
still>90% against their effects at 24 h, and the proportion of anemia

Among important medications associated with lower AKI risk in
24-72 h, only dexamethasone belonged to the “48-72 h features”, which
may help decrease the risk of inflammation for AKI [57-59]. Remaining
medications belonged to “features before 72 h” (Table 4), including
crystalloid solutions, antibiotics, antiemetics, drugs for constipation,
anesthetics and analgesics, enoxaparin; benefits of some have been
studied [1,10-13,60,61] while some are still in debate [62,63].

4. Discussion

To better support AKI prevention, we proposed a multi-view learning
framework to focus learning on modifiable factors. Experiments
demonstrated that our approach significantly increased effect of modi-
fiable factors while maintaining a high prediction performance. Our
modifiable factor discovery approach is applicable to any EHR dataset
that has modifiable characteristics and time-series record. MV-XGB can
take input data one normally uses for XGBoost or any traditional ma-
chine learning algorithm, but users need to assign feature indexes to
different views.

To better estimate effect of modifiable factors, we comprehensively
considered EHR features for modeling. We found at least top-200 fea-
tures is valuable for AKI prediction. The number of predictors reflected
the complex mechanism and high prevalence of AKI in various patients.
Some important modifiable factors whose concepts are similar can be
combined to reduce the number of factors for analysis. Also, there may
be less predictors when analyzing more homogeneous subpopulations
where there is a shared AKI cause.

We analyzed important modifiable factors that can be used for
improving AKI prevention in current clinical practice and how their
effects change over time. Results showed that in the 24-72 h window,
electrolyte balance, renal hypoperfusion, infection, high-risk medica-
tions and anemia are more important to intervene for AKI prevention. It
is well-known that electrolyte balance is critical for adequate func-
tioning of nerve and organs and its change is associated with kidney
dysfunction. Most guidelines for AKI prevention consider electrolyte
balance as an important factor in fluid management [1,10-13]. How-
ever, current target for fluid management is to avoid renal hypo-
perfusion; while our results showed that the potential gap for improving
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Table 4
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Important modifiable factors that maintained 40% inter-class score difference after 72 h.

View Feature Inter-class score diff ~ Inter-class score diff ~ Inter-class score diff ~ Effect in 48 h/ Effect in 72 h/
in24h in48 h in72h 24h 24 h

VITAL SBP 0.0754 0.0411 0.0321 54.5% 42.5%
Weight 0.0265 0.0253 0.0283 95.5% 106.9%
BMI 0.0162 0.0166 0.0209 102.8% 129.2%

PX Continuous mechanical ventilation > 96 h 0.0448 0.0397 0.0406 88.6% 90.7%
Insertion of endotracheal tube 0.0358 0.0349 0.0351 97.3% 98.1%
Diagnostic ultrasound of heart 0.0425 0.0409 0.0351 96.1% 82.6%
Hemodialysis 0.0435 0.0301 0.0284 69.1% 65.2%
Emergency, with significant threat to life or function 0.0120 0.0319 0.0280 266.1% 234.0%
Transfusion of packed cells 0.0432 0.0370 0.0279 85.6% 64.5%
Venous catheterization, not elsewhere classified 0.0341 0.0294 0.0256 86.3% 75.1%
Extracorporeal circulation to open heart surgery 0.0186 0.0281 0.0217 151.3% 116.8%
Arterial catheterization 0.0202 0.0210 0.0174 104.3% 86.2%
Single internal mammary-coronary artery bypass 0.0114 0.0130 0.0148 113.6% 129.4%
Injection, ondansetron hydrochloride, per 1 mg 0.0009 0.0050 0.0142 576.7% 1647.5%
Respiratory Ventilation > Consecutive 96 h 0.0128 0.0141 0.0140 110.6% 109.4%
Insertion of Endotracheal Airway into Trachea, Via Natural 0.0106 0.0104 0.0105 98.8% 99.4%
or Artificial Opening
Percutaneous abdominal drainage 0.0087 0.0101 0.0104 116.3% 120.3%
Insertion of Infusion Device into Superior Vena Cava, 0.0109 0.0118 0.0099 107.5% 90.1%
Percutaneous Approach

MED CEFAZOLIN IV 0.0075 0.0182 0.0259 241.0% 342.8%
ZOFRAN (PF) IJ 0.0011 0.0063 0.0215 557.2% 1907.4%
SODIUM CHLORIDE 0.9 % IV 0.0054 0.0175 0.0206 322.0% 379.7%
Vancomycin Injectable Solution 0.0348 0.0296 0.0174 85.2% 50.0%
LACTATED RINGERS IV SOLP (OR) 500ML 0.0026 0.0078 0.0172 295.8% 653.1%
MILK OF MAGNESIA CONCENTRATED PO 0.0152 0.0181 0.0170 119.2% 111.7%
ENOXAPARIN 40 MG/0.4 ML SC SYRG 0.0038 0.0143 0.0155 375.0% 407.4%
BISA-LAX RE 0.0052 0.0041 0.0120 78.6% 230.3%
FENTANYL CITRATE (PF) 2500 MCG/50 ML PCA 0.0036 0.0035 0.0113 96.1% 310.6%
SENNALAX-S 8.6-50 MG PO TAB 0.0108 0.0115 0.0095 106.6% 87.9%
MARDOL 325 MG PO TAB 0.0075 0.0118 0.0095 156.6% 126.1%
OXYCODONE 5 MG PO TBOR 0.0114 0.0051 0.0077 44.6% 68.1%
PROPOFOL 10 MG/ML IV EMUL 50 ML (INFUSION)(AM)  0.0114 0.0075 0.0071 65.3% 62.5%
(OR)
FUROSEMIDE 200 MG IN D5W 100 ML IV DRIP 0.0131 0.0095 0.0055 72.8% 42.2%

LAB RDW RBC Auto-Rto 0.0244 0.0208 0.0186 85.1% 76.4%
Bilirub SerPl-mCnc 0.0290 0.0161 0.0150 55.6% 51.6%
Platelet # Bld Auto 0.0290 0.0248 0.0140 85.4% 48.4%
Hct VFr Bld Auto 0.0179 0.0154 0.0140 85.7% 78.2%
Hgb Bld-mCnc 0.0144 0.0137 0.0132 95.1% 91.4%
BNP Bld-mCnc 0.0241 0.0166 0.0131 68.9% 54.4%
RBC # Bld Auto 0.0162 0.0146 0.0113 89.8% 69.7%
Lymphocytes/leuk NFr Bld Auto 0.0178 0.0133 0.0109 74.5% 61.4%
aPTT PPP 0.0092 0.0101 0.0101 109.6% 109.4%
Albumin SerPl BCG-mCnc 0.0095 0.0118 0.0096 124.3% 100.6%
ALP SerPl-cCnc 0.0101 0.0089 0.0092 88.1% 90.6%
Lymphocytes # Bld Auto 0.0157 0.0121 0.0091 77.4% 57.8%
Neutrophils # Bld Auto 0.0097 0.0079 0.0087 82.2% 90.4%
Magnesium SerPl-mCnc 0.0127 0.0115 0.0073 90.8% 57.6%
AST SerPl-cCnc 0.0130 0.0071 0.0069 54.5% 53.4%

AKI prevention is larger in electrolyte balance than in renal hypo-
perfusion. KDIGO Guideline also discussed the role of electrolyte bal-
ance in timing of renal replacement therapy [1]. Our findings reiterate
the importance of continuous monitoring the electrolyte status of high-
risk patients and addressing the abnormalities in a timely fashion.
Blood pressure is related to renal perfusion, and in current recom-
mendations, their targets are measured by mean arterial pressure or
systolic pressure [11,12]. However, baseline systolic pressure may be
influenced by the higher correlation between systolic pressure and hy-
pertension in older patients. Our results suggest that we can consider a
potentially more sensitive target based on diastolic pressure.
Antibiotics treats infection but can be nephrotoxic, thus, it is
important to balance the benefit and risk of its use. We found exposure to
vancomycin and piperacillin-tazobactam generally related to higher AKI
risk. Vancomycin is a well-known nephrotoxin and the nephrotoxicity
increases when it is jointly used with other antibiotics like tazobactam
[48,49]. Vancomycin has a much longer elimination half-life than other
common antibiotics, especially in patients with impaired renal function.
Our results showed that vancomycin can maintain a large effect in 72 h

model against its effect in 24 h model. It indicates vancomycin should be
used carefully in patients at high AKI risk to prevent long-term neph-
rotoxicity and unexpected medication interaction.

In this study, most medications potentially important for renal pro-
tection belonged to “features last>72 h” (except dexamethasone). Ben-
efits of medications like crystalloid solutions, antibiotics, anesthetics
and analgesics, enoxaparin have been studied while some is still in
debate. However, many of the drugs identified had a much larger effect
at 72 h against their effect at 24 h. Further research for these drugs may
need to consider the time windows of their usages for AKI prevention.

Risks of blood transfusion, mechanical ventilation, and cardiac sur-
gery can last several days, but they are also life-saving procedures, thus
it is more important to control their risk factors (e.g., blood loss and
pneumonia). For patients requiring these procedures, we should eval-
uate and monitor their risk factors in a longer time frame.

5. Limitation

First, the study is based on retrospective observational EHR data,
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Table 5
Exposed score difference of important medication and procedure in the union of top-50 modifiable features.
Duration of effect View  Feature Exposed score Exposed score Exposed score Effectin48h/  Effectin72h/
(same as Table 4) diff. in 24 h diff. in 48 h diff. in 72 h 24 h 24 h
24-48 h PX Level 2 subsequent hospital care —0.2985 —0.1700 —0.1186 56.9% 39.7%
Walking training to 1 or more areas, each 15 —0.3436 —0.2011 —0.1214 58.5% 35.3%
min
48-72h PX Level 1 subsequent hospital care —0.1752 —0.1406 —0.0376 80.3% 21.5%
Injection, piperacillin sodium/tazobactam 0.1661 0.1448 0.0884 87.2% 53.2%
sodium, 1 g/0. 125 g (1. 125 g)
High-dose infusion interleukin-2 (IL-2) 0.8971 1.0316 0.0000 115.0% 0.0%
Collection of venous blood by venipuncture —0.0873 —0.0603 —0.0249 69.1% 28.6%
X-ray of chest, frontal view 0.0504 0.0384 0.0170 76.2% 33.8%
MED FUROSEMIDE (LASIX) BOLUS FOR 0.1770 0.1317 0.0686 74.4% 38.8%
CONTINUOUS INFUSION
PIPERACILLIN-TAZOBACTAM-DEXTRS 4.5 0.2211 0.1479 0.0832 66.9% 37.6%
GRAM/100 ML IV PGBK
ZOSYN 3.375 GRAM IV SOLR 0.2074 0.1579 0.0891 76.1% 43.0%
DEXAMETHASONE SODIUM PHOS (PF) 1J —0.1434 —0.0773 —0.0228 53.9% 15.9%
Aldesleukin Injection 0.7694 0.6283 0.0000 81.7% 0.0%
>72h PX Continuous mechanical ventilation > 96 h 0.6208 0.6143 0.6038 99.0% 97.3%
Insertion of endotracheal tube 0.3140 0.3360 0.3440 107.0% 109.6%
Diagnostic ultrasound of heart 0.2452 0.2556 0.2363 104.2% 96.4%
Hemodialysis 1.5653 1.5640 1.5998 99.9% 102.2%
Emergency department visit, with significant —0.0912 —-0.1719 —0.1543 188.5% 169.2%
threat to life or function
Transfusion of packed cells 0.3495 0.3338 0.2812 95.5% 80.5%
Venous catheterization, not elsewhere 0.3280 0.3274 0.2965 99.8% 90.4%
classified
Extracorporeal circulation auxiliary to open 0.3141 0.3824 0.3990 121.8% 127.0%
heart surgery
Arterial catheterization 0.2172 0.2517 0.2220 115.9% 102.2%
Single internal mammary-coronary artery 0.3046 0.3140 0.4201 103.1% 137.9%
bypass
Injection, ondansetron hydrochloride, per 1 mg 0.0286 —0.0319 —0.0768 -111.5% —268.2%
Respiratory Ventilation > Consecutive 96 h 0.7064 0.8651 0.8691 122.5% 123.0%
Insertion of Endotracheal Airway into Trachea, 0.4318 0.4978 0.5181 115.3% 120.0%
Via Natural or Artificial Opening
Percutaneous abdominal drainage 0.1946 0.2518 0.2576 129.4% 132.4%
Insertion of Infusion Device into Superior Vena 0.4382 0.5031 0.4426 114.8% 101.0%
Cava, Percutaneous Approach
MED CEFAZOLIN IV —0.0502 —0.1239 —0.1619 246.8% 322.5%
ZOFRAN (PF) IJ 0.0102 —0.0295 —0.0881 —288.5% —861.5%
SODIUM CHLORIDE 0.9 % IV —0.0787 —0.0978 —0.0995 124.2% 126.5%
Vancomycin Injectable Solution 0.2007 0.1920 0.1342 95.7% 66.9%
LACTATED RINGERS IV SOLP (OR) 500ML —0.0089 —0.0452 —0.0851 508.5% 958.8%
MILK OF MAGNESIA CONCENTRATED PO —0.0810 —0.1044 —0.0979 128.9% 120.9%
ENOXAPARIN 40 MG/0.4 ML SC SYRG —0.0256 —0.0840 —0.0851 327.5% 331.9%
BISA-LAX RE —0.0323 —0.0259 —0.0688 80.2% 213.1%
FENTANYL CITRATE (PF) 2500 MCG/50 ML —0.0156 —0.0121 —0.0468 77.3% 299.3%
PCA
SENNALAX-S 8.6-50 MG PO TAB —0.0759 —0.0757 —0.0708 99.7% 93.3%
MARDOL 325 MG PO TAB —0.0356 —0.0573 —0.0445 161.0% 124.9%
OXYCODONE 5 MG PO TBOR —0.0612 —0.0311 —0.0457 50.9% 74.6%
PROPOFOL 10 MG/ML IV EMUL 50 ML —0.0824 —0.0561 —0.0466 68.1% 56.5%
(INFUSION)(AM)(OR)
FUROSEMIDE 200 MG IN D5W 100 ML IV DRIP 0.4741 0.4470 0.3156 94.3% 66.6%
results should only be interpreted for identifying potential gap in current 6. Summary table
clinical practice at a single center; difference in patient population and
management in other hospitals may influence the result [6]. Difference What was already known on the topic
of importance modifiable factors in different centers and subpopulation Many risk factors of hospital-acquired AKI are known.
is an interesting topic for further research. Our result does not reflect Some clinical guidelines for AKI management have been proposed.
importance of modifiable factors for an individual. To understand this Effectiveness of AKI prediction with electronic health records have been verified.
question, we need to combine our proposed method and personalized
modeling. Second, only three prediction points were considered. Third, What this study added to our knowledge

we did not consider intercorrelation among modifiable factors, which A multl'-V1ew ana'lys'ls approach for better identification [?f modifiable risk factors.
Identified gap in improvement for current AKI prevention strategy.

may influence their effect estimation. Fourth, to accurately estimate Analyzed what modifiable factors are more important at various time points prior to
effect of modifiable factors, we comprehensively considered EHR fea- AKI onset.

tures for modeling, but we primarily analyzed the result of important
features, less important features that are similar in concept to important
ones may be ignored; further study can use ontology to integrate feature
with similar concepts.
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A: Constitution of inter-class score diff. in 24h
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B: Causes of prediction change between 24h and 48h

Electrolyte balance
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® Infection

Care strategy
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® Drug can cause AKI

0.055,9.2%
s < = Blood pressure

0.076 , 12.7%
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D: Prediction effect of factors before 72h
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® Infection
® Crystalloid solutions
™ Respiratory
Care strategy
= Anesthetics/analgesics
B Anemia
= Dialysis
Weight
¥ Drug can cause AKI
¥ Drug for constipation
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H Blood pressure
= Antiemetics
® Other
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0.038,4.0%
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Fig. 5. Factors related to inter-class score difference increase in different time windows. Results in this figure were based on union of top-50 modifiable features in
MV-XGB for 24-72 h. Inter-class score difference of factors and its share (%) in all important predictors is presented. The percentages were calculated by dividing
change of inter-class score different in a specific class of important factors by change of inter-class score different in all important predictors. In (A)-(C), only effect
change of predictors increased inter-class score difference from 72 h to 24 h were considered.
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