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Abstract

IMPORTANCE Acute kidney injury (AKI) is a heterogeneous syndrome prevalent among
hospitalized patients. Personalized risk estimation and risk factor identification may allow effective
intervention and improved outcomes.

OBJECTIVE To develop and validate personalized AKI risk estimation models using electronic health
records (EHRs), examine whether personalized models were beneficial in comparison with global
and subgroup models, and assess the heterogeneity of risk factors and their outcomes in different
subpopulations.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study analyzed EHR data from 1 tertiary
care hospital and used machine learning and logistic regression to develop and validate global,
subgroup, and personalized risk estimation models. Transfer learning was implemented to enhance
the personalized model. Predictor outcomes across subpopulations were analyzed, and
metaregression was used to explore predictor interactions. Adults who were hospitalized for 2 or
more days from November 1, 2007, to December 31, 2016, were included in the analysis. Patients
with moderate or severe kidney dysfunction at admission were excluded. Data were analyzed
between August 28, 2019, and May 8, 2022.

EXPOSURES Clinical and laboratory variables in the EHR.

MAIN OUTCOMES AND MEASURES The main outcome was AKI of any severity, and AKI was
defined using the Kidney Disease: Improving Global Outcomes serum creatinine criteria.
Performance of the models was measured with area under the receiver operating characteristic curve
(AUROQ), area under the precision-recall curve, and calibration.

RESULTS The study cohort comprised 76 957 inpatient encounters. Patients had a mean (SD) age of
55.5 (17.4) years and included 42 159 men (54.8%). The personalized model with transfer learning
outperformed the global model for AKI estimation in terms of AUROC among general inpatients
(0.78 [95% Cl, 0.77-0.79] vs 0.76 [95% Cl, 0.75-0.76]; P < .001) and across the high-risk subgroups
(0.79[95% Cl, 0.78-0.80] vs 0.75 [95% Cl, 0.74-0.77]; P < .001) and low-risk subgroups (0.74 [95%
Cl, 0.73-0.75] vs 0.71[95% Cl, 0.70-0.72]; P < .001). The AUROC improvement reached 0.13 for the
high-risk subgroups, such as those undergoing liver transplant and cardiac surgery. Moreover, the
personalized model with transfer learning performed better than or comparably with the best
published models in well-studied AKI subgroups. Predictor outcomes varied significantly between
patients, and interaction analysis uncovered modifiers of the predictor outcomes.

CONCLUSIONS AND RELEVANCE Results of this study demonstrated that a personalized modeling
with transfer learning is an improved AKI risk estimation approach that can be used across diverse
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Abstract (continued)

patient subgroups. Risk factor heterogeneity and interactions at the individual level highlighted the
need for agile, personalized care.

JAMA Network Open. 2022;5(7):€2219776. doi:10.1001/jamanetworkopen.2022.19776

Introduction

Acute kidney injury (AKI) is a life-threatening clinical syndrome that is characterized by rapid
reduction in kidney function and has complex etiologies and pathogenesis. Prevalence of hospital-
acquired AKI varies by patient population, affecting 7% to 18% of general inpatients and greater than
50% of patients in the intensive care unit."® Complex risk factors and their interactions hinder
physicians from forecasting AKI risk.

Artificial intelligence has made substantial progress in AKI risk estimation. However, risk
estimation models are predominantly built with predefined study cohorts, which are also known as
global models.*® Existing global models for AKI estimation have achieved an area under the receiver
operating characteristic curve (AUROC) of 0.66 to 0.80 in internal validation studies and 0.65 to 0.71
in external validation studies.* Several studies have estimated AKI risk in patients in the intensive
care unit using structured and unstructured electronic health record (EHR) data.”'® Tomagev et al®
proposed a state-of-the-art deep learning-based AKI estimation model using the EHR system from
the US Department of Veterans Affairs, but this model may have inherent gender bias. Koyner et al®
developed and externally validated™ a gradient boosting machine model with an AUROC higher than
0.85 for estimating moderate-to-severe AKI. A previous study'? revealed variable performance of
the gradient boosting machine for AKI estimation across 6 health systems. Despite substantial
progress, none of these global models has been evaluated in diverse subpopulations.

Global models can capture knowledge that is generalizable to a population but may ignore
information that is specific to an individual or a subpopulation.'"® An alternative is subgroup

modeling,”?3

which is stratifying a population into subgroups according to patient differences and
then building models for each subgroup. These subgroups, however, are defined by preexisting
knowledge. For highly heterogeneous diseases, such as AKI, for which the underlying mechanisms
are not yet fully elucidated, exhaustive subgroup modeling is impossible.

Personalized modeling is a promising approach to precise and equitable risk estimation.?*2° It
builds an estimation model on demand for an incoming patient from an individualized cohort of
similar patients. The model is optimized for the index patient rather than the average patientina
heterogeneous population. However, the number of similar patients in a high-dimensional EHR
system is often small, which can be a factor in severe overfitting. Moreover, there is no systematic
investigation on the necessity and feasibility of personalized modeling for AKI risk estimation.

In this diagnostic study, we explored personalized modeling by addressing the diminishing
sample challenge. The first objective was to develop and validate personalized AKI risk estimation
models using EHRs. The second objective was to examine whether personalized models were
effective compared with global and subgroup models. The third objective was to assess the

heterogeneity of risk factors and their outcomes in different subpopulations.

Methods

The data set used in this diagnostic study met the Health Insurance Portability and Accountability Act
deidentification criteria, and thus the study was deemed to be non-human participant research by
the University of Kansas Medical Center Institutional Review Board. Data acquisition was approved
by the University of Kansas Medical Center Data Request Oversight Committee. We followed the
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Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guideline.

Study Cohort and Data Extraction

We used a retrospective cohort from previous AKI studies3°-33

and extracted deidentified data from
EHRs at the University of Kansas Medical Center, a tertiary care hospital.>#>> All adults who were
hospitalized at the University of Kansas Health System for 2 or more days from November 1, 2007, to
December 31, 2016, were included (representing 179 370 inpatient encounters). Inpatient stays were
the unit of analysis, and some patients had multiple admissions. We excluded those with (1) fewer
than 2 serum creatinine measurements, or (2) moderate-to-severe kidney dysfunction at admission
(ie, estimated glomerular filtration rate <60 mL/min/1.73 m? using the Modification of Diet in Renal
Disease equation,3® or serum creatinine level >1.3 mg/dL [to convert to micromoles per liter, multiply
by 88.4] within 24 hours of admission).

We extracted 1892 structured EHR variables, including demographic characteristics, vital signs,
medications, medical history, admission diagnoses, and laboratory tests (eTable 1in the
Supplement).?” Race and ethnicity data were indicated in the EHR and included the following
categories: African American, Asian, White, and other (including American Indian or Alaskan Native,
Native Hawaiian or Other Pacific Islander, 2 races, and unreported race).

The estimation point was 1day before onset for patients with AKI and 1day before the last
serum creatinine measurement for patients without AKI. Data preprocessing, missing data handling,
and patient characteristics are described in eAppendix 1and eTable 2 in the Supplement.

AKI Definition and Evaluation

Acute kidney injury was defined using the Kidney Disease: Improving Global Outcomes serum
creatinine criteria.>® Baseline serum creatinine level was the last measurement within 2 days before
admission or the first measurement after admission. All serum creatinine measures during a hospital
stay were examined on a rolling basis to ascertain the presence and onset of AKI.

The personalized model with transfer learning was developed and evaluated through 5-fold
cross-validation (eFigures 1and 2 and eTables 3-7 in the Supplement). We compared the
performances of the global, subgroup, and personalized models for estimating AKI in general, high-
risk, and low-risk inpatients. No data balancing approach was used. Benchmarking models
(eAppendix 4 in the Supplement) included global model, global model with transfer learning,
subgroup model, subgroup model with transfer learning, personalized model, and personalized
model with transfer learning.

We also conducted a literature review to compare the personalized model with transfer learning
against models in published studies. To assess the role of sample size in AKI estimation, we randomly
sampled a percentage of the study cohort to build the global model and controlled the number of
similar patients for training the personalized models at the same level. The global model with smaller
sample sizes was repeated 10 times to obtain the mean performance. To evaluate the models across
patient subgroups, we identified 20 high-risk subgroups in the cohort using admission diagnoses and
20 known subgroups from the literature. To analyze heterogeneity of patients in subgroups, we
calculated absolute Pearson correlation coefficient among the top 50 important predictors in
different subgroups. Higher correlations among important predictors in a subgroup indicated that
patients in the subgroup were more homogeneous with respect to each other and more
heterogeneous with respect to general patients. To compare the personalized model with transfer
learning and the subgroup model for each test patient in a subgroup, we built the personalized model
with transfer learning using 10% of the overall training samples (eTable 3 in the Supplement) who
exhibited the highest similarity to the test patient.

Model performance was measured with AUROC, area under the precision-recall curve (AUPRC),
and calibration, and these measures were compared using the DeLong test,° z test, and
bootstrapping (eAppendix 5 in the Supplement). Comparisons between the personalized model with
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transfer learning and existing models in previous studies were conducted with z tests. Predictor
importance was estimated by calculating the coefficients in logistic regression, AUROC gain, and
interclass score difference*® (eAppendix 6 in the Supplement).

Personalized Model With Transfer Learning

The personalized model with transfer learning contains 4 modules (eAppendix 2 in the Supplement):
(1) similar sample matching, which identifies similar patients for a given target patient; (2) transfer
learning, which transfers knowledge from the global model to initialize training of personalized
models (eAppendix 3 in the Supplement); (3) personalized modeling, which continues learning from
similar patients; and (4) similarity measure optimization, which optimizes similarity measures in
similar sample matching.

To identify similar patients, we applied the k-nearest neighbor algorithm and calculated
distances between patients using all 1892 structured EHR variables. Each variable in the distance
calculation was weighted by the similarity measure optimization module, which iteratively optimized
the weights according to performance of personalized models during training. To address the
diminishing sample problem after similar sample matching, we leveraged transfer learning® using
logistic regression as the base learner, and initialized the coefficient of each variable in the
personalized logistic regression with its corresponding coefficient from the global logistic regression.

Statistical Analysis

To understand risk factor interactions in personalized models, we performed metaregression using
PyMARE (Tal Yarkoni, Taylor Salo, and Thomas Nichols). Each personalized model was treated as an
independent study. Study-level effect size of each target variable was calculated using its coefficients
from the personalized models of patients who had the variable recorded, and the remaining variables
were treated as study-level covariates. Because personalized models are not independent from each
other, we performed subgroup analysis to verify the risk factor interactions by controlling the
moderator found by metaregression and compared the outcomes of target predictors in patients
who were exposed vs those who were not exposed to the moderator according to the coefficients in
the logistic regression model or odds ratios that were calculated from the raw data (eAppendix 7 in
the Supplement).

Significance of result in metaregression was based on the 2-sided P value returned by PyMARE
(eAppendixes 5 and 7 in the Supplement). Significance of the changes in predictor outcomes in 2
subgroup models were calculated with the z test. Data were analyzed between August 28, 2019, and
May 8,2022.

Results

The study cohort comprised 76 957 inpatient encounters. Of these hospitalized patients, the mean
(SD) age was 55.5 (17.4) years and 42 159 were male individuals (54.8%) and 34 798 were female
individuals (45.2%) (eTable 2 in the Supplement), about whom we collected a total of 1892 variables.
Acute kidney injury occurred in 7259 patients (9.4%).

Risk Estimation in General Inpatients

The personalized models outperformed the global models whenever the training sample size was
less than 100% of the entire cohort (Figure 1). The personalized model with transfer learning, even
at small sample sizes, outperformed the global model that was trained with a100% sample size (0.78
[95% ClI, 0.77-0.79] vs 0.76 [95% Cl, 0.75-0.76]; P < .001). The remaining analyses used the
personalized model with transfer learning that was built with a 10% sample size (eTable 3 in the
Supplement). The AUROC for the personalized model with transfer learning that was trained with a
10% training sample size vs the global model that was trained with a 100% sample size was 0.78
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(95% Cl, 0.77-0.79) vs 0.76 (95% Cl, 0.75-0.76; P < .001), and the AUPRC was 0.37 (95% Cl, 0.36-
0.39) vs 0.32 (95% Cl, 0.31-0.33; P < .001), respectively (eFigure 3 in the Supplement). Calibration of
the personalized model with transfer learning was nearly perfect and was better than the global
model (0.0001vs 0.0002; P = .13; personalized model with transfer learning performed better in

18 716 of 20 000 bootstrapping tests) (Figure 1B).

Transfer learning was associated with significantly mitigated deterioration of model estimations
with smaller sample sizes (Figure 1A). The AUROC margins using 5% vs 100% sample size
deteriorated only by 0.03 for the global model with transfer learning vs 0.10 for the global model.
Transfer learning also was associated with improved calibration (0.0001 vs 0.0035; P < .00T;
personalized model with transfer learning performed better in all 20 000 bootstrapping tests)
(Figure 1B). Nevertheless, the global model with transfer learning that used a smaller sample size still
underperformed the global model with a100% sample size, suggesting that the personalized model
with transfer learning outperformed the global model primarily because of the personalized
approach.

Risk Estimation in High-Risk Admission Subgroups

We compared global, subgroup, and personalized modeling in 20 subgroups stratified by admission
diagnoses who had the highest AKI incidence (eTables 8 and 9 in the Supplement). The personalized
model with transfer learning outperformed the global model (100% sample size) in all 20 subgroups,
with a mean AUROC increase of 0.06 (95% Cl, 0.005-0.17; P < .05 in 13 subgroups) (Figure 2A).

Figure 1. Comparison of Model Performance in General Inpatients
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acute kidney injury; AUROC, area under the receiver operating characteristic curve.

[5 JAMA Network Open. 2022;5(7):€2219776. doi:10.1001/jamanetworkopen.2022.19776 July 1,2022 5/20

Downloaded From: https://jamanetwork.com/ by a Shook, Hardy, & Bacon User on 07/01/2022


https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.19776&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.19776
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.19776&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.19776

JAMA Network Open | Health Informatics Development and Validation of the Personalized Model With Transfer Learning for AKI Risk Estimation

Across the high-risk subgroups, the AUROC for the personalized model with transfer learning vs
global model was 0.79 (95% Cl, 0.78-0.80) vs 0.75 (95% Cl, 0.74-0.77; P < .001), and the AUPRC
was 0.58 (95% Cl, 0.56-0.60) vs 0.48 (95% Cl, 0.46-0.51; P < .001). Among patients with lower risk,
the AUROC for the personalized model with transfer learning vs global model was 0.74 (95% Cl,
0.73-0.75) vs 0.71(95% Cl, 0.70-0.72; P < .001), and the AUPRC was 0.22 (95% Cl, 0.20-0.23) vs
0.20 (95% Cl, 0.18-0.21; P < .001) (eFigure 4 in the Supplement).

The personalized model with transfer learning also outperformed the subgroup models in 17 of
20 subgroups (mean AUROC increase, 0.05; 95% Cl, -0.01to 0.128; P < .05 in 7 subgroups)
(Figure 2A). Across the high-risk subgroups, AUROCs of the personalized model with transfer
learning vs subgroup models were as follows: 0.79 (95% Cl, 0.78-0.80) vs 0.75 (95% Cl, 0.74-0.77;
P <.001), and the AUPRCs were 0.58 (95% Cl, 0.56-0.60) vs 0.52 (95% Cl, 0.50-0.54; P < .001)
(eFigure 4 in the Supplement). Overall calibration of the personalized model with transfer learning
across the 20 subgroups was significantly better than that of the subgroup models (0.0006 vs
0.0113; P < .001; personalized model with transfer learning performed better in all 20 000
bootstrapping tests) (Figure 1C; eFigure 5 in the Supplement). The personalized models with transfer

Figure 2. Radar Chart of the Area Under the Receiver Operating Characteristic Curve (AUROC) for Personalized
and Subgroup Models Across 20 High-Risk Subgroups
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learning performed better than the subgroup models with transfer learning in 18 of 20 subgroups.
Overall, the AUROC across the 20 subgroups was 0.79 (95% Cl, 0.78-0.80) vs 0.78 (95% Cl,
0.77-0.79; P < .001), and the AUPRC was 0.58 (95% Cl, 0.56-0.60) vs 0.56 (95% Cl, 0.54-0.58;

P < .00T1) (eFigures 4 and 6, eTables 9 and 10 in the Supplement). We also evaluated the performance
of the personalized model with transfer learning in retrieving patients with AKI and found that the
personalized models can identify 11.97% to 20.95% more patients with AKI than the global models
and 7.18% to 13.45% more than the subgroup models (eTables 11and 12 in the Supplement).

The personalized model with transfer learning adapted well to subpopulations with different
levels of heterogeneity. In subgroups of patients with cardiac surgery (mean [SD] Pearson correlation
in 4 subgroups, 0.24 [0.27], 013 [0.21], 0.22[0.25], and 0.25 [0.27]), liver transplant (mean [SD]
Pearson correlation, 0.22 [0.20]), kidney and urinary tract procedures for non-malignant neoplasm
(mean [SD] Pearson correlation, 0.10 [0.16]), and tracheostomy with long-term mechanical
ventilation with extensive procedure (mean [SD] Pearson correlation, 0.15 [0.17]), the important
predictors had greater correlation, suggesting that patients with AKl in these subgroups had a similar
manifestation (eFigure 7 in the Supplement). It is hard for the global model to capture important
predictors in patients in these subgroups because they are different from general patients, whereas
both the personalized model with transfer learning (mean [SD] AUROC increase, 0.13 [0.03]) and the
subgroup models performed well. However, the correlations between important predictors were
lower in the subgroups with pulmonary edema and respiratory failure (mean [SD] Pearson
correlation, 0.09 [0.15]), acute leukemia (mean [SD] Pearson correlation, 0.09 [0.15]), extensive
procedure unrelated to principal diagnosis (mean [SD] Pearson correlation, 0.10 [0.15]), infectious
and parasitic diseases (mean [SD] Pearson correlation, 0.09 [0.15]), septicemia and disseminated
infections (mean [SD] Pearson correlation, 0.08 [0.16]), and major small and large bowel procedures
(mean [SD] Pearson correlation, 0.09 [0.16]) (eFigure 7 in the Supplement). This finding indicates
higher heterogeneity among patients in these subgroups. The personalized model with transfer
learning can still capture the heterogeneity in these subgroups and outperformed the global model
(0.77 [95% Cl, 0.75-0.79] vs 0.74 [95% Cl, 0.72-0.76]; P < .001), but in this scenario the subgroup
models performed the worst (mean [SD] AUROC difference, 0.10 [0.02]).

Risk Estimation in Known AKI Subgroups

The Table shows a comparison of the AUROC for the models in 20 well-studied AKI subgroups from
the literature (eTable 13 in the Supplement)."-29-2242-67 The personalized model with transfer
learning was superior to each of the current models, significantly outperforming the global model in
16 subgroups, the subgroup model in 11 subgroups, and the subgroup model with transfer learning in
9 subgroups. For example, among patients older than 65 years, AUROC was 0.76 (95% Cl, 0.74-0.77)
for the personalized model with transfer learning, 0.73 (95% Cl, 0.72-0.75; P < .001) for the global
model, 0.71(95% Cl, 0.70-0.72; P < .001) for the subgroup model, and 0.73 (95% Cl, 0.72-0.75;

P < .001) for the subgroup model with transfer learning. The AUPRC comparison is shown in

eTable 14 in the Supplement. Among patients older than 65 years, AUPRC was 0.37 (95% Cl, 0.35-
0.39) for the personalized model with transfer learning, 0.31(95% Cl, 0.28-0.33; P < .001) for the
global model, 0.28 (95% Cl, 0.26-0.30; P < .001) for the subgroup model, and 0.32 (95% Cl, 0.30-
0.35; P < .001) for the subgroup model with transfer learning.

In addition, the personalized model with transfer learning compared favorably with 30
previously published subgroup models. Among 32 comparisons, the personalized model with
transfer learning had superior performance vs the published models in 9 comparisons and worse in
only 2 comparisons. For example, in the subgroup with percutaneous coronary intervention and
nonacute myocardial infarction, the AUROC was 0.76 (95% Cl, 0.70-0.81) for the personalized model
with transfer learning, whereas the reported AUROC of the previous model built with a sample size
that was 280 times greater than the present sample size was 0.70 (95% Cl, 0.69-0.71; P = .04). In
the subgroup with hematologic malignant neoplasm, the personalized model with transfer learning
performed as well as the logistic regression model (0.76 vs 0.76) in Li et al®® but was worse than
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their bayesian network model (0.76 [95% Cl, 0.73-0.80] vs 0.81[95% Cl, 0.79-0.84]). For the sepsis
subgroup, both previous studies used the MIMIC Il (Medical Information Mart for Intensive Care)
data set, and the model in the present study was significantly better than one of the logistic
regression models®® (0.74 [95% Cl, 0.72-0.77] vs 0.71[95% Cl, 0.70-0.73]) but worse than the
other®*(0.79; 95% Cl, 0.76-0.82).

The published studies incorporated specific factors (eg, details on surgery and nephrotoxin
exposure) and estimated glomerular filtration rate or serum creatinine level (kidney function
indicators that we avoided) for the subgroups and had larger sample sizes. When the subgroup
model with transfer learning and the subgroup model were retrained for the 2 subgroups on the
present data, the personalized model with transfer learning outperformed the subgroup model with
amean AUROC increase of 0.08 (0.76 [95% Cl, 0.73-0.80] vs 0.69 [95% Cl, 0.65-0.73]; P < .001in
the subgroup with hematologic malignant neoplasm and 0.74 [95% Cl, 0.72-0.77] vs 0.67 [95% ClI,
0.64-0.701; P < .001 in the subgroup with sepsis) and outperformed the subgroup model with
transfer learning with a mean AUROC increase of 0.02 (0.76 [95% Cl, 0.73-0.8] vs 0.74 [95% ClI,
0.70-0.77]; P =007 in the subgroup with hematologic malignant neoplasm; 0.74 [95% Cl 0.72-0.77]
vs 0.73[0.70-0.75; P = .054] in the subgroup with sepsis).

Heterogeneity of Predictor Outcome Across Subgroups

Figure 3A shows the outcome of each of the top 20 predictors in the global model when applied to
the 20 high-risk subgroups compared with when they were applied to the entire population. The
outcome of the predictors decreased in 240 of 400 predictor-subgroup combinations, with a mean
decrease of 47% across all combinations; the distribution of several predictors that had large
outcome change was similar between general patients and patients in subgroups (eFigures 8-10 in
the Supplement). The AUROC of the global model across the 20 high-risk sugbroups based on the
top 20 predictors was only 0.61(95% Cl, 0.60-0.63). By contrast, when these same predictors were
applied to the same subgroups with the personalized model with transfer learning (compared with
the global model), the predictors were associated with more benefits in most combinations

(Figure 3B), and the AUROC was 0.65 (95% Cl, 0.63-0.66; P < .001). This finding suggests that one
reason the personalized model with transfer learning outperformed the global model in different
subgroups was that the outcome of many factors that appeared highly predictive in the population
as a whole changed when applied to certain subgroups.

The outcomes of the top predictors for general patients estimated by the personalized model
with transfer learning differed from those estimated by the global model (Figure 4A; eFigure 11in the
Supplement). The coefficient of variation of the regression coefficients for these features was high
(mean of 59.4%) (Figure 4A), with similar results among the top 200 predictors (eFigure 12 in the
Supplement), indicating that the varying outcome of these features across different types of patients
was being modeled in the personalized model with transfer learning. This finding is illustrated in
Figure 4B, which shows how the coefficients changed across subgroups for 6 well-known predictors
with high interindividual variability. For example, the coefficients for age (0.14; 182.41% of mean
coefficient among the 63 small subgroups) and serum calcium (0.51; 760.89% of mean coefficient
among the 63 small subgroups) were the highest in the cardiac surgery subgroup, whereas the
coefficients for pulse (0.008; 25.21% of mean coefficient among the 63 small subgroups) and
vancomycin (0.22; 61.22% of mean coefficient among the 63 small subgroups) were the lowest in
this subgroup. Predictor outcome estimates between personalized and subgroup models are
provided in eFigures 13-17 in the Supplement.

Predictor Interactions

The personalized model can facilitate risk factor interaction analysis. Patterns of changes in predictor
outcome in subgroups were similar between the personalized model with transfer learning and the
subgroup models, and conflicting results were mostly not significant (eFigures 15-17, eTables 16 and
17 in the Supplement). We explored interactions between medications and diagnoses within the
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Figure 3. Heatmaps of Outcomes of Top 20 Global Model Predictors Across 20 High-Risk Subgroups
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Figure 4. Outcomes of Top 20 Personalized Model With Transfer Learning Predictors Across 15 Large Diagnostic Subgroups
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To improve the stability of results, the 63 subgroups in Figure 4B and C were further abstracted into 15 large subgroups, both full name of the 63 diagnostic subgroups and their

classification are provided in eTable 15 in the Supplement. Predictors outcome in each of the 63 subgroups are presented in eFigures 16 and 17 in the Supplement. AMI indicates acute

myocardial infarction; AST, aspartate aminotransferase; AUC, area under the curve; BMI, body mass index; DMV, durative mechanical ventilation; WBC, white blood cell.
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personalized model with transfer learning (eAppendix 7, eTables 16 and 17 in the Supplement). Some
interactions identified were supported by previous evidence, such as an important outcome of

serum calcium level specific to patients who had cardiac surgery, mechanical ventilation, and

68-76 7778

burns or an interaction of both gastrointestinal surgery and tazobactam with vancomycin.

Unknown interactions were also identified. For example, the association between serum
calcium level and AKI varied with aldesleukin exposure. Among patients using aldesleukin, AKI
incidence for those with normal serum calcium level was 93%, but it was only 32% in patients with
abnormal serum calcium level.

Other hypothesized interactions were refuted. For example, previous studies suggested that
infection-induced AKI was more common in older patients.”>®° However, when we examined
patients who were admitted for systemic infection, the association of age with AKI risk decreased
significantly. For example, for the subgroup admitted with septicemia and disseminated infections,
AKl incidence was 13.4% (103 of 771) in patients older than 65 years, compared with 16.6% (150 of
906) in patients younger than 45 years. Similar results were obtained when analyzing patients who
were exposed to antibiotics (Figure 4B; eTables 16 and 17 in the Supplement).

Discussion

Clinical risk estimation models are commonly trained as global models. This study found that global
models were significantly associated with patient heterogeneity and did not work equitably well
across subpopulations. The most important predictors for the whole population that can be
identified by a global model can be completely different from the predictors that are important
within subpopulations; thus, estimations using a global model for patients with heterogeneous
conditions cannot be trusted.

We developed the personalized model with transfer learning to improve AKI risk estimation in
hospitalized patients. Results of the analyses showed that the personalized model with transfer
learning outperformed the global model across general, high-risk, and low-risk subgroups (eFigure 4
in the Supplement). The personalized model with transfer learning also outperformed traditional
subgroup models in most high-risk subgroups and performed better than or comparably to the state-
of-the-art expert-driven subgroup models in the literature. In-depth analyses revealed that
personalized modeling can dynamically adapt to subpopulations with varying levels of heterogeneity
and sample sizes and can enable a deeper understanding of risk factor outcomes. Moreover, we
found that transfer learning addressed the diminishing sample challenge and was associated with
significantly improved performance for both the personalized and subgroup models. Because the
transfer learning technique we developed preserves model interpretability, the approach has high
translational potential.

Multiple factors and their interactions can affect AKI risk. This study uncovered significant
variation in predictor outcomes across patients, and after considering this variation in the
personalized models, the importance of predictors changed significantly compared with their
importance in the global model. Using metaregression, we identified many significant predictor
interactions. Some of these have been previously reported, but novel interactions were also
identified.

We believe this study has substantial implications. First, it reached a milestone in clinical risk
estimation because it advanced general estimation toward personalized estimation. Integration of
transfer learning with personalized modeling eliminated the algorithm dependency on large training
data. Second, because personalized models are dynamically built for an incoming patient, it is not
necessary to build static models with the same target for various subpopulations as was done in
previous research. Third, the present study found that the variation in AKI predictor outcomes in the
personalized models was highly correlated with modifiable factors (Figure 3 and Figure 4; eAppendix
7. eFigure 11, eTables 16-18 in the Supplement). Thus, physicians may need to continuously monitor
the changing outcomes of risk factors and adjust the interventions accordingly. The proposed

[5 JAMA Network Open. 2022;5(7):€2219776. doi:10.1001/jamanetworkopen.2022.19776 July 1,2022 13/20

Downloaded From: https://jamanetwork.com/ by a Shook, Hardy, & Bacon User on 07/01/2022


https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.19776&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.19776
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.19776&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.19776
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.19776&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.19776
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2022.19776&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2022.19776

JAMA Network Open | Health Informatics Development and Validation of the Personalized Model With Transfer Learning for AKI Risk Estimation

algorithm can run in the background to notify physicians of impending AKI and the risk factors that
need modification to avert AKI. It is critical to transform patient care from one that relies on common
clinical pathways to one that is agile, personalized, and powered by artificial intelligence.

Limitations

This study has several limitations. First, we did not use all routinely available EHR variables (ie, all
laboratory results). Their inclusion may improve estimation but should not change the overall
conclusions. Second, validation of the personalized model with transfer learning was limited to a
single hospital. Third, a patient similarity measure was assumed to work uniformly well across
subpopulations. Fourth, we chose logistic regression as the base learner because of its
interpretability and common use in clinical research. Advanced methods, such as deep learning,
could improve performance, albeit at the expense of interpretability. Fifth, we performed
metaregression on limited predictors only to assess the interaction effect, but much more can be
learned from such analyses. Sixth, we limited the analysis to patients with normal baseline kidney
function to avoid confounding acute and chronic kidney disease. Seventh, we limited risk estimation
for AKI to the next 24 hours. Previous work showed that important predictors can be different
between time windows.*°" Further research is required to ascertain the best approach to matching
similar samples with time-series data.

Conclusions

In this diagnostic study, we found that personalized modeling is an improved approach to AKI risk
estimation across diverse patient subgroups. It advanced clinical risk estimation toward personalized
estimation. The findings on risk factor heterogeneity and interactions at the individual level
reinforced the need to transition to agile, personalized care.
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