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Abstract

IMPORTANCE Acute kidney injury (AKI) is a heterogeneous syndrome prevalent among
hospitalized patients. Personalized risk estimation and risk factor identificationmay allow effective
intervention and improved outcomes.

OBJECTIVE To develop and validate personalized AKI risk estimationmodels using electronic health
records (EHRs), examine whether personalizedmodels were beneficial in comparison with global
and subgroup models, and assess the heterogeneity of risk factors and their outcomes in different
subpopulations.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study analyzed EHR data from 1 tertiary
care hospital and usedmachine learning and logistic regression to develop and validate global,
subgroup, and personalized risk estimationmodels. Transfer learning was implemented to enhance
the personalized model. Predictor outcomes across subpopulations were analyzed, and
metaregression was used to explore predictor interactions. Adults who were hospitalized for 2 or
more days fromNovember 1, 2007, to December 31, 2016, were included in the analysis. Patients
with moderate or severe kidney dysfunction at admission were excluded. Data were analyzed
between August 28, 2019, andMay 8, 2022.

EXPOSURES Clinical and laboratory variables in the EHR.

MAINOUTCOMES ANDMEASURES Themain outcomewas AKI of any severity, and AKI was
defined using the Kidney Disease: Improving Global Outcomes serum creatinine criteria.
Performance of themodels wasmeasuredwith area under the receiver operating characteristic curve
(AUROC), area under the precision-recall curve, and calibration.

RESULTS The study cohort comprised 76 957 inpatient encounters. Patients had amean (SD) age of
55.5 (17.4) years and included 42 159men (54.8%). The personalizedmodel with transfer learning
outperformed the global model for AKI estimation in terms of AUROC among general inpatients
(0.78 [95% CI, 0.77-0.79] vs 0.76 [95% CI, 0.75-0.76]; P < .001) and across the high-risk subgroups
(0.79 [95% CI, 0.78-0.80] vs 0.75 [95% CI, 0.74-0.77]; P < .001) and low-risk subgroups (0.74 [95%
CI, 0.73-0.75] vs 0.71 [95% CI, 0.70-0.72]; P < .001). The AUROC improvement reached 0.13 for the
high-risk subgroups, such as those undergoing liver transplant and cardiac surgery. Moreover, the
personalized model with transfer learning performed better than or comparably with the best
published models in well-studied AKI subgroups. Predictor outcomes varied significantly between
patients, and interaction analysis uncoveredmodifiers of the predictor outcomes.

CONCLUSIONS ANDRELEVANCE Results of this study demonstrated that a personalizedmodeling
with transfer learning is an improved AKI risk estimation approach that can be used across diverse
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Abstract (continued)

patient subgroups. Risk factor heterogeneity and interactions at the individual level highlighted the
need for agile, personalized care.
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Introduction

Acute kidney injury (AKI) is a life-threatening clinical syndrome that is characterized by rapid
reduction in kidney function and has complex etiologies and pathogenesis. Prevalence of hospital-
acquired AKI varies by patient population, affecting 7% to 18% of general inpatients and greater than
50% of patients in the intensive care unit.1-3 Complex risk factors and their interactions hinder
physicians from forecasting AKI risk.

Artificial intelligence has made substantial progress in AKI risk estimation. However, risk
estimationmodels are predominantly built with predefined study cohorts, which are also known as
global models.4-6 Existing global models for AKI estimation have achieved an area under the receiver
operating characteristic curve (AUROC) of 0.66 to 0.80 in internal validation studies and0.65 to 0.71
in external validation studies.4 Several studies have estimated AKI risk in patients in the intensive
care unit using structured and unstructured electronic health record (EHR) data.7-10 Tomašev et al5

proposed a state-of-the-art deep learning–based AKI estimation model using the EHR system from
the US Department of Veterans Affairs, but this model may have inherent gender bias. Koyner et al6

developed and externally validated11 a gradient boostingmachinemodel with an AUROC higher than
0.85 for estimating moderate-to-severe AKI. A previous study12 revealed variable performance of
the gradient boosting machine for AKI estimation across 6 health systems. Despite substantial
progress, none of these global models has been evaluated in diverse subpopulations.

Global models can capture knowledge that is generalizable to a population but may ignore
information that is specific to an individual or a subpopulation.13-16 An alternative is subgroup
modeling,17-23 which is stratifying a population into subgroups according to patient differences and
then building models for each subgroup. These subgroups, however, are defined by preexisting
knowledge. For highly heterogeneous diseases, such as AKI, for which the underlying mechanisms
are not yet fully elucidated, exhaustive subgroupmodeling is impossible.

Personalizedmodeling is a promising approach to precise and equitable risk estimation.24-29 It
builds an estimation model on demand for an incoming patient from an individualized cohort of
similar patients. Themodel is optimized for the index patient rather than the average patient in a
heterogeneous population. However, the number of similar patients in a high-dimensional EHR
system is often small, which can be a factor in severe overfitting. Moreover, there is no systematic
investigation on the necessity and feasibility of personalizedmodeling for AKI risk estimation.

In this diagnostic study, we explored personalizedmodeling by addressing the diminishing
sample challenge. The first objective was to develop and validate personalized AKI risk estimation
models using EHRs. The second objective was to examine whether personalizedmodels were
effective compared with global and subgroupmodels. The third objective was to assess the
heterogeneity of risk factors and their outcomes in different subpopulations.

Methods

The data set used in this diagnostic studymet the Health Insurance Portability and Accountability Act
deidentification criteria, and thus the study was deemed to be non–human participant research by
the University of Kansas Medical Center Institutional Review Board. Data acquisition was approved
by the University of Kansas Medical Center Data Request Oversight Committee. We followed the
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Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guideline.

Study Cohort andData Extraction
We used a retrospective cohort from previous AKI studies30-33 and extracted deidentified data from
EHRs at the University of Kansas Medical Center, a tertiary care hospital.34,35 All adults who were
hospitalized at the University of Kansas Health System for 2 or more days fromNovember 1, 2007, to
December 31, 2016, were included (representing 179 370 inpatient encounters). Inpatient stayswere
the unit of analysis, and some patients hadmultiple admissions. We excluded those with (1) fewer
than 2 serum creatinine measurements, or (2) moderate-to-severe kidney dysfunction at admission
(ie, estimated glomerular filtration rate <60 mL/min/1.73 m2 using the Modification of Diet in Renal
Disease equation,36 or serum creatinine level >1.3 mg/dL [to convert to micromoles per liter, multiply
by 88.4] within 24 hours of admission).

We extracted 1892 structured EHR variables, including demographic characteristics, vital signs,
medications, medical history, admission diagnoses, and laboratory tests (eTable 1 in the
Supplement).37 Race and ethnicity data were indicated in the EHR and included the following
categories: African American, Asian, White, and other (including American Indian or Alaskan Native,
Native Hawaiian or Other Pacific Islander, 2 races, and unreported race).

The estimation point was 1 day before onset for patients with AKI and 1 day before the last
serum creatinine measurement for patients without AKI. Data preprocessing, missing data handling,
and patient characteristics are described in eAppendix 1 and eTable 2 in the Supplement.

AKI Definition and Evaluation
Acute kidney injury was defined using the Kidney Disease: Improving Global Outcomes serum
creatinine criteria.38 Baseline serum creatinine level was the last measurement within 2 days before
admission or the first measurement after admission. All serum creatinine measures during a hospital
stay were examined on a rolling basis to ascertain the presence and onset of AKI.

The personalizedmodel with transfer learning was developed and evaluated through 5-fold
cross-validation (eFigures 1 and 2 and eTables 3-7 in the Supplement). We compared the
performances of the global, subgroup, and personalizedmodels for estimating AKI in general, high-
risk, and low-risk inpatients. No data balancing approach was used. Benchmarking models
(eAppendix 4 in the Supplement) included global model, global model with transfer learning,
subgroupmodel, subgroupmodel with transfer learning, personalizedmodel, and personalized
model with transfer learning.

We also conducted a literature review to compare the personalizedmodel with transfer learning
againstmodels in published studies. To assess the role of sample size in AKI estimation, we randomly
sampled a percentage of the study cohort to build the global model and controlled the number of
similar patients for training the personalizedmodels at the same level. The global model with smaller
sample sizeswas repeated 10 times to obtain themean performance. To evaluate themodels across
patient subgroups, we identified 20 high-risk subgroups in the cohort using admission diagnoses and
20 known subgroups from the literature. To analyze heterogeneity of patients in subgroups, we
calculated absolute Pearson correlation coefficient among the top 50 important predictors in
different subgroups. Higher correlations among important predictors in a subgroup indicated that
patients in the subgroup were more homogeneous with respect to each other and more
heterogeneous with respect to general patients. To compare the personalized model with transfer
learning and the subgroupmodel for each test patient in a subgroup, we built the personalizedmodel
with transfer learning using 10% of the overall training samples (eTable 3 in the Supplement) who
exhibited the highest similarity to the test patient.

Model performance wasmeasured with AUROC, area under the precision-recall curve (AUPRC),
and calibration, and thesemeasures were compared using the DeLong test,39 z test, and
bootstrapping (eAppendix 5 in the Supplement). Comparisons between the personalizedmodel with
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transfer learning and existing models in previous studies were conducted with z tests. Predictor
importance was estimated by calculating the coefficients in logistic regression, AUROC gain, and
interclass score difference40 (eAppendix 6 in the Supplement).

PersonalizedModelWith Transfer Learning
The personalizedmodel with transfer learning contains 4modules (eAppendix 2 in the Supplement):
(1) similar sample matching, which identifies similar patients for a given target patient; (2) transfer
learning, which transfers knowledge from the global model to initialize training of personalized
models (eAppendix 3 in the Supplement); (3) personalizedmodeling, which continues learning from
similar patients; and (4) similarity measure optimization, which optimizes similarity measures in
similar sample matching.

To identify similar patients, we applied the k-nearest neighbor algorithm and calculated
distances between patients using all 1892 structured EHR variables. Each variable in the distance
calculation was weighted by the similarity measure optimizationmodule, which iteratively optimized
the weights according to performance of personalizedmodels during training. To address the
diminishing sample problem after similar sample matching, we leveraged transfer learning41 using
logistic regression as the base learner, and initialized the coefficient of each variable in the
personalized logistic regression with its corresponding coefficient from the global logistic regression.

Statistical Analysis
To understand risk factor interactions in personalizedmodels, we performedmetaregression using
PyMARE (Tal Yarkoni, Taylor Salo, and Thomas Nichols). Each personalized model was treated as an
independent study. Study-level effect size of each target variablewas calculated using its coefficients
from the personalizedmodels of patients who had the variable recorded, and the remaining variables
were treated as study-level covariates. Because personalizedmodels are not independent from each
other, we performed subgroup analysis to verify the risk factor interactions by controlling the
moderator found bymetaregression and compared the outcomes of target predictors in patients
who were exposed vs those whowere not exposed to themoderator according to the coefficients in
the logistic regressionmodel or odds ratios that were calculated from the raw data (eAppendix 7 in
the Supplement).

Significance of result in metaregression was based on the 2-sided P value returned by PyMARE
(eAppendixes 5 and 7 in the Supplement). Significance of the changes in predictor outcomes in 2
subgroupmodels were calculated with the z test. Data were analyzed between August 28, 2019, and
May 8, 2022.

Results

The study cohort comprised 76 957 inpatient encounters. Of these hospitalized patients, the mean
(SD) age was 55.5 (17.4) years and 42 159 were male individuals (54.8%) and 34 798 were female
individuals (45.2%) (eTable 2 in the Supplement), about whomwe collected a total of 1892 variables.
Acute kidney injury occurred in 7259 patients (9.4%).

Risk Estimation in General Inpatients
The personalizedmodels outperformed the global models whenever the training sample size was
less than 100% of the entire cohort (Figure 1). The personalizedmodel with transfer learning, even
at small sample sizes, outperformed the global model that was trainedwith a 100% sample size (0.78
[95% CI, 0.77-0.79] vs 0.76 [95% CI, 0.75-0.76]; P < .001). The remaining analyses used the
personalizedmodel with transfer learning that was built with a 10% sample size (eTable 3 in the
Supplement). The AUROC for the personalizedmodel with transfer learning that was trained with a
10% training sample size vs the global model that was trained with a 100% sample size was 0.78
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(95% CI, 0.77-0.79) vs 0.76 (95% CI, 0.75-0.76; P < .001), and the AUPRCwas 0.37 (95% CI, 0.36-
0.39) vs 0.32 (95%CI, 0.31-0.33; P < .001), respectively (eFigure 3 in the Supplement). Calibration of
the personalizedmodel with transfer learning was nearly perfect and was better than the global
model (0.0001 vs 0.0002; P = .13; personalizedmodel with transfer learning performed better in
18 716 of 20000 bootstrapping tests) (Figure 1B).

Transfer learning was associated with significantly mitigated deterioration of model estimations
with smaller sample sizes (Figure 1A). The AUROCmargins using 5% vs 100% sample size
deteriorated only by 0.03 for the global model with transfer learning vs 0.10 for the global model.
Transfer learning also was associated with improved calibration (0.0001 vs 0.0035; P < .001;
personalizedmodel with transfer learning performed better in all 20000 bootstrapping tests)
(Figure 1B). Nevertheless, the global model with transfer learning that used a smaller sample size still
underperformed the globalmodel with a 100% sample size, suggesting that the personalizedmodel
with transfer learning outperformed the global model primarily because of the personalized
approach.

Risk Estimation in High-Risk Admission Subgroups
We compared global, subgroup, and personalizedmodeling in 20 subgroups stratified by admission
diagnoses who had the highest AKI incidence (eTables 8 and 9 in the Supplement). The personalized
model with transfer learning outperformed the globalmodel (100% sample size) in all 20 subgroups,
with a mean AUROC increase of 0.06 (95% CI, 0.005-0.17; P < .05 in 13 subgroups) (Figure 2A).

Figure 1. Comparison ofModel Performance in General Inpatients
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In panels B and C, personalizedmodels used 10%of overall training sample as the threshold for number of similar patients. Globalmodel used 100%of training samples. AKI indicates
acute kidney injury; AUROC, area under the receiver operating characteristic curve.
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Across the high-risk subgroups, the AUROC for the personalizedmodel with transfer learning vs
global model was 0.79 (95% CI, 0.78-0.80) vs 0.75 (95% CI, 0.74-0.77; P < .001), and the AUPRC
was 0.58 (95%CI, 0.56-0.60) vs 0.48 (95%CI, 0.46-0.51; P < .001). Among patients with lower risk,
the AUROC for the personalizedmodel with transfer learning vs global model was 0.74 (95% CI,
0.73-0.75) vs 0.71 (95% CI, 0.70-0.72; P < .001), and the AUPRCwas 0.22 (95% CI, 0.20-0.23) vs
0.20 (95% CI, 0.18-0.21; P < .001) (eFigure 4 in the Supplement).

The personalizedmodel with transfer learning also outperformed the subgroupmodels in 17 of
20 subgroups (mean AUROC increase, 0.05; 95% CI, –0.01 to 0.128; P < .05 in 7 subgroups)
(Figure 2A). Across the high-risk subgroups, AUROCs of the personalizedmodel with transfer
learning vs subgroupmodels were as follows: 0.79 (95% CI, 0.78-0.80) vs 0.75 (95% CI, 0.74-0.77;
P < .001), and the AUPRCs were 0.58 (95% CI, 0.56-0.60) vs 0.52 (95% CI, 0.50-0.54; P < .001)
(eFigure 4 in the Supplement). Overall calibration of the personalized model with transfer learning
across the 20 subgroups was significantly better than that of the subgroup models (0.0006 vs
0.0113; P < .001; personalizedmodel with transfer learning performed better in all 20000
bootstrapping tests) (Figure 1C; eFigure 5 in the Supplement). The personalizedmodels with transfer

Figure 2. Radar Chart of the Area Under the Receiver Operating Characteristic Curve (AUROC) for Personalized
and SubgroupModels Across 20High-Risk Subgroups
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learning performed better than the subgroup models with transfer learning in 18 of 20 subgroups.
Overall, the AUROC across the 20 subgroups was 0.79 (95% CI, 0.78-0.80) vs 0.78 (95% CI,
0.77-0.79; P < .001), and the AUPRCwas 0.58 (95% CI, 0.56-0.60) vs 0.56 (95% CI, 0.54-0.58;
P < .001) (eFigures 4 and 6, eTables 9 and 10 in the Supplement). We also evaluated the performance
of the personalized model with transfer learning in retrieving patients with AKI and found that the
personalized models can identify 11.97% to 20.95%more patients with AKI than the global models
and 7.18% to 13.45%more than the subgroupmodels (eTables 11 and 12 in the Supplement).

The personalizedmodel with transfer learning adapted well to subpopulations with different
levels of heterogeneity. In subgroups of patients with cardiac surgery (mean [SD] Pearson correlation
in 4 subgroups, 0.24 [0.27], 0.13 [0.21], 0.22 [0.25], and 0.25 [0.27]), liver transplant (mean [SD]
Pearson correlation, 0.22 [0.20]), kidney and urinary tract procedures for non–malignant neoplasm
(mean [SD] Pearson correlation, 0.10 [0.16]), and tracheostomy with long-termmechanical
ventilation with extensive procedure (mean [SD] Pearson correlation, 0.15 [0.17]), the important
predictors had greater correlation, suggesting that patients with AKI in these subgroups had a similar
manifestation (eFigure 7 in the Supplement). It is hard for the global model to capture important
predictors in patients in these subgroups because they are different from general patients, whereas
both the personalizedmodel with transfer learning (mean [SD] AUROC increase, 0.13 [0.03]) and the
subgroupmodels performedwell. However, the correlations between important predictors were
lower in the subgroups with pulmonary edema and respiratory failure (mean [SD] Pearson
correlation, 0.09 [0.15]), acute leukemia (mean [SD] Pearson correlation, 0.09 [0.15]), extensive
procedure unrelated to principal diagnosis (mean [SD] Pearson correlation, 0.10 [0.15]), infectious
and parasitic diseases (mean [SD] Pearson correlation, 0.09 [0.15]), septicemia and disseminated
infections (mean [SD] Pearson correlation, 0.08 [0.16]), andmajor small and large bowel procedures
(mean [SD] Pearson correlation, 0.09 [0.16]) (eFigure 7 in the Supplement). This finding indicates
higher heterogeneity among patients in these subgroups. The personalizedmodel with transfer
learning can still capture the heterogeneity in these subgroups and outperformed the global model
(0.77 [95% CI, 0.75-0.79] vs 0.74 [95% CI, 0.72-0.76]; P < .001), but in this scenario the subgroup
models performed the worst (mean [SD] AUROC difference, 0.10 [0.02]).

Risk Estimation in KnownAKI Subgroups
The Table shows a comparison of the AUROC for themodels in 20well-studied AKI subgroups from
the literature (eTable 13 in the Supplement).17,20,22,42-67 The personalized model with transfer
learning was superior to each of the current models, significantly outperforming the global model in
16 subgroups, the subgroupmodel in 11 subgroups, and the subgroupmodel with transfer learning in
9 subgroups. For example, among patients older than 65 years, AUROCwas 0.76 (95%CI, 0.74-0.77)
for the personalized model with transfer learning, 0.73 (95% CI, 0.72-0.75; P < .001) for the global
model, 0.71 (95% CI, 0.70-0.72; P < .001) for the subgroup model, and 0.73 (95% CI, 0.72-0.75;
P < .001) for the subgroupmodel with transfer learning. The AUPRC comparison is shown in
eTable 14 in the Supplement. Among patients older than 65 years, AUPRC was 0.37 (95% CI, 0.35-
0.39) for the personalized model with transfer learning, 0.31 (95% CI, 0.28-0.33; P < .001) for the
global model, 0.28 (95% CI, 0.26-0.30; P < .001) for the subgroup model, and 0.32 (95% CI, 0.30-
0.35; P < .001) for the subgroupmodel with transfer learning.

In addition, the personalizedmodel with transfer learning compared favorably with 30
previously published subgroupmodels. Among 32 comparisons, the personalizedmodel with
transfer learning had superior performance vs the publishedmodels in 9 comparisons and worse in
only 2 comparisons. For example, in the subgroup with percutaneous coronary intervention and
nonacutemyocardial infarction, the AUROCwas 0.76 (95%CI, 0.70-0.81) for the personalizedmodel
with transfer learning, whereas the reported AUROC of the previous model built with a sample size
that was 280 times greater than the present sample size was 0.70 (95% CI, 0.69-0.71; P = .04). In
the subgroup with hematologic malignant neoplasm, the personalized model with transfer learning
performed as well as the logistic regression model (0.76 vs 0.76) in Li et al60 but was worse than
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their bayesian network model (0.76 [95% CI, 0.73-0.80] vs 0.81 [95% CI, 0.79-0.84]). For the sepsis
subgroup, both previous studies used theMIMIC III (Medical InformationMart for Intensive Care)
data set, and themodel in the present study was significantly better than one of the logistic
regressionmodels65 (0.74 [95% CI, 0.72-0.77] vs 0.71 [95% CI, 0.70-0.73]) but worse than the
other64 (0.79; 95% CI, 0.76-0.82).

The published studies incorporated specific factors (eg, details on surgery and nephrotoxin
exposure) and estimated glomerular filtration rate or serum creatinine level (kidney function
indicators that we avoided) for the subgroups and had larger sample sizes. When the subgroup
model with transfer learning and the subgroupmodel were retrained for the 2 subgroups on the
present data, the personalizedmodel with transfer learning outperformed the subgroupmodel with
amean AUROC increase of 0.08 (0.76 [95%CI, 0.73-0.80] vs 0.69 [95%CI, 0.65-0.73]; P < .001 in
the subgroup with hematologic malignant neoplasm and 0.74 [95% CI, 0.72-0.77] vs 0.67 [95% CI,
0.64-0.70]; P < .001 in the subgroup with sepsis) and outperformed the subgroup model with
transfer learning with a mean AUROC increase of 0.02 (0.76 [95% CI, 0.73-0.8] vs 0.74 [95% CI,
0.70-0.77]; P = .007 in the subgroupwith hematologic malignant neoplasm; 0.74 [95%CI 0.72-0.77]
vs 0.73 [0.70-0.75; P = .054] in the subgroup with sepsis).

Heterogeneity of Predictor OutcomeAcross Subgroups
Figure 3A shows the outcome of each of the top 20 predictors in the global model when applied to
the 20 high-risk subgroups compared with when they were applied to the entire population. The
outcome of the predictors decreased in 240 of 400 predictor-subgroup combinations, with a mean
decrease of 47% across all combinations; the distribution of several predictors that had large
outcome change was similar between general patients and patients in subgroups (eFigures 8-10 in
the Supplement). The AUROC of the global model across the 20 high-risk sugbroups based on the
top 20 predictors was only 0.61 (95% CI, 0.60-0.63). By contrast, when these same predictors were
applied to the same subgroups with the personalizedmodel with transfer learning (compared with
the global model), the predictors were associated with more benefits in most combinations
(Figure 3B), and the AUROCwas 0.65 (95% CI, 0.63-0.66; P < .001). This finding suggests that one
reason the personalized model with transfer learning outperformed the global model in different
subgroups was that the outcome of many factors that appeared highly predictive in the population
as a whole changed when applied to certain subgroups.

The outcomes of the top predictors for general patients estimated by the personalizedmodel
with transfer learning differed from those estimated by the global model (Figure 4A; eFigure 11 in the
Supplement). The coefficient of variation of the regression coefficients for these features was high
(mean of 59.4%) (Figure 4A), with similar results among the top 200 predictors (eFigure 12 in the
Supplement), indicating that the varying outcome of these features across different types of patients
was beingmodeled in the personalizedmodel with transfer learning. This finding is illustrated in
Figure 4B, which shows how the coefficients changed across subgroups for 6 well-known predictors
with high interindividual variability. For example, the coefficients for age (0.14; 182.41% of mean
coefficient among the 63 small subgroups) and serum calcium (0.51; 760.89% of mean coefficient
among the 63 small subgroups) were the highest in the cardiac surgery subgroup, whereas the
coefficients for pulse (0.008; 25.21% of mean coefficient among the 63 small subgroups) and
vancomycin (0.22; 61.22% of mean coefficient among the 63 small subgroups) were the lowest in
this subgroup. Predictor outcome estimates between personalized and subgroupmodels are
provided in eFigures 13-17 in the Supplement.

Predictor Interactions
The personalizedmodel can facilitate risk factor interaction analysis. Patterns of changes in predictor
outcome in subgroups were similar between the personalizedmodel with transfer learning and the
subgroup models, and conflicting results were mostly not significant (eFigures 15-17, eTables 16 and
17 in the Supplement). We explored interactions between medications and diagnoses within the
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Figure 3. Heatmaps of Outcomes of Top 20Global Model Predictors Across 20High-Risk Subgroups

Outcomes of global model in subgroups vs whole populationA

Outcome of personalized model with transfer learning vs global model in subgroupsB
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A, Relative effect was calculated as follows: (area
under the curve [AUC] gain of predictor when global
model was used in subgroup − AUC gain of predictor
when global model was used in whole
population) / (AUC gain of predictor when global
model was used in whole population). Red represents
increased and blue represents decreased predictive
effect in subgroups vs whole population. B, Relative
effect was calculated as follows: (AUC gain of predictor
when personalized model with transfer learning was
used in subgroup − AUC gain of predictor when global
model was used in subgroup) / (AUC gain of predictor
when global model was used in general patients). Red
represents increased and blue represents decreased
predictive effect in personalized model with transfer
learning vs global model. Other race and ethnicity
included American Indian or Alaskan Native, Native
Hawaiian or Other Pacific Islander, 2 races, and
unreported race. AST indicates aspartate
aminotransferase; BMI, bodymass index; CHF,
congestive heart failure; DMV, durative mechanical
ventilation; WBC, white blood cell.
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Figure 4. Outcomes of Top 20 PersonalizedModelWith Transfer Learning Predictors Across 15 Large Diagnostic Subgroups

0 1.00 1.25 1.500.750.500.25

WBC

Age

Aldesleukin

Benzoic acid

Pulse

Tazobactam

Blood glucose

Serum calcium

Vancomycin

BMI

Liver transplant

White

Coronary bypass with cardiac catheterization

Oxycodone

Coronary bypass without cardiac catheterization

AST

Major small and large bowel procedures

Tracheostomy with DMV and extensive procedure

Amphotericin β liposome

Cardiac valve procedure without catheterization

Pr
ed

ic
to

r

Regression CV

Top 20 personalized model with transfer learning predictors and their CVs across all individualsA

CV of coefficients in personalized model with transfer learning

AUC gain (%) in personalized model with transfer learning

AUC gain (%) in global model

0.6

0.5

0.3

0.4

0.2

0.1

0

–0.1

M
ea

n 
co

ef
fic

ie
nt

Diagnostic subgroup

Regression coefficients for serum calcium, blood glucose, and vancomycin in personalized model with transfer learningB

Serum calcium
Blood glucose
Vancomycin

BMI
Age
Pulse

Oth
er

 an
em

ia/
bl

oo
d d

iso
rd

Maj 
he

m
at

ol
og

ic/
im

m
un

o d
x

Ly
m

ph
/m

ye
lo

/n
on

-a
c l

eu
k

Acu
te

 le
uk

em
ia

Bo
ne

 m
ar

ro
w tr

an
sp

lan
t

Kn
ee

 an
d l

ow
er

 le
g p

ro
c

Sh
ou

ld
er

, u
p a

rm
, f

or
ea

rm
 pr

oc

Hip
 an

d f
em

ur
 pr

oc
 tr

au
m

Hip
 an

d f
em

ur
 pr

oc
 no

nt
ra

um
a

Am
pu

ta
tio

n o
f l

ow
er

 lim
b

Kn
ee

 jo
in

t r
ep

lac
em

en
t

Hip
 jo

in
t r

ep
lac

em
en

t

Oth
er

 sm
all

 an
d l

ar
ge

 bo
wel 

pr
oc

Majo
r s

to
m

, e
so

ph
, d

uo
d p

ro
c

Maj 
sm

all
 an

d l
ar

ge
 bo

wel 
pr

oc

Alco
ho

lic
 liv

er
 di

se
as

e

Oth
er

 di
so

rd
er

s o
f l

ive
r

Hep
at

ic 
co

m
a/

ot
he

r m
aj 

liv
 di

s

Mali
gn

an
cy

-h
ep

at
ob

ili
a s

ys

Majo
r b

ili
ar

y t
ra

ct
 pr

oc

Maj 
pa

nc
re

as
/li

ve
r/s

hu
nt

 pr
oc

Oth
er

 he
pa

to
bi

li/
pa

nc
re

as
 pr

oc

Liv
er

 tr
an

sp
lan

t

Mig
ra

in
e a

nd
 ot

he
r h

ea
da

ch
e

Oth
er

 di
so

rd
er

s n
er

vo
us

 sy
s

Se
izu

re

Deg
en

er
at

ive
 ne

rv
 sy

st 
di

s

Pe
rip

he
ra

l a
nd

 cr
an

ial
 ne

rv

Cr
an

io
to

m
y e

xc
 fo

r t
ra

um
a

CV
A w

ith
 in

fa
rc

t

Hea
d t

ra
um

a w
ith

 co
m

a >
1 

hr

In
tra

cr
an

ial
 he

m
or

rh
ag

e

Ex
tra

cr
an

ial
 va

sc
ul

ar
 pr

oc

Ki
dn

ey
/u

rin
 tr

ac
t i

nf
ec

t 

Ce
llu

lit
is 

an
d o

th
er

 ba
ct

 in
f

Po
sto

p/
po

st-
tra

um
 in

fe
c

Oth
er

 in
fe

ct
 an

d p
ar

as
iti

c d
is

Se
pt

ice
m

ia 
an

d d
iss

em
 in

fe
ct

Po
sto

p/
tra

um
a i

nf
ec

t p
ro

c

In
fe

ct
 an

d p
ar

as
iti

c d
ise

as
e

Ch
ro

ni
c o

bs
tru

ct
ive

 pu
lm

 di
s

Oth
er

 pn
eu

m
on

ia

Majo
r r

es
pi

ra
to

ry
 in

fe
ct

io
ns

Cy
sti

c f
ib

ro
sis

Pu
lm

on
ar

y e
de

m
a a

nd
 re

sp
 fa

il

Tr
ac

h w
ith

 D
MV w

ith
ou

t e
nt

en
 pr

oc

Tr
ac

h w
ith

 D
MV w

ith
 ex

te
n p

ro
c

Majo
r c

he
st 

an
d r

es
p t

ra
um

a

Pu
lm

on
ar

y e
m

bo
lis

m

Ca
rd

 ar
rh

yt
hm

ia 
an

d c
on

du
ct

io
n

Ang
in

a p
ec

t a
nd

 co
ro

na
ry

 at
h

Pe
rip

he
ra

l a
nd

 ot
he

r v
as

c d
is

Hyp
er

te
ns

io
n

Oth
er

 ci
rc

ul
at

or
y s

ys
te

m
 dx

Ca
rd

 ca
th

et
 w

ith
 is

ch
em

ia

Ca
rd

 ca
th

et
 ex

c i
sc

he
m

ia

Pe
rc

ut
 ca

rd
iov

as
c p

ro
c w

ith
 A

MI

Pe
rc

ut
 ca

rd
iov

as
c w

ith
ou

t A
MI

Oth
er

 ca
rd

io
th

or
ac

ic 
pr

oc

Ca
rd

iac
 va

lve
 pr

oc
 w

ith
ou

t c
at

h

Co
ro

na
ry

 by
pa

ss
 w

ith
 ca

rd
 ca

th

Co
r b

yp
as

s w
ith

ou
t c

ar
d c

at
h

Ca
rd

iac
 va

lve
 pr

oc
 w

ith
 ca

th

0.15

0.12

0.09

0.06

0.03

0

M
ea

n 
co

ef
fic

ie
nt

Diagnostic subgroup

Regression coefficients for age, BMI, and pulse in personalized model with transfer learningC
Oth

er
 an

em
ia/

bl
oo

d d
iso

rd

Maj 
he

m
at

ol
og

ic/
im

m
un

o d
x

Ly
m

ph
/m

ye
lo

/n
on

-a
c l

eu
k

Acu
te

 le
uk

em
ia

Bo
ne

 m
ar

ro
w tr

an
sp

lan
t

Kn
ee

 an
d l

ow
er

 le
g p

ro
c

Sh
ou

ld
er

, u
p a

rm
, f

or
ea

rm
 pr

oc

Hip
 an

d f
em

ur
 pr

oc
 tr

au
m

Hip
 an

d f
em

ur
 pr

oc
 no

nt
ra

um
a

Am
pu

ta
tio

n o
f l

ow
er

 lim
b

Kn
ee

 jo
in

t r
ep

lac
em

en
t

Hip
 jo

in
t r

ep
lac

em
en

t

Oth
er

 sm
all

 an
d l

ar
ge

 bo
wel 

pr
oc

Majo
r s

to
m

, e
so

ph
, d

uo
d p

ro
c

Maj 
sm

all
 an

d l
ar

ge
 bo

wel 
pr

oc

Alco
ho

lic
 liv

er
 di

se
as

e

Oth
er

 di
so

rd
er

s o
f l

ive
r

Hep
at

ic 
co

m
a/

ot
he

r m
aj 

liv
 di

s

Mali
gn

an
cy

-h
ep

at
ob

ili
a s

ys

Majo
r b

ili
ar

y t
ra

ct
 pr

oc

Maj 
pa

nc
re

as
/li

ve
r/s

hu
nt

 pr
oc

Oth
er

 he
pa

to
bi

li/
pa

nc
re

as
 pr

oc

Liv
er

 tr
an

sp
lan

t

Mig
ra

in
e a

nd
 ot

he
r h

ea
da

ch
e

Oth
er

 di
so

rd
er

s n
er

vo
us

 sy
s

Se
izu

re

Deg
en

er
at

ive
 ne

rv
 sy

st 
di

s

Pe
rip

he
ra

l a
nd

 cr
an

ial
 ne

rv

Cr
an

io
to

m
y e

xc
 fo

r t
ra

um
a

CV
A w

ith
 in

fa
rc

t

Hea
d t

ra
um

a w
ith

 co
m

a >
1 

hr

In
tra

cr
an

ial
 he

m
or

rh
ag

e

Ex
tra

cr
an

ial
 va

sc
ul

ar
 pr

oc

Ki
dn

ey
/u

rin
 tr

ac
t i

nf
ec

t 

Ce
llu

lit
is 

an
d o

th
er

 ba
ct

 in
f

Po
sto

p/
po

st-
tra

um
 in

fe
c

Oth
er

 in
fe

ct
 an

d p
ar

as
iti

c d
is

Se
pt

ice
m

ia 
an

d d
iss

em
 in

fe
ct

Po
sto

p/
tra

um
a i

nf
ec

t p
ro

c

In
fe

ct
 an

d p
ar

as
iti

c d
ise

as
e

Ch
ro

ni
c o

bs
tru

ct
ive

 pu
lm

 di
s

Oth
er

 pn
eu

m
on

ia

Majo
r r

es
pi

ra
to

ry
 in

fe
ct

io
ns

Cy
sti

c f
ib

ro
sis

Pu
lm

on
ar

y e
de

m
a a

nd
 re

sp
 fa

il

Tr
ac

h w
ith

 D
MV w

ith
ou

t e
nt

en
 pr

oc

Tr
ac

h w
ith

 D
MV w

ith
 ex

te
n p

ro
c

Majo
r c

he
st 

an
d r

es
p t

ra
um

a

Pu
lm

on
ar

y e
m

bo
lis

m

Ca
rd

 ar
rh

yt
hm

ia 
an

d c
on

du
ct

io
n

Ang
in

a p
ec

t a
nd

 co
ro

na
ry

 at
h

Pe
rip

he
ra

l a
nd

 ot
he

r v
as

c d
is

Hyp
er

te
ns

io
n

Oth
er

 ci
rc

ul
at

or
y s

ys
te

m
 dx

Ca
rd

 ca
th

et
 w

ith
 is

ch
em

ia

Ca
rd

 ca
th

et
 ex

c i
sc

he
m

ia

Pe
rc

ut
 ca

rd
iov

as
c p

ro
c w

ith
 A

MI

Pe
rc

ut
 ca

rd
iov

as
c w

ith
ou

t A
MI

Oth
er

 ca
rd

io
th

or
ac

ic 
pr

oc

Ca
rd

iac
 va

lve
 pr

oc
 w

ith
ou

t c
at

h

Co
ro

na
ry

 by
pa

ss
 w

ith
 ca

rd
 ca

th

Co
r b

yp
as

s w
ith

ou
t c

ar
d c

at
h

Ca
rd

iac
 va

lve
 pr

oc
 w

ith
 ca

th

To improve the stability of results, the 63 subgroups in Figure 4B and Cwere further abstracted into 15 large subgroups, both full name of the 63 diagnostic subgroups and their
classification are provided in eTable 15 in the Supplement. Predictors outcome in each of the 63 subgroups are presented in eFigures 16 and 17 in the Supplement. AMI indicates acute
myocardial infarction; AST, aspartate aminotransferase; AUC, area under the curve; BMI, bodymass index; DMV, durative mechanical ventilation; WBC, white blood cell.
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personalizedmodel with transfer learning (eAppendix 7, eTables 16 and 17 in the Supplement). Some
interactions identified were supported by previous evidence, such as an important outcome of
serum calcium level specific to patients who had cardiac surgery, mechanical ventilation, and
burns68-76 or an interaction of both gastrointestinal surgery and tazobactamwith vancomycin.77,78

Unknown interactions were also identified. For example, the association between serum
calcium level and AKI varied with aldesleukin exposure. Among patients using aldesleukin, AKI
incidence for those with normal serum calcium level was 93%, but it was only 32% in patients with
abnormal serum calcium level.

Other hypothesized interactions were refuted. For example, previous studies suggested that
infection-induced AKI was more common in older patients.79,80 However, when we examined
patients who were admitted for systemic infection, the association of age with AKI risk decreased
significantly. For example, for the subgroup admitted with septicemia and disseminated infections,
AKI incidence was 13.4% (103 of 771) in patients older than 65 years, compared with 16.6% (150 of
906) in patients younger than 45 years. Similar results were obtained when analyzing patients who
were exposed to antibiotics (Figure 4B; eTables 16 and 17 in the Supplement).

Discussion

Clinical risk estimationmodels are commonly trained as global models. This study found that global
models were significantly associated with patient heterogeneity and did not work equitably well
across subpopulations. Themost important predictors for the whole population that can be
identified by a global model can be completely different from the predictors that are important
within subpopulations; thus, estimations using a global model for patients with heterogeneous
conditions cannot be trusted.

We developed the personalizedmodel with transfer learning to improve AKI risk estimation in
hospitalized patients. Results of the analyses showed that the personalized model with transfer
learning outperformed the global model across general, high-risk, and low-risk subgroups (eFigure 4
in the Supplement). The personalizedmodel with transfer learning also outperformed traditional
subgroupmodels in most high-risk subgroups and performed better than or comparably to the state-
of-the-art expert-driven subgroupmodels in the literature. In-depth analyses revealed that
personalizedmodeling can dynamically adapt to subpopulations with varying levels of heterogeneity
and sample sizes and can enable a deeper understanding of risk factor outcomes. Moreover, we
found that transfer learning addressed the diminishing sample challenge and was associated with
significantly improved performance for both the personalized and subgroupmodels. Because the
transfer learning technique we developed preserves model interpretability, the approach has high
translational potential.

Multiple factors and their interactions can affect AKI risk. This study uncovered significant
variation in predictor outcomes across patients, and after considering this variation in the
personalizedmodels, the importance of predictors changed significantly compared with their
importance in the global model. Using metaregression, we identified many significant predictor
interactions. Some of these have been previously reported, but novel interactions were also
identified.

We believe this study has substantial implications. First, it reached amilestone in clinical risk
estimation because it advanced general estimation toward personalized estimation. Integration of
transfer learning with personalizedmodeling eliminated the algorithm dependency on large training
data. Second, because personalized models are dynamically built for an incoming patient, it is not
necessary to build static models with the same target for various subpopulations as was done in
previous research. Third, the present study found that the variation in AKI predictor outcomes in the
personalizedmodels was highly correlatedwithmodifiable factors (Figure 3 and Figure 4; eAppendix
7, eFigure 11, eTables 16-18 in the Supplement). Thus, physicians may need to continuously monitor
the changing outcomes of risk factors and adjust the interventions accordingly. The proposed
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algorithm can run in the background to notify physicians of impending AKI and the risk factors that
needmodification to avert AKI. It is critical to transform patient care from one that relies on common
clinical pathways to one that is agile, personalized, and powered by artificial intelligence.

Limitations
This study has several limitations. First, we did not use all routinely available EHR variables (ie, all
laboratory results). Their inclusionmay improve estimation but should not change the overall
conclusions. Second, validation of the personalizedmodel with transfer learning was limited to a
single hospital. Third, a patient similarity measure was assumed to work uniformly well across
subpopulations. Fourth, we chose logistic regression as the base learner because of its
interpretability and common use in clinical research. Advancedmethods, such as deep learning,
could improve performance, albeit at the expense of interpretability. Fifth, we performed
metaregression on limited predictors only to assess the interaction effect, but muchmore can be
learned from such analyses. Sixth, we limited the analysis to patients with normal baseline kidney
function to avoid confounding acute and chronic kidney disease. Seventh, we limited risk estimation
for AKI to the next 24 hours. Previous work showed that important predictors can be different
between time windows.40,81 Further research is required to ascertain the best approach tomatching
similar samples with time-series data.

Conclusions

In this diagnostic study, we found that personalizedmodeling is an improved approach to AKI risk
estimation across diverse patient subgroups. It advanced clinical risk estimation toward personalized
estimation. The findings on risk factor heterogeneity and interactions at the individual level
reinforced the need to transition to agile, personalized care.
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