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a b s t r a c t

Massive electronic medical records provide unique opportunities and possibilities for gaining medical
knowledge and actionable insights to transform healthcare. Acute kidney injury (AKI) is considered one
of the most common complications of acute illness, with a substantial impact on patient outcome and
hospital costs. In this study, we developed a machine-learning-based knowledge mining approach,
combining eXtreme Gradient Boosting (XGBoost) model and SHapley Additive exPlanations (SHAP)
method, to explore the temporal dynamics of clinical risk predictors for hospital-acquired AKI under
different forecast time windows. AKI occurred in 7,259 (9.43%) of 76,957 hospital admissions from
November 2007 to December 2016 extracted from our institution’s de-identified clinical database.
Through qualitative visualization and quantitative analysis, we found and confirmed that relative
importance of optimal risk factors fluctuates with the size of AKI prediction time window. For example,
the contribution of most time-varying variables (such as medication and lab tests) to AKI risk increases
as AKI onset approaches, while most non-time-varying variables (such as age and admission diagnosis)
decrease. Besides, the optimal set of AKI risk predictors will also change under different time window.
This study provides several practical implications, including recognizing the existence of feature
weight volatility as it is desirable for model accuracy, identifying important AKI risk factor for further
investigation, and facilitating early accurate prediction of AKI.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Acute kidney injury (AKI) is prevalent in hospitalized patients
nd has been associated with poor short- and long-term out-
omes in patients [1]. Delays in identification and intervention
or AKI may lead to progression of injury, increasing the risk of
eath, the need for renal replacement therapy (RRT), and the risk
f chronic kidney disease [2]. AKI is especially common among
atients hospitalized with COVID-19 (46%) and is associated with
xtremely high mortality (only 30% survived with recovery of
idney function by the time of discharge) [3]. Therefore, the
bility to predict patients at risk for AKI and managing them
ccording to susceptibilities and exposures is more likely to result
n better outcomes [4,5]. With the wide-adoption of electronic
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medical record systems (EMR) in modern healthcare, we are
entering a new era where the abundant EMR data is available for
data mining [6]. Data-driven approaches that incorporate ‘‘big’’
EMR data has presented a unique analytic opportunity for AKI.

Risk factor selection is an important step in constructing AKI
prediction models. AKI risk factors can be either static (time-
invariant) or dynamic (time-variant). Static risk factors (e.g., age
[7]) are those predisposing factors of the patients that predict
AKI risk but are not amenable to deliberate intervention. Admis-
sion diagnosis and medical history are also static information as
doctors cannot change a patient history nor forgo certain life-
saving procedures (such as RRT [8] and liver transplant [9]). In
contrast, dynamic risk factors are potentially changeable factors
during patient care, which is essential to physicians to prevent
AKI. It is important that, if identified in a timely fashion, many
risk factors for hospital-acquired AKI can be modified to reduce
or prevent AKI from occurring. Thus, time before disease onset
provides a window of opportunity to conduct surveillance and
prompt intervention.

As AKI management is particularly time-sensitive, early iden-
tification of patients at high risk of developing AKI can improve
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atient outcome. For example, Palomba et al. developed the AKICS
core system that incorporates five risk categories to predict AKI
ollowing cardiac surgery [10]. Lueangingkhasut et al. used five
isk factors (congestive health failure, atherosclerotic coronary
ascular disease, blood pH ≤ 7.3, sepsis and anemia) to develop
risk score model for hospital-acquired AKI in a tertiary care
ospital in Thailand [11]. Similar to other existing AKI prediction
tudies [12,13] that screen known risk factors based on expert
nowledge, they may not only miss potential unknown risk fac-
ors from the ‘‘big’’ EMR, but also fail to take into account the
emporal fluctuation of risk factors.

Recent availability of EMR data and advances in artificial in-
elligence (AI) have sparked interest in machine learning-based
ealthcare risk prediction models. For example, Koyner et al.
pplied gradient boost machine (GBM) method to build an AKI
rediction model [14]. Li et al. applied convolutional neural net-
ork to predict AKI within 24 h of admission to ICU (intensive
are unit) [15]. Tomasev et al. used the deep learning method
o capture the temporal short- and long-term variability of AKI
redictors to improve prediction performance [16]. Although the
ophisticated machine-learning methods provide good prediction
ccuracy, their application in actual clinical settings is limited
ecause their predictions are difficult to interpret and therefore
noperable.

Improving human–AI collaboration is critical for applications
here explaining machine learning model predictions can en-
ance human performance. One of the most common approaches
s to use interpretable models directly. For example, Simonov
t al. utilized a logistic regression approach to create a simple
nd implementable AKI prediction model [17]. Nematic et al.
eveloped an interpretable model for sepsis prediction in ICU
sing a modified Weibull–Cox proportional hazards model [18].
nother approach is to develop explainable method to explain
he ‘‘black-box’’ prediction model. For example, Ribeiro et al.
roposed a novel explanation technique, namely LIME (Local
nterpretable Model-agnostic Explanations), to explain the pre-
ictions of any classifier [19]. Lundberg et al. constructed an
xplainable AI for tree-models, namely SHAP (SHapley Additive
xPlanations), which was used to explain GBM prediction model
or hypoxemia during surgery [20,21].

To the best of our knowledge, no study has investigated and
haracterized the temporal dynamics of AKI risk factors, that is
hat risk factors are key to prediction at what time. In this
tudy, we first explored an interpretable machine-learning-based
nowledge mining method to delineate the risk contribution of
ach feature in each patient, and then captured fluctuation infor-
ation of AKI risk factors under different prediction time win-
ows, which may help improve the rationality and effectiveness
f prediction models and decisions making.

. Materials and methods

.1. Study population

All adult patients (age ≥ 18) admitted to the University of
Kansas Health System (a tertiary academic hospital) for two days
or more from November 2007 to December 2016 were included in
this retrospective observational cohort study. Given that a patient
may have multiple eligible hospital admissions or encounters
and develop AKI during one but not another, this study was
conducted at the encounter level with a total of 179,370 encoun-
ters. From those encounters, we excluded the ones (a) missing
necessary data elements for outcome determination, i.e., less than
two serum creatinine measurements and (b) had evidence of
moderate or severe kidney dysfunction at admission based on lab
measurements, i.e., estimated Glomerular Filtration Rate (eGFR)
2

Table 1
Clinical variables considered in the encounters.
Feature category Number of

variables
Details

Demographics (Demo) 3 Age, race, gender;

Vitals (Vitals) 5 BMI, diastolic BP, systolic BP,
pulse, temperature;

Lab tests (Lab) 14 Albumin, ALT, AST, Ammonia,
Calcium, BUN, Bilirubin,
CK-MB, CK, Glucose, Lipase,
Platelets, Troponin, WBC;

Admission diagnosis
(DRG)

315 University Health System
Consortium (UHC) APR-DRG;

Medical History (CCS) 280 ICD9 codes mapped to CCS
major diagnoses.

Medications (MED) 1271 All medications are mapped to
RxNorm ingredient;

Table 2
Comparison of 7 different machine learning methods in AKI prediction.
Models
(AUC, 95% CI)

72-hour forecast
time window

48-hour forecast
time window

24-hour forecast
time window

XGBoost 0.736
[0.723–0.745]

0.764
[0.750–0.775]

0.805
[0.791–0.824]

GBM* 0.722
[0.710–0.732]

0.750
[0.738–0.760]

0.785
[0.774–0.800]

Random Foresta 0.740
[0.728–0.747]

0.770
[0.759–0.781]

0.803
[0.788–0.814]

LinearSVC* 0.728
[0.712–0.737]

0.743
[0.731–0.753]

0.753
[0.745–0.765]

Logistic Regression* 0.726
[0.709–0.738]

0.741
[0.728–0.753]

0.750
[0.741–0.764]

Naive Bayes* 0.670
[0.659–0.682]

0.697
[0.685–0.708]

0.699
[0.684–0.720]

MLP* 0.660
[0.630–0.680]

0.686
[0.674–0.697]

0.706
[0.686–0.714]

Abbreviations and notes: XGBoost: eXtreme Gradient Boosting; GBM: Gradient
Boosting Machine; LinearSVC: Linear Support Vector Classification; MLP: Multi-
layer Perceptron neural network. AUC, the area under the receiver operating
characteristic curve. CI, confidence interval.
aThere is no significant difference in the classification results between XGBoost
and Random Forest model, namely p value > = 0.05 of DeLong test.
*The XGBoost model is significantly superior to this model, namely p value < 0.05
f DeLong test.

ess than 60 mL/min/1.73 m2 or serum creatinine (SCr) level
f >1.3 mg/dL within 24 h of hospital admission. As shown in
upplementary Figure S1, the final de-identified cohort contained
6,957 encounters.

.2. AKI definition

We defined AKI according to the SCr-based criteria described
n the KDIGO (Kidney Disease Improving Global Outcomes) clin-
cal practice guidelines [22] (see Supplementary Table S1). Base-
ine SCr level was defined as the most recent SCr value within
wo-day window prior to admission if available; otherwise, the
irst SCr value after admission was used as the baseline. Then all
airs of SCr levels measured between admission and discharge
ere evaluated on a rolling basis to determine the occurrence of
ny AKI.

.3. Clinical variables

For each hospital encounter in the final analysis cohort, we
xtracted time stamped clinical data on demographics, vital signs,
edications, laboratory values, past medical diagnoses, and ad-
ission diagnoses. Details of the 1888 clinical variables consid-
red are available in Table 1. Patient vital signs were discretized

into groups as shown in Supplementary Table S2. Laboratory
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Fig. 1. Schematic diagram of data analysis and processing. (A) An illustration of data collection window to predict AKI event 1–3 days prior; (B) An illustration of
medication data collection window to predict AKI event 1–3 days prior; (C) The knowledge mining model; (D) The flowchart of screening AKI risk factors. AKI, acute
kidney injury; NF, the number of features.
values were categorized as unknown, less than reference nor-
mal range, within normal range, or greater than the reference
normal range. Medication exposure included inpatient (i.e., dis-
pensed during stay) and outpatient medications (i.e., medication
reconciliation and prior outpatient prescriptions). All medica-
tion names were normalized by mapping to RxNorm ingredient.
Admission diagnosis, i.e., all patient refined diagnosis related
group (APR-DRG), were collected from the University Health Sys-
tem Consortium (UHC; http://www.vizientinc.com) data source in
HERON (Health Enterprise Repository for Ontological Narration).
Patient past medical history was captured as major diagnoses
(ICD-9 codes grouped according to the Clinical Classifications
Software (CCS) diagnosis categories by the Agency for Healthcare
Research and Quality.
3

2.4. Data processing

Only the most recently recorded vitals and labs before the
AKI prediction point (i.e., 24/48/72 hours prior to AKI event
or last normal SCr for non-AKI cases, see Fig. 1(A)) were used
for each encounter over a specified time-window. Meanwhile,
instead of any imputation of missing numerical values, missing
values were captured as a separate category because informa-
tion may be contained in the choice to not perform a particular
test [23]. To enhance interpretability, the multivalued variables
are converted into multiple binary variables. Medical history was
defined as true if it happened before the AKI prediction point.
Hence, Medical history and admission diagnosis were all binary
variables (i.e., presence or absence). Medication variables were

http://www.vizientinc.com


L. Wu, Y. Hu, X. Zhang et al. Knowledge-Based Systems 245 (2022) 108655

2

a
i
m
i
t
c
w
s
e
m
S
m
i
m

e
e
d

Fig. 2. The feature importance and predictive performance trend of top-ranking features for AKI events 24/48/72 hours prior. (A) The importance trend of the
top-ranking features obtained by the knowledge mining approach; (B) The performance trend of the XGBoost prediction model with top K features. AUC, the area
under the receiver operating characteristic curve; CI, confidence interval.
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defined as the number of days taken within 7-days before the
AKI prediction point, as shown in Fig. 1(B).

.5. Knowledge mining model

As shown in Fig. 1(C), in the knowledge mining model, we
pplied two machine learning methods: eXtreme Gradient Boost-
ng (XGBoost) [24] and SHapley Additive exPlanations (SHAP)
ethod [25,26] (see Supplementary Methods S1-S2). XGBoost

s an optimized distributed gradient boosting library designed
o be highly efficient, flexible and portable. It implements ma-
hine learning algorithms under the gradient boosting frame-
ork, and provides a parallel tree boosting that solve many data
cience problems in a fast and accurate way. Inspired by coop-
rative game theory, SHAP constructs an additive explanation
odel, with all the characteristics considered as ‘‘contributors’’.
HAP values can explain the output of any machine learning
odel, in this study, we applied the tree SHAP method, which

s a high-speed exact explanation algorithm for tree ensemble
ethods.
Meanwhile, in order to reduce the influence of sample differ-

ntiation and enhance the stability and effectiveness of knowl-
dge mining, cross-validation strategy was adopted to intro-
uce this data drift [27] and obtained the weighted SHAP value
4

(wSHAP), where the weight was the area under the receiver
perating characteristic curve (AUC) of the XGBoost model in
ach fold and the risk score for each variable was derived from
he SHAP interpretation using the entire dataset. In addition, to
ustify the choice of XGBoost method, we compared XGBoost
gainst other 6 machine learning algorithms: GBM [14], Random
orest [28], LinearSVC (linear support vector classification) [29],
ogistic Regression, Naive Bayes, MLP (multi-layer perceptron
eural network) [30].

.6. Risk predictor screening process and statistical analysis

To screen for risk predictor, as shown in Fig. 1(D), we explored
hree prediction models at different time-windows (namely, 24 h,
8 h and 72 h prior to onset) and implemented three filters in
equence: a) Chi-square test, only keeping variables that have a
tatistically significant (p < 0.05) univariate correlation with AKI
abel; b) top K predictors, obtaining the best top K according to
the growth trend of AUC with top k; c) potentially high risk pre-
dictors, screening factors with the mean weighted SHAP greater
than 0, which will filter out some risk-free but highly predictive
factors, such as normal BMI (body mass index), the standard WBC
(white blood cell) lab test, and dexamethasone for treating kidney
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Table 3
The 41 common risk factors under AKI 24/48/72-hour time windows.
Name Samples with the

risk factor, n (%)
Median [IQR]
of the weighted SHAP values

non-AKI AKI 72 h prior 48 h prior 24 h prior

age_6[‘>64’] 18596
(26.68)

2193
(30.21)

0.049
[0.038–0.062]

0.046
[0.035–0.053]

0.021
[0.017–0.028]

BMI_4[‘>30.0 obese’] 25347
(36.37)

3095
(42.64)

0.073
[0.061–0.081]

0.068
[0.056–0.079]

0.043
[0.031–0.056]

Pulse_1[‘<50’] 346
(0.50)

80
(1.10)

0.084
[0.062–0.176]

0.089
[0.07–0.134]

0.038
[0.032–0.065]

Temperature_1[‘<95.0 Hypothermia’] 67
(0.10)

36
(0.50)

0.281
[0.229–0.37]

0.329
[0.251–0.438]

0.185
[0.14–0.234]

Temperature_4[‘99.5–104.0 Fever’] 1217
(1.75)

252
(3.47)

0.119
[0.092–0.149]

0.126
[0.102–0.158]

0.095
[0.068–0.134]

Lab0_1[‘Albumin, less than standard value’] 31637
(45.39)

4143
(57.07)

0.084
[0.069–0.108]

0.069
[0.057–0.087]

0.061
[0.046–0.078]

Lab5_3[‘BUN, more than the standard value’] 6563
(9.42)

1290
(17.77)

0.174
[0.151–0.203]

0.236
[0.206–0.271]

0.261
[0.205–0.323]

Lab6_3[‘Bilirubin, more than the standard value’] 2952
(4.24)

708
(9.75)

0.027
[0.022–0.052]

0.077
[0.056–0.114]

0.205
[0.168–0.252]

DRG0[‘‘liver transplant’’] 147
(0.21)

157
(2.16)

1.518
[0.887–2.742]

1.380
[0.891–2.538]

1.099
[0.799–1.99]

DRG131[‘‘hip joint replacement’’] 1565
(2.25)

116
(1.60)

0.116
[0.088–0.157]

0.249
[0.228–0.284]

0.082
[0.073–0.097]

DRG177[‘‘major bladder proc’’] 242
(0.35)

42
(0.58)

0.211
[0.126–0.287]

0.202
[0.105–0.324]

0.047
[0.035–0.06]

DRG178[‘‘kidney/urinary tract malig’’] 264
(0.38)

60
(0.83)

0.327
[0.242–0.482]

0.239
[0.182–0.392]

0.255
[0.198–0.355]

DRG2[‘‘bone marrow transplant’’] 400
(0.57)

124
(1.71)

0.405
[0.292–0.542]

0.345
[0.261–0.491]

0.394
[0.278–0.514]

DRG256[‘‘acute leukemia’’] 242
(0.35)

63
(0.87)

0.091
[0.07–0.129]

0.024
[0.02–0.058]

0.099
[0.061–0.119]

DRG261[‘‘infect & parasitic disease’’] 322
(0.46)

147
(2.03)

0.863
[0.751–1.016]

0.720
[0.584–0.901]

0.487
[0.381–0.588]

DRG262[‘‘post-op/trauma infect proc’’] 378
(0.54)

85
(1.17)

0.433
[0.332–0.494]

0.251
[0.197–0.309]

0.164
[0.107–0.214]

DRG263[‘‘septicemia & dissem infect’’] 2420
(3.47)

425
(5.85)

0.163
[0.121–0.23]

0.058
[0.051–0.08]

0.011
[0.009–0.013]

DRG3[‘‘trach w/dmv w exten proc’’] 80
(0.11)

112
(1.54)

2.069
[1.243–2.777]

1.821
[1.107–2.39]

1.408
[1.034–1.807]

DRG301[‘‘HIV w multiple major HIV’’] 73
(0.10)

28
(0.39)

0.427
[0.308–0.505]

0.239
[0.185–0.279]

0.083
[0.058–0.126]

DRG309[‘‘extensive proc unrel pdx’’] 291
(0.42)

69
(0.95)

0.235
[0.166–0.373]

0.122
[0.103–0.227]

0.096
[0.074–0.13]

DRG4[‘‘trach w/dmv w/o enten proc’’] 50
(0.07)

30
(0.41)

0.592
[0.416–0.967]

0.306
[0.199–0.701]

0.189
[0.124–0.275]

DRG49[‘‘respiratory system diag’’] 39
(0.06)

34
(0.47)

0.743
[0.544–0.926]

0.504
[0.403–0.73]

0.205
[0.138–0.307]

DRG66[‘‘cardiac valve proc w/cath’’] 137
(0.20)

68
(0.94)

0.858
[0.715–1.931]

0.757
[0.645–1.576]

0.501
[0.479–0.651]

DRG67[‘‘cardiac valve proc w/0 cath’’] 493
(0.71)

138
(1.90)

0.817
[0.752–1.175]

0.655
[0.603–0.961]

0.33
[0.326–0.336]

DRG68[‘‘coronary bypass w/card cath’’] 437
(0.63)

163
(2.25)

0.649
[0.579–1.436]

0.768
[0.705–1.267]

0.674
[0.646–0.848]

DRG69[‘‘cor bypass w/o card cath’’] 430
(0.62)

162
(2.23)

0.804
[0.733–1.362]

0.673
[0.589–1.095]

0.454
[0.445–0.551]

DRG84[‘‘heart failure’’] 544
(0.78)

149
(2.05)

0.157
[0.131–0.21]

0.059
[0.047–0.08]

0.061
[0.051–0.082]

DRG97[‘‘maj small & large bowel proc’’] 972
(1.39)

172
(2.37)

0.600
[0.526–0.706]

0.565
[0.509–0.682]

0.461
[0.406–0.572]

CCS118[‘Congestive heart failure; non-hypertensive’] 3572
(5.12)

725
(9.99)

0.160
[0.135–0.198]

0.143
[0.111–0.181]

0.133
[0.106–0.168]

CCS135[‘Cancer of kidney and renal pelvis’] 545
(0.78)

160
(2.20)

0.222
[0.171–0.324]

0.174
[0.141–0.272]

0.023
[0.013–0.037]

(continued on next page)
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Table 3 (continued).
Name Samples with the

risk factor, n (%)
Median [IQR]
of the weighted SHAP values

non-AKI AKI 72 h prior 48 h prior 24 h prior

CCS230[‘Acute and unspecified renal
failure’]

3803
(5.46)

683
(9.41)

0.120
[0.096–0.149]

0.103
[0.082–0.131]

0.108
[0.082–0.134]

CCS58[‘Cystic fibrosis’] 979
(1.40)

223
(3.07)

0.314
[0.256–0.411]

0.307
[0.25–0.389]

0.452
[0.397–0.521]

MED1086[‘tazobactam’] 11385
(16.33)

2276
(31.35)

0.196
[0.151–0.266]

0.302
[0.235–0.434]

0.285
[0.201–0.478]

MED1096[‘posaconazole’] 767
(1.10)

183
(2.52)

0.072
[0.048–0.097]

0.071
[0.042–0.101]

0.081
[0.063–0.105]

MED134[‘benzoic acid’] 17751
(25.47)

3075
(42.36)

0.164
[0.115–0.194]

0.215
[0.172–0.244]

0.256
[0.199–0.315]

MED256[‘fludarabine’] 117
(0.17)

56
(0.77)

0.086
[0.019–0.11]

0.055
[0.039–0.075]

0.124
[0.094–0.149]

MED319[‘amphotericin b liposome’] 104
(0.15)

90
(1.24)

0.746
[0.584–0.973]

1.061
[0.855–1.358]

1.074
[0.814–1.256]

MED321[‘vancomycin’] 14266
(20.47)

2403
(33.10)

0.027
[0.018–0.05]

0.069
[0.045–0.127]

0.120
[0.077–0.224]

MED478[‘dornase alfa’] 994
(1.43)

222
(3.06)

0.036
[0.016–0.06]

0.050
[0.027–0.108]

0.038
[0.024–0.103]

MED572[‘diazepam’] 419
(0.60)

133
(1.83)

0.067
[0.048–0.086]

0.146
[0.086–0.192]

0.174
[0.122–0.232]

MED733[‘glipizide’] 1295
(1.86)

216
(2.98)

0.049
[0.025–0.077]

0.037
[0.001–0.058]

0.012
[0.008–0.024]

Abbreviations: AKI = acute kidney injury; non-AKI = not acute kidney injury; Median [IQR] = median value [interquartile range].
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isease. Finally, we took the intersection and union of the filtered
KI predictors from the three prediction time windows to explore
emporal fluctuation of the importance/weight of AKI risk factors.

DeLong test [31] was used to compare the areas under two
r more correlated receiver operating characteristic curves (ROC)
nd calculate the statistical significance of AUC improvement.
olmogorov–Smirnov (KS) test [32] is a form of minimum dis-
ance estimation used as a nonparametric test (it does not assume
ny particular underlying distribution) to check if two indepen-
ent distributions are similar or different. We applied KS test to
ompare whether the fluctuations in risk weight/importance are
tatistically significant. In addition, the network was applied to
larify the co-occurrence relationship of AKI risk factors in three
rediction time-windows, where the phi (Φ) coefficient was used
o measure the degree of association between two binary vari-
bles. Two-tailed p < 0.05 denoted statistical significance for all
omparisons. Data extraction and all analyses were performed
sing Python 3.7 software.

. Results

.1. Screening for risk factors

Among the final analysis cohort of 76,957 hospital admissions,
KI occurred in 7259 (9.43%) encounters. Distribution of patient
emographic variables among any AKI stage and non-AKI encoun-
ers is listed in Supplementary Table S3. The detailed risk factor
creening process is shown in Fig. 1(D), from which we can see
hat the first univariable feature selection (i.e., Chi-square test)
creened out 678, 588 and 571 factors under the 24 h, 48 h and
2 h prediction windows, respectively.
Table 2 compares results of 7 machine learning methods,

mong which the tree-based ensemble models performed best,
nd there is no significant difference between XGBoost and Ran-
om Forest models (i.e., p ≥0.05 of DeLong test). The best cross-
alidated AUC achieved by the XGBoost method (parameters
sed are available in Supplementary Table S4) were 0.805 (95%
onfidence interval (CI) 0.791-0.824) for 24-h prior, 0.764 (95%
I, 0.750-0.775) for 48-h prior, and 0.736 (95% CI, 0.723-0.745)
6

for 72-h prior. Supplementary Figure S2 shows the ROC curves of
the 7 machine learning methods for AKI prediction 48 h prior.

There is an exponential decline trend in the importance (i.e.,
|wSHAP|) of clinical AKI predictors (see Fig. 2(A)). And Fig. 2(B)
hows the performance trend of the XGBoost prediction model
ith top K (1 ≤ K ≤ 140) features. We set 0.0001 as the
hreshold of ∆AUC , which means that the AUC growth tends to
e stable, and the optimal top K for 24 h, 48 h and 72 h time
indows were 102, 83 and 83, respectively. Further, we used
he mean(wSHAP) > 0 as the restriction threshold to obtain
otentially high-risk factors (resulted in 85, 65 and 60 features
or 24/48/72-h prior respectively, see Supplementary Tables S5-
7). In Supplementary Figure S4, there are only 41 intersection
actors among 103 union risk factors.

.2. Temporal fluctuation of risk factors

Table 3 shows the fluctuations of the 41 intersection risk
actors of AKI from the 24-h, 48-h and 72-h time windows. Fig. 3
llustrates the weighted SHAP summary plot of 41 intersection
isk factors for AKI in the 48-h time window. Supplementary
igure S4 and Figure S5 show the importance fluctuations of
ean (wSHAP) of 41 intersection and 103 union risk factors, re-
pectively. In addition, in order to show the temporal fluctuation
f the importance of AKI risk factors more clearly, we normalized
he mean (wSHAP) of each feature to [0,1]. Fig. 4 shows the heat
ap of the normalized importance of the 103 union risk factors,
here the default weight of unfiltered factors is 0.
From the above results, almost all time-varying variables have

igher wSHAP at 24-hr and the non-time-varying variables
e.g., admission DRGs) actually have higher wSHAP at 72-hr mark,
uggesting that the contribution of those time-invariant predic-
ors to AKI decreases as time progresses, which is consistent with
uman intuition. The significance of the importance distribution
ifferences based on the Kolmogorov–Smirnov test is shown in
upplementary Figure S6, from which almost all the temporal
luctuations are statistically significant.

Fig. 5 presents the correlation network of AKI risk factors
nder 24-, 48- and 72-h time windows, where if two nodes
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Fig. 3. The weighted SHAP summary plot of 41 common risk factors for AKI in the 48-h time window. (The higher the weighted SHAP value of a feature, the higher
risk of AKI due to this feature. The point on each feature line represents a sample with that feature. Dots are colored by the feature value for that person and pile
up vertically to show density. For the binary (0/1) variables, the red value is 1, that is, the variable exists. The blue value is 0, that is, this variable does not exist.
For the drug variables, red means the drug has been taken within the past week, blue means not taking it.)
h
d
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4

(factors) exhibit a certain degree of clinical Φ-correlation, they
re connected by an edge. For better visualization, we made
tradeoff between the number of associations included in a
etwork and the clarity with which these associations can be
ppreciated; for example, a cutoff value Φ∗

= 0.03 was specified
o that only links satisfying Φ ≥ Φ∗ were kept. As can be seen
rom Fig. 5, the correlation between risk factors increases as time
pproaches AKI onset. As an illustration, Supplementary Table S8
hows the top 5 positive and negative influencing factors of one
KI patient (male, randomly selected from the AKI sample) in the
4/48/72 h prediction time window, where the wSHAP values
 f

7

of tazobactam were 0.154, 0.307 and 0.440 for 72-, 48- and 24-
time windows, respectively. In addition, Fig. 6 illustrates the
ifferences in the distributions of four AKI risk factors (namely,
ge_6[‘>64’], BMI_4[‘>30.0 obese’], Lab5_3[‘BUN, more than the
tandard value’], and MED321[‘vancomycin’]) under 24, 48, and
2-h time windows.

. Discussion

Currently international guidelines recommend risk assessment
or AKI for the purpose of preventing kidney injury progression
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Fig. 4. Heatmap of the normalized importance of the 103 union risk factors for AKI events prior to 24, 48 and 72 h. (To display the temporal fluctuation of feature
importance more clearly, we normalized the importance of each feature to [0,1], where the default weight of unfiltered factors is 0.)
and severity [33]. And the 15th Acute Dialysis Quality Initiative
(ADQI) Consensus Group recommended AKI prediction with a
lead time of 48 to 72 h to be the most useful in practice as the
group believed that it would give practitioners adequate time to
respond to mitigate potential injury without sacrificing prediction
accuracy [34]. In this study, we developed a machine-learning-
based knowledge mining approach, combining XGBoost model
8

and SHAP explainer, to explore the temporal dynamics of clinical
risk predictors for hospital-acquired AKI under different forecast
time windows.

Model transparency is critical for many clinical applications
and will accelerate the widespread adoption of such approaches
in clinical practice. There are a large number of interpretable risk-
scoring models. However, the construction of these transparent
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Fig. 5. Clinical risk feature networks of AKI prior to 24/48/72 hours. (Nodes are features; links are correlations; node color identifies feature categories; node size
is proportional to the prevalence; link color indicates Φ correlation strength)
models is not only based on expert knowledge to select a small
number of known risk factors, but is also limited to a relatively
small specific scenario, such as AKI following elective cardiac
surgery [10], after aortic surgery [35], sepsis associated AKI [36]
and contrast-induced AKI [37]. More importantly, these tradi-
tional scoring models do not consider the temporal volatility of
risk, which will reduce model accuracy. Some researchers [38,39]
focused only on improving predictive performance at the expense
9

of model interpretability (e.g., complex machine learning or deep
learning methods).

Importantly, we implemented a trade-off between accuracy
and interpretability [40] by introducing a SHAP interpreter to
explain the XGBoost model. The SHAP method can be viewed as a
personalized risk scoring system (see Supplementary Table S8). In
addition, the explanations for the AKI risk are broadly consistent
with the literature and with prior knowledge from nephrologists.
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t
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Fig. 6. Distribution charts of the weighted SHAP values for samples without/with some AKI risk factors (age_6[‘>64’], BMI_4[‘>30.0 obese’], Lab5_3[‘BUN, more than
the standard value’], and MED321[‘vancomycin’]) under 24, 48, and 72-h time windows. (BMI, body mass index; BUN, blood urea nitrogen.).
For example, as shown in Fig. 3, procedures related to heart,
rachea, and liver diseases are associated with higher AKI risks,
hat is because they are associated with reduced kidney reserve
r failure of other organs with known cross-talk with the kidneys
e.g., heart, liver, and respiratory system) [41]. Meanwhile, this
tudy’s main focus is to mine the temporal fluctuation of AKI risk
10
predictors, rather than simply build an AKI prediction model. Fur-
thermore, what we analyze was the difference in the importance
of the same feature in different prediction time windows, rather
than the temporal change of feature values.

It is worth noting that optimal risk factors used to construct
AKI prediction models will differ under different prediction time
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indows (see Supplementary Figure S3 and Tables S5–S7). Fig. 4
emonstrated that the contribution of most time-varying vari-
bles (such as medication and lab tests) to AKI risk increases
s AKI onset approaches, while most non-time-varying variables
such as age and admission diagnosis) decrease, suggesting that
tatic risk factors would be more advantageous in the longer time
indow prediction. From the clinical perspective, the static pre-
ictor is more likely to provide a baseline risk estimation and the
ynamic predictor is more likely to be a superimposed risk on the
aseline risk. Static predictors may be equally important in each
ime window, but what may differ is their relative importance in
ach forecast time window.
Temporal information in longitudinal EMR is valuable, how-

ver, one of the challenges in improving AKI prediction perfor-
ance is how to consider temporality when using time-stamped
linical events in EMR. Previous research [42] on this topic sug-
ested that representing EMR data as a bag of temporally weighted
linical events is promising; however, how to assign weights in
n optimal manner remains unexplored. In this paper, our results
howed that it is not appropriate to consider only one weighting
trategy, because the fluctuation trends of time-invariant and
ime-variant characteristics are different (see Table 2, Figs. 4
nd 6). Besides, we hypothesized that topological analysis of
linical variables in high-dimensional clinical EMR feature space
ay identify meaningful knowledge discovery of AKI patients. As
hown in Fig. 5, with the narrowing of the prediction time win-
ow, that is, the closer AKI onset is, the stronger the correlation
etween risk predictors is. In the future, knowledge graph may
elp us further analyze the risk factor network of AKI to improve
revention and intervention levels.
Several limitations in the present research must be considered.

irst, although we utilized a large cohort observed for up to a
ecade, they only reflect the population of one academic medical
enter. Replicating this study in other institutions would gen-
ralize conclusions. Second, we limited the analysis to patients
ith a minimum eGFR (estimated glomerular filtration rate) of
0 ml/min/1.73 m2 and normal serum creatinine on the day of
dmission at hospital admission. We acknowledge that patients
ith reduced eGFR have an increased risk of developing AKI;
owever, we made the decision to focus on hospital-acquired
KI. Third, this study explored the entirety of the above men-
ioned EMR data types except for laboratory tests where we only
elected certain lab tests based on previous literature for AKI
rediction [23]. Finally, because urine output can be influenced
y factors other than kidney health, and it is not frequently
ollected among the general inpatient population, we did not
nclude urine output criteria as a predictor nor using it to define
KI.

. Conclusions

Large-scale EMR offer unique opportunities and possibilities
or generating real-world clinical evidence and actionable in-
ights to transform healthcare. In this study, we used 9 years of
‘big’’ EMR data, including 76,957 encounters, and established a
achine-learning-based knowledge mining approach to explore

he temporal dynamics of clinical risk predictors for hospital-
cquired AKI under different forecast time windows. Results of
his study illustrated the existence of fluctuations in the risk
mportance of features, which need to be considered for accurate
11
modeling, and identify important AKI risk factors under different
time windows for further research to improve the accuracy of
early AKI prediction.
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