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combining eXtreme Gradient Boosting (XGBoost) model and SHapley Additive exPlanations (SHAP)

Keywords: method, to explore the temporal dynamics of clinical risk predictors for hospital-acquired AKI under
Acute kidney injury different forecast time windows. AKI occurred in 7,259 (9.43%) of 76,957 hospital admissions from
Knowledge mining approach November 2007 to December 2016 extracted from our institution’s de-identified clinical database.
Risk prediction Through qualitative visualization and quantitative analysis, we found and confirmed that relative

Temporal fluctuation

. - importance of optimal risk factors fluctuates with the size of AKI prediction time window. For example,
Electronic medical records

the contribution of most time-varying variables (such as medication and lab tests) to AKI risk increases
as AKI onset approaches, while most non-time-varying variables (such as age and admission diagnosis)
decrease. Besides, the optimal set of AKI risk predictors will also change under different time window.
This study provides several practical implications, including recognizing the existence of feature
weight volatility as it is desirable for model accuracy, identifying important AKI risk factor for further
investigation, and facilitating early accurate prediction of AKI.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction medical record systems (EMR) in modern healthcare, we are
entering a new era where the abundant EMR data is available for
Acute kidney injury (AKI) is prevalent in hospitalized patients ~ data mining [6]. Data-driven approaches that incorporate “big”
and has been associated with poor short- and long-term out-  EMR data has presented a unique analytic opportunity for AKI.
comes in patients [1]. Delays in identification and intervention Risk factor selection is an important step in constructing AKI
for AKI may lead to progression of injury_ increasing the risk of prediction models. AKI risk factors can be either static (time—
death, the need for renal replacement therapy (RRT), and the risk ~ invariant) or dynamic (time-variant). Static risk factors (e.g., age
of chronic kidney disease [2]. AKI is especially common among  [7]) are those predisposing factors of the patients that predict
patients hospitalized with COVID-19 (46%) and is associated with AKI risk but are not amenable to deliberate intervention. Admis-
extremely high mortality (only 30% survived with recovery of sion diagnosis and medical hi‘story are also static informa.tion. as
kidney function by the time of discharge) [3]. Therefore, the doc‘tors cannot change a patient history nor forgo certain life-
ability to predict patients at risk for AKI and managing them  Saving procedures (such as RRT [8] and liver transplant [9]). In
according to susceptibilities and exposures is more likely to result ~ contrast, dynamic risk factors are potentially changeable factors

in better outcomes [4,5]. With the wide-adoption of electronic ~ during patient care, which is essential to physicians to prevent
AKL. It is important that, if identified in a timely fashion, many

Era— risk factors for hospital-acquired AKI can be modified to reduce
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patient outcome. For example, Palomba et al. developed the AKICS
score system that incorporates five risk categories to predict AKI
following cardiac surgery [10]. Lueangingkhasut et al. used five
risk factors (congestive health failure, atherosclerotic coronary
vascular disease, blood pH < 7.3, sepsis and anemia) to develop
a risk score model for hospital-acquired AKI in a tertiary care
hospital in Thailand [11]. Similar to other existing AKI prediction
studies [12,13] that screen known risk factors based on expert
knowledge, they may not only miss potential unknown risk fac-
tors from the “big” EMR, but also fail to take into account the
temporal fluctuation of risk factors.

Recent availability of EMR data and advances in artificial in-
telligence (Al) have sparked interest in machine learning-based
healthcare risk prediction models. For example, Koyner et al.
applied gradient boost machine (GBM) method to build an AKI
prediction model [14]. Li et al. applied convolutional neural net-
work to predict AKI within 24 h of admission to ICU (intensive
care unit) [15]. Tomasev et al. used the deep learning method
to capture the temporal short- and long-term variability of AKI
predictors to improve prediction performance [16]. Although the
sophisticated machine-learning methods provide good prediction
accuracy, their application in actual clinical settings is limited
because their predictions are difficult to interpret and therefore
inoperable.

Improving human-AlI collaboration is critical for applications
where explaining machine learning model predictions can en-
hance human performance. One of the most common approaches
is to use interpretable models directly. For example, Simonov
et al. utilized a logistic regression approach to create a simple
and implementable AKI prediction model [17]. Nematic et al.
developed an interpretable model for sepsis prediction in ICU
using a modified Weibull-Cox proportional hazards model [18].
Another approach is to develop explainable method to explain
the “black-box” prediction model. For example, Ribeiro et al.
proposed a novel explanation technique, namely LIME (Local
Interpretable Model-agnostic Explanations), to explain the pre-
dictions of any classifier [19]. Lundberg et al. constructed an
explainable Al for tree-models, namely SHAP (SHapley Additive
exPlanations), which was used to explain GBM prediction model
for hypoxemia during surgery [20,21].

To the best of our knowledge, no study has investigated and
characterized the temporal dynamics of AKI risk factors, that is
what risk factors are key to prediction at what time. In this
study, we first explored an interpretable machine-learning-based
knowledge mining method to delineate the risk contribution of
each feature in each patient, and then captured fluctuation infor-
mation of AKI risk factors under different prediction time win-
dows, which may help improve the rationality and effectiveness
of prediction models and decisions making.

2. Materials and methods
2.1. Study population

All adult patients (age > 18) admitted to the University of
Kansas Health System (a tertiary academic hospital) for two days
or more from November 2007 to December 2016 were included in
this retrospective observational cohort study. Given that a patient
may have multiple eligible hospital admissions or encounters
and develop AKI during one but not another, this study was
conducted at the encounter level with a total of 179,370 encoun-
ters. From those encounters, we excluded the ones (a) missing
necessary data elements for outcome determination, i.e., less than
two serum creatinine measurements and (b) had evidence of
moderate or severe kidney dysfunction at admission based on lab
measurements, i.e., estimated Glomerular Filtration Rate (eGFR)
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Table 1
Clinical variables considered in the encounters.
Feature category Number of Details
variables
Demographics (Demo) 3 Age, race, gender;
Vitals (Vitals) 5 BMI, diastolic BP, systolic BP,
pulse, temperature;
Lab tests (Lab) 14 Albumin, ALT, AST, Ammonia,
Calcium, BUN, Bilirubin,
CK-MB, CK, Glucose, Lipase,
Platelets, Troponin, WBC;
Admission diagnosis 315 University Health System

(DRG)
Medical History (CCS) 280

Consortium (UHC) APR-DRG;

ICD9 codes mapped to CCS
major diagnoses.

Medications (MED) 1271 All medications are mapped to

RxNorm ingredient;

Table 2
Comparison of 7 different machine learning methods in AKI prediction.
Models
(AUC, 95% CI)

72-hour forecast 48-hour forecast 24-hour forecast
time window time window time window

XGBoost 0.736 0.764 0.805
[0.723-0.745] [0.750-0.775] [0.791-0.824]
GBM* 0.722 0.750 0.785
[0.710-0.732] [0.738-0.760] [0.774-0.800]
Random Forest® 0.740 0.770 0.803
[0.728-0.747] [0.759-0.781] [0.788-0.814]
LinearSVC* 0.728 0.743 0.753
[0.712-0.737] [0.731-0.753] [0.745-0.765]
Logistic Regression” 0.726 0.741 0.750
[0.709-0.738] [0.728-0.753] [0.741-0.764]
Naive Bayes” 0.670 0.697 0.699
[0.659-0.682] [0.685-0.708] [0.684-0.720]
MLP* 0.660 0.686 0.706
[0.630-0.680] [0.674-0.697] [0.686-0.714]

Abbreviations and notes: XGBoost: eXtreme Gradient Boosting; GBM: Gradient
Boosting Machine; LinearSVC: Linear Support Vector Classification; MLP: Multi-
layer Perceptron neural network. AUC, the area under the receiver operating
characteristic curve. CI, confidence interval.

aThere is no significant difference in the classification results between XGBoost
and Random Forest model, namely p value > = 0.05 of DeLong test.

*The XGBoost model is significantly superior to this model, namely p value < 0.05
of DeLong test.

less than 60 mL/min/1.73 m? or serum creatinine (SCr) level
of >1.3 mg/dL within 24 h of hospital admission. As shown in
Supplementary Figure S1, the final de-identified cohort contained
76,957 encounters.

2.2. AKI definition

We defined AKI according to the SCr-based criteria described
in the KDIGO (Kidney Disease Improving Global Outcomes) clin-
ical practice guidelines [22] (see Supplementary Table S1). Base-
line SCr level was defined as the most recent SCr value within
two-day window prior to admission if available; otherwise, the
first SCr value after admission was used as the baseline. Then all
pairs of SCr levels measured between admission and discharge
were evaluated on a rolling basis to determine the occurrence of
any AKI.

2.3. Clinical variables

For each hospital encounter in the final analysis cohort, we
extracted time stamped clinical data on demographics, vital signs,
medications, laboratory values, past medical diagnoses, and ad-
mission diagnoses. Details of the 1888 clinical variables consid-
ered are available in Table 1. Patient vital signs were discretized
into groups as shown in Supplementary Table S2. Laboratory
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Fig. 1. Schematic diagram of data analysis and processing. (A) An illustration of data collection window to predict AKI event 1-3 days prior; (B) An illustration of
medication data collection window to predict AKI event 1-3 days prior; (C) The knowledge mining model; (D) The flowchart of screening AKI risk factors. AKI, acute

kidney injury; NF, the number of features.

values were categorized as unknown, less than reference nor-
mal range, within normal range, or greater than the reference
normal range. Medication exposure included inpatient (i.e., dis-
pensed during stay) and outpatient medications (i.e., medication
reconciliation and prior outpatient prescriptions). All medica-
tion names were normalized by mapping to RxNorm ingredient.
Admission diagnosis, i.e., all patient refined diagnosis related
group (APR-DRG), were collected from the University Health Sys-
tem Consortium (UHC; http://www.vizientinc.com) data source in
HERON (Health Enterprise Repository for Ontological Narration).
Patient past medical history was captured as major diagnoses
(ICD-9 codes grouped according to the Clinical Classifications
Software (CCS) diagnosis categories by the Agency for Healthcare
Research and Quality.

2.4. Data processing

Only the most recently recorded vitals and labs before the
AKI prediction point (i.e., 24/48/72 hours prior to AKI event
or last normal SCr for non-AKI cases, see Fig. 1(A)) were used
for each encounter over a specified time-window. Meanwhile,
instead of any imputation of missing numerical values, missing
values were captured as a separate category because informa-
tion may be contained in the choice to not perform a particular
test [23]. To enhance interpretability, the multivalued variables
are converted into multiple binary variables. Medical history was
defined as true if it happened before the AKI prediction point.
Hence, Medical history and admission diagnosis were all binary
variables (i.e., presence or absence). Medication variables were
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Fig. 2. The feature importance and predictive performance trend of top-ranking features for AKI events 24/48/72 hours prior. (A) The importance trend of the
top-ranking features obtained by the knowledge mining approach; (B) The performance trend of the XGBoost prediction model with top K features. AUC, the area

under the receiver operating characteristic curve; CI, confidence interval.

defined as the number of days taken within 7-days before the
AKI prediction point, as shown in Fig. 1(B).

2.5. Knowledge mining model

As shown in Fig. 1(C), in the knowledge mining model, we
applied two machine learning methods: eXtreme Gradient Boost-
ing (XGBoost) [24] and SHapley Additive exPlanations (SHAP)
method [25,26] (see Supplementary Methods S1-S2). XGBoost
is an optimized distributed gradient boosting library designed
to be highly efficient, flexible and portable. It implements ma-
chine learning algorithms under the gradient boosting frame-
work, and provides a parallel tree boosting that solve many data
science problems in a fast and accurate way. Inspired by coop-
erative game theory, SHAP constructs an additive explanation
model, with all the characteristics considered as “contributors”.
SHAP values can explain the output of any machine learning
model, in this study, we applied the tree SHAP method, which
is a high-speed exact explanation algorithm for tree ensemble
methods.

Meanwhile, in order to reduce the influence of sample differ-
entiation and enhance the stability and effectiveness of knowl-
edge mining, cross-validation strategy was adopted to intro-
duce this data drift [27] and obtained the weighted SHAP value

(wSHAP), where the weight was the area under the receiver
operating characteristic curve (AUC) of the XGBoost model in
each fold and the risk score for each variable was derived from
the SHAP interpretation using the entire dataset. In addition, to
justify the choice of XGBoost method, we compared XGBoost
against other 6 machine learning algorithms: GBM [14], Random
Forest [28], LinearSVC (linear support vector classification) [29],
Logistic Regression, Naive Bayes, MLP (multi-layer perceptron
neural network) [30].

2.6. Risk predictor screening process and statistical analysis

To screen for risk predictor, as shown in Fig. 1(D), we explored
three prediction models at different time-windows (namely, 24 h,
48 h and 72 h prior to onset) and implemented three filters in
sequence: a) Chi-square test, only keeping variables that have a
statistically significant (p < 0.05) univariate correlation with AKI
label; b) top K predictors, obtaining the best top K according to
the growth trend of AUC with top k; c) potentially high risk pre-
dictors, screening factors with the mean weighted SHAP greater
than 0, which will filter out some risk-free but highly predictive
factors, such as normal BMI (body mass index), the standard WBC
(white blood cell) lab test, and dexamethasone for treating kidney
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Table 3
The 41 common risk factors under AKI 24/48/72-hour time windows.

Name Samples with the Median [IQR]

risk factor, n (%) of the weighted SHAP values

non-AKI AKI 72 h prior 48 h prior 24 h prior
age_6[>64'] 18596 2193 0.049 0.046 0.021

(26.68) (30.21) [0.038-0.062] [0.035-0.053] [0.017-0.028]
BMI_4[>30.0 obese’] 25347 3095 0.073 0.068 0.043

(36.37) (42.64) [0.061-0.081] [0.056-0.079] [0.031-0.056]
Pulse_1[‘<50’] 346 80 0.084 0.089 0.038

(0.50) (1.10) [0.062-0.176] [0.07-0.134] [0.032-0.065]
Temperature_1['<95.0 Hypothermia’] 67 36 0.281 0.329 0.185

(0.10) (0.50) [0.229-0.37] [0.251-0.438] [0.14-0.234]
Temperature_4[‘99.5-104.0 Fever’] 1217 252 0.119 0.126 0.095

(1.75) (3.47) [0.092-0.149] [0.102-0.158] [0.068-0.134]
LabO_1[‘Albumin, less than standard value’] 31637 4143 0.084 0.069 0.061

(45.39) (57.07) [0.069-0.108] [0.057-0.087] [0.046-0.078]
Lab5_3[‘BUN, more than the standard value’] 6563 1290 0.174 0.236 0.261

(9.42) (17.77) [0.151-0.203] [0.206-0.271] [0.205-0.323]
Lab6_3[‘Bilirubin, more than the standard value’] 2952 708 0.027 0.077 0.205

(4.24) (9.75) [0.022-0.052] [0.056-0.114] [0.168-0.252]
DRGO[“liver transplant”] 147 157 1518 1.380 1.099

(0.21) (2.16) [0.887-2.742] [0.891-2.538] [0.799-1.99]
DRG131[*“hip joint replacement”] 1565 116 0.116 0.249 0.082

(2.25) (1.60) [0.088-0.157] [0.228-0.284] [0.073-0.097]
DRG177[“major bladder proc”] 242 42 0.211 0.202 0.047

(0.35) (0.58) [0.126-0.287] [0.105-0.324] [0.035-0.06]
DRG178[“kidney/urinary tract malig”] 264 60 0.327 0.239 0.255

(0.38) (0.83) [0.242-0.482] [0.182-0.392] [0.198-0.355]
DRG2[“bone marrow transplant”] 400 124 0.405 0.345 0.394

(0.57) (1.71) [0.292-0.542] [0.261-0.491] [0.278-0.514]
DRG256[“acute leukemia”] 242 63 0.091 0.024 0.099

(0.35) (0.87) [0.07-0.129] [0.02-0.058] [0.061-0.119]
DRG261[“infect & parasitic disease”] 322 147 0.863 0.720 0.487

(0.46) (2.03) [0.751-1.016] [0.584-0.901] [0.381-0.588]
DRG262[“post-op/trauma infect proc”] 378 85 0.433 0.251 0.164

(0.54) (1.17) [0.332-0.494] [0.197-0.309] [0.107-0.214]
DRG263[“septicemia & dissem infect”] 2420 425 0.163 0.058 0.011

(3.47) (5.85) [0.121-0.23] [0.051-0.08] [0.009-0.013]
DRG3[“trach w/dmv w exten proc”] 80 112 2.069 1.821 1.408

(0.11) (1.54) [1.243-2.777] [1.107-2.39] [1.034-1.807]
DRG301[“HIV w multiple major HIV”] 73 28 0.427 0.239 0.083

(0.10) (0.39) [0.308-0.505] [0.185-0.279] [0.058-0.126]
DRG309[“extensive proc unrel pdx”] 291 69 0.235 0.122 0.096

(0.42) (0.95) [0.166-0.373] [0.103-0.227] [0.074-0.13]
DRG4[“trach w/dmv w/o enten proc”] 50 30 0.592 0.306 0.189

(0.07) (0.41) [0.416-0.967] [0.199-0.701] [0.124-0.275]
DRG49[“respiratory system diag”] 39 34 0.743 0.504 0.205

(0.06) (0.47) [0.544-0.926] [0.403-0.73] [0.138-0.307]
DRG66|“cardiac valve proc w/cath”] 137 68 0.858 0.757 0.501

(0.20) (0.94) [0.715-1.931] [0.645-1.576] [0.479-0.651]
DRG67|“cardiac valve proc w/0 cath”] 493 138 0.817 0.655 0.33

(0.71) (1.90) [0.752-1.175] [0.603-0.961] [0.326-0.336]
DRG68[““coronary bypass w/card cath”] 437 163 0.649 0.768 0.674

(0.63) (2.25) [0.579-1.436] [0.705-1.267] [0.646-0.848]
DRG69[“cor bypass w/o card cath”] 430 162 0.804 0.673 0.454

(0.62) (2.23) [0.733-1.362] [0.589-1.095] [0.445-0.551]
DRG84[“heart failure”] 544 149 0.157 0.059 0.061

(0.78) (2.05) [0.131-0.21] [0.047-0.08] [0.051-0.082]
DRG97[“maj small & large bowel proc”] 972 172 0.600 0.565 0.461

(1.39) (2.37) [0.526-0.706] [0.509-0.682] [0.406-0.572]
CCS118[‘Congestive heart failure; non-hypertensive’] 3572 725 0.160 0.143 0.133

(5.12) (9.99) [0.135-0.198] [0.111-0.181] [0.106-0.168]
CCS135[‘Cancer of kidney and renal pelvis’] 545 160 0.222 0.174 0.023

(0.78) (2.20) [0.171-0.324] [0.141-0.272] [0.013-0.037]

(continued on next page)
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Name Samples with the Median [IQR]

risk factor, n (%) of the weighted SHAP values

non-AKI AKI 72 h prior 48 h prior 24 h prior
CCS230[‘Acute and unspecified renal 3803 683 0.120 0.103 0.108
failure’] (5.46) (9.41) [0.096-0.149] [0.082-0.131] [0.082-0.134]
CCS58[‘Cystic fibrosis’] 979 223 0314 0.307 0.452

(1.40) (3.07) [0.256-0.411] [0.25-0.389] [0.397-0.521]
MED1086]‘tazobactam’] 11385 2276 0.196 0.302 0.285

(16.33) (31.35) [0.151-0.266] [0.235-0.434] [0.201-0.478]
MED1096]‘posaconazole’] 767 183 0.072 0.071 0.081

(1.10) (2.52) [0.048-0.097] [0.042-0.101] [0.063-0.105]
MED134|‘benzoic acid’] 17751 3075 0.164 0.215 0.256

(25.47) (42.36) [0.115-0.194] [0.172-0.244] [0.199-0.315]
MED256[‘fludarabine’] 117 56 0.086 0.055 0.124

(0.17) (0.77) [0.019-0.11] [0.039-0.075] [0.094-0.149]
MED319[‘amphotericin b liposome’] 104 90 0.746 1.061 1.074

(0.15) (1.24) [0.584-0.973] [0.855-1.358] [0.814-1.256]
MED321[‘vancomycin’] 14266 2403 0.027 0.069 0.120

(20.47) (33.10) [0.018-0.05] [0.045-0.127] [0.077-0.224]
MEDA478|‘dornase alfa’] 994 222 0.036 0.050 0.038

(1.43) (3.06) [0.016-0.06] [0.027-0.108] [0.024-0.103]
MED572|‘diazepam’] 419 133 0.067 0.146 0.174

(0.60) (1.83) [0.048-0.086] [0.086-0.192] [0.122-0.232]
MED733[‘glipizide’] 1295 216 0.049 0.037 0.012

(1.86) (2.98) [0.025-0.077] [0.001-0.058] [0.008-0.024]

Abbreviations: AKI = acute kidney injury; non-AKI = not acute kidney injury;

disease. Finally, we took the intersection and union of the filtered
AKI predictors from the three prediction time windows to explore
temporal fluctuation of the importance/weight of AKI risk factors.

DeLong test [31] was used to compare the areas under two
or more correlated receiver operating characteristic curves (ROC)
and calculate the statistical significance of AUC improvement.
Kolmogorov-Smirnov (KS) test [32] is a form of minimum dis-
tance estimation used as a nonparametric test (it does not assume
any particular underlying distribution) to check if two indepen-
dent distributions are similar or different. We applied KS test to
compare whether the fluctuations in risk weight/importance are
statistically significant. In addition, the network was applied to
clarify the co-occurrence relationship of AKI risk factors in three
prediction time-windows, where the phi (@) coefficient was used
to measure the degree of association between two binary vari-
ables. Two-tailed p < 0.05 denoted statistical significance for all
comparisons. Data extraction and all analyses were performed
using Python 3.7 software.

3. Results
3.1. Screening for risk factors

Among the final analysis cohort of 76,957 hospital admissions,
AKI occurred in 7259 (9.43%) encounters. Distribution of patient
demographic variables among any AKI stage and non-AKI encoun-
ters is listed in Supplementary Table S3. The detailed risk factor
screening process is shown in Fig. 1(D), from which we can see
that the first univariable feature selection (i.e., Chi-square test)
screened out 678, 588 and 571 factors under the 24 h, 48 h and
72 h prediction windows, respectively.

Table 2 compares results of 7 machine learning methods,
among which the tree-based ensemble models performed best,
and there is no significant difference between XGBoost and Ran-
dom Forest models (i.e.,, p >0.05 of DeLong test). The best cross-
validated AUC achieved by the XGBoost method (parameters
used are available in Supplementary Table S4) were 0.805 (95%
confidence interval (CI) 0.791-0.824) for 24-h prior, 0.764 (95%
Cl, 0.750-0.775) for 48-h prior, and 0.736 (95% CI, 0.723-0.745)

Median [IQR] = median value [interquartile range].

for 72-h prior. Supplementary Figure S2 shows the ROC curves of
the 7 machine learning methods for AKI prediction 48 h prior.

There is an exponential decline trend in the importance (i.e.,
|wSHAP|) of clinical AKI predictors (see Fig. 2(A)). And Fig. 2(B)
shows the performance trend of the XGBoost prediction model
with top K(1 < K < 140) features. We set 0.0001 as the
threshold of AAUC, which means that the AUC growth tends to
be stable, and the optimal top K for 24 h, 48 h and 72 h time
windows were 102, 83 and 83, respectively. Further, we used
the mean(wSHAP) > 0 as the restriction threshold to obtain
potentially high-risk factors (resulted in 85, 65 and 60 features
for 24/48/72-h prior respectively, see Supplementary Tables S5-
S7). In Supplementary Figure S4, there are only 41 intersection
factors among 103 union risk factors.

3.2. Temporal fluctuation of risk factors

Table 3 shows the fluctuations of the 41 intersection risk
factors of AKI from the 24-h, 48-h and 72-h time windows. Fig. 3
illustrates the weighted SHAP summary plot of 41 intersection
risk factors for AKI in the 48-h time window. Supplementary
Figure S4 and Figure S5 show the importance fluctuations of
mean (wSHAP) of 41 intersection and 103 union risk factors, re-
spectively. In addition, in order to show the temporal fluctuation
of the importance of AKI risk factors more clearly, we normalized
the mean (wSHAP) of each feature to [0,1]. Fig. 4 shows the heat
map of the normalized importance of the 103 union risk factors,
where the default weight of unfiltered factors is 0.

From the above results, almost all time-varying variables have
higher wSHAP at 24-hr and the non-time-varying variables
(e.g., admission DRGs) actually have higher wSHAP at 72-hr mark,
suggesting that the contribution of those time-invariant predic-
tors to AKI decreases as time progresses, which is consistent with
human intuition. The significance of the importance distribution
differences based on the Kolmogorov-Smirnov test is shown in
Supplementary Figure S6, from which almost all the temporal
fluctuations are statistically significant.

Fig. 5 presents the correlation network of AKI risk factors
under 24-, 48- and 72-h time windows, where if two nodes
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Fig. 3. The weighted SHAP summary plot of 41 common risk factors for AKI in the 48-h time window. (The higher the weighted SHAP value of a feature, the higher
risk of AKI due to this feature. The point on each feature line represents a sample with that feature. Dots are colored by the feature value for that person and pile
up vertically to show density. For the binary (0/1) variables, the red value is 1, that is, the variable exists. The blue value is 0, that is, this variable does not exist.
For the drug variables, red means the drug has been taken within the past week, blue means not taking it.)

(factors) exhibit a certain degree of clinical ¢-correlation, they
are connected by an edge. For better visualization, we made
a tradeoff between the number of associations included in a
network and the clarity with which these associations can be
appreciated; for example, a cutoff value @* = 0.03 was specified
so that only links satisfying @ > &* were kept. As can be seen
from Fig. 5, the correlation between risk factors increases as time
approaches AKI onset. As an illustration, Supplementary Table S8
shows the top 5 positive and negative influencing factors of one
AKI patient (male, randomly selected from the AKI sample) in the
24/48/72 h prediction time window, where the wSHAP values

of tazobactam were 0.154, 0.307 and 0.440 for 72-, 48- and 24-
h time windows, respectively. In addition, Fig. 6 illustrates the
differences in the distributions of four AKI risk factors (namely,
age_6[>64’], BMI_4[*>30.0 obese’], Lab5_3[‘BUN, more than the
standard value’], and MED321[‘'vancomycin’]) under 24, 48, and
72-h time windows.

4. Discussion

Currently international guidelines recommend risk assessment
for AKI for the purpose of preventing kidney injury progression
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24H

Fig. 4. Heatmap of the normalized importance of the 103 union risk factors for AKI events prior to 24, 48 and 72 h. (To display the temporal fluctuation of feature
importance more clearly, we normalized the importance of each feature to [0,1], where the default weight of unfiltered factors is 0.)

and severity [33]. And the 15th Acute Dialysis Quality Initiative
(ADQI) Consensus Group recommended AKI prediction with a
lead time of 48 to 72 h to be the most useful in practice as the

group believed that it would give practitioners adequate time to

respond to mitigate potential injury without sacrificing prediction
accuracy [34]. In this study, we developed a machine-learning-
based knowledge mining approach, combining XGBoost model

and SHAP explainer, to explore the temporal dynamics of clinical
risk predictors for hospital-acquired AKI under different forecast
time windows.

Model transparency is critical for many clinical applications
and will accelerate the widespread adoption of such approaches
in clinical practice. There are a large number of interpretable risk-
scoring models. However, the construction of these transparent
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A. Risk factor network of AKI prior to 24 hours
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Fig. 5. Clinical risk feature networks of AKI prior to 24/48/72 hours. (Nodes are features; links are correlations; node color identifies feature categories; node size

is proportional to the prevalence; link color indicates @ correlation strength)

models is not only based on expert knowledge to select a small
number of known risk factors, but is also limited to a relatively
small specific scenario, such as AKI following elective cardiac
surgery [10], after aortic surgery [35], sepsis associated AKI [36]
and contrast-induced AKI [37]. More importantly, these tradi-
tional scoring models do not consider the temporal volatility of
risk, which will reduce model accuracy. Some researchers [38,39]
focused only on improving predictive performance at the expense

of model interpretability (e.g., complex machine learning or deep
learning methods).

Importantly, we implemented a trade-off between accuracy
and interpretability [40] by introducing a SHAP interpreter to
explain the XGBoost model. The SHAP method can be viewed as a
personalized risk scoring system (see Supplementary Table S8). In
addition, the explanations for the AKI risk are broadly consistent
with the literature and with prior knowledge from nephrologists.



L. Wu, Y. Hu, X. Zhang et al.

Samples without age_6['>64"]

120
== 4BH

40

20

0

-0.125 -0.100 -0.075 -0.050 -0.025 0000 0025 0.050
Weight SHAP value
Samples without BMI_4[">30.0 obese’]

@ =)
=} =]

Frequency
(2]
o

50 24H
e 48H
72H
40
g 30
@
]
g
@
s
20
10
0
015 -0.10 -0.05 0.00

Weight SHAP value

Samples without Lab5_3['BUN,more than the standard value']

24H
e 48H
80 72H
60
>
2
[
El
g
T 40
20
0
-0.125 -0.100 -0.075 -0.050 -0.025 0.000 0.025
Weight SHAP value
Samples without MED321['vancomycin']
120 2
e 48H
72H
100
80
>
2
5]
3
5 60
Ma
40
20
0

-0.3 -0.2 -0.1
Weight SHAP value

Knowledge-Based Systems 245 (2022) 108655

Samples with age_6['>64"]

50 24H
[l 48H
40
10
0

-010 -0.05 000 005 010 015 020 025
Weight SHAP value
Samples with BMI_4[">30.0 obese’]

30
_— 48H
72H
25
5

w
S

Frequency

N
=]

N
=]

Frequency
=]

=)

-0.10 -005 000 005 010 015 02 025
Weight SHAP value
Samples with Lab5_3['BUN,more than the standard value']
12
24H

Frequency
@

4
2
0 b,
=02 0.0 02 04 0.6 0.8
Weight SHAP value
Samples with MED321['vancomycin']
30
24H
- 48H
25 72H
20

Frequency
&

o

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Weight SHAP value

Fig. 6. Distribution charts of the weighted SHAP values for samples without/with some AKI risk factors (age_6['>64’], BMI_4[*>30.0 obese’], Lab5_3[‘BUN, more than
the standard value’], and MED321[‘vancomycin’]) under 24, 48, and 72-h time windows. (BMI, body mass index; BUN, blood urea nitrogen.).

For example, as shown in Fig. 3, procedures related to heart,
trachea, and liver diseases are associated with higher AKI risks,
that is because they are associated with reduced kidney reserve
or failure of other organs with known cross-talk with the kidneys
(e.g., heart, liver, and respiratory system) [41]. Meanwhile, this
study’s main focus is to mine the temporal fluctuation of AKI risk

predictors, rather than simply build an AKI prediction model. Fur-
thermore, what we analyze was the difference in the importance
of the same feature in different prediction time windows, rather
than the temporal change of feature values.

It is worth noting that optimal risk factors used to construct
AKI prediction models will differ under different prediction time

10
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windows (see Supplementary Figure S3 and Tables S5-S7). Fig. 4
demonstrated that the contribution of most time-varying vari-
ables (such as medication and lab tests) to AKI risk increases
as AKI onset approaches, while most non-time-varying variables
(such as age and admission diagnosis) decrease, suggesting that
static risk factors would be more advantageous in the longer time
window prediction. From the clinical perspective, the static pre-
dictor is more likely to provide a baseline risk estimation and the
dynamic predictor is more likely to be a superimposed risk on the
baseline risk. Static predictors may be equally important in each
time window, but what may differ is their relative importance in
each forecast time window.

Temporal information in longitudinal EMR is valuable, how-
ever, one of the challenges in improving AKI prediction perfor-
mance is how to consider temporality when using time-stamped
clinical events in EMR. Previous research [42] on this topic sug-
gested that representing EMR data as a bag of temporally weighted
clinical events is promising; however, how to assign weights in
an optimal manner remains unexplored. In this paper, our results
showed that it is not appropriate to consider only one weighting
strategy, because the fluctuation trends of time-invariant and
time-variant characteristics are different (see Table 2, Figs. 4
and 6). Besides, we hypothesized that topological analysis of
clinical variables in high-dimensional clinical EMR feature space
may identify meaningful knowledge discovery of AKI patients. As
shown in Fig. 5, with the narrowing of the prediction time win-
dow, that is, the closer AKI onset is, the stronger the correlation
between risk predictors is. In the future, knowledge graph may
help us further analyze the risk factor network of AKI to improve
prevention and intervention levels.

Several limitations in the present research must be considered.
First, although we utilized a large cohort observed for up to a
decade, they only reflect the population of one academic medical
center. Replicating this study in other institutions would gen-
eralize conclusions. Second, we limited the analysis to patients
with a minimum eGFR (estimated glomerular filtration rate) of
60 ml/min/1.73 m? and normal serum creatinine on the day of
admission at hospital admission. We acknowledge that patients
with reduced eGFR have an increased risk of developing AKI;
however, we made the decision to focus on hospital-acquired
AKI. Third, this study explored the entirety of the above men-
tioned EMR data types except for laboratory tests where we only
selected certain lab tests based on previous literature for AKI
prediction [23]. Finally, because urine output can be influenced
by factors other than kidney health, and it is not frequently
collected among the general inpatient population, we did not
include urine output criteria as a predictor nor using it to define
AKIL.

5. Conclusions

Large-scale EMR offer unique opportunities and possibilities
for generating real-world clinical evidence and actionable in-
sights to transform healthcare. In this study, we used 9 years of
“big” EMR data, including 76,957 encounters, and established a
machine-learning-based knowledge mining approach to explore
the temporal dynamics of clinical risk predictors for hospital-
acquired AKI under different forecast time windows. Results of
this study illustrated the existence of fluctuations in the risk
importance of features, which need to be considered for accurate
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modeling, and identify important AKI risk factors under different
time windows for further research to improve the accuracy of
early AKI prediction.
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