
I-GCN: A Graph Convolutional Network Accelerator with
Runtime Locality Enhancement through Islandization

Tong Geng†, Chunshu Wu‡, Yongan Zhang§, Cheng Tan†, Chenhao Xie†, Haoran You§, Martin C.
Herbordt‡, Yingyan Lin§, Ang Li†

† Pacific Northwest National Laboratory, Richland, WA
‡ Boston University, Boston, MA
§ Rice University, Houston, TX

{tong.geng, cheng.tan, chenhao.xie, ang.li}@pnnl.gov,{happycwu, herbordt}@bu.edu,{yz87,hy34,yingyan.lin}@rice.edu

ABSTRACT
Graph Convolutional Networks (GCNs) have drawn tremendous
attention in the past three years. Comparedwith other deep learning
modalities, high-performance hardware acceleration of GCNs is as
critical but even more challenging. The hurdles arise from the poor
data locality and redundant computation due to the large size, high
sparsity, and irregular non-zero distribution of real-world graphs.

In this paper we propose a novel hardware accelerator for GCN
inference, called I-GCN, that significantly improves data locality
and reduces unnecessary computation. The mechanism is a new
online graph restructuring algorithm we refer to as islandization.
The proposed algorithm finds clusters of nodes with strong internal
but weak external connections. The islandization process yields two
major benefits. First, by processing islands rather than individual
nodes, there is better on-chip data reuse and fewer off-chip memory
accesses. Second, there is less redundant computation as aggrega-
tion for common/shared neighbors in an island can be reused. The
parallel search, identification, and leverage of graph islands are all
handled purely in hardware at runtime working in an incremen-
tal pipeline. This is done without any preprocessing of the graph
data or adjustment of the GCN model structure. Experimental re-
sults show that I-GCN can significantly reduce off-chip accesses
and prune 38% of aggregation operations, leading to performance
speedups over CPUs, GPUs, the prior art GCN accelerators of 5549×,
403×, and 5.7× on average, respectively.

CCS CONCEPTS
• Computer systems organization → Neural networks; Par-
allel architectures; • Computing methodologies → Parallel
algorithms.
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1 INTRODUCTION
Conventional deep learning paradigms such as Convolution Neural
Networks (CNNs) [26] and Recurrent Neural Networks (RNNs)
[33] have been demonstrated to be quite efficient, but primarily
for applications using Euclidean data [15, 16, 42, 44]. Many other
applications, however, require that the relationships between data
points be conserved and must therefore use non-Euclidean data
structures such as graphs [10, 32, 36, 46, 49, 56]. To fill this need,
Graph Neural Networks (GNN) have been proposed [6, 11, 25, 50].

Graph Convolutional Networks (GCNs) are a type of GNN that
has drawn tremendous attention in the past three years due to their
unique ability to extract latent information from graph data. Practi-
cal applications of GCNs include prediction of cascading power-grid
failure [32], E-commerce [49], and etc [10, 36]. The deployment
of GCNs in these applications typically poses strict constraints on
latency and throughput.

To satisfy the increasingly stringent performance requirements,
designing high-performance hardware accelerators for GCNs be-
comes necessary and urgent [14, 48]. Real world graphs tend to
have large size, high sparsity, and extremely unbalanced non-zero
distributions; therefore, the direct application of existing methods,
such as Sparse CNNs (SCNNs) [19, 23, 52], has been reported to be
insufficient [2, 17, 27, 45].

We briefly discuss the performance challenges of the two major
graph aggregation methods used in GCN acceleration:

(1) In PULL-based aggregation nodes are evaluated sequentially,
but for each node: the neighbor features are gathered (i.e., pulled)
simultaneously for aggregation. The advantage of the pull method
is that since nodes are processed in order, a small buffer is sufficient
to accommodate the aggregation results. In other words, it shows
good reuse for the result matrix. The major problem, however, is
the poor data locality for accessing the feature matrix. Given that the
adjacency matrix of real-world graphs is typically very sparse and
imbalanced, parallel fetches of the corresponding neighbor features
can be random and non-coalesced. Since the feature matrix can be
too large to fit into on-chip memory, repeated irregular off-chip data
accesses for the feature matrix are required; this process is bounded
by off-chip bandwidth. HyGCN [48] uses the PULL approach. Al-
though run-time data-aware sparsity-elimination hardware is used

https://doi.org/10.1145/3466752.3480113
https://doi.org/10.1145/3466752.3480113


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tong Geng, et al.

Figure 1: Workflow of I-GCN.

to reduce off-chip data accesses, the feature matrix still needs to
be accessed many times. An HBM is required to avoid hardware
starvation.

(2) In PUSH-based aggregation nodes are evaluated in parallel,
but the feature data of the nodes are distributed sequentially (i.e.
pushed) to their neighbors for aggregation. This avoids the irreg-
ularity in accessing the feature matrix, but essentially shifts the
burden to the result matrix. Given that aggregation for a node is
processed sequentially, a large buffer is required to hold the par-
tial results. If there are too many nodes, the partial result buffer
cannot fit into on-chip memory, leading to frequent off-chip access
and bandwidth saturation. With varying numbers of neighbors,
accesses to off-chip memory can be irregular and random, which
can further cause workload imbalance. AWB-GCN [14] practices
the PUSH approach. Although a run-time workload autotuning
architecture is used to tackle the workload imbalance problem, it
assumes sufficient on-chip storage and off-chip bandwidth for ac-
cessing the partial result buffer, which is not necessarily the case
for large graphs.

Clearly, the key problem is the irregularity (i.e., distribution of
non-zeros) of the adjacency matrix, which leads to poor data reuse
in accessing either the feature matrix or the result matrix. A recent
trend therefore is to rely on offline preprocessing to restructure
the adjacency matrix to improve data locality, e.g. in Rubik [8]
and GraphACT [51]. The implicit assumption is that the graph
structure (i.e., the adjacency matrix) is fixed upon inference so that
the large overhead of graph restructuring can be omitted in the
critical path. However, this is not always the case, as real-world
graphs are frequently updated (e.g., evolving graphs) or generated
dynamically (e.g., inductive graphs). The high restructuring over-
head, e.g., seconds in Rubik and GraphACT, is not tolerable when
processed online. Besides, although both Rubik and GraphACT al-
low for the possibility of computation reuse for shared neighbors
during aggregation, their complex software-based reordering al-
gorithms introduce significant delay and are only feasible when
processed offline.

In this paper, we propose a novel hardware accelerator, called
I-GCN, which implements a new online graph restructuring algo-
rithm – islandization – that can significantly improve data locality
and reduce redundant computation for GCN inference acceleration.
Specifically, I-GCN’s Island Locator module, at runtime, is able to
detect the hub nodes (i.e. nodes with high degree), mask them and

their edges from the graph, and then iteratively find islands from
the remaining nodes. Islands are groups of nodes with strong in-
ternal, but no external, connections other than with hubs. Note
that islands often (but not always) have practical semantics: in a
social network they might correspond to people working in the
same institute; in a citation network they might correspond to pa-
pers published in the same conference series. Determining islands
is non-obvious, especially in typical (huge and sparse) adjacency
matrices.

Figure 1 gives an overview of I-GCN. (i) Island Locator: after
identifying the islands, the non-zeros of the adjacency matrix be-
come highly clustered – the none-zeros of hubs and islands form
the L-shapes and the anti-diagonal respectively. (ii) Island Con-
sumer: using the hub and island information, the Island Consumer
performs aggregation and combination in a fine-grained pipelined
manner. Redundant aggregation is skipped. This process contin-
ues until all nodes are determined to be either hubs or islands.
The benefits of islandization are two-fold: (1) Improving on-chip
data locality. Through clustering, accesses to the feature and result
matrices can be constrained within a much smaller working-set
(i.e., each L-shape and island in Figure 1). This greatly improves
on-chip data reuse and avoids a tremendous number of off-chip ac-
cesses. (2) Reducing redundant computation. After clustering, nodes
within a cluster tend to share a large portion of common neighbors.
During GCN aggregation, rather than repeatedly counting each
neighbor, aggregated information about the common neighbors as
a whole can be distributed and reused, avoiding repeated aggre-
gation calculation for common neighbors. This neighbor-sharing
information is mostly ambiguous in the raw adjacency matrix, but
becomes obvious after islandization (see node 1∼4 in Figure 1). In
summary, islandization resolves the locality issues in both Pull and
Push approaches.

This is the first work, to the best of our knowledge, that tackles
the fundamental data locality problem of GCN acceleration and effi-
ciently skips redundant aggregation through online hardware-based
graph restructuring. This paper makes the following contributions:

• We propose a novel islandization algorithm for efficient run-
time parallel graph restructuring, which can significantly
improve on-chip data locality.

• We design a new hardware accelerator architecture called I-
GCN that effectively implements the islandization algorithm,
harvesting the data locality exposed through islandization
and avoiding redundant aggregation among shared neigh-
bors.

• Experimental results show that I-GCN can significantly re-
duce off-chip accesses and prune 38% of aggregation opera-
tions, leading to performance speedups over PyG- & DGL-
based CPUs, PyG- & DGL-based GPUs, and prior art GCN
accelerators of 9568× & 1243×, 368× & 453×, and 5.7×, re-
spectively.

2 BACKGROUND AND MOTIVATION
We first introduce GCN algorithms and then elaborate the existing
GCN processing methodologies and their challenges.
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Figure 2: PULL-based (Row-wise & Inner-Product) and PUSH-based (Column-wise & Outer-Product) methods.

2.1 Graph Convolutional Networks
GCNs are composed of stacked GraphCONV layers. The compu-
tation flow of each GraphCONV layer includes two phases: Ag-
gregation and Combination, as illustrated in Figure 2-(a). In the
aggregation phase, each node gathers and aggregates features of
its neighbor nodes to update the local feature-vector. In the com-
bination phase, the updated feature-vectors are further merged
to extract high-level abstraction through a local Multi-Layer Per-
ceptron (MLP) network. From the perspective of linear algebra,
the layer-wise forward propagation of GCN can be expressed as
Equation 1:

𝑋 (𝑙+1) = 𝜎 (𝐴̃𝑋 (𝑙)𝑊 (𝑙) ) (1)

where 𝐴̃ is the graph adjacency matrix. 𝑋 (𝑙) is the matrix of
input features in layer-𝑙 ;𝑊 𝑙 is the weight matrix of layer-𝑙 . 𝜎 (.)
denotes non-linear activation functions [26].

There are many modalities beneath the umbrella of GCNs, e.g.
GraphSage [7, 18] and Graph Isomorphism Network (GIN) [47].
As shown in [21], the forward propagation of most GCNs can be
abstracted and expressed as Equation 1.

2.2 Design Space Exploration
We first discuss the design choices related to execution order of the
two phases in GraphCONV. We then present the design choices
within each phase.

2.2.1 Execution Order of a GraphCONV Layer. There are two al-
ternative computation orders for a GraphCONV layer: aggregation
first ((𝐴𝑋 ) ×𝑊 ) and combination first (𝐴 × (𝑋𝑊 )). Existing work
[14, 30] has shown that the combination first approach can reuse the
same Sparse-dense Matrix Multiplication (SpMM) kernel for both
multiplications 𝑋𝑊 and 𝐴(𝑋𝑊 ) and incorporates less arithmetic
computation. I-GCN follows this combination first approach.

2.2.2 Aggregation Phase. We first discuss the design choices of the
aggregation phase, which is normally the performance bottleneck
of GCN processing. There are two typical methods of aggregation:
PULL and PUSH. For clarity, we compare them from a linear algebra
perspective as illustrated in Figure 2.We discuss the correspondence
between PULL/PUSH-based graph computation methods and four
SpMM approaches as summarized in [39]: inner-product, outer-
product, row-wise, and col-wise.

PULL-based methods aggregate nodes sequentially. For each
particular node, the feature vectors of all its neighbors are gathered
and aggregated in two ways: (1) PULL-Inner-Product: features from
different channels are calculated sequentially, analogous to the
inner-product approach of SpMM. (2) PULL-Row-Wise: features
from all channels are calculated in parallel, similar to the row-wise-
product approach of SpMM. As shown in Figure 2-(b), PULL-based
methods always process non-zeros of matrix A and produce the
aggregation result matrix𝑋𝑜 by rows (outer loop). To calculate each
row of 𝑋𝑜 (inner loop), PULL-Row-Wise (Figure 2-(b1)) fetches the
entire feature vectors (i.e. entire rows of 𝑋𝑊 ) of required nodes
and performs vector accumulation sequentially; in contrast, PULL-
Inner-Product fetches features by channel (i.e. column of 𝑋𝑊 ) and
computes the output features in 𝑋𝑜 sequentially (Figure 2-(b2)).

PULL-based methods have their advantages and disadvantages.
On the plus side, they reuse matrix A and only require relatively
small on-chip buffers to conserve the partial aggregation results
(since they are produced row by row). However, they both suffer
from poor data reuse of matrix 𝑋𝑊 . Due to the scattered and irreg-
ular distribution of non-zeros in matrix A, the rows to be accessed
in XW can be random. Given that the height of XW equals the
number of nodes in the graph, which can be very large, XW (which
is dense) can rarely be stored on-chip, leading to frequent data
fetches and inferior performance. Ideally, if the non-zeros from the
same column of A can be clustered, they can reuse the same row of
XW, improving data locality.

PULL-Row-Wise is more popular than PULL-Inner-Product in
prior art mainly due to: (1) accessing the entire rows is more efficient
than randomly fetching elements from different columns in terms of
off-chip access; (2) as𝑋𝑊 is dense, the processing of a row in a fixed
size can be parallelized without introducing workload imbalance.

PUSH-based aggregation, in contrast, calculates the aggregated
features of all nodes simultaneously by broadcasting features of
each node to all its neighbors one after another. Once a node re-
ceives the features from its neighbors, it updates its local feature
vector. There are two ways of feature broadcasting: PUSH-Column-
Wise and PUSH-Outer-Product. With PUSH-Column-Wise, the in-
put features are broadcast by channel; the output features are calcu-
lated by channel. As shown in Figure 2-(c1), at iteration 𝑘 of outer
loop, each node only pushes its features at channel k (i.e. column
k of XW) to the neighbors. Once all nodes have broadcast their
features at channel k to the neighbors (inner loop), every node
has the complete aggregated features at channel k (i.e. column k
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On-chip
Storage

Off-chip
Access

Reuse
𝑋𝑊

Reuse
𝐴

Reuse
𝑋𝑜

Load
Imbalance

Redundancy
Removal

PULL Low High Low High High No Hard
PUSH High High High Low Low Yes Hard

Islandization Low Low High High High No Easy

Table 1: Comparison of PULL, PUSH, Island methods.

of 𝑋𝑜 ). In contrast, PUSH-Outer-Product (Figure 2-(c2)) method
processes all channels at the same time. The entire input feature
vector of each node is broadcast to all its neighbors in parallel. Once
done, the feature aggregation of the entire graph finishes. In the
matrix perspective, PUSH-Outer-Product processes the non-zeros
of matrix A by column, accesses the features of XW by row, and
updates the corresponding partial results of 𝑋𝑜 with respect to the
row IDs of non-zeros in matrix A.

The advantage of PUSH-based methods over PULL is that the
data of XW can be fully reused via feature broadcasting. However,
the accesses to 𝑋𝑜 then become scattered and random. Given the
height of𝑋𝑜 is equal to the number of nodes in the graph, which can
be large, even a single column of 𝑋𝑜 may not be able to be buffered
on-chip. Frequent accesses to 𝑋𝑜 thus render repeated data fetches
from off-chip DRAM. Ideally, if the non-zeros from the same row of
A can be clustered, they can reuse the same row of 𝑋𝑜 , improving
data locality and performance.

PUSH-Column-Wise method is more popular than PUSH-Outer-
Product in prior art because for graphs that a single column of
𝑋𝑜 can be put on-chip, PUSH-Column-Wise method can avoid the
repeated off-chip data accesses over 𝑋𝑜 . However, this does not
work for large graphs. Consequently, PUSH-Column-Wise does not
fundamentally handle the data locality issue. Additionally, it needs
to repeatedly access matrix A which also incurs additional off-chip
access.

Table 1 summarizes the advantages and disadvantages of both
approaches. The proposed islandization method is capable of over-
coming all the drawbacks by clustering the non-zeros at runtime
and provides nearly optimal data reuse in GCN inference. Further-
more, with islandization, the unnecessary aggregation for com-
monly shared neighbors can be identified much more easily for
effective pruning.

2.2.3 Combination Phase. As both combination and aggregation
are based on SpMM kernels, the combination phase shares similar
issues with aggregation phase. The only difference is that the weight
matrix W in combination is normally much smaller than the feature
matrix XW in aggregation, and can be more likely stored on-chip.
Therefore, the data locality issue of the PULL-based method is less
prominent than in aggregation. Consequently, I-GCN adopts the
PULL-based method for combination.

3 ALGORITHMS AND ARCHITECTURES
This section first presents the overall workflow and hardware ar-
chitecture of I-GCN. It then introduces the algorithms and the
corresponding architectures of two major components of I-GCN:
the Island Locator and the Island Consumer.

3.1 I-GCN Overview
3.1.1 I-GCN Workflow. Figure 3 illustrates how I-GCN improves
data locality through islandization: the clustering of graph nodes

Figure 3: Detailed I-GCN workflow and overview of I-GCN
architecture

into islands. Elements of an island tend to have strong internal con-
nections, and are connected to other islands through hubs – nodes
with high fan-in/out degrees, which act as the points of contact
for islands. Islandization is the process of finding these structures
hidden in the original graph. At high level, I-GCN processing begins
by locating these islands, after which it processes the graph at the
granularity of hubs and islands rather than nodes, thus being able
to improve locality and reduce redundant computation.

I-GCN creates the islands gradually by round. Figure 3 shows
the process using the CORA dataset. The scattered non-zeros be-
longing to the same island are clustered around the diagonal. The
islands (including the hubs and nodes) are discovered in parallel by
a hardware module called the Island Locator. In each round, the
Island Locator uses different thresholds to recognize hubs and then
shapes the island by scanning the hubs’ neighbor nodes. As shown
in Figure 3, the processing moves from the bottom-left corner of the
adjacency matrix to the upper-right corner, along the anti-diagonal.
In each round a portion of the non-zeros are gathered into an
L-shape cluster (except the non-zeros around the anti-diagonal),
leaving the remaining non-zeros untouched. With new hubs lo-
cated at each round, new L-shape clusters are formed. This process
continues until all non-zeros are clustered either into L-shaped
islands or around the anti-diagonal (see Round N in Figure 3).

In parallel, whenever an island is formed its adjacency informa-
tion is forwarded to the second module called Island Consumer.
Island Consumer then processes the island as a small but dense
sub-graph, fetches its node features, and performs the required
combination and aggregation of the GCN. Note that although the
Island Locator forms the islands gradually by round, and requires
per round synchronization, the Processing Elements in the Island
Consumer can process an island as soon as it is formed without
synchronization at the completion of each round: it does not need
to wait until all the islands in an islandization round are formulated.
I-GCN overlaps graph restructuring and graph processing.

As shown in Figure 3, each node in an island, labeled as an
island node, only connects to the nodes of the same island and
the hub nodes connected to the island. This ensures that the space
between the L-shapes is purely blank. Therefore, when processing a
GraphCONV layer, the adjacency and feature data of an island node
are only needed when the island is being processed. Consequently,
they only need to be fetched from off-chip once. The hubs do have
the chance of being used multiple times during the processing of
different islands and inter-hub connections. However, since hubs
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are normally a small fraction of the entire graph, their associated
data will likely be stored on-chip and sufficiently reused. Even if
the hubs’ associated data is too large to fit in the on-chip memory,
our method still reduces off-chip data movement.

In summary, for GNN processing of real-world graphs with com-
ponent structures using I-GCN, most data are fetched only once,
except the adjacency data of some island nodes which may need to
be accessed multiple times during the multi-round island locating.
We evaluate this in Section 4.2. Note that component structures are
commonly observed in real-world graphs.

Another benefit of islandization is that it assembles the redun-
dant aggregation among shared neighbors in the processing of each
island. These redundant operations, originally hidden in the large
graph, are illuminated after islandization.

As shown in Figure 3, islands are formed by nodes with intensive
internal links, most of which are among shared neighbors. During
the processing of the small and dense islands, it becomes easy
to recognize these repeated computations and skip them. As an
example, Figure 3(A) shows the sub-graph structure of the sixth
island found in the first round. The bitmap at the lower-left corner is
the purple block in the Round 1 adjacency matrix enlarged. The two
hub vectors are from the L-shape, while the 7 × 7 matrix includes
the adjacency data of the island node. During the evaluation of
the island, Island Consumer will find the redundant aggregation
operations for the shared neighbors and skip them. The redundancy
removal methodology is discussed in detail in Section 3.3.

3.1.2 I-GCN Overall Architecture. The overall architecture of I-
GCN, including Island Locator and Island Consumer, is shown in
Figure 3(B). The HUB Locator in the Island Detector is responsible
for recognizing hubs. The hubs found are forwarded to TP-BFS
Task Generator. TP-BFS is short for Threshold-based and Paral-
lel Breadth-First Search. Task Generator will generate and assign
BFS tasks for islandization. These tasks are conducted by TP-BFS
Engines. Once TP-BFS locates an island, the related adjacency and
node ID information are forwarded to Island Collector in Island
Consumer. Island Collector distributes the island information to an
idle PE for performing its combination and aggregation jobs. Fur-
thermore, Island Collector also generates and distributes new tasks
which include inter-hub connections based on the hub information
collected by TP-BFS engines at each round. Detailed architectures
are presented next.

3.2 Island Locator
We first introduce the algorithm used in the Island Locator and then
present its architectural support. For clarity we use a homemade
graph (Figure 4) to illustrate the process.

3.2.1 Algorithm. Algorithm 1 describes the simplified workflow of
the Island Locator; a toy example can be found in Figure 4. Overall
the purpose of the algorithm is to locate the hubs and use their
neighbors as starting points to search for islands (with the TP-BFS
algorithm). To boost parallelism, the algorithm comprises three
concurrent asynchronous tasks: hub detection (line 6), BFS task
generation (line 7), and TP-BFS execution (line 8). Hub detection
and TP-BFS are additionally performed in parallel across the 𝑃1
and 𝑃2 parallel for loops in algorithm 2 (line4) and 4 (line5). As

Algorithm 1 Island Locator Algorithm; Th1, Th2, and Th3 are
executed concurrently and asynchronously.
1: Inputs: 𝑁 : Node list of the input graph; (𝑃1, 𝑃2) : parallel factors

for hub detection and island searching;𝑇𝐻𝑜 : initial threshold for hub
nodes;𝑐𝑚𝑎𝑥 : themax number threshold of the searched nodes; Decay():
hub threshold decay function

2: Outputs: 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠 : list of islands’ nodes and hubs info
3: 𝑇𝐻𝑡𝑚𝑝 = 𝑇𝐻𝑜 ; 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠 = {}
4: while |𝑁 | > 0 do
5: 𝑡𝑎𝑠𝑘 = {}; ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 = {}

# pop hub nodes from graph 𝑁 to ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟

6: Th1: detect_hub(𝑁 , 𝑃1,𝑇𝐻𝑡𝑒𝑚𝑝 , ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 )
# pop neighbors of nodes in ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 to 𝑡𝑎𝑠𝑘

7: Th2: task_assign(ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝑡𝑎𝑠𝑘)
# explore islands from nodes in 𝑡𝑎𝑠𝑘 using BFS

8: Th3: TP-BFS(𝑡𝑎𝑠𝑘 , 𝑃2,𝑇𝐻𝑡𝑒𝑚𝑝 , 𝑐𝑚𝑎𝑥 , 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠 )
9: [ Hold until parallel Th1/2/3 finish]
10: 𝑇𝐻𝑡𝑚𝑝 = Decay(𝑇𝐻𝑡𝑚𝑝 )
11: return 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠

Algorithm 2 detect_hub: sweep nodes and move nodes with
degrees larger than thresholds to container ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟
1: Inputs:𝑁 : input graph node list; 𝑃1: parallel factor;𝑇𝐻𝑡𝑚𝑝 : threshold

for hub nodes’ degree; ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 : container of the hub nodes
2: Outputs: None (modify ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 in place )
3: for 𝑏 = 0 to ⌈ |𝑁 |/𝑃1⌉ do
4: for 𝑝 = 0 to 𝑃1 in parallel do
5: Check node 𝑁 [𝑏 ∗ 𝑃1 + 𝑝 ] as 𝑛𝑜
6: if 𝑛𝑜 ∈ 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠 then
7: Pop 𝑛𝑜 from 𝑁

8: else if 𝑛𝑜 .𝑑𝑒𝑔𝑟𝑒𝑒 ≥ 𝑇𝐻𝑡𝑚𝑝 then
9: Pop 𝑛𝑜 from 𝑁 to ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟

Algorithm 3 task_assign: pop nodes from ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 and add
them and their neighbors to task queue
1: Inputs: ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 : container of the hub nodes; 𝑡𝑎𝑠𝑘 : container of

nodes to be chosen as potential starting points for BFS
2: Outputs: None (modify 𝑡𝑎𝑠𝑘 in place)
3: while |ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 | > 0 do
4: Pop a node from ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟
5: Append the popped hub node and each of its neighbors to 𝑡𝑎𝑠𝑘 , in

the form of tuples.

mentioned in Section 3.1, locating islands is performed by rounds,
which are iterations of line 4. 𝑇𝐻𝑡𝑚𝑝 represents the most current
hub detection threshold, which is modified at run-time. Note that
synchronization is required among the three tasks at the start of
each round (line 9). Specifically, the algorithm takes the input of
(1) node list 𝑁 ; (2) parallel factors 𝑃1 and 𝑃2, which define the
numbers of the parallel FIFOs and TP-BFS engines, respectively; (3)
the initial hub threshold 𝑇𝐻𝑜 , which marks the initial minimum
degree of the hub nodes; (4) the maximum number of nodes in
an island, 𝑐𝑚𝑎𝑥 ; and (5) Decay(), which defines the function to
decrease the hub detection threshold. The algorithm then outputs
the abstract container 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠 , which encapsulates all island-related
information. This includes island nodes’ indices and neighbors, the
connected hub nodes’ indices and neighbors, the number of all the
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islands and hub nodes, and etc. Note that this abstract container is
used just for clarity.

Island location starts with parallel hub detection. This is shown in
Algorithm 2, which uses a threshold-based method to find hubs by
rounds. If the degree of a node is above the current threshold𝑇𝐻𝑡𝑚𝑝 ,
the node is identified as a hub and inserted into a container(buffer)
ℎ𝑢𝑏_𝑏𝑢𝑓 𝑓 𝑒𝑟 .𝑇𝐻𝑡𝑚𝑝 is reduced each round (line 10 of Algorithm 1)
until all nodes are classified as island or hub nodes. To accelerate
parallel hub detection, in each round we remove the nodes already
classified as hub and island nodes in the previous round. At the end
of island location, the node list 𝑁 should be empty.

Hub detection is followed by BFS task generation (Algorithm 3).
Once a hub node is detected, the Island Locator finds its neighbors
by accessing its adjacency list and caches these neighbor nodes in
a task queue, 𝑡𝑎𝑠𝑘 . The Island Locator sends neighbor nodes to the
task queue, 𝑡𝑎𝑠𝑘 , and then to parallel BFS engines where the nodes
are used by TP-BFS as the starting points for forming islands. Here
we use neighbor nodes as the starting nodes (instead of hubs) in
order to extract higher parallelism from TP-BFS. This significantly
improves the scalability of the Island Locator.

Once the first task is generated and stored in the task queue,
TP-BFS starts (see Algorithm 4). The algorithm keeps track of the
number of nodes whose neighbors have been explored exhaustively
(𝑞𝑢𝑒𝑟𝑦) and the total number of visited nodes (𝑐𝑜𝑢𝑛𝑡 ). Once 𝑞𝑢𝑒𝑟𝑦
catches up with 𝑐𝑜𝑢𝑛𝑡 , an island is found with all the nodes and
their neighbors within the island completely explored and the island
information is returned. Multiple TP-BFS engines are able to work
in parallel on different neighbors of different hubs. Multiple 𝑣𝑙𝑜𝑐𝑎𝑙 s
are used to keep track of the nodes visited locally by each TP-BFS
engine while 𝑣𝑔𝑙𝑜𝑏𝑎𝑙 is used to keep track of the nodes visited by
any of the TP-BFS engines.

Each engine begins island searching by (a) recording the initial
node, 𝑎𝑜 , as the first visited node in a locally visited list, 𝑣𝑙𝑜𝑐𝑎𝑙 ; (b)
setting the 𝑞𝑢𝑒𝑟𝑦 pointer to zero indicating no node’s neighbors
have been fully explored; and (c) accessing the node’s neighbors.
Note that if an engine finds 𝑎𝑜 also a hub, it will drop the task and
forward this inter-hub connection information to Island Collector.

As the Island Locator overlaps hub detection and TP-BFS, the
TP-BFS engine does not know which nodes are the hubs and should
be masked from the graph. Therefore, when the neighbors of the
first node arrive, the engine checks whether it is a hub node (line 11
of Algorithm 4). In addition, the engine must also check whether it
has itself visited this node during the execution of the current task
(line 12 of Algorithm 4). When either happens, the engine needs
to skip the node and work on the next neighbor. Otherwise, the
engine would have appended the node to the local visited list and
increment the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 (line 16 of Algorithm 4).

To accelerate BFS and reduce off-chip accesses to adjacency
data, redundant search must be avoided. To achieve this, the Island
Locator keeps a record of the IDs of nodes visited by all TP-BFS
engines during a certain round in a global visit list, 𝑣𝑔𝑙𝑜𝑏𝑎𝑙 . When a
BFS engine reaches a node labeled as visited in the global, but not
in the local visited list, it knows that this region has been searched
previously by other engines. The BFS engine then drops this task
and waits for the next (line 20 of Algorithm 4 and Figure 5(A)).

As shown in the Algorithm 4 (line 14), the TP-BFS engine checks
that a node is not on the global visit list before adding it to the local

Algorithm 4 Simplified TP-BFS: fetch nodes from the task
queue and use them as starting points in island detection
1: Inputs: 𝑡𝑎𝑠𝑘 : container of nodes to be chosen as potential starting

points for BFS;𝑇𝐻 : threshold for hub nodes’ degree; 𝑐𝑚𝑎𝑥 : the max
number of node in an island; 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠 : list of islands’ nodes and hubs
info; 𝑃2: parallel factor

2: Outputs: None (modify 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠 in place)
3: 𝑣𝑔𝑙𝑜𝑏𝑎𝑙 = {}
4: while |𝑡𝑎𝑠𝑘 | > 0 do
5: for 𝑝 = 0 to 𝑃2 in parallel do {# distributed across 𝑃2 engines}
6: Pop {ℎ𝑢𝑏𝑜 ,𝑎𝑜 } from 𝑡𝑎𝑠𝑘 {# Pop the hub and one of its neighbors}
7: If 𝑎𝑜 is not a hub: 𝑣𝑙𝑜𝑐𝑎𝑙={𝑎𝑜 }; ℎ𝑙𝑜𝑐𝑎𝑙={ℎ𝑢𝑏𝑜 }; 𝑞𝑢𝑒𝑟𝑦=0;

𝑐𝑜𝑢𝑛𝑡=1;
8: while 𝑞𝑢𝑒𝑟𝑦 ≠ 𝑐𝑜𝑢𝑛𝑡 do {# if there exist unexplored nodes}
9: 𝑛𝑜𝑑𝑒𝑜 = 𝑣𝑙𝑜𝑐𝑎𝑙 [𝑞𝑢𝑒𝑟𝑦 ]
10: for 𝑛 ∈ 𝑛𝑜𝑑𝑒𝑜 .𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
11: if 𝑛.𝑑𝑒𝑔𝑟𝑒𝑒 < 𝑇𝐻 then {# hub node or not}
12: if 𝑛 ∈ 𝑣𝑙𝑜𝑐𝑎𝑙 then {# 𝑛 locally explored by engine p}
13: Skip neighbor 𝑛
14: else if 𝑛 ∉ 𝑣𝑔𝑙𝑜𝑏𝑎𝑙 then {# not explored by other engines}
15: 𝑐𝑜𝑢𝑛𝑡 + = 1
16: Append 𝑛 to 𝑣𝑙𝑜𝑐𝑎𝑙 and 𝑣𝑔𝑙𝑜𝑏𝑎𝑙

# if exceeding the max number of nodes in an island

17: if |𝑣𝑙𝑜𝑐𝑎𝑙 | > 𝑐𝑚𝑎𝑥 break while(line 8)
18: else {# already explored by other engines}
19: remove 𝑣𝑙𝑜𝑐𝑎𝑙 from 𝑣𝑔𝑙𝑜𝑏𝑎𝑙
20: break while(line 8)
21: else {# else it’s a hub node}
22: Add 𝑛 to ℎ𝑙𝑜𝑐𝑎𝑙
23: 𝑞𝑢𝑒𝑟𝑦 + = 1
24: Append (𝑣𝑙𝑜𝑐𝑎𝑙 , ℎ𝑙𝑜𝑐𝑎𝑙 ) to 𝑙𝑖𝑠𝑙𝑎𝑛𝑑𝑠

...

... ...
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Nodes with 
high degrees: hubs

Popped 

...

... ...
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Generated tasks:
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pairs
...
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Discovered
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Figure 4: Toy example of the island locator algorithm.

visited list and incrementing the visited node counter. If the counter
is over the threshold (expected maximum island size), the engine
drops the task and waits for a new one ((line 17) and Figure 5 (B)).

When all neighbors of the initial node have been scanned, the
engine checks whether the query pointer value equals the counter
value. This indicates that all nodes have been searched, that TP-
BFS is done without reaching the island size threshold, and that an
island is found. If this happens, the engine sends the connection
information of this island to the Island Consumer and requests a
new task from the Task Generator (see Figure 5 (C)). Otherwise,
it accesses the adjacency list of the node pointed to by the query
pointer and explores all its neighbors. This process continues until
one of the three task-break conditions is triggered.

3.2.2 Architecture. Figure 6 shows the architecture support of Is-
land Locator. The blue part in Algorithm 1 is realized as the Hub
Detector. The degree information of the nodes are distributively
stored in the Node Degree Buffers which are implemented with
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Figure 5: Task break conditions of TP-BFS engine.

loop-back FIFOs. The number of FIFOs determines the parallelism
of the hub detection (P1 in Algorithm 1). The Island Node Filters
(IFs) check whether the nodes popped out of the FIFOs are among
the island nodes in the previous round (line 6 in Algorithm 2) by
checking Island Node Table (PR-INT). If yes, these nodes are dis-
carded; if no, the comparators check whether the nodes are hubs
(line 8 in Algorithm 2). The nodes recognized as hubs are sent to a
hub buffer which is also implemented with multi-bank FIFOs; while
the remaining nodes are sent back to the Node Degree Buffers for
the next round detection.

The TP-BFS Task Generator realizes the Algorithm 3. At each
cycle, one hub node is popped out of the hub buffer and Task
Generator accesses its adjacency list from global memory. The node
IDs of the neighbors in the list received by Task Generator and the
IDs of their hubs form task tuples which are cached in TP-BFS Task
Queues. These tasks are further assigned to idle TP-BFS engines.

The simplified architecture of TP-BFS is shown in Figure 6(B).We
implement the orange block of Algorithm 1 as a three-stage Finite
State Machine (FSM). At Stage 0, TP-BFS is ideal and sends requests
of new tasks to the Task Generator. When the new task arrives,
TP-BFS engine moves to Stage 2 from Stage 0 with Query Pointer
pointing to row 0 of the Local Visited Table (LVT) and the Island
Node Counter as 1. In general, at Stage 2, the engine first checks
whether the query pointer value and the Island Node Counter are
the same. If yes, the engine finds an island, forwards the data stored
at the output terminal to the Island Consumer, and records island
nodes in CR-INT. Otherwise, the engine accesses the adjacency list
of the node pointed by the Query Pointer from global memory, adds
one to the Query Pointer, cache the connection information in the
island bitmap buffer at output terminal and then moves to Stage 1.
At Stage 1, the TP-BFS engine tries to find un-visited nodes from the
newly arrived adjacency data by scanning them each per cycle. If
the node being scanned is not a hub and also not visited, the Island
Node Counter increases by one. If the counter value overpasses
the maximum number of nodes for an island, the engine is reset to
Stage 0. Otherwise, the engine keeps scanning the list and at the
end moves to state 2.

3.3 Island Consumer
Island Consumer follows Island Locator and conducts the combina-
tion and aggregation of islands and their hubs. Before introducing
the algorithm and architecture adopted in Island Locator, we first
discuss where the redundant calculation of aggregation comes from.

As islands contain nodes with strong internal connections, it is
highly likely that multiple nodes have more than one shared neigh-
bors in which case the aggregation result of these shared neighbors
can be reused multiple times with one-time calculation. Figure 7
uses the graph structure and adjacency matrix of a typical island as
a motivational example. As mentioned in Section 3.1, the adjacency
matrix of an island includes all connections between island nodes

Figure 6: Simplified architecture of Island Locator.

and the hubs connected to them. During island processing, all these
connections are evaluated. The example graph has seven island
nodes from ‘a’ to ‘g’ and one hub ‘H’.

As shown in Figure 7(A1), nodes d,e,f, and g are the shared neigh-
bors of nodes b and c; as an undirected graph, nodes b and c are
also the shared neighbors of nodes d, e, f, and g. For the aggregation
of nodes b and c, the feature vectors of nodes d, e, f, and g need to
be accumulated twice; to process nodes d, e, g, and f, the feature
vectors of nodes b and c need to be accumulated four times. If the
feature vector length is L, these accumulations take 16 × 𝐿 opera-
tions. However, if we can pre-calculate the accumulation results
and reuse them, then only 10×𝐿 operations are needed. Figure 7(A2)
shows how the pre-calculated results are reused during aggregation.
We add two virtual nodes whose feature vectors are the accumu-
lation results d,e,f,g and c,b in the graph. We connect them to the
real nodes according to the accumulation requirements. During
the aggregation phase, the pre-aggregated feature vectors are for-
warded directly to the target nodes, so that the accumulation from
shared neighbors is only done once. Note that in the original graph
without island-based locality enhancement, these nodes are highly
scattered, as is the processing of their aggregation operations. It is
therefore prohibitive to find and prune these repeated operations
from shared neighbors at runtime. Through I-GCN, the nodes with
strong interconnects are all clustered, which makes redundancy
removal feasible.

3.3.1 Algorithm. Wefirst introduce the calculationmethodology of
the Island Consumer. Once the information of an island is forwarded
to the Island Consumer, it assigns that information to a PE which is
waiting for new calculation tasks. The information includes island
node IDs, hub node ID, the local adjacency bitmap, the round IDs,
and etc as shown in Figure 7. The PE performs first combination
and then aggregation reusing the same MAC units.

The PE starts the combination of all hub and island nodes by first
accessing their input feature vectors from global memory and then
conducting PULL-based combination. Different from conventional
combination, the Island Consumer conducts pre-aggregation at
the completion of the combination of every k node. Specifically,
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Figure 7: Redundancy removal of a typical island.

after the combination results of k nodes have been calculated, we
sum them up and use the results in aggregation and so skip the
redundant operations. k can be customized.

When the combination results of all nodes in an island and
their pre-aggregated results are ready, the PE starts aggregation by
scanning the local adjacency bitmap. Figure 7(B) shows how the
Island Consumer uses these results in aggregation with redundancy
removal. The scan starts from the top-left corner of the bitmap and
slides towards the bottom-right following the green trace. The size
of the scan window is 1 × 𝑘 where k is the number of nodes whose
feature vectors are pre-aggregated during the combination phase.
If the number of non-zeros covered by the sliding window is less
than 𝑘/2, it is more efficient to accumulate the feature vectors of
nodes that are connected (column id of non-zeros under the sliding
window) to the node being scanned (row id of the sliding window);
otherwise, it is more efficient to subtract the feature vectors of
nodes that are not connected (column id of zeros under the sliding
window) from the pre-aggregation results. The Island Consumer
can automatically pick the one that demands the fewest operations.

Figure 7(B) gives an example. For clarity, k is set to 2. The scan
starts once the combination of node-H and node-a finishes and
their results are accumulated in pre-aggregation. For each scan, if
both bits are non-zeros, i.e. the nodes under-scan are the common
neighbors of node-H and node-a, instead of redoing the accumula-
tion, Island Consumer will directly use the pre-aggregation result,
saving one vector addition operation. After the first two columns
are scanned, Island Consumer proceeds to columns b and c with
the combination and pre-aggregation results of node-b and node-c.
After the entire bitmap is scanned, both GraphCONV’s aggregation
and combination of the island have been completed.

3.3.2 Architecture. The architecture of the Island Consumer is il-
lustrated in Figure 8. The island information sent from the Island
Locator is received by the Island Collector and stored in the dis-
tributed memory of the Island Evaluation Task if the incoming
island is not redundant. The major information of each island task
includes: numbers of hubs and island nodes, hub node IDs, island
node IDs, adjacency bitmap, and the round ID. The arbiters in island
collector prefetch evaluation tasks every clock cycle and forward
them to the idle PEs. Once a PE receives an evaluation task, it
performs the aggregation and combination. At the end of evalua-
tion of each island, the PE produces complete output features of
all island nodes and partial results of the output features of hubs.
The complete final outputs of island nodes are stored back to the
global memory, while the incomplete results of hubs are sent to
the corresponding bank of a HUB Partial Result Cache through the
ring-based reduction network to update the corresponding partial
sums calculated previously. To obtain complete aggregation results

Figure 8: Simplified architecture of Island Consumer.

of hub nodes, it is necessary to evaluate not only the islands but
also the inter-hub connections, which are not included in islands.
To perform the aggregation of inter-hub connections, Island Col-
lector maintains an inter-hub edge map based on the information
provided by TP-BFS engines during island locating as mentioned
in Section 3.2.1, generates inter-hub aggregation tasks based on
the edge map, and inserts the tasks into the evaluation task queues.
More details about the creation of inter-hub edge map and the gen-
eration of inter-hub tasks are omitted due to the space limit. Once
all islands and inter-hub tasks are evaluated, the complete hubs’
results are obtained.

As shown in Figure 8, all PEs are connected in a ring network.
The partial results of hub nodes are distributively stored in the
multi-bank HUB Partial Result Cache (DHUB-PRC). Each bank of
DHUB-PRC is attached to one PE. Note that at the first appearance
of each hub, the Island Collector will map it to an unused row in a
certain bank. The bank ID and row address are attached to the hub
before its island evaluation task is assigned to a PE. This bank ID
and row address will be fixed and reused when this hub appears
again in the future islands. At the end of each island processing,
the PE will check the hubs’ bank IDs. If the bank ID matches its PE
ID, the partial results will be used to update the partial sum stored
locally, otherwise it will be forwarded to the corresponding banks
through the ring network.

To accelerate the partial sum update of hubs and reduce com-
munication, the ring network is equipped with the support of in-
network reduction. Particularly, the switch at each entry of the
ring network will check the hub IDs of the partial results sent from
local PE and from its left neighbor. If both are valid and the same,
they are reduced at the entry and the new result will be sent to the
right neighbor at the next cycle. This in-network reduction design
is widely used in smart-NIC architectures, so we do not elaborate
it due to page limit.
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Figure 9: Islandization effect on Cora, Citeseer, PubMed, and NELL. Space be-
tween L-shapes is totally blank.
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Figure 10: Pruning rates with redundancy re-
moval.

The simplified architecture of each PE is illustrated at the bottom
of Figure 8. The right part is the module for PULL-based combina-
tion. As mentioned in Section 3.3.1, this module accesses feature
data of island nodes based on their IDs from off-chip. These data
are accessed only once as all connections of these island nodes
will be processed during the execution of this island task. Weight
matrix is distributively stored on-chip in Weight Matrix Buffers
of PEs if possible. During calculation, non-zeros of the same node
will be sequentially broadcast to the same row of MAC units and
are multiplied with the corresponding row of weight matrix. The
partial combination results of the same row are locally accumulated.
Once a certain node is completely calculated, the row of MAC units
starts to work on the next node if applicable. If the node is a hub,
the resulting combined features will be stored in HUB Matrix XW
Cache for the reuse in future island and inter-hub tasks. Once the
combination of all nodes of are done, the right module of this PE
will be deactivated and the left one will be activated to start aggre-
gation. The left module is designed strictly based on the calculation
method introduced in Section 3.3.1. The purple blocks in the figure
are the scan windows. To avoid pipeline bubbles in the aggregation
module, the scans with all zeros need to be skipped. To achieve
this, we scan multiple rows in parallel at each cycle and only for-
ward the scans with non-zeros to FSMs, i.e. CASE and Scheduler
modules in the figure, which access the required pre-aggregation
and/or combination output results from the combination module
and assign the aggregation task to idle MAC units.

4 EVALUATION
4.1 Experiment Setup
We evaluate I-GCN’s latency, energy efficiency, off-chip bandwidth
requirement, and hardware resource utilization with a Stratix 10
SX FPGA. We evaluate I-GCN on three different models – GCN,
GraphSage, and GIN – using five datasets commonly used in GCN
acceleration research [14, 30, 48]. These include Cora (CR), Citeseer
(CS), Pubmed (PM), Nell (NE), and Reddit (RD). With respect to net-
work structures, existing systems use various configurations: GCNs
and GraphSage have two layers, while GIN has three layers. For
GCNs and GraphSage, EnGN and AWB-GCN use the configurations
reported in the original algorithm papers [25], while HyGCN uses
its own configuration of 128 hidden channels for all datasets. Here
we label GCN and GraphSage with original configurations, “GCN-
algo” and “GS-algo” and label the ones used in HyGCN, “GCN-Hy”
and “GS-Hy”. For GIN, HyGCN is the only work that uses it in
evaluation. We evaluate all these models and compare with the
corresponding existing work.

To better demonstrate the efficiency of the proposed on-the-
fly algorithm-architecture co-design for islandization, we compare
I-GCN with 6 existing lightweight graph reordering algorithms
(Section 4.5). These algorithms are realized on an Intel Xeon Gold
6226R CPU with 64 threads. For cross-platform comparison, we
compare I-GCN with prior art GCN accelerators (HyGCN [48],
AWB-GCN [14]), prior art SpMM accelerator (SIGMA [38]), NVIDIA
V100 GPU, RTX8000 GPU, Intel E5-2683-V3 CPU, and Intel E5-2680-
V3 CPU. The CPU and GPU results are based on PyTorch Geometric
(PyG) [13] and Deep Graph Library (DGL) [41].

ALM(s) Module Number Percentage

Island
Locator

TP-BFS Engines 197K 24%
Task Generator 21K 3%
Hub Detector 61K 7%

Island
Consumer

Island Processor 57K 7%
Island Collector 51K 6%
MAC Units 450K 53%

Overall 837K 100%

Table 2: Hardware Consumption of I-GCN.

4.2 Islandization Effect
We first evaluate the efficiency of the islandization algorithm. Fig-
ure 9 shows the effect and versatility of the proposed islandization
on the adjacency matrices of real-world graphs with various sta-
tistics including size, sparsity and non-zero distribution. Among
them, NELL is believed to be the most difficult to process due to
its extremely high sparsity and imbalanced distribution[14]. As
shown in Figure 9, for all these datasets, our islandization method
is able to optimally cluster all non-zeros to the anti-diagonals and
L-shaped clusters within several rounds. The islandization effect
on NELL looks even more significant than the other datasets, since
its adjacency matrix is the sparsest. To summarize, the proposed
islandization algorithm is shown to be effective for graphs under
various statistics.

4.3 Island-based Redundancy Removal
Here we evaluate the effects of shared-neighbor-aware redundancy
removal in the Island Consumer. Figure 10 shows the operation
pruning rates during aggregation phase. The Island-based Aggre-
gator is able to skip over 38% of aggregation operations. These
operations are all redundant and are for the aggregation among
shared neighbors. The removal of these operations is lossless. Note
that in combination-first calculation, aggregation phase takes 23%
operations on average. Therefore, 9% of operations of the entire
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Figure 11: Latency of I-GCN vs AWB-GCN + light weight re-
ordering algorithms.

processing can be eliminated without accuracy loss. Meanwhile,
the theoretical latency is lowered by 9%.

4.4 Hardware Consumption and Scalability
Table 2 lists the hardware resource usages of the I-GCN with 4K
MAC units and 64 TP-BFS Engines. In order to show comparable
breakdowns with ASIC implementation, we normalize the usage
of LUTs and Flip-Flops to the number of Adaptive Logic Modules
(ALMs) which is the basic component in Intel FPGAs. The Island
Locator only accounts for 34% of the entire accelerator. The 4K
Floating-Point MAC units account for another 53%. Note that in
practical FPGA implementations, the MAC units are normally in-
stantiated with DSP slices. Here we normalize the usage of DSP
slides to ALMs for a clearer area breakdown.

4.5 Comparison with Lightweight Reordering
To evaluate the benefits of I-GCN over lightweight graph reordering
algorithms, we compare I-GCN with 6 baselines. These baselines
use 6 traditional lightweight graph reordering algorithms [3, 5,
12, 53] for graph preprocessing to enhance locality and then use
AWB-GCN [14], which is a prior art GNN accelerator, to process
the reordered graphs. We use these open-source graph ordering
codes[12] and run them using a high-end Intel Xeon Gold 6226R
CPU with 64 threads enabled. There are two findings. First, I-GCN
is much faster than the lightweight graph reordering approaches.
As shown in Figure 11, the reordering latency alone is already
higher than the entire I-GCN end-to-end inference latency (more
than 100× for Cora, Citeseer, and Pubmed). And second, I-GCN
generates better non-zero clustering. As shown in Figure 12, I-
GCN’s islandization process is able to push all the non-zeros into
the L-shaped regions and the anti-diagonal, leaving the remaining
area empty. In contrast, the graph reordering methods leave many
outlying non-zeros, which introduces significant overhead for their
special handling.

4.6 Cross-platform Comparison
4.6.1 Off-chip Bandwidth Requirement. Figure 13(A) compares the
normalized numbers of off-chip data accesses of I-GCN with AWB-
GCN, HyGCN, and PyG-CPU (Intel Xeon E5-2680-V3) using both
GCN-Algo and GCN-Hy. Note that we count the numbers of off-
chip accesses assuming that the adjacency matrix and input feature
matrix are all stored off-chip at the start of processing. In practice,
in the case that the on-chip memory is not fully occupied, these
matrices can be partially or even completely stored on-chip to
reduce the off-chip bandwidth requirements.

4.6.2 Latency. Figure 13(B) compares the end-to-end inference la-
tency of I-GCN with SOTA GNN accelerators (AWB-GCN, HyGCN),

Figure 12: Comparison of non-zero clustering effects

SOTA SpMM accelerator (SIGMA), PyG-based CPU and GPU, and
DGL-based CPU and GPUs. Results show I-GCN provides speedups
of 9568× over PyG-based E5-2680-v3 CPU, 1243× over DGL-based
E5-2683-v3 CPU, on average 368× over PyG-based GPUs (RTX8000
and V100), 453× over DGL-based V100, 16× over SIGMA, and on av-
erage 5.7× over GNN accelerators (HyGCN and AWB-GCN). Table 3
lists the absolute results of I-GCN and AWB-GCN. The speedups of
I-GCN over AWB-GCN on Reddit is lower than other datasets, as
Reddit graph has less significant component structures.

Fairness of evaluation: HyGCN is an ASIC design which uses
4608 fixed-point MAC units running at 1GHz; AWB-GCN is an
FPGA design which uses 4096 floating-point MAC units (running
at 330MHz). To provide a fair comparison, the I-GCNs used for
evaluation are also equipped with 4096 floating-point MAC units
running at 330MHz and consume less ALM resources of the same
FPGA used by AWB-GCN.

5 RELATEDWORK
Researchers have designed dedicated hardware architecture to ac-
celerate GCNs [1, 4, 8, 14, 24, 29, 30, 48, 51, 55]. In [4], Auten et
al., present the first GNN hardware accelerator. By designing four
specialized modules – for graph traversals, dense matrix opera-
tions, data scheduling, and graph aggregations, respectively – the
proposed accelerator provides high performance in tackling irregu-
lar data movement and intensive computation for GNN inference.
HyGCN [48] is another of the earliest GNN accelerators. With the
observation that GCNs are composed of two phases with different
computation patterns, HyGCN introduces a hybrid architecture
with dedicated modules for aggregation and combination, respec-
tively. AWB-GCN [14] is another early study of GCN acceleration.
It observes that the power-law distribution of the non-zeros in the
adjacency matrix results in workload imbalance issues. To solve
this problem, the authors propose a workload autotuning technique.
EnGN [30] uses an unified architecture to accelerate GNNs and
adopts a ring-based network to perform aggregation. The results
produced by PEs are sent to the network where they are aggre-
gated. Researchers have also designed hardware for training. Rubik
[8] proposes an offline graph reordering method to improve data
locality. GraphACT [51] uses heterogeneous platforms with CPUs
and FPGAs and uses pre-processing to find and skip redundant op-
erations among two-node shared neighbors. G-CoS[55] is the first
GNN co-search framework for network structure and accelerator
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I-GCN AWB-GCN
Device: Intel Stratix 10 SX; Frequency: 330MHz; Num of MACs: 4096

Cora Citeseer Pubmed Nell Reddit Cora Citeseer Pubmed Nell Reddit
GCN_algo Latency 1.3 1.9 15.1 5.8E2 3.0E4 Latency 2.3 4.0 30 1.6E3 3.2E4

EE 7.1E6 3.7E6 5.3E5 1.3E4 3.5E2 EE 3.1E6 1.9E6 2.5E5 4.1E3 2.1E2
GCN_Hy Latency 8.2 12.9 1.1E2 1.1E3 4.6E4 Latency 17 29 2.3E2 3.3E3 5.0E4

EE 9.6E5 6.0E5 8.1E4 7.5E3 2.2E2 EE 4.4E5 2.7E5 3.2E4 2.3E3 1.5E2

Table 3: I-GCN’s absolute results of Latency in 𝜇𝑠 and Energy Efficiency (EE) in Graph/kJ.

Figure 13: Cross-platform comparison of (A) Normalized off-chip data access and (B) Speedup (end-to-end latency).

architecture. G-CoS can automatically search for the matched GNN
structures and accelerators to maximize both task accuracy and
acceleration efficiency.

In differentiation from all prior work, the proposed I-GCN is de-
signed to solve the data locality problem fundamentally. As I-GCN
reorders graphs using hardware-only solutions, it is compatible
with both static and dynamic graphs and both inductive and trans-
ductive GNN models. Furthermore, I-GCN finds and skips redun-
dant operations among arbitrary numbers of shared neighbors at
runtime.

In graph processing, various reordering algorithms [3, 5, 9, 12, 22,
28, 43, 53, 54] have been proposed for enhancing data locality. The
evaluations of six traditional lightweight graph reordering algo-
rithms [3, 5, 12, 53] in Section 4.5 demonstrates the high overheads
of graph reordering, even for the lightweight ones, which is prohib-
itive for many real-time GNN inference tasks. There are also many
other sophisticated graph reordering algorithms. SlashBurn [31] is
one of them. Similarly to the proposed islandization algorithm, it
finds components from high-degree nodes. SlashBurn is able to clus-
ter non-zeros even better than islandization. However, it requires
expensive and frequent node degree sorting, graph reconstruction,
component size sorting, and node degree updating. Furthermore,
SlashBurn is not designed to be parallelized. These make SlashBurn
hardware-unfriendly and unsuited for GNN acceleration which
normally poses strict constraints on latency.

Other architectural and software optimizations have been pro-
posed that improve graph processing efficiency through cache-
guided scheduling [34, 35]. Among them, HATS [34] appears to be
the first hardware work that leverages the community structure of
graphs without preprocessing. The main goal of HATS, which is
tightly integrated with hierarchical cache systems, is to enhance
the efficiency of the cache hierarchy for graph processing. In con-
trast, the islandization in our loosely-coupled I-GCN accelerator
aims at clustering non-zeros through community identification for
the purpose of extremely fast GNN inference (𝜇s-level). Also, I-
GCN and HATS define components in different ways. HATS detects

very coarse-grained and large components by Bounded Depth-First
Scheduling (BDFS), while I-GCN locates smaller and more fine-
grained components through hub nodes.

Another related topic is hardware acceleration for SpMM [20, 37–
40]. Prior art systems includeMatRaptor [39], Extensor [20], SIGMA
[38], and Tensaurus [40]. Although the major kernel of GNN pro-
cessing is SpMM (see Equation 1), a high-performance GNN accel-
erator should be able to fully leverage unique graph features. For
example, real-world graphs are extremely sparse, contain commu-
nities, and follow the power-law distribution. I-GCN, as a graph-
specific architecture, can effectively detect communities from real-
world large graphs, and process them more efficiently by avoiding
repeated computation for common neighbors. In contrast, SpMM
accelerators need to handle all different kinds of sparse matrices.
They may behave better for general sparse matrices, but not in
those likely to be processed by GCNs.

6 CONCLUSION
This paper proposes a novel hardware accelerator for GCN infer-
ence, I-GCN, which significantly improves data locality and reduces
unnecessary computation through a new hardware runtime algo-
rithm — islandization. Islandization finds clusters of nodes with
strong internal but weak external connections which yields two
major benefits: (1) by processing islands, data can be better reused
on-chip which significantly relieves the off-chip bandwidth pres-
sure; (2) there is less redundant computation as aggregation for
shared neighbors in an island can be reused. Experimental results
show that I-GCN provides speedups over CPUs, GPUs, prior art
GCN accelerators of 5549×, 403×, and 5.7×, respectively.
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