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Abstract—Recent efforts in the design of intelligent controllers
for configuring robotic prostheses have demonstrated new possi-
bilities in improvingmobility and restoring locomotion for individ-
uals with lower-limb disabilities. In these efforts, personalizing the
controller of the robotic device is a crucial step in order to meet
individual user’s needs and physical conditions. Reinforcement
learning (RL) based control designs are among some of the most
promising approaches to achieving real-time, optimal adaptive
tuning capability. However, such designs to date rely on subjec-
tively determining human-robot walking performance measures,
commonly in a quadratic form. To further automate the RL design
for robotic knee control parameter tuning and potentially improve
human-robot locomotion performance, this study introduces a new
bilevel optimization method to objectively specify such control
design performance measures via inverse reinforcement learning
(IRL), which in turn, will be used in low level (forward) RL design
of the impedance control parameters.Wedemonstrate the effective-
ness of the bilevel optimization approach with improved human-
robot walking performance using systematic OpenSim simulation
studies.

Index Terms—Reinforcement learning, learning from demons-
tration, wearable robotics, compliance and impedance control.

I. INTRODUCTION

N EW technologies for wearable robotic devices have shown
great potential for improving mobility and restoring natu-

ral locomotion in individuals with lower limb disabilities [1],
[2]. The mechanics (kinetics, kinematics, or impedance) of
lower limb joints in these devices usually require modulation by
intelligent controllers, tailored to each phase in a gait cycle [3],
[4]. However, it has been challenging to design such intelligent
controllers in order to meet individual’s needs and physical
conditions [5], [6].
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Some notable progress has been made in recent years towards
automating the process of wearable robot personalization. One
of the ideas is to estimate the impedance control parameters
through model-based methods, such as using a musculoskeletal
model [7] or a dynamic model [8]. Another approach is to treat
wearable robot personalization as a heuristic human-in-the-loop
optimization problem. Several research groups proposed search-
based methods to iteratively seek an extremum on the system
response surface during walking [9], [10]. This kind of method
showed great potential to determine optimal control parameters,
such as assistive force, offset timing, or actuation gain. Still, its
adaptability and generalizability to changing conditions (e.g.,
weight change or walking condition change) needs further in-
vestigation. Another prevailing solution for robot personaliza-
tion is data-driven reinforcement learning (RL)-based optimal
adaptive control. Such methods are principally scalable and
generalizable. They learn directly from data in flexible ways
while interacting with the environment [11]–[15].
Central to all these optimization methods is to formulate an

appropriate cost function as a representation of human-robot
system performance [16]. Also in reinforcement learning, a field
strongly connected with optimal adaptive control, it is widely
recognized that the cost function provides succinct, robust, and
transferable definition of a task, and directly influences the
corresponding optimal control law as well as the behaviour
of the system [17]. For the problem of wearable robots with
human-in-the-loop, controller synthesis often has to answer the
following, sometimes related, questions in the design process.
First, how to appropriately determine a specific cost function
that leads to satisfactory performance in the problem domain?
Second, for a complex problem involving multiple performance
aspects and the system subject to uncertainty, how to specify a
cost function that accounts for multi-attributes of the problem?
Furthermore, even when the goal, as reflected by the terms
of different performance considerations in a cost function, is
relatively clear, how to determine a proper trade-off among those
performance aspects? Answering these questions still largely
relies on trial-and-error and is usually done by guessing based
on knowledge of the domain problem.
Take the robotic knee control problem in our previous works

as an example. We formulated the robotic knee parameter
personalization as an RL process [12], [14]. To reproduce near-
normative joint kinematics, we decomposed a gait cycle into
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four phases for control purposes, and adopted peak angle and
gait duration timing as the two features reflected in the control
objective of each phase. Thus, eight weighting parameters are
to be determined in the cost function of a quadratic form. While
we successfully demonstratedRL-based controller for automatic
tuning of 12 impedance parameters of a robotic knee prosthe-
sis, we selected the eight cost weighting parameters through a
trial-and-error process, and settled for a cost function with fixed
and uniform weighting factors on the four sets of considered
features. In doing so, we simply made an assumption that the
weights of the angle error and timing error in the cost function
in all four gait phases are identical. In principle, however, this
is inconsistent with gait biomechanics. Identical cost functions
lead to the same control objectives of knee function across all
four gait phases, yet we know that requirements for timing and
magnitude of knee motion vary along a gait cycle. Considering
terminal stance tomid-swing phase, timing as well asmagnitude
of knee flexion are both critical to assure foot clearance off
the floor [18]. During the terminal swing phase, magnitude of
the knee is relatively important because a secure position of
knee extension is needed to prepare for weight acceptance [19].
Therefore, there is a clear need for automatically determining
such priorities reflected as weightings in the cost function of
each gait phase. It can be expected that such cost functions
would result in further improved prosthesis control to assist
gait.
Inferring an appropriate cost function from examples of de-

sired behaviour has been studied in control system theory and re-
cently inmachine learning. Such approachesmay be collectively
referred to as inverse reinforcement learning (IRL). A seminal
work reported in [17], [20] inferred a cost function represen-
tation based on measurements of controlled system trajectories
or system behaviour. Over the years, IRL has demonstrated its
potential in numerous simulated and real-world applications,
such as autonomous driving [21], computer graphics [22], and
human-robot interaction [23]. IRL therefore provides a feasible
approach to determining a cost function as an objective for a
controller to optimize. Specifically, it can be used to induce
desired behaviour by trading off between multiple confounding
performance factors. The potential of IRL for capturing and
quantifying a performance objective function in the human-
robot system during locomotion was demonstrated in our recent
work [24], where we designed an experimental validation pro-
cedure to show that IRL was capable of characterizing different
human-robot behaviours into mathematical cost functions.
In this work, we propose to develop a new method for robotic

knee prosthesis personalization facilitated by IRL.To investigate
its potential, and to characterize system response in a wide
variety of conditions without potential adverse consequences
on human participants and physical devices, we validated the
concept using systematic and extensive simulation studies as
the initial step. Specifically, we developed a bilevel optimization
approach where the low-level RL procedure determines the 12
impedance control parameters, while the high-level IRL pro-
cedure provides the RL procedure with four appropriate cost
functions in a quadratic form (for the respective four phases in
a gait cycle) with 8 corresponding weighting factors.

The main contributions of this study include the following. 1)
For the first time, we considered a robotic knee impedance con-
trol parameter tuning as a bilevel optimization problem, where
IRL is at the high level to provide a quantitative performance
objective needed at the low-level RL controller design. 2) We
developed an interleaving bilevel learning approach to the design
of the 8 weighting factors in the cost function and the design
of 12 impedance control parameters. 3) We demonstrated the
conceptualization of the new design approach in OpenSim and
showed the potential benefit of the IRL-facilitated impedance
tuning method. 4) We demonstrated the generalization potential
of the bilevel design approach through different walking tasks
(i.e., level-ground walking and up-ramp walking).

II. METHODS

This study advances our latest reinforcement learning control
tuning of robotic knee impedance parameters by employing a
more realistic performance objective to be identified by IRL.
Previously, we subjectively specified cost functions in the de-
sign of control tuning laws. While we demonstrated control
performances meeting target kinematic behaviour under those
specific cost measures [12], [14], we now hypothesize a control
design performance measure that can be determined objectively
to reflect human-robot locomotion characteristics is capable to
improve the overall walking performance. Therefore, in this
study, we aim at developing a generalizable approach to robotic
knee impedance control parameter tuning. Towards this goal,
we employ the well-established finite state machine impedance
control (FSM-IC) framework based on a bipedal walking model
in OpemSim [25]. We then discuss how IRL can effectively be
used as part of an interleaving process in the design of an RL
controller.

A. Finite State Machine Impedance Control of Robotic Knee

Humans reportedly control muscle activities to adjust joint
impedance in walking. Compliant behaviours of legs are funda-
mental to human locomotion [26], [27]. Based on foot–ground
interacting events and knee joint movements, a single gait cycle
can be decomposed into four consecutive phases: stance flexion
(STF), stance extension (STE), swing flexion (SWF) and swing
extension (SWE) [12]. We refer to them as Phase 1 through
Phase 4 in this report. The control of a robotic knee is built upon
FSM-IC to enable continuous walking.
For each of the four gait phases of an FSM (Fig. 1), three

impedance parameters are selected to generate a control torque
to enable knee motion,

I = [K,β, θe]
T , (1)

where K represents the stiffness, β represents the damping,
and θe is the equilibrium angle. The device-produced knee joint
torque τ used to control knee joint movement is then generated
according to the impedance control law

τ = K (θe − θ)− βΩ, (2)

where θ denotes knee joint angle and Ω represents knee angular
velocity. The RL controller adjusts the impedance parameters as
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Fig. 1. Schematic of the IRL facilitated impedance tuning for a robotic knee
prosthesis within the FSM-IC framework. Top panel: an intrinsic impedance
control torque τ is generated from knee kinematic measurements as well as the
impedance control parameter settings, which are subject to real-time tuning.
Lower left panel: the RL controller makes learning updates at each gait cycle.
Its inputs include knee kinematic features, and its outputs include adjustments
of the impedance settings. Each phase is associated with one direct heuristic
dynamic programming (dHDP) RL controller. Lower right panel: illustration
of near-normal knee kinematics (red) and observed knee kinematics (blue).
Their respective features in four gait phases are denoted as P̄ 1∼4 and D̄1∼4,
representing the angle and the duration of the respective phase. The phase indices
1 ∼ 4 respectively represent STF, STE, SWF, and SWE. The first phase is used
to illustrate how peak error feature ΔP and duration error feature ΔD are
formulated. At the end of each learning iteration, the IRL derived cost functions,
each has a quadratic form with a total of 8 weighting factors, are used in the RL
controller design to obtain the 12 FSM-IC parameters.

Fig. 2. Schematic of interleaved IRL and RL processes for impedance control
parameter tuning. RL impedance control parameter tuning relies on a set of
weights H(i) in the quadratic cost (refer to (6)) determined from the IRL
procedure. For the ith IRL iteration, the resulting RL control policy π(i) is

then used in generating a set of m state trajectories Sπ(i)

j , which will be used
in IRL to identify a new set of weights. The interleaving procedure repeats until
meeting convergence criteria.

actions, i.e.,

a = [ΔK,Δβ,Δθe]
T ∈ R3. (3)

The updated impedance parameters [K +ΔK, β +Δβ,
θe +Δθe]

T are then applied to FSM-IC to generate knee torque.

B. Robotic Knee Control Tuning for Human Bipedal Walking

Weconsider robotic knee control tuning a bilevel optimization
problem in this study. As shown in Fig. 2, the low level “RL

update” loop is within the high level cost function identification
loop. For an identified cost function, the RL update is inte-
grated into the FSM-IC framework where RL controllers update
their control policy based on measured human-robot system
movement (refer to section II-A and Fig. 1). Specifically, each
gait phase is associated with an independent RL tuning policy
running in parallel. In the following discussion, to avoid notation
complication and confusion, we do not specify gait phase in a
controller design, which is based on the same principle.
The goal of the automatic tuning approach is to regulate the

robotic knee joint tomeet a desired knee profile characterized by
four discrete target points (Fig. 1). The features of the target knee
profile were extracted from normative knee kinematics [28].
Each point in the corresponding phase is associated with two
targeted goals, desired peak knee angle P̄ and timing D̄. We
thus define the state variables peak error and duration error by
the difference between measured peak knee angle P , duration
value D, and their desired targets in every gait cycle

s =
[
P − P̄ ,D − D̄

]T
= [ΔP,ΔD]T ∈ R2. (4)

We assume that there are bounded feature vectors φ of the peak
error and duration error that can represent system performance
and be used as a cost function. For each of the four phases (STF,
STE, SWF, SWE in Fig. 1), we let

R(s) = ωT · φ(s), (5)

where ω quantifies the trade-offs among different performance
factors represented by the chosen features of peak error and du-
ration error in this study. Specifically, we assign an efficient and
effective cost function structure in each gait phase by employing
quadratic features, i.e.,

R(s) = sTHs, (6)

whereH = [
ω1 0
0 ω2

] ∈ R2×2 contains the unknown performance

factors to be identified by an IRL procedure.
An RL control policy maps the observed states to impedance

control parameters in pursuit of meeting the specified perfor-
mance objectives. We define an infinite horizon discounted
cost-to-go (γ < 1) for a policy π at the tth gait cycle as

V π(st) = E

[
R(st) +

∞∑
τ=1

γτR(st+τ )|π
]
, (7)

and the Q-function as

Qπ (st, at) = R (st) + γE [V π (st+1)] . (8)

Such a formulation implies that we consider this robotic knee
control problem as a discrete time, infinite horizon, discounted
problem, and the control designdidnot require an explicitmathe-
matical description of the human-robot dynamics. Additionally,
the Q-function satisfies the Bellman equation

Qπ (st, at) = R(st) + γQπ (st+1, at+1) . (9)

An optimal policy can be determined from

π (st) ∈ argmin
at∈A

Qπ (st, at) . (10)
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C. Policy Learning in RL-Based Control

To solve the Bellman equation and the control policy from
the above, we train a critic neural network and an action neural
network as follows.
1) Critic Neural Network (CNN): A CNN is implemented

to approximate the Q-function using two layers of weights. Its
output value is

Q̂ = Ŵc2g
(
Ŵc1z

)
, (11)

where Ŵc1 denotes the estimated weights between input and
hidden layer, Ŵc2 is the estimated weights between hidden
and output layer. We adopt the hyperbolic tangent g(·) as the
activation function. The input z is defined as [sT , aT ]T . The
weights in CNN are updated in order to minimize the critic
approximation error, denoted as

ect =
∥∥∥γQ̂t −

(
Q̂t−1 −Rt−1

)∥∥∥ . (12)

2) ActionNeural Network (ANN): AnANNbelow is a policy
network that maps state s to action a for adjusting the impedance
parameters in the human-prosthesis system,

a = g
(
Ŵa2g

(
Ŵa1s

))
, (13)

where Ŵa1 is the estimated weight vector between input and
hidden layers, Ŵa2 is the weight vector between hidden and
output layers. We adopt the same activation function as in CNN.
The ANN is designed to backwards pass the prediction error,
which is defined as the difference between the approximated
Q-function Q̂ and desired ultimate objective Q̄

eat =
∥∥∥Q̂t − Q̄

∥∥∥ . (14)

In the equation above Q̄ is set as 0 signifying measured feature
points meets target profile. Thus the approximated optimal Q-
function is Q̂∗(s, a) = infπ Q̂

π(s, a).
The weights of CNN and ANN are updated using a gradient

descent backpropagation rule tominimize the respective training
errors in the actor and critic networks.

D. Inverse Reinforcement Learning

For the purpose of identifying the unknown weighting factors
in (6), an IRL procedure is performed based on observed state
trajectories under a control policy. Given a policy π and the
resulted state trajectory S = {s0, s1, s2, · · · }, we formulate a
discounted accumulated feature expectation vector of this tra-
jectory denoted as

μ(π) = E

[ ∞∑
t=0

γtφ(st)|π
]
, (15)

where the initial state s0 ∼ D, and a feasible set of states and
actions are determined from policy π. In this human-prosthesis
walking problem formulation, μ(π) = [μ1, μ2]

T represents fea-
ture expectations of ΔP and ΔD. From (5, 7, 15), the value of
a policy can be written as

V π (s0) = ωTμ (π) . (16)

As a data-driven approach, we use a sample ofm state trajecto-
ries (i.e., j = 1, 2, . . . ,m) to estimate μ(π) [20] through

μπ =
1

m

m∑
j=1

∞∑
t=0

γtφ(s
t j). (17)

Derived from (6,15,16), the value of a trajectory can bewritten
as

V π (s0) =
∞∑
t=0

γtsTt Hst. (18)

The goal of IRL is to find a policy π̃ whose performance is
close to the desired performance represented by the state value
measure. We thus have∣∣∣∣∣E

[ ∞∑
t=0

γtsTt Hst|π∗
]
− E

[ ∞∑
t=0

γtsTt Hst|π̃
]∣∣∣∣∣

=
∣∣∣V π∗

(s0)− V π̃ (s0)
∣∣∣

=
∣∣ωTμ(π∗)− ωTμ(π̃)

∣∣
� ‖ω‖2‖μ(π∗)− μ(π̃)‖2
� ε. (19)

To solve for policy π̃ in terms of feature expectations μ(π̃), the
problem can be formulated as

max
ξ,ω

ξ

s.t. V π∗ � V π(i)
+ ξ, i = 0, 1, 2, . . . , n;

‖ω‖2 � 1.
(20)

The solved ω places a relative weighting between different per-
formance features. The cost function for control systemdesign is
thus determined, which contains 8 unknown factors (2 for each
phase) for the four phases of a gait cycle.
Algorithm 1 is a summary of the bilevel, iterative approach

to robotic knee impedance parameter tuning. It includes the key
steps described above: 1) determining an optimal policy under
an IRL specified cost function using RL, 2) evaluation of the
obtained control policy by generating several state trajectories
for use in IRL, and 3) identification of a cost function (specifying
the weighting factors) in the current quadratic cost setting.

III. IMPLEMENTATION

The bilevel design approach to robotic knee impedance con-
trol parameter tuning is systematically assessed by simula-
tions using OpenSim, a well-established platform in the field
of biomechanics [25]. In the experiments, we implemented
Algorithm 1 (also refer to Figs. 1 and 2) in the control of a
simulated human-robot system during walking.

A. Human-Robot System Setup

We built a five rigid-segments bipedal model including a
pelvis, two thighs, and two shanks on a rigid level platform (refer
to Fig. 1) to simulate unilateral above-knee amputee walking,
which contains both human-controlled intact joint motion and
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robot-controlled prosthetic joint motion. The pelvis segment is
linked to the ground platform using a slider joint, which allows
the body to move relative to the platform. The thigh segments
are linked to the pelvis, and shank segments are attached to
the thighs, both by one-degree-of-freedom pin joints. The left
knee is defined as intact while the right is prosthetic to enable
locomotion.Wedefinedhuman-controlled jointswith prescribed
motion according to a well-established, normative data set [29],
while the prosthetic knee impedance parameters were updated
based onFSM-IC.The simulationwas initialized to trivial angles
for both knees near stance position. Model settings such as body
mass, segment length, and inertial parameters, were specified
according to OpenSim lower-limb model [29].

B. Experimental Conditions and Hyperparameters

The goal of the automatic tuning approach is to make the knee
kinematics meet the desired near-normal profile. In considera-
tion of walking variability in human locomotion, measurement

TABLE I
ANGLE (DEG) AND DURATION (%) BOUNDS

noise, and other uncertainties, we established tolerance levels
of the state variables as shown in the bottom row of Table I.
We also set a safety bound based on realistic conditions of
balanced walking, which is set at 1.5 times the standard de-
viations of the respective knee kinematic peak values observed
in each phase [28]. If errors exceed the safety bound, which
means the subjects may step into unsafe regions with current
profile, the impedance parameters will be reset to initial values.
Convergence of tuningwithin a phase is achieved if states remain
within the tolerance range for 8 out of 10 consecutive impedance
updates. If all four phases converged after tuning, it meets the
stopping criteria, and a tuning trial is considered successful.
Another stopping criterion is for failed trials when tuning has
reached a maximum number of allowed gait cycles (specified as
200).
The stopping criteria for IRL are as follows: 1) The margin

ξ between the target goal and the current performance is ξ � 2;
and 2) ξ is non-increasing over the number of IRL iterative
procedures. Nonlinear programming was adopted to solve the
optimization problem in (20). In a direct heuristic dynamic pro-
gramming (dHDP) RL controller, the CNN has a three-layered
5-6-1 structure, andANNwith a 2-6-3 structure.Weights in both
networks were initialized to random small numbers. We set the
discount factor γ = 0.99, and the neural network learning rate
as 0.1.

C. Baseline Methods for Comparison

To provide a baseline approach for comparison with our
bilevel impedance control parameter tuning method, we used a
manual selection procedure guided by our previous experience
in specifying the weighting factors in (6). First, we specified a
practical range for the weighting factors based on our extensive
previous experience. Second, we used the same set of weight-
ing factors for all four phases to avoid exponential growth in
evaluation cases as in our previous works. We aim at providing
evidence for the following considerations that motivated this
study. 1) As we are already aware that knee biomechanics for
each phase is different, how are the controllers in the four
respective gait phases fair if they are designed using the same
cost function in comparison to the proposed bilevel design? 2)
Can we find an appropriate trade-off for the weighting factors
in the cost function and how to further optimize system per-
formance without manually going through a tedious or even
prohibitive trial-and-error process? 3) Can we expect to see
better performance in the bilevel-designed controllers than those
developed by manually specified cost functions?
Specifically in comparison studies, the baselinemethodswere

implemented as follows. The controllers for the four phases
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Fig. 3. Margin of feature expectations between desired behaviour μ∗ and
learned policy μ denoted by ‖μ(π∗)− μ(π̃)‖2 during a representative IRL
procedure.

Fig. 4. Weights of peak error and duration error (ω1 and ω2) from 30 IRL
procedures. Mean values and standard deviations from the mean are shown.

have an identical quadratic form but with manually specified
weighting factors.We systematically varied theweighting factor
ratio r = ω1/ω2 to cover a wide range of values from 0.1 to 19.
We then compared each design from the baselinewith the bilevel
design developed herein.

D. Performance Evaluations

Systematic evaluations were conducted to assess the perfor-
mance of bilevel impedance control parameter tuning method.
Weused the followingmetrics: 1) the number of IRL iterations to
measure the convergence speed of the weighting factor identifi-
cation procedure; 2) time efficiency of an RL impedance control
parameter tuning by the total number of impedance updates; 3)
RMSE between measured knee kinematic profiles (robotic knee
angles) and target profile.
In the simulations, a trial is a complete tuning process of

the RL controller given the cost function determined at the
ith iteration of the IRL. Bilevel optimization procedure, as
shown in Algorithm 1, was performed 30 times (corresponding
to 30 different sets of initial impedance parameters) to obtain
statistical results in this study. In each evaluation procedure, a
set of m = 10 sampled state trajectories were used to induce
weighting factors in the quadratic cost function. Therefore, a
total of 300 impedance tuning trials were included in the bilevel
optimization evaluation. We evaluated the bilevel approach to
robotic knee control using level-ground walking and up-ramp
walking with slopes of 3◦ and 5◦.

IV. RESULTS AND ANALYSIS

For reporting IRL convergence speed, we recorded themargin
of feature expectations ‖μ(π∗)− μ(π̃)‖2. Since similar con-
vergence behaviour was observed for all IRL procedures, we
demonstrate a representative result in Fig. 3. On average, it took
4.1 iterations for IRLprocedure to converge. The IRL configured
weights for the cost function are demonstrated in Fig. 4 as a result
of 30 bilevel optimization procedures. We noted the average of
the ratios between the two weights r = ω1/ω2 for phase 1 ∼ 4
as 2.7, 49.5, 5.8, 12.4, respectively.

Fig. 5. (a)–(d) Peak error and duration error of phase 1 ∼ 4, respectively
in 300 evaluation trials of bilevel optimization, each with different random
initial impedance parameters. The horizontal orange dashed lines represent
tolerance bounds (refer to Table I). (e) Trial convergence profile: 72%of the trials
convergedwithin 20updates; 94.3%within 30updates. The average convergence
speed is 18± 7.7 updates.

Fig. 6. Performance over 300 trials with one standard deviation from themean
under the condition of before and after tuning: (a) peak angle error and (b)
duration error. Before tuning policy is the initial policy while the after tuning
policy is the one from the last iteration of each bilevel procedure.

To report time efficiency in impedance tuning, we observed
peak error and duration error features during all tuning proce-
dures, each policy was obtained under an IRL determined cost
function. As shown in Fig. 5(a)–(d), feature errors in all four gait
phases converged within the tolerance bounds, and eventually
remainedwithin the bounds. It took an average of 18.7 ± 7.7 gait
cycles for the control parameters matching the target behaviour
(Fig. 5(e)).
To demonstrate the effectiveness of the bilevel optimization

design, we compared the RMSE of the robotic knee angle be-
tween the measured and the target profile under two conditions:
1) pre-tuning based on the initial policy, and 2) post-tuning with
an IRL facilitated policy. The results were averaged over 300
testing sessions (Fig. 6). All peak error features decreased after
tuning with bilevel optimization. The duration error features
decreased in phase 1 ∼ 3, but increased from 0.4% to 0.5%
in phase 4. This is not surprising as 1) the RL control design
allows for a larger tolerance bound of the duration error feature
than that of the peak angle error feature, and 2) the peak error
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TABLE II
COMPARISON OF PROSTHETIC KNEE CONTROL LEARNING PERFORMANCE DURING LEVEL-GROUND AND UP-RAMP WALKING

Fig. 7. Comparison of impedance tuning speed and success rate between
manually specified cost functions with different ω1 and ω2 ratios versus bilevel
tuning which automatically induce ω1 and ω2 from observed state trajectories.
(a) The number of impedance updates and (b) convergence rate.

term is a dominant feature in the cost function as reflected by
the learned weights.
Next, we compared the bilevel control parameter optimization

performance with baseline methods. Fig. 7 compares controller
performance between the bilevel design and the controller de-
signed by manually specified cost functions. By varying ω1

and ω2 in H matrix from (6), we selected 14 representative
cost functions from the candidate pool. All controllers were
trained with 10 randomly initialized impedance parameters to
encourage sufficient exploration in policy space. We adopted
convergence speed and success rate as performance metrics.
Among all the results from manually specified cost functions,
the policy associated with a cost function of ω1 = 0.8, ω2 = 0.2
(i.e., with a ratio of 4) outperformed all other specifications of
weighting. Themean convergence speed using this set of optimal
manually selected weights is 22± 8.2 with a 100% success
rate. In comparison, the bilevel optimization design (refer to
Fig. 5 and 7) has a mean convergence speed and success rate of
18± 7.7 and 100% separately. The bilevel design outperformed
the best manual specification design by 22.2% in terms of
convergence speed.
To further illustrate the respective training process, we com-

pared the performance of two policies: the best policy from
manually specified cost functions, and an IRL induced policy
with average performance. We performed an evaluation at the
end of every iteration, each with 300 trials from a randomly
initialized impedance parameter setting. Fig. 8 demonstrates
the first four iterations of the prosthetic knee kinematics and
its RMSE, under two respective conditions of manual versus
IRL induced cost functions. As shown, at the 3rd IRL iteration,
bilevel designed controller already reached an acceptable per-
formance range. Under equivalent condition, the manual selec-
tion based controller design reached an acceptable performance
range in 6 iterations. This indicates that IRL has the potential to

Fig. 8. Comparison of prosthetic knee control performance by evaluating
prosthetic side knee kinematics generated by policies from manually specified
cost functions (orange) versus IRL induced (salmon). The target knee profile
is shown in red with dots representing target features. (a)-(d): observed knee
profiles (top row) and RMSEs from the target profile (bottom row) of the first
four iterations from both methods.

efficiently determine an appropriate cost functionwith improved
controller performance.
To evaluate the generalizability of the proposed bilevel design,

we trained controllers for up-ramp walking task at two different
incline angles (3 degrees and 5 degrees, respectively). Table II is
a summary of learning performance measured by tuning speed
and success rate during the first three iterations under different
walking conditions. Typically it took more steps for the tuning
process to converge for walking on a steeper ramp. As training
continues, all evaluatedwalking tasks achieved a similar success
rate (all above 95%) at the 3rd IRL iteration.

V. CONCLUSION AND DISCUSSION

This study introduced a new robotic knee impedance control
parameter tuning method based on bilevel optimization. In this
interleaving bilevel learning approach, the high level IRL pro-
cedure aims to automatically characterize an appropriate cost
function in a quadratic form, to enable the low level impedance
parameter optimization build upon RL. We investigated the po-
tential of this new impedance control parameter tuning method
facilitated by IRL for personalizing robotic knee impedance
control to enable near-normal knee kinematics during walking.
We developed a simulation model in OpenSim for performance
evaluation, and validated this approach through extensive sim-
ulation studies based on this human-robot system. We also
compared the proposed approach with the baseline method, in
which RL controllers were designed by manually chosen cost
functions under the same environmental conditions.
Experimental results show that both methods were able to

tune robotic knee prosthesis control parameters. But the two
methods resulted in different control policies as they rely on
different approaches to determining the cost function to be
used in the controller design. As such, they exhibited different
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performances in terms of converging speed and learning success
rate. We systematically specified 14 different cost functions
manually and assessed the respective controller performance to
serve as baseline methods. In comparison, the bilevel design
approach does not require a trial-and-error process to specify a
cost function, and it is generally inexpensive, i.e., requires only
a small number of iterations (4.1 on average), to automatically
specify an appropriate cost function. Among all the cases that
we tested, the bilevel optimization achieved the best overall
performance.
The results also validated our assumption that since knee

biomechanics varies in different gait phases during a gait cycle,
controller design should be tailored by independent cost func-
tions in different phases. This was shown to enable improved
control performance. As such, the bilevel design could be a
powerful tool to automate the cost function specification, and
thus to further automate the impedance control design and to
reduce subjectivity in this process.
Towards further automating the personalization process of

impedance parameter tuning, we believe it can be made one step
closer by replacing the normative knee profile with alternatives
such as the intact knee profile based on successful demon-
strations in simulations and in experiments [30], [31]. To test
this proposed framework on physical devices would also be an
important next step to validate the proposed bilevel design, and
more specifically, the designed controllers. Another interesting
directionwould be to generalize this framework to other devices,
such as exoskeletons. Towards these goals, it requires significant
research and careful engineering considerations, such as the
proper problem formulation, user safety and time efficiency,
human gait variations, as well as co-adaptation between human
and robot. Based on our previous works, we expect this new
framework can be verified by human experiments in the future.
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