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Network communication is increasingly becoming the per-
formance bottleneck for scaled-out HPC and warehouse appli-
cations, as enormous CPU processing is devoted to packet pro-
cessing, contributing to long latencies. To reduce this latency,
advanced network interface cards known as SmartNICs have
been introduced to handle networking functions. Dozens of
commercial FPGA-based SmartNICs have been released (e.g.,
[1]–[3] and see surveys [4], [5]). Other commercial SmartNICs
have been developed also with the aim of near-network pro-
cessing [6]–[9]. There is also prior art that uses SmartNICs
as compute resources [10], [11]. For instance, COPA [12],
INCA [13], sPIN [14] provide a portable programming model
to offload simple packet processing. Other work (e.g., [15]–
[21]) supports collectives in FPGA-based hardware.

FPGA-based SmartNICs [22]–[24] offer great potential to
significantly improve the performance of high-performance
computing and warehouse data processing by tightly coupling
support for reconfigurable data-intensive computation with
cross-node communication, thereby mitigating the von Neu-
mann bottleneck. Nevertheless, existing FPGA-based Smart-
NICs are constrained by three limitations. (i) Host-control:
Although the offloading of some simple compute kernels
has been demonstrated, this work generally assumes a host-
device programming model, leaving the majority of control,
scheduling, and management tasks to the host CPUs. This not
only incurs an extra burden on the host CPUs, but also leads
to poor utilization of the SmartNICs for handling the control-
dependencies with the host through PCIe and software stacks.
(ii) Limited scalability. Existing SmartNIC applications rarely
involve offload of non-local tasks, missing opportunities for
system-level designs that can span a distributed cluster, elim-
inate unnecessary data-movement, and support more efficient
scheduling and workload balance. (iii) Programmability. As
the control is performed by the host, most existing SmartNICs
only handle relatively simple kernels.

In this work, we address these problems by presenting
a user-friendly framework for neural network inference on

Fig. 1. Overview of FPGA Centric SmartNIC Design

FPGA-Centric smartNIC (FCsN) that can perform computa-
tion, communication, and control altogether at the same time,
allowing flexible and fine-grained task creation, distribution,
execution, and finalization across multiple SmartNIC devices.
FCsN uses a data-centric programming model that enables
asynchronous, fine-grained task scheduling and is equipped
with Python-based programming APIs; on the hardware side,
FCsN is equipped with a hardware-based SmartNIC run-
time to achieve CPU-detached scheduling and support high-
performance execution of NN kernels at line-rate. This results
in maximally hiding the computation latency with network
communication for streaming applications at line-rate, and
achieving high FPGA utilization and high performance at
system level by avoiding CPU intervention. The current FCsN
framework focuses on Neural Network applications, but has
the potential of being extending into a general framework.

We have evaluated the FCsN framework with NN kernel
functions and NN applications using an Alveo U280 board
cluster (2-4 nodes) with communication links directly con-
nected through on-chip QSFP ports. Our result that FCsN
can achieve 10× speedups over the standard MPI-based sys-
tem baseline in neural network applications (VGG, RestNet,
Mobilenet, MLP [25]–[28]) and GNN models [29]–[31] with
five datasets(Cora, CoraFull, Pubmed, CoautherPhysics, and
Reddit [32], [33]).978-1-6654-8332-2/22/$31.00 © 2022 IEEE
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