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Abstract

There has been much effort in offloading MPI collective operations into hardware.

ButwhileNIC-basedcollectiveacceleration iswell-studied, offloading their processing

into the switching fabric, despite numerous advantages, has been much more limited.

A major problem with fixed logic implementations is that either only a fraction of the

possible collective communication is accelerated or that logic is wasted in the applica-

tions that do not need a particular capability. Using reconfigurable logic has numerous

advantages: exactly the required operations can be implemented; the level of desired

performance can be specified; and new, possibly complex, operations can be defined

and implemented.Wehavedesignedan in-switchcollectiveaccelerator,MPI-FPGA, and

demonstrated its use with seven MPI collectives and over a set of benchmarks and

proxy applications (MiniApps). The accelerator uses a novel two-level switch design

containing fully pipelined vectorized aggregation logic units. Essential to this work is

providing support for sub-communicator collectives that enables communicators of

arbitrary shape, and that is scalable to large systems. A streaming interface improves

theperformance for longmessages.While this reconfigurabledesign is generally appli-

cable, we prototype it with an FPGA-centric cluster. A sample MPI-FPGA design in a

direct network achieves considerable speedups over conventional clusters in themost

likely scenarios. We also present results for indirect networks with reconfigurable

high-radix switches and show that this approach is competitive with SHArP technol-

ogy for the subset of operations that SHArP supports.MPI-FPGA is fully integrated into

MPICH and is transparent toMPI applications.
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1 INTRODUCTION

Collectives are often a large fraction of total communication in high performance computing (HPC) applications1-6 and have been shown to bot-

tleneck performance.7-9 As collectives are integral to HPC, and since much communication in production HPC is based onMPI (see e.g., Reference

6), addressing the acceleration of collectives necessarily means dealing with them within an MPI framework. Collectives in MPI implementations

(such asMPICH10) generally consist of point-to-pointmessageswith computations in between. Thusmuch support has been added at the software

level;7,11,12 however, the addition of these algorithms has greatly complicated the software stack.13

Parts of this work have been presented at workshops with no proceedings, published in an extended abstract, and published in a conference proceedings.
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In this workwe offloadMPI collectives into FPGA hardware (MPI-FPGA) and, in particular, into logic appended to the communication switches.

In general, handling collectives in hardware has several benefits. First, it removes those extra layers of software (e.g., Reference 13); second, the

hardware implementations can be an order-of-magnitude or more faster than the software they replace; and third, it frees up the processor for

other work (e.g., Reference 14). Handling collectives in the switch, rather than in the NIC,15-19 adds other advantages: it distributes the execution

of collective computation throughout the network, rather than serializing it in the source (for broadcast) or the destination (for reduction); and it

reduces network load asmessages often only travel a single hop before beingmerged or duplicated.

Compute-in-the-network has been studied since the early days of computing through structures such as adder trees and sorting networks;20 it

is also fundamental to themorepowerful PRAMmodels explored in the1980s.21 However, there appear to be just twomodern commercial versions

of in-switch computing: the IBMBlueGene family8,22 and, in current use, certain switches fromMellanox.9 Both of these have limitations (described

below) thatare, inpart, the resultofbeingASIC-basedandsohavingstrictlyboundedcapabilitieswith limited flexibility.Moreover, beingcommercial

products, few details are available about their implementation, which curtails their use as the basis of further research.

There are at least two plausible architectural targets for using reconfigurable logic for in-switch compute-in-the-network. One is to use recon-

figurable logic in the router (already common for other purposes23) in an indirect network. A second is in FPGA-centric clusters with direct

FPGA-FPGA interconnects.24-27 In this work we consider both indirect and direct networks.

Implementations with reconfigurable logic have several inherent advantages over those with fixed logic. First, they are not limited to a small,

fixed set of operations, for example, SHArP only supports MPI_Allreduce and MPI_Barrier operations9 and a few primitives. Second, hardware

resources can be configured tomatch application requirements, for example, by increasing the arithmetic support as needed. This can even be done

at runtime for applications inwhich the communication data volume is unpredictable.28 Third, support can be extended beyond simple datatypes to

more complex structures such asmatrices, tensors, and user defined datatypes.4,28 Fourth, compute-in-the-network can be generalized still further

to support altruisticor opportunisticcomputing.29 And finally, since reconfiguration time is similar to program load time, only resources thatwill actu-

ally be used need to be configured; the remaining logic can be used for other purposes. All of these scenarios can be accomplishedwithout incurring

the cost of designing and fabricating ASIC chips for each application, or devoting ASIC resources to functions that rarely occur.

An essential part of implementing MPI collectives is handling the critical MPI feature of the communicator; these are used to define a safe

communication context for message passing within a specific group of processes. Communicators have significant scalability issues,30 meaning we

cannot implement them in hardware with the samemethods used for managing communicators in software; for this reason in-switch implementa-

tions sometimes limit communicator geometry.22 In this work we introduce an in-switch design for general communicator support that consumes

minimal memory resources. Moreover, as the resources are guaranteed to grow no faster than the log of the number of nodes, this solution is likely

to remain relevant far beyond exascale.

The main contribution is the design, implementation, and evaluation of a set of FPGA-based in-switch MPI collectives. We believe this to be

the first FPGA version to be fully integrated into a general router. To achieve this end, a novel 2-level in-switch design is proposed with full-pipeline

capability. Essential to this design are the seamless integration to a general router, added hardware support for aggregating (reordering) packets for

reduce-type (gather-type) operations, and the flexibility to addmore computational resources as the switch bandwidth increases.MPI-FPGA is fully

integrated into MPICH;MPI-FPGA is therefore transparently usable by any MPI application. It is also easily extended to support additional collec-

tives or integrated into other MPI implementations. A second contribution is the finding that all collective routing decisions—including those with

arbitrarily complex communicators—can be made using only a small amount local information. Finally, an efficient streaming interface is provided

to ensure a fine-grained communication specially for longmessage sizes.

Our experiments show thatMPI-FPGA in a direct network can achieve a significant improvement for MPI collectives over a CPU cluster for a

large range ofmessage sizes. For FPGA-based high-radix switches in an indirect network it is possible tomake comparisonswith SHArP technology:

MPI-FPGA is competitive and improves the performance of Allreduce operation. We have also experimented with NAS parallel benchmarks and

two MiniApps from the Mantevo project31 (miniFE and HPCCG). The most significant result, however, is that this performance is possible while

simultaneously supporting reconfigurable in-switch computing inMPI collectives andmany extensions (e.g., Reference 4).

The rest of this article is organized as follows. Section 2 provides background information on some of the key concepts used throughout this

article. Section3 introduces in-network communicator support and it sheds light on someof thedesign choices. Section4describes indetail thepro-

posed switch and themodules used in the design. Section 5 analyzes and compares the performance of our approach (in-network collective offload)

with that of the existing approach. Section 6 presents experimental results. In Section 7, related work is discussed and Section 8 concludes the

article.

2 CONCEPTS

Wereview theMPI software stack to identify opportunities for, and the benefits of, offloading collectives. Next, we discuss our hardwaremodel.We

then coverMPI communicators and the difficulties they create for hardware implementations. Finally, we discuss the proposed streaming interface

needed to efficiently support longmessages.
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2.1 MPI collectives

MPI collectives are generally implemented so that processes execute sequences of point-to-point messages and computations. Various algorithms

areused, but priority is given to those that avoid congestion andminimize the total numberof packets.However, thesemay translate intomorework

in software for deciding which chunks of data to send and receive, and the processes with which to communicate. For example, a trivial implemen-

tation ofMPI_Reduce has every process send data directly to the root and leads to congestion in a large network. In contrast, with a binomial tree

algorithm, as seen in Figure 1A, each process could be either a leaf, intermediate, or root process. Leaf processes simply send data to their parent,

but intermediate processes must determine the identities of their children, receive data from them, and perform the reduction operation on the

received data. They then determine their parent and then send their intermediate result. In summary, this algorithm lessens the number of packets

in the network and unclogs the root, but it forces much additional work in software. Other algorithms that are commonly used in collectives—such

as recursive halving and recursive doubling—can similarly improve the performance of the collective, but also require that each process perform

extra work.

2.2 MPI-FPGA—overview

MPI-FPGA removes the need for this software andmoves its functions into the network. Throughout this article, we refer to theCPU (leaf nodes) as

the processor and to the FPGA-augmented switches as the network.MPI-FPGA requires no changes to theMPI API and so is transparent to applica-

tion; this makes it completely portable: it can be integrated into HPC applications without requiring the programmer to have any knowledge of the

underlying hardware or make any changes to existing programs. Rather,MPI-FPGA constructs access capabilities automatically through enhanced

middleware. The designmakes no assumptions about the type of end-systems being used, as it only affects data as it is routed through the switches

in the network. We create new functions for each offloaded collective (e.g., MPI-FPGA_Reduce), and place these underneath existing MPI collec-

tive functions (see Figure 2). If the hardware supports the offload of a particular collective, then theMPI-FPGA replacement function is used. If a

collective does not have offload support, then it is performed by the software as usual.
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F I GURE 1 Subset of commonly usedMPICH collective algorithms. (A) Binomial tree; (B) recursive doubling; (C) recursive halving

F I GURE 2 MPI-FPGA software stack
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The basic operation ofMPI-FPGA is as follows. Upon receiving a valid packet header from the processor, the switch begins the collective opera-

tion and performs all of the necessary steps to complete it. If anMPI process is not required to receive the final data—such as the root process in a

broadcast operation—then control returns to the user application as the network is responsible for progressing the message. If the calling process

does need to receive the result—for instance, all processes in an Allgather operation—then the process waits until it is interrupted, which happens

when the final collective results have been received and passed to the processor from the network.

In this work, we focus on blocking MPI collectives; the extension to nonblocking operations is simple. In the MPICH implementation of MPI

middleware,10 all the functionality of the abstract device interface (ADI) ismaintained. Thiswork currently usesMPICH-3.2;32 tasks such as packing

and computing predefined reduction operations are performed identically in this design. At theMPICH channel interface, we add code to transfer

data into the network, with the actual FPGA hardware sitting below the channel interface (see Figure 2).

2.3 Hardwaremodel

For integrating MPI-FPGA, we consider both direct and indirect networks. For simplicity, in both cases the network switches consist entirely of

FPGAs. Since the configurable parts of the design are modular, the extension to systems that combine fixed and reconfigurable logic is straightfor-

ward. For other advantages of fully configurable switches seeReference33. For direct networks, this is identical to clusterswith direct FPGA-FPGA

interconnects (e.g., References 24,25). Each FPGA switch is attached to the processor through a PCIe interface and FPGAs themselves are

connected directly together through a secondary network (3D-torus in this work). For indirect networks the FPGAs are proxies for high-radix

switches with integrated configurable logic and are attached to multiple processors through NICs.We currently use a fat-tree network (spine-leaf

architecture34). Switches in the direct (indirect) model are homogeneous (non-homogeneous) between leaf and spine switches.

Figure 3 shows the hardware model of the switch. To simplify the figure, transceivers and DMA engines are duplicated on the left and right. A

collective control module (CCM) manages the coordination between different MPI processes for a collective operation. Inside the 2-level switch

are, first, configurable gather reduction (CGR) units that perform the gather or reduction operation on incoming packets, and, then, hierarchical

switches for reordering or redirecting packets. The CCM and CGR units are discussed in depth in Section 4. Processor-FPGA and FPGA-FPGA

communication, as well as in-switch processing, are based on a streaming interface: data is pushed to the DMA engine, transceivers, and buffers,

respectively, without having to wait for the entire packet to arrive. User logic units surround the switch for pre- and/or post-processing. Although

thisdesign is implementedonFPGAs, its portability ensures that it is independentof the typeofhardwareused.Units added in supportof any typical

network switch can be inserted or removed seamlessly.

2.4 Communicators

Communicators are an essential MPI capability and must be supported in any useful system; yet, little work on collective offload into the network

addresses it.While the default communicator isMPI_COMM_WORLD, where the process group is the entire set of processes,35 manyMPI programs

usemultiple communicators having subsets of processes. A typical examplewhere sub-communicators are used iswhen theworkload is partitioned

among an array ofMPI processes and collectives are performed on rows or columns of processes. Themost commonway to create these partitions

is to call a function likeMPI_Comm_split.

All communicators have a context ID, identifying the communicator, and a process group containing the list of processes in that communi-

cator. When a new communicator is created, a new process group is created and stored in memory. In large systems, with correspondingly
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large communicators, the memory consumption of these process groups leads to scaling issues.30 To have an entire process group in FPGA

memory would require storing the list of all MPI processes included in the communicator. The number of bits required would be the product

of COMM_SIZEand BITS_PER_PROCESS, meaning that the resource utilization would grow linearly with the communicator size. For a system with

thousands of nodes, it would requiremany thousands of bits in the switch for each ofmany communicators in a single application. Since high perfor-

mance routing depends on having routing information close to the switching logic, replicating information about these entire process groupswould

quickly use up these resources, even for mid-sized clusters.

2.5 Streaming interface

While current MPI implementations rely on bulk transfers involving large buffers,36 we adopt a streaming interface for both processor-FPGA and

FPGA-FPGA communication. The advantage of providing this support is three-fold. First, the latency of collective operations is reduced as data

is processed/transferred cycle by cycle. Second, the streaming interface facilitates fine-grained communication-computation overlap. And third, it

avoids the congestion caused bymessages with a large payload.

To ensure the finest granularity we convert (inside the switch) processor packets into multiple small-sized network packets. Decoupling these

two kinds of packets is beneficial as processor packetsmay contain a large payload that could block other packets from progressing. Network pack-

ets, on the other hand, are small-sized with replicated headers. The size of the packet is itself one of the fields in the new header. The structure of

processor and network packets is discussed inmore detail in Section 3.1.We set the phit size to 256bits; however, theDMAengine can process two

phits on each cycle.

Flow control is implemented in a standard way using back-pressure and stalling without incurring costly handshakes. There is a margin m in

the FIFOs; upon reaching this threshold the upstream node is notified to stop sending packets. When the buffer gets depleted past the margin the

upstream node is notified to resume sends.

3 IN-NETWORK COMMUNICATOR SUPPORT

In this sectionwe introduce thecommunicator table (CT)design,which supports collectivesacrossany intra-communicator. Thisdesign takesadvan-

tage of the existingMPI collective algorithms in order tominimize resource utilization and latency. For simplicity, in this section and the next section

we assume a direct network. The design is analogous for indirect networks; necessarymodifications are given in Section 4.4.

3.1 Communicator table (CT) design

The purpose of the CT is to manage communicator information that is needed by the CCM to make packet forwarding decisions. To minimize the

resources required, the table only holds the local data that is necessary to complete the implemented collectives. Thismeans that each switchneeds

awayof obtaining this local data,which is a list of the otherMPI processeswithwhich itmust communicate to performeach collective. The contents

of this list, for a given communicator, can be determined immediately after its initialization.

Table 1 shows a subset ofMPICH algorithms for widely used collectives.11 The threemost commonly used are binomial tree, recursive halving,

and recursive doubling. The ring algorithm is also common, but since its implementation is trivial we focus on the others. By being able to implement

these three algorithms,we can performall of the collectives that use them. Returning to Figure 1, for eachMPI processwe can identify the subset of

processes withwhich a givenMPI processmust communicate. For example, process 0must communicatewith the following process set in all three

TAB L E 1 Algorithms commonly used byMPICH for processing collectives11

MPI collective algorithms

Reduce Binomial tree Recursive halving and doubling

Allreduce Recursive doubling Recursive halving and doubling

Broadcast Binomial tree Binomial tree and ring

Scatter Binomial tree Binomial tree

Gather Binomial tree Binomial tree

Allgather Recursive doubling Ring
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algorithms: 1, 2, 4. Storing this subset in switch memory is much more efficient than storing an entire process group as it is equal to the log of the

communicator size (which can be proved directly from the properties of binomial trees).

As shown in Figure 4A, theCTholds a row for each communicator ofwhich the current switch is amember. In each row,we store a small amount

of meta-information: the communicator size, the MPI process in the communicator with which the current switch is associated, and the subset of

processes with which the switch will be communicating. If there are multiple processes per node, one of the processes (the parent) is designated

as the local MPI process. Each communicator entry is indexed into the table using its context ID. For any incoming packet, it is thus easy to look up

its communicator as the context ID is a field in the packet header. The current design supports 32 outstanding communicators with a table size of

around 1 KB; this is sufficient for up to 64 KMPI processes.

Once the switch has a table entry for a given communicator, it can use that data to perform any collective that uses a binomial tree, recursive

halving, or recursive doubling. For any collective algorithm in a communicator, each MPI process will communicate with the same subset of MPI

processes regardless of how many times the collective is called. Once a valid entry is loaded into the table, no updates on that entry are required

until the communicator is freed.

3.2 Communicator support constraints and design choices

Number of outstanding communicators: Tomaintain line-rate packet processing and low latency for table lookup we constrain the memory depth

of the CT. Block RAM instances can be configured with different combinations of memory depth/width. For instance, in Xilinx FPGAs, the largest

width is 512 × 72 bits, which translates to 512 outstanding communicators. To make optimal use of buffering, we currently use 32 queues which

translates to supporting 32 outstanding communicators. However, this is a parameter that can be modified to support a smaller/larger number of

outstanding communicators.

CT size:Assuming that themaximum supported number ofMPI processes and the number of outstanding communicators areMAX_R andN_C,

respectively, we can derive the following equation for the size of CT (according to Figure 4A):

Size = (Log(MAX R) × (Log(MAX R) + 2) + 8) × N C (1)

whereOC represents the CT depth and the other terms are used to compute the width. Assuming the 512 × 64memory instances of Xilinx FPGAs

(the extra 8 bits can be used for error correction), we limit the number of memory instances to achieveMAX_R, while making sure that it is small

enough tomake the packet overhead negligible.We currently useMAX_R of 64K (16 bits wide), which leads to five block RAM (BRAM) instances (in

current generation Xilinx FPGAs).

Processor and network packet structure: Figure 4B shows the structure of these two kinds of packets.Message size in the processor packet is

replaced with the packet size in the network packet which requires fewer bits. Packet size stores encoded values (power of two numbers). The Dest

field is computed in the switch (by a route computation unit) and is 16 bits wide (equal to the bitwidth of the process rank). The context ID field is 5

bits wide as the maximum number of outstanding communicators is 32. TheOperation field determines the supported operations f (sum, min, max,
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and logical operations) and thewidth is set to 4. Finally, 2 bits are reserved for supporting different collective algorithms. Generally, the bitwidths of

the fields are chosen tominimize packet header size; for the processor and network packets these are 8 and 6 bytes, respectively.

3.3 CT entry creation

When a new communicator is created in software, the switch needs a way of obtaining the CT entry from the processor. A new CT entry creation

function has been inserted at the end of each MPICH communicator creation function. This added function checks whether an MPI process is a

member of a new communicator and, if so, calculates the subset ofMPI processeswithwhich it communicates. This requires that, for each commu-

nicator creation function call, the processor calculates the physical addresses of the subset of MPI processes that will be stored in the table entry.

Once the new entry is created, the switch can handle new collectives occurring within this communicator. The addresses are then packaged along-

side communicator metadata (see Figure 4A) to be sent to the switch. Although this operation does lead to a small amount of overhead in creating

communicators, this overhead is only paid for once during communicator creation.

In addition to the CT, there is a forwarding table in each switch which stores a dictionary of global ranks (used byMPI_COMM_WORLD) as the

keys with the processor physical addresses as the values. When there are multiple processes in a node, multiple global ranks associated with the

processor appear in the forwarding table. This information is collected during MPI_Init (called only once at the start of the program). It is then

successively used in the routing phase. Since each new communicator could assign a new rank for the same process, storing the information in the

forwarding table foreachnewcommunicatorhas thepotential toexhaustmemory resources.Hence, theCTentry creation function sends theglobal

ranks of the processes instead of the actual rank of that specific communicator. As a result, the switch deals with the global MPI process ranks for

packet forwarding while the software on the processor considers the actualMPI process ranks (based on the communicator).

4 IMPLEMENTATION

4.1 Overview

The base design is a standard virtual channel router (see Figure 5 and References 33,37) extended with the proposed streaming interface. It uses

the classic four stage pipeline:38 route computation, virtual channel allocation, switch allocation, and switch traversal. In this example it is designed

to be used in an FPGA cluster interconnected in a 3D torus and so has six input and six output ports, each connected to serial transceivers.

To minimize back-pressure from switch to processor, the size of input FIFOs should be sufficient to tolerate the latency of the collective tree.

This happens if the tree is deep and the root has towait a considerable amount of time for the leaf processes.We calculate theminimumbuffer size

as in Equation (2):

min buf size =
(
m + (d + q) ×

(
L

T clk

))
× Ph (2)

wherem is the flow control margin, d is themaximum depth of the tree-based collective algorithm (accounting for the number of nodes used in the

FPGA cluster), and q is a constant (set to 2) to provide slack for other operations to proceed. L, T_clk, and Ph are the link latency, clock period, and

phit size, respectively. The input FIFO size in the current design is 48 KB.

TheMPI offload support is designed to keep the overall design modular: the accelerator architecture is portable to any other standard router.

The two keymodules are the CCMand the in-switch collective supportmodule. The former determines new forwarding andmulticast destinations

for collectivepackets; it also contains the communicator support. Themodule is placedbefore the router so that thepackets’ outputports canbecal-

culated during the route computation stage after it has been assigned a newdestination. The latter is integrated into the L1 switch (see Section 4.3)

and is used for reordering, redirecting, and in-switch processing. Details follow in the next subsections.

4.2 Collective control module (CCM)

The CCM (Figure 6) performs all of the algorithmic work found in the software ofMPI_Reduce,MPI_Allreduce,MPI_Bcast,MPI_Scatter,MPI_Gather,

MPI_Allgather, and MPI_Reduce_scatter, as well as any other collectives implemented in the future. When packets enter the router, they first go

through theCCM. If theyarenotpart of a collectiveoperation, or arenotdestined for the currentprocess, then they simplypass throughunchanged.

If they are part of an offloaded collective and the destination address in the packet headermatches that of the current process, then the CCMuses

the CT to determine new destinations for the packet.
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In order for the CCM to determinewhich collective a packet is a part of a collective, an opcode field has been added to the packet header.With

thisMPI-FPGA can performwork for each collective algorithm in parallel and then use the opcode to decidewhich algorithmic results to use for the

packet (seeFigure6).Within eachof these algorithmblocks,MPI-FPGAperforms computations using input from thepacket header and theCTentry.

For a reduction, the router calculates the parent node to send the packet to; or, for a broadcast, all of the child nodes tomulticast the packet to.

TheCT also eases the computation required to calculate these destinations.When a packet needs to be sent tomultiple destinations, these are

alsoadjacent in the tableentry. Formulticast abit vector is used tokeep trackof thesedestinations; this results inmuch lesswork than if destinations

were calculated repeatedly. Once a packet passes through the CCM, it is passed to the route computation stage (in the routing pipeline) where its

output port is calculated.

As in MPICH-3.2, the implementation also supports multiple algorithms for the same collective operations. The choice of algorithm is often

determined by packet size. InMPI-FPGAwe support algorithm selection by adding bits to the packet header opcode field.
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4.3 Two-level switch

As shown in Figure 5, the overall switch design consists of hierarchical switches (L1 and L2) for directing packets. The L1 switch directs packets

to the correct output port and is followed by output FIFOs. The current design supports a round-robin arbitration policy. Note that the arbiter is

disabled for theEjectport; once the communicationbetween the switchand theprocessor is established, packets inother inputportsdonot contend

for the Eject port as the network packets are again converted into processor packets. To support processing of the collectives there is an in-switch

collective supportmodule that is seamlessly integrated to theL1switch. Thismoduleperforms thegather-type (Gather andAllgather) or reduce-type

(Allreduce,Reduce, andReduce_scatter) operations. If networkpackets are identified as part of oneof these collectives (by their opcode field), they are

transferred to the in-switch collective support module. It has two collectors, two L2 switches, and CGR unit(s). The first collector is responsible for

waiting for all packets corresponding to the childMPI processes. The first L2 switch and the last collector are only used for gather-type operations.

The former reorders incoming packets according to their sender’s rank, while the latter serializes the gathered data. Finally, the last L2 switch is

responsible for directing the CGR outputs to the correct switch output port.

The CGR unit consists of configurable vectorized aggregation logic units (AgLUs), as shown in Figure 7. Each vectorized AgLU is cascaded to

match the number of switch ports to perform concurrent reductions with full pipelining. The aggregation is made up of two separate paths with

vectorized AgLUs chained together which are combined at the end. Each vectorized AgLU is 256-bits wide (in this design) which can accommodate

multiple AgLUs based on the bitwidth of the datatype being used. The CGR unit also has gather and reduction tables that are indexed and capable

of supportingmultiple gathers and reductions, respectively, andwith different communicators. There is a counter field inside the tables to track the

number of processed phits; this is then compared with the count field (total number of phits according to the message size). When the threshold

is reached, a completion notification is sent to the DMA engine. The CCM configures the value of the count field in the reduction (gather) table

according to theprocessorpacketheader.Countand counter fieldshave the samebitwidthsas themessage size in theprocessorpacketheader. There

are six columns for the reduction (gather) matching the switch radix for the current design (3d-torus), each with a bitwidth equal to the phit size.

To supportmultiple simultaneous reductions (gathers), there are SA (simultaneous aggregations) number of CGR units. Clearly, SA can be equal

to the radix of the switch; but it also can be fewer depending on the available hardware resources (discussed in Section 6.1). There are R×4 AgLUs
(64-bit) for each CGR unit (with a double data type), where R is the radix of the switch. This results in SA×R×4 AgLUs in the L1 switch.

Thearithmetic unit is constructedusing standardmethods including theuseof vendor IP. Thecurrentdesign supports sum,min,max,XOR,AND,

andOR but is trivially extendable for other operations, including user specified functions.

This approach is flexible enough to supportmulti-user processing.When the number of jobs is small—not larger than the number of AgLUs in a

VAgLU—it is possible to divide phit size channels (each arrow in Figure 5), into 64 bit sub-channels and assign each of them uniquely to each job. In

this case, there is no resource/time sharing involved in the switch andeachAgLU ismapped to a single job.When there aremore jobs, it is possible to

employ time slotting.39,40 In either case, if the computation requirements of a certain application surpass the operations that are supported by the

AgLUs, or there is a need to add user logic for inline pre/post-processing (see Figure 5), it is possible to take advantage of partial reconfiguration.41

For the former case, partial reconfiguration does not disturb other existing jobs but, for the latter, it would introduce minimal idle time (depending

on the amount of new logic) as only the AgLUs and the user logic would be reconfigured, rather than the entire design.
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the end
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4.4 Considerations for indirect networks

TheMPI-FPGA switch design for indirect networks follows the same overall design as Figure 5 but with some differences:

• In the direct model, each FPGA card is attached to a processor through a PCIe interface. In the indirect network model, FPGA switches are

attached to the processors through network ports.

• For the indirect model, storing information in the forwarding table is a two-step process. During MPI_Init, a dictionary—where the keys are the

global process IDs and the values are the port numbers—is sent from the processors to each of the corresponding leaf switches and then from

leaf switches to spine switches. As a result, each spine switchmaintains a dictionary of all the processors within the system inside its forwarding

table;

• The count and context ID fields in the reduction/gather tables of the spine switches are configured by sending the information from the leaf

switches to the spine switches based on the collective operation shown in the incoming packet header;

• For the leaf switches, the number of packet converter modules is equal to the number of downlink ports.

5 PERFORMANCE ANALYSIS OF IN-NETWORK COLLECTIVE OFFLOAD

In order to develop a general understanding of how this approach could improve the performance of MPI collectives and the conditions that need

to exist for this approach to benefit application performance, we consider a LogGP model.42 L, o, g, G, and P represent the latency, overhead, gap

betweenmessages, gap per byte, and number of processors, respectively. As is standard in reports on hardware implementations of communication

operations, including collectives,weassume that all of theprocesses start at the same timewithno skew.As it hasbeen statedpreviously, substantial

process skew necessarily diminishes the performance benefit of any aggregation algorithm.9 Skew is discussed further in Reference 43.

We compare two models: a baseline with no compute-in-the-switch and the new one where the switch is able to perform the computation,

multicast, and reordering.

Since the total latency of anMPI operation is determined by the slowest process; that is, themaximum latency of any process, processes having

different roles during the collective need to be considered. ForMPI-FPGA, we consider the latency of two processes in anMPI_Bcast for a binomial

tree (see Figure 1A): one receiving a number of messages (e.g., process 7) and one sendingmultiple messages consecutively (process 0).

We first derive expressions for the time spent on the second process type. Let TBl,i and TIs,i denote the time needed for the ith process to finish

theMPI operation in baseline and in-switchmodels, respectively.

TBl,P−1 = ⌊log(P)⌋ × (Os + (k × G) + L + Or) (3)

TIs,P−1 = Os + (k × G) + L + Or (4)

We distinguished the overhead time on the sender side (Os) from that on the receiver side (Or); these are the times it takes for the proces-

sor to transmit and receive a message, respectively. Note that ⌊log(P)⌋ is reduced to 1 in Equation (4). These equations indicate that theMPI-FPGA

approach effectively eliminates the overhead time (Os and Or) for intermediate MPI processes since communicator support is offloaded into the

FPGA fabric. Also, the abovemodel suggests that the in-switch approach unlocks higher performance for collectives involvingmany-to-many com-

munication patterns (Allreduce, Allgather, Reduce_scatter, andBarrier) as the number of times thatCPUs are bypassed is higher in these collectives.

The in-switch approach also scales better with the number of nodes. Finally, note that the term G in the baseline is greater than for in-switch: the

cost of the transport protocol is high compared to that of the light-weight transport engine.

We now analyze the time spent on the root process (process 0):

TBl,0 = Os + ((⌈log(P)⌉ − 1) ×max{g,Os}) + (⌈log(P)⌉ × k × G) (5)

TIs,0 = Os + (k × G) (6)

In the in-switch model the g term is eliminated by the pipelining communication. For example, for MPI_Bcast the message is sent from the

processor to the switch only once where it is then multicast to the differentMPI processes. ForMPI_Scatter, different messages are lumped into a

largemessage. Consequently, for the in-switchmodel g=0 and assume onlyG for both short and longmessages. Clearly if themessage size is small,

then theG terms in all of the above equations are irrelevant. One observation is that, for the in-switchmodel, the coefficient ⌈log(P)⌉ is reduced to 1
in Equation (6) as the switch benefits from in-networkmulticast. Another observation is that amulti-port switch attached to each node in the direct

network reduces the effective G for intermediateMPI processes as multiple messages can be sent simultaneously.
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Onemajor benefit of the in-switchmodel is in-network reduction; inlinehigh-throughput reduction is performed in the switch,which eliminates

the need to perform the reduction in the CPU. This is especially beneficial for large messages. Assuming nMPI processes involved in the reduction

collective, in the baseline model the operation could be performed n-1 times. In the in-switch model nearly all of these operations are eliminated

owing to the pipelined, high-throughput AgLUs. Another advantage of the in-network reduction is reducing network traffic and the number of data

copies in the processor. From the above discussion, we infer that the application characteristics that maximizeMPI-FPGA benefit are, first, a large

number ofMPI collectives, especially Allreduce and Allgather, and, second, reductions with largemessage sizes.

6 EVALUATION

We implemented and testedMPI-FPGAon a two-nodeFPGAsystemusingXilinxAlveoU280boards and the standardXilinx development tool suite.

Each board exposes two 100 Gb/s QSFP128 interfaces and a PCIe Gen3 ×16 interface. Vendor-provided IPs (Xilinx QDMA with AXI4-Streaming

interface and Aurora) were used to implement the DMA engine and transceivers. The design is coded in Verilog HDL. We have provided the

FPGA-to-FPGA latency and peak bandwidth of the Alveo U280 card in Table 2. The bandwidth starts to saturate at a message size of just under 1

KB. The information in this table is used during the simulation, which is discussed in the next paragraph.

GiventhechallengesofHDLcoding,anefficientcycle-accuratesimulator isessential forexploringa largenumberofnodes.Thesimulatorused in

this article is an versionof that described inReferences33,44updatedby changing the transceiver parameters collected from the two-node testbed

(Table 2). The simulator is implemented in C++; every hardware module in the RTL model has a corresponding class in the simulator. These classes

are organized in the same hierarchical structure as the RTL model. To give the cycle-accurate simulator good extensibility, we define an interface

standard for all hardware modules. We adopt a producer-consumer model with every module being both a producer and consumer. The simulator

has been validatedwith respect to the RTL code for the two-node FPGA system; the behavior of RTL simulationmatches the simulation.

For cluster tests, we target Xilinx XCVU13P FPGA devices. The performance results for the FPGA cluster are obtained from a cycle-accurate

simulator.Resourceutilization is reportedusingVivadoDesignSuite2019.2. Theoperating frequencyof thecurrent implementations is250MHz.For

the CPU reference, benchmarks were run on the Stampede245 Skylake (SKX) compute cluster, accessed through XSEDE, with 48-cores per node (2

sockets) 2.1GHz Intel XeonPlatinum8160CPUs, and a 100Gb/s IntelOmni-Path (OPA) network (fat tree topology).Weused IntelMPI 18.0.2 as an

Intel-compatibleMPI compiler and launcher as recommended for the TACCStampede2 cluster.We found that it usually gives a better performance

compared toMPICH 3.2.

To assess the efficiency ofMPI-FPGA, we compare the performance with respect to the CPU cluster for Allgather, Allreduce, Broadcast, Gather,

Reduce, Reduce_scatter, and Scatter operations using the OSU micro-benchmarks (v5.6.2).46 The study investigates a range of message sizes. For

FPGA-based indirect networks, we considered three switch designs: indirect-8, indirect-16, and indirect-28, which denote switches with radix-8,

-16, and -28, respectively. Radix-28 was the highest radix we could implement on the XCVU13P FPGA according to the number of available GTY

transceivers.

6.1 Resource utilization

FPGA resource consumption is shown in Table 3 for four different designs (direct and indirect networks). As discussed previously, each AgLU

supports a different set of operations. Depending on application requirements, the user can remove the support for unused operations or add

user-definedoperations; these actions decrease or increase resource utilization, respectively. The current result is basedonusing floating point add

TAB L E 2 Inter-FPGA latency and bandwidth for Xilinx Alveo U280

Parameter (FPGA-to-FPGA) Latency (ns) Peak bandwidth (Gb/s)

Value 440 95.9

TAB L E 3 Resource usage on Xilinx XCVU13P FPGA devices

Design LUT FF DSP BRAM URAM #SA #AgLU

Direct 401,852 (23.3%) 448,117 (13.0%) 1441 (11.7%) 454 (16.9%) 6 (0.4%) 6 144

Indirect-8 700,409 (40.5%) 1,062,680 (30.7%) 2561 (20.8%) 523 (19.4%) 0 (0%) 8 256

Indirect-16 1,408,301 (81.5%) 2,126,184 (61.5%) 5121 (41.7%) 987 (36.7%) 0 (0%) 8 512

Indirect-28 1,551,853 (89.8%) 2,349,600 (68.0%) 4481 (36.5%) 1543 (57.4%) 0 (0%) 4 448
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operation (double-precision). Overall, BRAM utilization is dominated by serial transceivers, input FIFO buffers, and the DMA engine, while the L1

switch accounts for a large fraction of DSP, LUT, and FF utilization.

According to Table 3, the overall utilization increases with the radix of the switch. For all designs except indirect-28, the number of SAs is equal

to the number of ports. There the number of SAs needed to be reduced in order to fit the entire design onto the FPGA. This is because the number

of AgLUs for each CGR unit increases with the radix of switch. The critical resource is LUTs with the CGR units constituting a large fraction of total

LUT utilization.

6.2 Performance ofMPI collectives

We evaluatedMPI-FPGA for seven different MPI collectives using the OSU Micro-benchmarks. For all collectives, double precision floating point

was used. The results were averaged over 1000 iterations (with 200warm-up iterations) and five different runs (different node allocations).

6.2.1 Overall collective latency

Figures 8 and 9 show the simulation results of MPI andMPI-FPGA collectives for small (4 Bytes to 4 KB) and medium-to-large message sizes (4 KB

to 4MB) for 32, 64, and 128 nodes using theOSU benchmarks. The reported average latency is the average time it takes for the processes to finish

(D)(C)(B)(A)

F I GURE 8 MPI CPU cluster (SKX) versusMPI-FPGA execution times for 32, 64, and 128 nodes: (A) osu_allgather, (B) osu_allreduce, (C)
osu_bcast, and (D) osu_gather

(C)(B)(A)

F I GURE 9 MPI CPU cluster (SKX) versusMPI-FPGA execution times for 32, 64, and 128 nodes: (A) osu_reduce, (B) osu_reduce_scatter, and
(C) osu_scatter
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the operation. Processor-FPGA communication latency is included in the time. To isolate the impact of the design under study, for example, from

contention at the PCIe interface, we focused simulations with one process per node.

One of the advantages ofMPI-FPGA is that utilization of the application layers in the network stack (such asMPI) can be bypassed for the nodes

associatedwith root and intermediate processes because communicator support is offloaded, while reduction operations (if any) can be performed

by a network switch. Although having a low-latency network topology (such as a fat tree) for the reference CPU cluster (as opposed to 3D torus for

the FPGAcluster) can offset the aforementionedbenefits, we observe thatMPI-FPGAhas a higher overall performance. As is evident fromFigures 8

and 9,MPI-FPGA speedup relative to the CPU cluster is higher for Allreduceoperation, since a greater number of nodes corresponding to the inter-

mediate processes are involved and data volume is reduced during transfer. For the Reduce_scatter operation, the switch corresponding to the root

process is able to perform the reduction on incoming data received by ingress ports and then scatter the result directly. This effectively bypasses

the processor as it eliminates the need to transfer data to the processor to perform reduction and scattering.

To view the results from a different perspective, Figure 10 shows the average speedups for each of these collectives on 32, 64, and 128 nodes.

The geometric mean is used to summarizeMPI-FPGA speedup ratios with respect to different message sizes.47 The speedup ratio ranges from 2.0×
to 32.6×.

MPI-FPGA achieves higher performance than the CPU cluster for both small and medium to large message sizes. The central reason is that

MPI-FPGA does compute-in-the-network. This bypasses the processor in the nodes corresponding to the root and intermediate processes, which in

turn reduces the latency, especially for short messages. Also,MPI-FPGA utilizes a streaming interface with fine-grained communication as opposed

to processor-based bulk transfers involving large buffers; this helps for longmessages.

With respect to problem size, of note is that the MPI-FPGA speedup is maintained as the number of processes grows; this indicates the

expected benefit for larger systems through reduced network traffic. Interestingly, the speedup usually increases for larger systems, espe-

cially for medium-to-long message sizes, showing that the advantage of MPI-FPGA scales. According to the results in Figure 10, the speedup in

medium-to-large messages is higher than for small messages (except Allgather) due to the efficient streaming-based interface. An exception is

Allgather where there is more wait time and traffic, the latter since the volume of data expands as it traverses the network.

In order to characterize the latency variation of MPI collectives across different iterations and different runs, we have tabulated the standard

deviation (std),maximum, andminimum latency formessages of size 1KBand1MBon32, 64, and 128nodes (SKX cluster), see Table 4. As expected

MPI collectives for largemessages (1MB) have larger variation than those of small messages (1 KB) and the deviation usually increases as we scale

out.

6.2.2 Indirect network study

Figure11shows theaverage latencyof twoMPI collectives,Allgather andAllreduce, for smallmessage sizes (4Bytes to4KB). Fourdifferent kindsof

networks are considered: direct, indirect-8, indirect-16, and indirect-28. These are a direct network with 3D torus topology and indirect networks

with radix-8, -16, and -28 switches, respectively. The switches in the indirect network have a default over-subscription of 3:1. Overall, use of an

indirectnetwork reduces theaverage latencycomparedwith thedirectnetwork.Asexpected, switcheswithhigher radix result inmoreperformance
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F I GURE 10 AverageMPI-FPGA speedup ratios for OSU benchmarks running on 32, 64, and 128 nodes of Stampede2 for short andmedium to

longmessages



14 of 20 HAGHI ET AL.

TAB L E 4 MPI collective latency variation on the Stampede2 compute cluster for message sizes 1 KB and 1MB on 32, 64, and 128 nodes

32 nodes 64 nodes 128 nodes

1 KB 1MB 1KB 1MB 1KB 1MB

MPI collective Std Max Min Std Max Min Std Max Min Std Max Min Std Max Min Std Max Min

Allgather 6.7 48.8 27.1 250.3 5466.9 4645.1 12.2 87 44.8 808.5 14164.9 11,327 17.2 130.2 66 990.7 26,439 23233.2

Allreduce 6.3 46 21 81.4 2224.9 1896.1 10.7 74.1 36.9 182.9 2614 1940 11.6 86.1 33.2 291.4 2985 1997.9

Bcast 0.6 18.1 16 39.5 493 349 2.1 26.2 17.8 35.2 546.2 412 3.4 36 22.8 116 816.8 402.9

Gather 4.2 26.9 9.8 5 2739 2712 4.4 41 21 7.4 5465 5425.9 25.9 151.1 44.1 35.3 11,007 10,847

Reduce 6.8 39.1 11.9 151.6 3720.1 3089.9 11.2 57 9.7 217.3 4524.9 3695.1 12.2 72 21.9 255.8 4709.9 3807

Reduce_scatter 6.6 38.2 16.9 113.4 2577.9 2033.9 10.1 62 25 187.2 4908.9 4150.1 8.4 61 31 203.6 4904.2 4195.7

Scatter 3.1 24.8 11 12.1 2781.8 2729.1 3.9 34.1 21.9 16.6 5549.2 5483.8 10 95.1 45.8 20.8 11,018 10,937

(A) (B) (C)

(D) (E) (F)

F I GURE 11 Performance comparison for short messages ofMPI-FPGAwith direct and indirect networks on 32-, 64-, and 128-node systems
for Allgather and Allreduce operations. (A) Allgather (32 nodes), (B) Allgather (64 nodes), (C) Allgather (128 nodes), (D) Allreduce (32 nodes), (E)
Allreduce (64 nodes), (F) Allreduce (128 nodes)

benefit. There are cases, however, in which this does not hold, for example, in (Figure 11F). There, having radix-16 switches could not reduce the

number of hops compared to the radix-8 switches. This slightly affects the performance as higher radix switches are more complex and have more

AgLUs. It should be noted that, for Allgather, average latency increases more rapidly compared to Allreduce as packets are combined throughout

the network.

Of interest is the comparison ofMPI-FPGAwith the commercial ASIC-based version of in-switch offload of collectives fromMellanox. Unfor-

tunately gaining access to SHArP-based systems is still extremely challenging. SHArP only supports Allreduce and Barrier collectives9 while the

reconfigurable approach embraces a diverse and extensible set of collectives. Although results published in SHArP may not be directly compara-

ble to those described here, as they are independent sets of experiments, it appears that theMPI-FPGA approach is competitive with SHArP and

could outperform SHArP beyond a certain message size.9 One likely reason is that reduction of messages that are larger than SHArP hardware

maximummessage size are performed by postingmultiple reductions. In contrast, inMPI-FPGAonly one request is sent. Also,MPI-FPGA has an effi-

cient streaming interfacewhere large processor packets are converted internally tomultiple small network packets. There is a newer version of the
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SHArP protocol which is based on streaming aggregation interface, but it is not optimized for small message size48 and the latency is higher than

that of the original work.9

Figure 12 summarizes the average speedup of indirect network switches over the baseline direct network switch (from Figure 11) for short

messages. The geometric mean is used to summarize speedup ratios over different message sizes.47 The overall speedup ratio is between 1.2× and

1.9×.
As a further evaluation we compared MPI-FPGA for an indirect network based on radix-28 switches with a SHArP-based MVAPICH2-X

implementation.49 Figure 13depicts the scaling ofMPI-FPGAwith radix-28 switches (FPGA-indirect-28) and the SHArP-based solution in theMVA-

PICH implementation (MVAPICH2-X-SHArP) for Allreducewith 2048 bytemessages. The number of nodeswas varied from2 to 128with oneMPI

processpernode.Thedata forMVAPICH2-X-SHArP iscollected fromReference49runningonTACCFronteraHPCsystem.The figuredemonstrates

that the FPGA-based approachmay be able to outperform high-end CPU clusters optimizedwith SHArP technology.

6.3 MiniApp-level benchmarking

ToshowtheefficacyofMPI-FPGA in applicationperformance,wehavebenchmarkedvariousHPCkernels andpseudoapplicationsusingNASparallel

benchmarks (NPB)50 as well as twoMiniApps from theMantevo project (miniFE51 andHPCCG52).
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F I GURE 13 Scaling comparison of the Allreduce operation betweenMVAPICH2-X-SHArP49 andMPI-FPGAwith radix-28 switches for 2048
bytes up to 128 nodes
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TAB L E 5 Performance comparison of NAS parallel benchmark, miniFE, and HPCCG, forMPI CPU cluster (SKX) versus
MPI-FPGA for 64 and 128 nodes

64 nodes 128 (121a) nodes

Benchmark/

application SKX (ms) FPGA (ms)

Improvement

(%) SKX (ms) FPGA (ms)

Improvement

(%)

CG 40.3 39.7 1.45 69.9 68.5 2.06

IS 151.7 150.3 0.89 88.3 85.7 2.96

MG 536.7 532.4 0.80 303.3 294.5 2.92

SPa 708.3 707.7 0.08 626.7 625.5 0.18

miniFE 32886.9 32868.2 0.06 71052.9 71037.8 0.02

HPCCG 24890.9 24858.9 0.13 58268.6 58247.4 0.04

a For the SP benchmark the number of processes must be a perfect square.
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F I GURE 14 CPU cluster (SKX) execution time andMPI-FPGA speedup of Allreduce (Reduce) collectives used in the applications under study.
Each collective instance is evaluated separately, for example, withMG having six instances of Allreduce. (A) NAS parallel benchmarks; (B) miniFE
andHPCCG

When running the benchmark codes on the FPGA cluster we found that the addition of barriers simplified the instrumentation. To ensure that

we compared the FPGAcluster resultswith the best possible baseline,we also created versions of the baseline codeswith barriers. For the baseline

cases, original and “barrier,” we found that the performance of the two versions was indistinguishable.

For NPB, class A is used for CG and SP, the others (IS and MG) are benchmarked with class C. The results are averaged over five runs. Table 5

compares NPB, miniFE, and HPCCG for the CPU cluster (SKX) andMPI-FPGA for 64 and 128 nodes. Analyzing the NPB results, it can be inferred

thatMPI-FPGA improvement increases scales with the number of nodes. This aligns with the discussion of the LogGP model in Section 5. For MG,

MPI-FPGA achieves considerable improvement (about 2%on128nodes) as there are a large number ofMPI collective calls in this benchmark. For IS

there is anMPI_Allreducewith a largemessage size inwhichMPI-FPGAbenefits from in-network computing (about3% improvement on128nodes).

ForminiFEandHPCCG,weused48OpenMPthreadsonSKXas thisnumberof threadsyielded thehighestperformanceaccording.Theproblem

size used forminiFE applicationon64 (128) nodes is 512 × 256 × 64 (512 × 512 × 64).When scaling up, theproblemsize per processor is kept fixed

(weak scaling). Our approach provides satisfactory speedup as one of theAllreduce collectives is called for 400 times.Weak scaling ismeasured for

theHPCCGbenchmark aswell (the grid dimension on each process is 100 × 100 × 100). Similar tominiFE, one of the Allreduce collectives is called

for a large number of times (298).

Figure 14 shows theCPU cluster (SKX) execution time andMPI-FPGA speedup for Allreduce (Reduce) collectives used in (a) NPB and (b)miniFE

andHPCCG.Becauseeachapplicationmayhavea largenumberofcollectives,weonlyusedAllreduce: thesearecommonandaccount formostof the

collective execution time. Each instance is evaluated separately. Also, for those collective instanceswithmultiple executions, we take the arithmetic

mean of their execution times (maximum time among all processes). The exception is CGwhich does not use Allreduce: Reduce was used instead.

6.4 Discussion

We observe thatMPI-FPGA provides significant performance improvement for some of the benchmarks. The current access to TACC Stampede2

limits the number of nodes in our experiments to 128.We also observe that the performance improvement for proxy applications (a few percent) is
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much less than that of the collectives themselves (factorsof2.0×–32.6×). As alreadynoted this difference is due to the time spentwaiting for laggard

processes (known as process skew) that affects any network enhancement.9 In the applications used here the process skew is generallymuch larger

than the communication latency itself.

While coping with process skew is beyond the scope of the current report, there are obvious paths forward. For example, we plan on apply-

ing stepwise refinement to the application benchmarks to transform blocking collective operations (e.g.,MPI_Allreduce) to non-blocking and more

advanced variants offered in newer versions of theMPI standard. This will lead, first, to the non-blocking operations (cf.MPI_Iallreduce) available in

MPI-3.1, second, to the latest persistent collectives53 offered in the newly completedMPI-4 standard (cf.MPI_Alltoall_init), and, finally, to proposed

partitioned collective communication54 operations planned forMPI-5 (cf.MPIX_Pallreduce_init).

In updating the benchmarks with newer collective primitives, we introduce greater scope for MPI to achieve overlap of communication and

computation. This occurs by widening the gap between the initiation of non-blocking or persistent collective operations and their subsequent

completion. MPI implementations offering asynchronous progress plus hardware offload, notably MPI-FPGA, can exploit such overlap efficiently

for sufficiently large messages. Secondarily, the planned transfer paradigm supported in the more recent APIs is particularly good at removing

setup and tear-down overheads from the critical, per-operation path, and selecting the right mode of collective implementation, such as using the

MPI-FPGAoffload system.Finally, partitionedcollectiveoperationsaredesigned toenhanceoverlapwhen thereare laggardprocessesby supporting

fine-grained production and consumption of sub-buffers (aka, partitions) that can be pipelined into the network, thereby reducing load-imbalance

penalties.

7 RELATED WORK

Previouswork has shown that significant performance speedups can be achieved by offloading collectives onto hardware. These generally enhance

the NIC,15-18 tightly connected with the processor via interconnects such as PCI, whereas the work reported here adds hardware support in the

switch. For instance, Arap et al.15 offload collectives onto an FPGA cluster; however, they do not mention any communicator support, nor do they

integrate into a switch. Schmidt et al.16 implementMPI_Reduce in an FPGA cluster for the AIREN network. Their reduction core consists of floating

point units and the output can be loopedback as the inputs for further accumulations. This architecture is simple, but lacks flexibility in its reduction

capabilities; it can only support one reduction at a time, while our design can support multiple reductions occurring simultaneously.

Thereareseveralotherhardwareoffloaddesigns implementedonFPGAs; theyalso lackcommunicator support.17,55 InReferences37,56collec-

tives on FPGA clusters are studied, but the emphasis is on scheduling algorithms. Other work acceleratingMPI with FPGAs includes.57,58 Portals59

adds programmability and hardware support for triggered operations, message steering, and atomic operations to the NIC. However, this network

interface emulates limited processing capabilities.60

A general solutionwas provided byVoltaire61 which included processing support in the router for collectives; thiswork differs fromours in that

the offload is to an in-router CPU rather than a hardware augmentation of the switch.

The IBM BlueGene systems62 offload collectives into the network router and also, to some degree, handle communicators. For instance,

BlueGene/Q63 provides a summing unit for accelerating collective operations which is available for subcommunicators. BlueGene/Q, however,

requires class routes for collective operations and there are only 13 class routes available: a node canonly be in 13 communicators before hardware

acceleration for collectives becomes unavailable. More importantly, it does not support packet processing in the network where the accelerator

must maintain its own memory.62 Overall, the BlueGene solutions show the difficulties in implementing in-switch collective support in fixed logic.

While high wire utilization is achieved, there are still many limitations. Collectives are supported in a separate network. The number of communi-

cators is bounded and restricted to either the whole network or a rectangular subset. The collectives and the operations on those collectives are a

fixed subset and not extensible.

Recent work by Mellanox9 offloads MPI collectives to fixed logic switches using reduction trees for short message size. It appears to address

many of these problems, but also has similar limitations, in particular, supporting only a small number of simple operations with no extensibility;

also there are no published (or generally available) design details. We compare our work with the published results in the evaluation section. A

hardware-based streaming aggregation capabilitywas later added toprovidehighbandwidth for largemessages.48 Finally, the authors inReference

49 designed, implemented, and evaluated SHArP-based solutions forMPI_Reduce andMPI_Barrier inMVAPICH2-X.

In contrast to previous work, we are the first to offload both CTs and the processing of an entire collective operation in hardware while

supporting irregular communicators and providing hardware acceleration of collective packet processing.

8 CONCLUSION

We present a comprehensive solution to processing collectives in network switches with reconfigurable logic. This has the advantage over fixed

logic alternatives of being able to support capabilities as needed. This includes varying the supported operation types and numbers of simultaneous
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operations, but also enabling more general user-defined processing in the network. We have demonstrated the last of these advantages in other

work.4,28

As part of this solution we present a new method for supporting MPI communicators and accelerating collectives in the network switch. We

beginbyconsidering themovement towardsexascalecomputingandtheneed foroffloadingcollectivesandcommunicator support intohardware, in

particular, forcollectivesoccurringover irregularcommunicators.Wefindthat storingentireprocessgroups in thenetwork isnotascalablesolution.

We then introduce the CT, which takes advantage of the properties and patterns of collective communication in order to provide the accelerator

hardware with theminimum amount of communicator information needed to perform collectives.

A novel 2-level switch design is introduced to efficiently process in-network collectives; yet it remains flexible enough to embrace user-defined

collectives.Weprovideastreaming interface to improve theperformance for longmessages.Bysupportinga full offloadof sevenpopularcollectives,

we remove nearly all of the collective operation software fromMPI and implement the functionality in the switch. The hardware support has been

integrated into a reconfigurable router which remains portable enough that it is independent of the type of router. We evaluate MPI-FPGA with

respect to a CPU cluster and find that the in-switch accelerator achieves significant and scalable speedups.

As part of futurework, we aim to augmentMPI-FPGA to support non-blockingMPI collectives to provide communication-computation overlap

and address the process skew challenge. Also, we would like to further augment this approach by supporting persistent collectives and partitioned

communication.
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