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1 | INTRODUCTION

Abstract

There has been much effort in offloading MPI collective operations into hardware.
But while NIC-based collective acceleration is well-studied, offloading their processing
into the switching fabric, despite numerous advantages, has been much more limited.
A major problem with fixed logic implementations is that either only a fraction of the
possible collective communication is accelerated or that logic is wasted in the applica-
tions that do not need a particular capability. Using reconfigurable logic has numerous
advantages: exactly the required operations can be implemented; the level of desired
performance can be specified; and new, possibly complex, operations can be defined
and implemented. We have designed an in-switch collective accelerator, MPI-FPGA, and
demonstrated its use with seven MPI collectives and over a set of benchmarks and
proxy applications (MiniApps). The accelerator uses a novel two-level switch design
containing fully pipelined vectorized aggregation logic units. Essential to this work is
providing support for sub-communicator collectives that enables communicators of
arbitrary shape, and that is scalable to large systems. A streaming interface improves
the performance for long messages. While this reconfigurable design is generally appli-
cable, we prototype it with an FPGA-centric cluster. A sample MPI-FPGA design in a
direct network achieves considerable speedups over conventional clusters in the most
likely scenarios. We also present results for indirect networks with reconfigurable
high-radix switches and show that this approach is competitive with SHArP technol-
ogy for the subset of operations that SHArP supports. MPI-FPGA is fully integrated into
MPICH and is transparent to MPI applications.
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Collectives are often a large fraction of total communication in high performance computing (HPC) applications!® and have been shown to bot-
tleneck performance.””? As collectives are integral to HPC, and since much communication in production HPC is based on MPI (see e.g., Reference
6), addressing the acceleration of collectives necessarily means dealing with them within an MPI framework. Collectives in MPI implementations
(such as MPICH™) generally consist of point-to-point messages with computations in between. Thus much support has been added at the software

level;”1112 however, the addition of these algorithms has greatly complicated the software stack.!®

Parts of this work have been presented at workshops with no proceedings, published in an extended abstract, and published in a conference proceedings.
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In this work we offload MPI collectives into FPGA hardware (MPI-FPGA) and, in particular, into logic appended to the communication switches.
In general, handling collectives in hardware has several benefits. First, it removes those extra layers of software (e.g., Reference 13); second, the
hardware implementations can be an order-of-magnitude or more faster than the software they replace; and third, it frees up the processor for
other work (e.g., Reference 14). Handling collectives in the switch, rather than in the NIC,%>? adds other advantages: it distributes the execution
of collective computation throughout the network, rather than serializing it in the source (for broadcast) or the destination (for reduction); and it
reduces network load as messages often only travel a single hop before being merged or duplicated.

Compute-in-the-network has been studied since the early days of computing through structures such as adder trees and sorting networks; 2 it
is also fundamental to the more powerful PRAM models explored in the 1980s.2* However, there appear to be just two modern commercial versions
of in-switch computing: the IBM BlueGene family®22 and, in current use, certain switches from Mellanox.” Both of these have limitations (described
below) that are, in part, the result of being ASIC-based and so having strictly bounded capabilities with limited flexibility. Moreover, being commercial
products, few details are available about their implementation, which curtails their use as the basis of further research.

There are at least two plausible architectural targets for using reconfigurable logic for in-switch compute-in-the-network. One is to use recon-
figurable logic in the router (already common for other purposes?®) in an indirect network. A second is in FPGA-centric clusters with direct
FPGA-FPGA interconnects.?4?7 In this work we consider both indirect and direct networks.

Implementations with reconfigurable logic have several inherent advantages over those with fixed logic. First, they are not limited to a small,
fixed set of operations, for example, SHArP only supports MPI_Allreduce and MPI_Barrier operations’ and a few primitives. Second, hardware
resources can be configured to match application requirements, for example, by increasing the arithmetic support as needed. This can even be done
at runtime for applications in which the communication data volume is unpredictable.?® Third, support can be extended beyond simple datatypes to
more complex structures such as matrices, tensors, and user defined datatypes.*28 Fourth, compute-in-the-network can be generalized still further
to support altruistic or opportunisticcomputing.2? And finally, since reconfiguration time is similar to program load time, only resources that will actu-
ally be used need to be configured; the remaining logic can be used for other purposes. All of these scenarios can be accomplished without incurring
the cost of designing and fabricating ASIC chips for each application, or devoting ASIC resources to functions that rarely occur.

An essential part of implementing MPI collectives is handling the critical MPI feature of the communicator; these are used to define a safe
communication context for message passing within a specific group of processes. Communicators have significant scalability issues,® meaning we
cannot implement them in hardware with the same methods used for managing communicators in software; for this reason in-switch implementa-
tions sometimes limit communicator geometry.22 In this work we introduce an in-switch design for general communicator support that consumes
minimal memory resources. Moreover, as the resources are guaranteed to grow no faster than the log of the number of nodes, this solution is likely
to remain relevant far beyond exascale.

The main contribution is the design, implementation, and evaluation of a set of FPGA-based in-switch MPI collectives. We believe this to be
the first FPGA version to be fully integrated into a general router. To achieve this end, a novel 2-level in-switch design is proposed with full-pipeline
capability. Essential to this design are the seamless integration to a general router, added hardware support for aggregating (reordering) packets for
reduce-type (gather-type) operations, and the flexibility to add more computational resources as the switch bandwidth increases. MPI-FPGA is fully
integrated into MPICH; MPI-FPGA is therefore transparently usable by any MPI application. It is also easily extended to support additional collec-
tives or integrated into other MPIl implementations. A second contribution is the finding that all collective routing decisions—including those with
arbitrarily complex communicators—can be made using only a small amount local information. Finally, an efficient streaming interface is provided
to ensure a fine-grained communication specially for long message sizes.

Our experiments show that MPI-FPGA in a direct network can achieve a significant improvement for MPI collectives over a CPU cluster for a
large range of message sizes. For FPGA-based high-radix switches in an indirect network it is possible to make comparisons with SHArP technology:
MPI-FPGA is competitive and improves the performance of Allreduce operation. We have also experimented with NAS parallel benchmarks and
two MiniApps from the Mantevo project3! (miniFE and HPCCG). The most significant result, however, is that this performance is possible while
simultaneously supporting reconfigurable in-switch computing in MPI collectives and many extensions (e.g., Reference 4).

The rest of this article is organized as follows. Section 2 provides background information on some of the key concepts used throughout this
article. Section 3 introduces in-network communicator support and it sheds light on some of the design choices. Section 4 describes in detail the pro-
posed switch and the modules used in the design. Section 5 analyzes and compares the performance of our approach (in-network collective offload)
with that of the existing approach. Section 6 presents experimental results. In Section 7, related work is discussed and Section 8 concludes the
article.

2 | CONCEPTS

We review the MPI software stack to identify opportunities for, and the benefits of, offloading collectives. Next, we discuss our hardware model. We
then cover MPl communicators and the difficulties they create for hardware implementations. Finally, we discuss the proposed streaming interface
needed to efficiently support long messages.
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21 | MPIcollectives

MPI collectives are generally implemented so that processes execute sequences of point-to-point messages and computations. Various algorithms
are used, but priority is given to those that avoid congestion and minimize the total number of packets. However, these may translate into more work
in software for deciding which chunks of data to send and receive, and the processes with which to communicate. For example, a trivial implemen-
tation of MPI_Reduce has every process send data directly to the root and leads to congestion in a large network. In contrast, with a binomial tree
algorithm, as seen in Figure 1A, each process could be either a leaf, intermediate, or root process. Leaf processes simply send data to their parent,
but intermediate processes must determine the identities of their children, receive data from them, and perform the reduction operation on the
received data. They then determine their parent and then send their intermediate result. In summary, this algorithm lessens the number of packets
in the network and unclogs the root, but it forces much additional work in software. Other algorithms that are commonly used in collectives—such
as recursive halving and recursive doubling—can similarly improve the performance of the collective, but also require that each process perform

extra work.

2.2 | MPI-FPGA—overview

MPI-FPGA removes the need for this software and moves its functions into the network. Throughout this article, we refer to the CPU (leaf nodes) as
the processor and to the FPGA-augmented switches as the network. MPI-FPGA requires no changes to the MPI API and so is transparent to applica-
tion; this makes it completely portable: it can be integrated into HPC applications without requiring the programmer to have any knowledge of the
underlying hardware or make any changes to existing programs. Rather, MPI-FPGA constructs access capabilities automatically through enhanced
middleware. The design makes no assumptions about the type of end-systems being used, as it only affects data as it is routed through the switches
in the network. We create new functions for each offloaded collective (e.g., MPI-FPGA_Reduce), and place these underneath existing MPI collec-
tive functions (see Figure 2). If the hardware supports the offload of a particular collective, then the MPI-FPGA replacement function is used. If a

collective does not have offload support, then it is performed by the software as usual.
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FIGURE 1 Subset of commonly used MPICH collective algorithms. (A) Binomial tree; (B) recursive doubling; (C) recursive halving

MPICH + MPI_FPGA
MPI Application |

MPI Collectives | MPI_FPGA
mpipt2rt | | Collectives

ADI |

Channel Interface |

FPGA Driver |
FPGA Switch

FIGURE 2 MPI-FPGA software stack
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The basic operation of MPI-FPGA is as follows. Upon receiving a valid packet header from the processor, the switch begins the collective opera-
tion and performs all of the necessary steps to complete it. If an MPI process is not required to receive the final data—such as the root processin a
broadcast operation—then control returns to the user application as the network is responsible for progressing the message. If the calling process
does need to receive the result—for instance, all processes in an Allgather operation—then the process waits until it is interrupted, which happens
when the final collective results have been received and passed to the processor from the network.

In this work, we focus on blocking MPI collectives; the extension to nonblocking operations is simple. In the MPICH implementation of MPI
middleware,° all the functionality of the abstract device interface (ADI) is maintained. This work currently uses MPICH-3.2;32 tasks such as packing
and computing predefined reduction operations are performed identically in this design. At the MPICH channel interface, we add code to transfer

data into the network, with the actual FPGA hardware sitting below the channel interface (see Figure 2).

2.3 | Hardware model

For integrating MPI-FPGA, we consider both direct and indirect networks. For simplicity, in both cases the network switches consist entirely of
FPGAs. Since the configurable parts of the design are modular, the extension to systems that combine fixed and reconfigurable logic is straightfor-
ward. For other advantages of fully configurable switches see Reference 33. For direct networks, this is identical to clusters with direct FPGA-FPGA
interconnects (e.g., References 24,25). Each FPGA switch is attached to the processor through a PCle interface and FPGAs themselves are
connected directly together through a secondary network (3D-torus in this work). For indirect networks the FPGAs are proxies for high-radix
switches with integrated configurable logic and are attached to multiple processors through NICs. We currently use a fat-tree network (spine-leaf
architecture®*). Switches in the direct (indirect) model are homogeneous (non-homogeneous) between leaf and spine switches.

Figure 3 shows the hardware model of the switch. To simplify the figure, transceivers and DMA engines are duplicated on the left and right. A
collective control module (CCM) manages the coordination between different MPI processes for a collective operation. Inside the 2-level switch
are, first, configurable gather reduction (CGR) units that perform the gather or reduction operation on incoming packets, and, then, hierarchical
switches for reordering or redirecting packets. The CCM and CGR units are discussed in depth in Section 4. Processor-FPGA and FPGA-FPGA
communication, as well as in-switch processing, are based on a streaming interface: data is pushed to the DMA engine, transceivers, and buffers,
respectively, without having to wait for the entire packet to arrive. User logic units surround the switch for pre- and/or post-processing. Although
thisdesignisimplemented on FPGAs, its portability ensures that it is independent of the type of hardware used. Units added in support of any typical
network switch can be inserted or removed seamlessly.

24 | Communicators

Communicators are an essential MPI capability and must be supported in any useful system; yet, little work on collective offload into the network
addresses it. While the default communicator is MPI_COMM_WORLD, where the process group is the entire set of processes,> many MPI programs
use multiple communicators having subsets of processes. A typical example where sub-communicators are used is when the workload is partitioned
among an array of MPI processes and collectives are performed on rows or columns of processes. The most common way to create these partitions
is to call a function like MPI_Comm_split.

All communicators have a context ID, identifying the communicator, and a process group containing the list of processes in that communi-

cator. When a new communicator is created, a new process group is created and stored in memory. In large systems, with correspondingly
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large communicators, the memory consumption of these process groups leads to scaling issues.®® To have an entire process group in FPGA
memory would require storing the list of all MPI processes included in the communicator. The number of bits required would be the product
of COMM_SIZEand BITS_PER_PROCESS, meaning that the resource utilization would grow linearly with the communicator size. For a system with
thousands of nodes, it would require many thousands of bits in the switch for each of many communicators in a single application. Since high perfor-
mance routing depends on having routing information close to the switching logic, replicating information about these entire process groups would

quickly use up these resources, even for mid-sized clusters.

2.5 | Streaminginterface

While current MPI implementations rely on bulk transfers involving large buffers,3¢ we adopt a streaming interface for both processor-FPGA and
FPGA-FPGA communication. The advantage of providing this support is three-fold. First, the latency of collective operations is reduced as data
is processed/transferred cycle by cycle. Second, the streaming interface facilitates fine-grained communication-computation overlap. And third, it
avoids the congestion caused by messages with a large payload.

To ensure the finest granularity we convert (inside the switch) processor packets into multiple small-sized network packets. Decoupling these
two kinds of packets is beneficial as processor packets may contain a large payload that could block other packets from progressing. Network pack-
ets, on the other hand, are small-sized with replicated headers. The size of the packet is itself one of the fields in the new header. The structure of
processor and network packets is discussed in more detail in Section 3.1. We set the phit size to 256 bits; however, the DMA engine can process two
phits on each cycle.

Flow control is implemented in a standard way using back-pressure and stalling without incurring costly handshakes. There is a margin m in
the FIFOs; upon reaching this threshold the upstream node is notified to stop sending packets. When the buffer gets depleted past the margin the

upstream node is notified to resume sends.

3 | IN-NETWORKCOMMUNICATOR SUPPORT

In this section we introduce the communicator table (CT) design, which supports collectives across any intra-communicator. This design takes advan-
tage of the existing MPI collective algorithms in order to minimize resource utilization and latency. For simplicity, in this section and the next section

we assume a direct network. The design is analogous for indirect networks; necessary modifications are given in Section 4.4.

3.1 | Communicatortable (CT)design

The purpose of the CT is to manage communicator information that is needed by the CCM to make packet forwarding decisions. To minimize the
resources required, the table only holds the local data that is necessary to complete the implemented collectives. This means that each switch needs
away of obtaining this local data, which is a list of the other MPI processes with which it must communicate to perform each collective. The contents
of this list, for a given communicator, can be determined immediately after its initialization.

Table 1 shows a subset of MPICH algorithms for widely used collectives.!! The three most commonly used are binomial tree, recursive halving,
and recursive doubling. The ring algorithm is also common, but since its implementation is trivial we focus on the others. By being able to implement
these three algorithms, we can perform all of the collectives that use them. Returning to Figure 1, for each MPI process we can identify the subset of

processes with which a given MPI process must communicate. For example, process O must communicate with the following process set in all three

TABLE 1 Algorithms commonly used by MPICH for processing collectives!!

MPI collective algorithms

Reduce Binomial tree Recursive halving and doubling
Allreduce Recursive doubling Recursive halving and doubling
Broadcast Binomial tree Binomial tree and ring

Scatter Binomial tree Binomial tree

Gather Binomial tree Binomial tree

Allgather Recursive doubling Ring
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FIGURE 4 (A)CT structure, (B) processor and network packet structure

algorithms: 1, 2, 4. Storing this subset in switch memory is much more efficient than storing an entire process group as it is equal to the log of the
communicator size (which can be proved directly from the properties of binomial trees).

As shown in Figure 4A, the CT holds a row for each communicator of which the current switch is a member. In each row, we store a small amount
of meta-information: the communicator size, the MPI process in the communicator with which the current switch is associated, and the subset of
processes with which the switch will be communicating. If there are multiple processes per node, one of the processes (the parent) is designated
as the local MPI process. Each communicator entry is indexed into the table using its context ID. For any incoming packet, it is thus easy to look up
its communicator as the context ID is a field in the packet header. The current design supports 32 outstanding communicators with a table size of
around 1 KB; this is sufficient for up to 64 K MPI processes.

Once the switch has a table entry for a given communicator, it can use that data to perform any collective that uses a binomial tree, recursive
halving, or recursive doubling. For any collective algorithm in a communicator, each MPI process will communicate with the same subset of MPI
processes regardless of how many times the collective is called. Once a valid entry is loaded into the table, no updates on that entry are required
until the communicator is freed.

3.2 | Communicator support constraints and design choices

Number of outstanding communicators: To maintain line-rate packet processing and low latency for table lookup we constrain the memory depth
of the CT. Block RAM instances can be configured with different combinations of memory depth/width. For instance, in Xilinx FPGAs, the largest
width is 512 x 72 bits, which translates to 512 outstanding communicators. To make optimal use of buffering, we currently use 32 queues which
translates to supporting 32 outstanding communicators. However, this is a parameter that can be modified to support a smaller/larger number of
outstanding communicators.

CT size: Assuming that the maximum supported number of MPI processes and the number of outstanding communicators are MAX_R and N_C,
respectively, we can derive the following equation for the size of CT (according to Figure 4A):

Size = (Log(MAX_R) x (Log(MAX_R) + 2) + 8) x N_.C (1)

where OC represents the CT depth and the other terms are used to compute the width. Assuming the 512 x 64 memory instances of Xilinx FPGAs
(the extra 8 bits can be used for error correction), we limit the number of memory instances to achieve MAX_R, while making sure that it is small
enough to make the packet overhead negligible. We currently use MAX_R of 64K (16 bits wide), which leads to five block RAM (BRAM) instances (in
current generation Xilinx FPGAs).

Processor and network packet structure: Figure 4B shows the structure of these two kinds of packets. Message size in the processor packet is
replaced with the packet size in the network packet which requires fewer bits. Packet size stores encoded values (power of two numbers). The Dest
field is computed in the switch (by a route computation unit) and is 16 bits wide (equal to the bitwidth of the process rank). The context ID field is 5

bits wide as the maximum number of outstanding communicators is 32. The Operation field determines the supported operations f (sum, min, max,
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and logical operations) and the width is set to 4. Finally, 2 bits are reserved for supporting different collective algorithms. Generally, the bitwidths of

the fields are chosen to minimize packet header size; for the processor and network packets these are 8 and 6 bytes, respectively.

3.3 | CTentrycreation

When a new communicator is created in software, the switch needs a way of obtaining the CT entry from the processor. A new CT entry creation
function has been inserted at the end of each MPICH communicator creation function. This added function checks whether an MPI process is a
member of a new communicator and, if so, calculates the subset of MPI processes with which it communicates. This requires that, for each commu-
nicator creation function call, the processor calculates the physical addresses of the subset of MPI processes that will be stored in the table entry.
Once the new entry is created, the switch can handle new collectives occurring within this communicator. The addresses are then packaged along-
side communicator metadata (see Figure 4A) to be sent to the switch. Although this operation does lead to a small amount of overhead in creating
communicators, this overhead is only paid for once during communicator creation.

In addition to the CT, there is a forwarding table in each switch which stores a dictionary of global ranks (used by MPI_COMM_WORLD) as the
keys with the processor physical addresses as the values. When there are multiple processes in a node, multiple global ranks associated with the
processor appear in the forwarding table. This information is collected during MPI_Init (called only once at the start of the program). It is then
successively used in the routing phase. Since each new communicator could assign a new rank for the same process, storing the information in the
forwarding table for each new communicator has the potential to exhaust memory resources. Hence, the CT entry creation function sends the global
ranks of the processes instead of the actual rank of that specific communicator. As a result, the switch deals with the global MPI process ranks for

packet forwarding while the software on the processor considers the actual MPI process ranks (based on the communicator).

4 | IMPLEMENTATION
41 | Overview

The base design is a standard virtual channel router (see Figure 5 and References 33,37) extended with the proposed streaming interface. It uses
the classic four stage pipeline:3® route computation, virtual channel allocation, switch allocation, and switch traversal. In this example it is designed
to be used in an FPGA cluster interconnected in a 3D torus and so has six input and six output ports, each connected to serial transceivers.

To minimize back-pressure from switch to processor, the size of input FIFOs should be sufficient to tolerate the latency of the collective tree.
This happens if the tree is deep and the root has to wait a considerable amount of time for the leaf processes. We calculate the minimum buffer size

as in Equation (2):

min_buf _size = <m +d+q) x <L>> X Ph (2)
T_clk

where mis the flow control margin, d is the maximum depth of the tree-based collective algorithm (accounting for the number of nodes used in the
FPGA cluster), and q is a constant (set to 2) to provide slack for other operations to proceed. L, T_clk, and Ph are the link latency, clock period, and
phit size, respectively. The input FIFO size in the current design is 48 KB.

The MPI offload support is designed to keep the overall design modular: the accelerator architecture is portable to any other standard router.
The two key modules are the CCM and the in-switch collective support module. The former determines new forwarding and multicast destinations
for collective packets; it also contains the communicator support. The module is placed before the router so that the packets’ output ports can be cal-
culated during the route computation stage after it has been assigned a new destination. The latter is integrated into the L1 switch (see Section 4.3)

and is used for reordering, redirecting, and in-switch processing. Details follow in the next subsections.

4.2 | Collective control module (CCM)

The CCM (Figure 6) performs all of the algorithmic work found in the software of MPI_Reduce, MPI_Allreduce, MPI_Bcast, MPI_Scatter, MPI_Gather,
MPI_Allgather, and MPI_Reduce_scatter, as well as any other collectives implemented in the future. When packets enter the router, they first go
through the CCM. If they are not part of a collective operation, or are not destined for the current process, then they simply pass through unchanged.
If they are part of an offloaded collective and the destination address in the packet header matches that of the current process, then the CCM uses

the CT to determine new destinations for the packet.
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In order for the CCM to determine which collective a packet is a part of a collective, an opcode field has been added to the packet header. With
this MPI-FPGA can perform work for each collective algorithm in parallel and then use the opcode to decide which algorithmic results to use for the
packet (see Figure 6). Within each of these algorithm blocks, MPI-FPGA performs computations using input from the packet header and the CT entry.
For a reduction, the router calculates the parent node to send the packet to; or, for a broadcast, all of the child nodes to multicast the packet to.

The CT also eases the computation required to calculate these destinations. When a packet needs to be sent to multiple destinations, these are
also adjacent in the table entry. For multicast a bit vector is used to keep track of these destinations; this results in much less work than if destinations
were calculated repeatedly. Once a packet passes through the CCM, it is passed to the route computation stage (in the routing pipeline) where its
output port is calculated.

As in MPICH-3.2, the implementation also supports multiple algorithms for the same collective operations. The choice of algorithm is often

determined by packet size. In MPI-FPGA we support algorithm selection by adding bits to the packet header opcode field.
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43 | Two-level switch

As shown in Figure 5, the overall switch design consists of hierarchical switches (L1 and L2) for directing packets. The L1 switch directs packets
to the correct output port and is followed by output FIFOs. The current design supports a round-robin arbitration policy. Note that the arbiter is
disabled for the Eject port; once the communication between the switch and the processor is established, packets in other input ports do not contend
for the Eject port as the network packets are again converted into processor packets. To support processing of the collectives there is an in-switch
collective support module that is seamlessly integrated to the L1 switch. This module performs the gather-type (Gather and Allgather) or reduce-type
(Allreduce, Reduce, and Reduce_scatter) operations. If network packets are identified as part of one of these collectives (by their opcode field), they are
transferred to the in-switch collective support module. It has two collectors, two L2 switches, and CGR unit(s). The first collector is responsible for
waiting for all packets corresponding to the child MPI processes. The first L2 switch and the last collector are only used for gather-type operations.
The former reorders incoming packets according to their sender’s rank, while the latter serializes the gathered data. Finally, the last L2 switch is
responsible for directing the CGR outputs to the correct switch output port.

The CGR unit consists of configurable vectorized aggregation logic units (AgLUs), as shown in Figure 7. Each vectorized AglLU is cascaded to
match the number of switch ports to perform concurrent reductions with full pipelining. The aggregation is made up of two separate paths with
vectorized AglLUs chained together which are combined at the end. Each vectorized AglLU is 256-bits wide (in this design) which can accommodate
multiple AgLUs based on the bitwidth of the datatype being used. The CGR unit also has gather and reduction tables that are indexed and capable
of supporting multiple gathers and reductions, respectively, and with different communicators. There is a counter field inside the tables to track the
number of processed phits; this is then compared with the count field (total number of phits according to the message size). When the threshold
is reached, a completion notification is sent to the DMA engine. The CCM configures the value of the count field in the reduction (gather) table
according to the processor packet header. Count and counter fields have the same bitwidths as the message size in the processor packet header. There
are six columns for the reduction (gather) matching the switch radix for the current design (3d-torus), each with a bitwidth equal to the phit size.

To support multiple simultaneous reductions (gathers), there are SA (simultaneous aggregations) number of CGR units. Clearly, SA can be equal
to the radix of the switch; but it also can be fewer depending on the available hardware resources (discussed in Section 6.1). There are Rx4 AglLUs
(64-bit) for each CGR unit (with a double data type), where R is the radix of the switch. This results in SAxRx4 AglLUs in the L1 switch.

The arithmetic unit is constructed using standard methods including the use of vendor IP The current design supports sum, min, max, XOR, AND,
and OR but is trivially extendable for other operations, including user specified functions.

This approach is flexible enough to support multi-user processing. When the number of jobs is small—not larger than the number of AgLUs ina
VAgLU—it is possible to divide phit size channels (each arrow in Figure 5), into 64 bit sub-channels and assign each of them uniquely to each job. In
this case, there is no resource/time sharing involved in the switch and each AgLU is mapped to a single job. When there are more jobs, it is possible to
employ time slotting.2?#° In either case, if the computation requirements of a certain application surpass the operations that are supported by the
AgLUs, or there is a need to add user logic for inline pre/post-processing (see Figure 5), it is possible to take advantage of partial reconfiguration.*!
For the former case, partial reconfiguration does not disturb other existing jobs but, for the latter, it would introduce minimal idle time (depending

on the amount of new logic) as only the AgLUs and the user logic would be reconfigured, rather than the entire design.

| Reduction Table :
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— i I |
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FIGURE 7 Configurable gather/reduction (CGR) unit: Aggregation has two paths with vectorized AgLUs chained together and combined at
the end
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4.4 | Considerations for indirect networks

The MPI-FPGA switch design for indirect networks follows the same overall design as Figure 5 but with some differences:

e In the direct model, each FPGA card is attached to a processor through a PCle interface. In the indirect network model, FPGA switches are
attached to the processors through network ports.

e For the indirect model, storing information in the forwarding table is a two-step process. During MPI_Init, a dictionary—where the keys are the
global process IDs and the values are the port numbers—is sent from the processors to each of the corresponding leaf switches and then from
leaf switches to spine switches. As a result, each spine switch maintains a dictionary of all the processors within the system inside its forwarding
table;

e The count and context ID fields in the reduction/gather tables of the spine switches are configured by sending the information from the leaf
switches to the spine switches based on the collective operation shown in the incoming packet header;

e For the leaf switches, the number of packet converter modules is equal to the number of downlink ports.

5 | PERFORMANCE ANALYSIS OF IN-NETWORK COLLECTIVE OFFLOAD

In order to develop a general understanding of how this approach could improve the performance of MPI collectives and the conditions that need
to exist for this approach to benefit application performance, we consider a LogGP model.*? L, o, g, G, and P represent the latency, overhead, gap
between messages, gap per byte, and number of processors, respectively. As is standard in reports on hardware implementations of communication
operations, including collectives, we assume that all of the processes start at the same time with no skew. As it has been stated previously, substantial
process skew necessarily diminishes the performance benefit of any aggregation algorithm.? Skew is discussed further in Reference 43.

We compare two models: a baseline with no compute-in-the-switch and the new one where the switch is able to perform the computation,
multicast, and reordering.

Since the total latency of an MPI operation is determined by the slowest process; that is, the maximum latency of any process, processes having
different roles during the collective need to be considered. For MPI-FPGA, we consider the latency of two processes in an MPI_Bcast for a binomial
tree (see Figure 1A): one receiving a number of messages (e.g., process 7) and one sending multiple messages consecutively (process 0).

We first derive expressions for the time spent on the second process type. Let Tg); and T;; denote the time needed for the ith process to finish
the MPI operation in baseline and in-switch models, respectively.

Tgip-1 = [log(P)| X (O; + (k x G) + L+ O,) (3)

Tispo1 =0, +(kxG+L+0, (4)

We distinguished the overhead time on the sender side (O,) from that on the receiver side (O,); these are the times it takes for the proces-
sor to transmit and receive a message, respectively. Note that [log(P)| is reduced to 1 in Equation (4). These equations indicate that the MPI-FPGA
approach effectively eliminates the overhead time (O, and O,) for intermediate MPI processes since communicator support is offloaded into the
FPGA fabric. Also, the above model suggests that the in-switch approach unlocks higher performance for collectives involving many-to-many com-
munication patterns (Allreduce, Allgather, Reduce_scatter, and Barrier) as the number of times that CPUs are bypassed is higher in these collectives.
The in-switch approach also scales better with the number of nodes. Finally, note that the term G in the baseline is greater than for in-switch: the
cost of the transport protocol is high compared to that of the light-weight transport engine.

We now analyze the time spent on the root process (process 0):

Tgio = Os + (([log(P)] — 1) x max{g, O;}) + ([log(P)] x k x G) (5)

Tls,O = Os + (k X G) (6)

In the in-switch model the g term is eliminated by the pipelining communication. For example, for MPI_Bcast the message is sent from the
processor to the switch only once where it is then multicast to the different MPI processes. For MPI_Scatter, different messages are lumped into a
large message. Consequently, for the in-switch model g=0 and assume only G for both short and long messages. Clearly if the message size is small,
then the G terms in all of the above equations are irrelevant. One observation is that, for the in-switch model, the coefficient [log(P)] is reduced to 1
in Equation (6) as the switch benefits from in-network multicast. Another observation is that a multi-port switch attached to each node in the direct
network reduces the effective G for intermediate MPI processes as multiple messages can be sent simultaneously.
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One major benefit of the in-switch model is in-network reduction; inline high-throughput reduction is performed in the switch, which eliminates
the need to perform the reduction in the CPU. This is especially beneficial for large messages. Assuming n MPI processes involved in the reduction
collective, in the baseline model the operation could be performed n-1 times. In the in-switch model nearly all of these operations are eliminated
owing to the pipelined, high-throughput AgLUs. Another advantage of the in-network reduction is reducing network traffic and the number of data
copies in the processor. From the above discussion, we infer that the application characteristics that maximize MPI-FPGA benefit are, first, a large

number of MPI collectives, especially Allreduce and Allgather, and, second, reductions with large message sizes.

6 | EVALUATION

We implemented and tested MPI-FPGA on a two-node FPGA system using Xilinx Alveo U280 boards and the standard Xilinx development tool suite.
Each board exposes two 100 Gb/s QSFP128 interfaces and a PCle Gen3 x16 interface. Vendor-provided IPs (Xilinx QDMA with AXI4-Streaming
interface and Aurora) were used to implement the DMA engine and transceivers. The design is coded in Verilog HDL. We have provided the
FPGA-to-FPGA latency and peak bandwidth of the Alveo U280 card in Table 2. The bandwidth starts to saturate at a message size of just under 1
KB. The information in this table is used during the simulation, which is discussed in the next paragraph.

Giventhechallenges of HDL coding, an efficient cycle-accurate simulator is essential for exploring alarge number of nodes. The simulator usedin
this article is an version of that described in References 33,44 updated by changing the transceiver parameters collected from the two-node testbed
(Table 2). The simulator is implemented in C++; every hardware module in the RTL model has a corresponding class in the simulator. These classes
are organized in the same hierarchical structure as the RTL model. To give the cycle-accurate simulator good extensibility, we define an interface
standard for all hardware modules. We adopt a producer-consumer model with every module being both a producer and consumer. The simulator
has been validated with respect to the RTL code for the two-node FPGA system; the behavior of RTL simulation matches the simulation.

For cluster tests, we target Xilinx XCVU13P FPGA devices. The performance results for the FPGA cluster are obtained from a cycle-accurate
simulator. Resource utilization is reported using Vivado Design Suite 2019.2. The operating frequency of the currentimplementations is 250 MHz. For
the CPU reference, benchmarks were run on the Stampede24° Skylake (SKX) compute cluster, accessed through XSEDE, with 48-cores per node (2
sockets) 2.1 GHz Intel Xeon Platinum 8160 CPUs, and a 100 Gb/s Intel Omni-Path (OPA) network (fat tree topology). We used Intel MP1 18.0.2 as an
Intel-compatible MPI compiler and launcher as recommended for the TACC Stampede2 cluster. We found that it usually gives a better performance
compared to MPICH 3.2.

To assess the efficiency of MPI-FPGA, we compare the performance with respect to the CPU cluster for Allgather, Allreduce, Broadcast, Gather,
Reduce, Reduce_scatter, and Scatter operations using the OSU micro-benchmarks (v5.6.2).4¢ The study investigates a range of message sizes. For
FPGA-based indirect networks, we considered three switch designs: indirect-8, indirect-16, and indirect-28, which denote switches with radix-8,
-16, and -28, respectively. Radix-28 was the highest radix we could implement on the XCVU13P FPGA according to the number of available GTY
transceivers.

6.1 | Resource utilization

FPGA resource consumption is shown in Table 3 for four different designs (direct and indirect networks). As discussed previously, each AgLU
supports a different set of operations. Depending on application requirements, the user can remove the support for unused operations or add

user-defined operations; these actions decrease or increase resource utilization, respectively. The current result is based on using floating point add

TABLE 2 Inter-FPGA latency and bandwidth for Xilinx Alveo U280

Parameter (FPGA-to-FPGA) Latency (ns) Peak bandwidth (Gb/s)

Value 440 95.9

TABLE 3 Resourceusage on Xilinx XCVU13P FPGA devices

Design LUT FF DSP BRAM URAM #SA #AgLU
Direct 401,852 (23.3%) 448,117 (13.0%) 1441 (11.7%) 454 (16.9%) 6(0.4%) 6 144
Indirect-8 700,409 (40.5%) 1,062,680 (30.7%) 2561(20.8%) 523(19.4%) 0(0%) 8 256
Indirect-16 1,408,301 (81.5%) 2,126,184 (61.5%) 5121(41.7%) 987 (36.7%) 0(0%) 8 512
Indirect-28 1,551,853 (89.8%) 2,349,600 (68.0%) 4481 (36.5%) 1543 (57.4%) 0(0%) 4 448
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operation (double-precision). Overall, BRAM utilization is dominated by serial transceivers, input FIFO buffers, and the DMA engine, while the L1
switch accounts for a large fraction of DSRE LUT, and FF utilization.

According to Table 3, the overall utilization increases with the radix of the switch. For all designs except indirect-28, the number of SAs is equal
to the number of ports. There the number of SAs needed to be reduced in order to fit the entire design onto the FPGA. This is because the number

of AgLUs for each CGR unit increases with the radix of switch. The critical resource is LUTs with the CGR units constituting a large fraction of total
LUT utilization.

6.2 | Performance of MPI collectives

We evaluated MPI-FPGA for seven different MPI collectives using the OSU Micro-benchmarks. For all collectives, double precision floating point

was used. The results were averaged over 1000 iterations (with 200 warm-up iterations) and five different runs (different node allocations).

6.2.1 | Overall collective latency

Figures 8 and 9 show the simulation results of MPI and MPI-FPGA collectives for small (4 Bytes to 4 KB) and medium-to-large message sizes (4 KB
to 4 MB) for 32, 64, and 128 nodes using the OSU benchmarks. The reported average latency is the average time it takes for the processes to finish
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the operation. Processor-FPGA communication latency is included in the time. To isolate the impact of the design under study, for example, from
contention at the PCle interface, we focused simulations with one process per node.

One of the advantages of MPI-FPGA is that utilization of the application layers in the network stack (such as MPI) can be bypassed for the nodes
associated with root and intermediate processes because communicator support is offloaded, while reduction operations (if any) can be performed
by a network switch. Although having a low-latency network topology (such as a fat tree) for the reference CPU cluster (as opposed to 3D torus for
the FPGA cluster) can offset the aforementioned benefits, we observe that MPI-FPGA has a higher overall performance. As is evident from Figures 8
and 9, MPI-FPGA speedup relative to the CPU cluster is higher for Allreduceoperation, since a greater number of nodes corresponding to the inter-
mediate processes are involved and data volume is reduced during transfer. For the Reduce_scatter operation, the switch corresponding to the root
process is able to perform the reduction on incoming data received by ingress ports and then scatter the result directly. This effectively bypasses
the processor as it eliminates the need to transfer data to the processor to perform reduction and scattering.

To view the results from a different perspective, Figure 10 shows the average speedups for each of these collectives on 32, 64, and 128 nodes.
The geometric mean is used to summarize MPI-FPGA speedup ratios with respect to different message sizes.*” The speedup ratio ranges from 2.0x
to 32.6x%.

MPI-FPGA achieves higher performance than the CPU cluster for both small and medium to large message sizes. The central reason is that
MPI-FPGA does compute-in-the-network. This bypasses the processor in the nodes corresponding to the root and intermediate processes, which in
turn reduces the latency, especially for short messages. Also, MPI-FPGA utilizes a streaming interface with fine-grained communication as opposed
to processor-based bulk transfers involving large buffers; this helps for long messages.

With respect to problem size, of note is that the MPI-FPGA speedup is maintained as the number of processes grows; this indicates the
expected benefit for larger systems through reduced network traffic. Interestingly, the speedup usually increases for larger systems, espe-
cially for medium-to-long message sizes, showing that the advantage of MPI-FPGA scales. According to the results in Figure 10, the speedup in
medium-to-large messages is higher than for small messages (except Allgather) due to the efficient streaming-based interface. An exception is
Allgather where there is more wait time and traffic, the latter since the volume of data expands as it traverses the network.

In order to characterize the latency variation of MPI collectives across different iterations and different runs, we have tabulated the standard
deviation (std), maximum, and minimum latency for messages of size 1 KB and 1 MB on 32, 64, and 128 nodes (SKX cluster), see Table 4. As expected
MPI collectives for large messages (1 MB) have larger variation than those of small messages (1 KB) and the deviation usually increases as we scale

out.

6.2.2 | Indirect network study

Figure 11 shows the average latency of two MPI collectives, Allgather and Allreduce, for small message sizes (4 Bytes to 4 KB). Four different kinds of
networks are considered: direct, indirect-8, indirect-16, and indirect-28. These are a direct network with 3D torus topology and indirect networks
with radix-8, -16, and -28 switches, respectively. The switches in the indirect network have a default over-subscription of 3:1. Overall, use of an

indirect network reduces the average latency compared with the direct network. As expected, switches with higher radix result in more performance

32

i
=
K 16
=9
2
o 8
@
S
©n
)
2 4
Bt
o
=

1

Allgather Allreduce Becast Gather Reduce Reduce_scatter Scatter
MPI Collective
u Short B Medium-Long Short Medium-Long  ® Short ® Medium-Long
(32 nodes) (32 nodes) (64 nodes) (64 nodes) (128 nodes) (128 nodes)

FIGURE 10 Average MPI-FPGA speedup ratios for OSU benchmarks running on 32, 64, and 128 nodes of Stampede2 for short and medium to
long messages



14 0f 20 Wl LEY HAGHI ET AL.

TABLE 4 MPIcollective latency variation on the Stampede2 compute cluster for message sizes 1 KB and 1 MB on 32, 64, and 128 nodes

32 nodes 64 nodes 128 nodes

1KB 1MB 1KB 1MB 1KB 1MB

MPI collective Std Max Min Std Max Min Std Max Min Std Max Min Std Max Min Std Max Min

Allgather 6.7 48.8 27.1 2503 5466.9 46451 122 87 44.8 8085 141649 11,327 17.2 1302 66 990.7 26,439 23233.2
Allreduce 63 46 21 814 22249 1896.1 10.7 741 36.9 1829 2614 1940 116 86.1 332 2914 2985 19979
Bcast 06 181 16 395 493 349 21 262 178 352 5462 412 34 36 228 116 816.8 4029
Gather 42 269 98 5 2739 2712 44 41 21 74 5465 54259 259 1511 441 353 11,007 10,847
Reduce 68 39.1 119 1516 3720.1 3089.9 112 57 9.7 217.3 45249 36951 122 72 21.9 255.8 4709.9 3807

Reduce_scatter 6.6 38.2 16.9 1134 2577.9 20339 10.1 62 25 1872 4908.9 41501 84 61 31 203.6 4904.2 4195.7

Scatter 3.1 248 11 121 27818 27291 3.9 341 219 166 55492 54838 10 951 458 208 11,018 10,937
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for Allgather and Allreduce operations. (A) Allgather (32 nodes), (B) Allgather (64 nodes), (C) Allgather (128 nodes), (D) Allreduce (32 nodes), (E)
Allreduce (64 nodes), (F) Allreduce (128 nodes)

benefit. There are cases, however, in which this does not hold, for example, in (Figure 11F). There, having radix-16 switches could not reduce the
number of hops compared to the radix-8 switches. This slightly affects the performance as higher radix switches are more complex and have more
AgLUs. It should be noted that, for Allgather, average latency increases more rapidly compared to Allreduce as packets are combined throughout
the network.

Of interest is the comparison of MPI-FPGA with the commercial ASIC-based version of in-switch offload of collectives from Mellanox. Unfor-
tunately gaining access to SHArP-based systems is still extremely challenging. SHArP only supports Allreduce and Barrier collectives? while the
reconfigurable approach embraces a diverse and extensible set of collectives. Although results published in SHArP may not be directly compara-
ble to those described here, as they are independent sets of experiments, it appears that the MPI-FPGA approach is competitive with SHArP and
could outperform SHArP beyond a certain message size.” One likely reason is that reduction of messages that are larger than SHArP hardware
maximum message size are performed by posting multiple reductions. In contrast, in MPI-FPGAonly one request is sent. Also, MPI-FPGA has an effi-

cient streaming interface where large processor packets are converted internally to multiple small network packets. There is a newer version of the
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SHATrP protocol which is based on streaming aggregation interface, but it is not optimized for small message size*® and the latency is higher than
that of the original work.?

Figure 12 summarizes the average speedup of indirect network switches over the baseline direct network switch (from Figure 11) for short
messages. The geometric mean is used to summarize speedup ratios over different message sizes.*” The overall speedup ratio is between 1.2x and
1.9%.

As a further evaluation we compared MPI-FPGA for an indirect network based on radix-28 switches with a SHArP-based MVAPICH2-X
implementation.*’ Figure 13 depicts the scaling of MPI-FPGA with radix-28 switches (FPGA-indirect-28) and the SHArP-based solution in the MVA-
PICH implementation (MVAPICH2-X-SHArP) for Allreduce with 2048 byte messages. The number of nodes was varied from 2 to 128 with one MPI
process per node. The datafor MVAPICH2-X-SHArP is collected from Reference 49 running on TACC Frontera HPC system. The figure demonstrates
that the FPGA-based approach may be able to outperform high-end CPU clusters optimized with SHArP technology.

6.3 | MiniApp-level benchmarking

To show the efficacy of MPI-FPGA in application performance, we have benchmarked various HPC kernels and pseudo applications using NAS parallel
benchmarks (NPB)>° as well as two MiniApps from the Mantevo project (miniFE>! and HPCCG®2).
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TABLE 5 Performance comparison of NAS parallel benchmark, miniFE, and HPCCG, for MPI CPU cluster (SKX) versus
MPI-FPGA for 64 and 128 nodes

64 nodes 128 (121?) nodes

Benchmark/ Improvement Improvement
application SKX (ms) FPGA (ms) (%) SKX (ms) FPGA (ms) (%)

CG 40.3 39.7 1.45 69.9 68.5 2.06

IS 151.7 150.3 0.89 88.3 85.7 2.96

MG 536.7 5324 0.80 303.3 294.5 2.92

Sp2 708.3 707.7 0.08 626.7 625.5 0.18

miniFE 32886.9 32868.2 0.06 71052.9 71037.8 0.02

HPCCG 24890.9 24858.9 0.13 58268.6 58247.4 0.04

2 For the SP benchmark the number of processes must be a perfect square.
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FIGURE 14 CPU cluster (SKX) execution time and MPI-FPGA speedup of Allreduce (Reduce) collectives used in the applications under study.
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and HPCCG

When running the benchmark codes on the FPGA cluster we found that the addition of barriers simplified the instrumentation. To ensure that
we compared the FPGA cluster results with the best possible baseline, we also created versions of the baseline codes with barriers. For the baseline
cases, original and “barrier,” we found that the performance of the two versions was indistinguishable.

For NPB, class A is used for CG and SP, the others (IS and MG) are benchmarked with class C. The results are averaged over five runs. Table 5
compares NPB, miniFE, and HPCCG for the CPU cluster (SKX) and MPI-FPGA for 64 and 128 nodes. Analyzing the NPB results, it can be inferred
that MPI-FPGA improvement increases scales with the number of nodes. This aligns with the discussion of the LogGP model in Section 5. For MG,
MPI-FPGA achieves considerable improvement (about 2% on 128 nodes) as there are a large number of MPI collective calls in this benchmark. For IS
there is an MPI_Allreduce with a large message size in which MPI-FPGA benefits from in-network computing (about 3% improvement on 128 nodes).

For miniFE and HPCCG, we used 48 OpenMP threads on SKX as this number of threads yielded the highest performance according. The problem
size used for miniFE application on 64 (128) nodesis 512 x 256 x 64 (512 x 512 x 64). When scaling up, the problem size per processor is kept fixed
(weak scaling). Our approach provides satisfactory speedup as one of the Allreduce collectives is called for 400 times. Weak scaling is measured for
the HPCCG benchmark as well (the grid dimension on each process is 100 x 100 x 100). Similar to miniFE, one of the Allreduce collectives is called
for a large number of times (298).

Figure 14 shows the CPU cluster (SKX) execution time and MPI-FPGA speedup for Allreduce (Reduce) collectives used in (a) NPB and (b) miniFE
and HPCCG. Because each application may have a large number of collectives, we only used Allreduce: these are common and account for most of the
collective execution time. Each instance is evaluated separately. Also, for those collective instances with multiple executions, we take the arithmetic

mean of their execution times (maximum time among all processes). The exception is CG which does not use Allreduce: Reduce was used instead.

6.4 | Discussion

We observe that MPI-FPGA provides significant performance improvement for some of the benchmarks. The current access to TACC Stampede?2
limits the number of nodes in our experiments to 128. We also observe that the performance improvement for proxy applications (a few percent) is
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much less than that of the collectives themselves (factors of 2.0x-32.6x). As already noted this difference is due to the time spent waiting for laggard
processes (known as process skew) that affects any network enhancement.? In the applications used here the process skew is generally much larger
than the communication latency itself

While coping with process skew is beyond the scope of the current report, there are obvious paths forward. For example, we plan on apply-
ing stepwise refinement to the application benchmarks to transform blocking collective operations (e.g., MPI_Allreduce) to non-blocking and more
advanced variants offered in newer versions of the MPI standard. This will lead, first, to the non-blocking operations (cf. MPI_lallreduce) available in
MPI-3.1, second, to the latest persistent collectives®? offered in the newly completed MPI-4 standard (cf. MPI_Alltoall_init), and, finally, to proposed
partitioned collective communication®* operations planned for MPI-5 (cf. MPIX_Pallreduce_init).

In updating the benchmarks with newer collective primitives, we introduce greater scope for MPI to achieve overlap of communication and
computation. This occurs by widening the gap between the initiation of non-blocking or persistent collective operations and their subsequent
completion. MPI implementations offering asynchronous progress plus hardware offload, notably MPI-FPGA, can exploit such overlap efficiently
for sufficiently large messages. Secondarily, the planned transfer paradigm supported in the more recent APIs is particularly good at removing
setup and tear-down overheads from the critical, per-operation path, and selecting the right mode of collective implementation, such as using the
MPI-FPGA offload system. Finally, partitioned collective operations are designed to enhance overlap when there are laggard processes by supporting
fine-grained production and consumption of sub-buffers (aka, partitions) that can be pipelined into the network, thereby reducing load-imbalance
penalties.

7 | RELATED WORK

Previous work has shown that significant performance speedups can be achieved by offloading collectives onto hardware. These generally enhance
the NIC,'>18 tightly connected with the processor via interconnects such as PCI, whereas the work reported here adds hardware support in the
switch. For instance, Arap et al.1® offload collectives onto an FPGA cluster; however, they do not mention any communicator support, nor do they
integrate into a switch. Schmidt et al.’¢ implement MPI_Reduce in an FPGA cluster for the AIREN network. Their reduction core consists of floating
point units and the output can be looped back as the inputs for further accumulations. This architecture is simple, but lacks flexibility in its reduction
capabilities; it can only support one reduction at a time, while our design can support multiple reductions occurring simultaneously.

There are several other hardware offload designs implemented on FPGAs; they also lack communicator support.1”-> In References 37,56 collec-
tives on FPGA clusters are studied, but the emphasis is on scheduling algorithms. Other work accelerating MPI with FPGAs includes.>”>® Portals®?
adds programmability and hardware support for triggered operations, message steering, and atomic operations to the NIC. However, this network
interface emulates limited processing capabilities.®®

A general solution was provided by Voltaire! which included processing support in the router for collectives; this work differs from ours in that
the offload is to an in-router CPU rather than a hardware augmentation of the switch.

The IBM BlueGene systems®? offload collectives into the network router and also, to some degree, handle communicators. For instance,
BlueGene/Q%® provides a summing unit for accelerating collective operations which is available for subcommunicators. BlueGene/Q, however,
requires class routes for collective operations and there are only 13 class routes available: a node can only be in 13 communicators before hardware
acceleration for collectives becomes unavailable. More importantly, it does not support packet processing in the network where the accelerator
must maintain its own memory.62 Overall, the BlueGene solutions show the difficulties in implementing in-switch collective support in fixed logic.
While high wire utilization is achieved, there are still many limitations. Collectives are supported in a separate network. The number of communi-
cators is bounded and restricted to either the whole network or a rectangular subset. The collectives and the operations on those collectives are a
fixed subset and not extensible.

Recent work by Mellanox? offloads MPI collectives to fixed logic switches using reduction trees for short message size. It appears to address
many of these problems, but also has similar limitations, in particular, supporting only a small number of simple operations with no extensibility;
also there are no published (or generally available) design details. We compare our work with the published results in the evaluation section. A
hardware-based streaming aggregation capability was later added to provide high bandwidth for large messages.*® Finally, the authors in Reference
49 designed, implemented, and evaluated SHArP-based solutions for MPI_Reduce and MPI_Barrier in MVAPICH2-X.

In contrast to previous work, we are the first to offload both CTs and the processing of an entire collective operation in hardware while

supporting irregular communicators and providing hardware acceleration of collective packet processing.

8 | CONCLUSION

We present a comprehensive solution to processing collectives in network switches with reconfigurable logic. This has the advantage over fixed
logic alternatives of being able to support capabilities as needed. This includes varying the supported operation types and numbers of simultaneous
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operations, but also enabling more general user-defined processing in the network. We have demonstrated the last of these advantages in other
work. 428

As part of this solution we present a new method for supporting MPI communicators and accelerating collectives in the network switch. We
begin by considering the movement towards exascale computing and the need for offloading collectives and communicator support into hardware, in
particular, for collectives occurring over irregular communicators. Wefind that storing entire process groups in the network is not a scalable solution.
We then introduce the CT, which takes advantage of the properties and patterns of collective communication in order to provide the accelerator
hardware with the minimum amount of communicator information needed to perform collectives.

Anovel 2-level switch design is introduced to efficiently process in-network collectives; yet it remains flexible enough to embrace user-defined
collectives. We provide a streaminginterface toimprove the performance for long messages. By supporting a full offload of seven popular collectives,
we remove nearly all of the collective operation software from MPI and implement the functionality in the switch. The hardware support has been
integrated into a reconfigurable router which remains portable enough that it is independent of the type of router. We evaluate MPI-FPGA with
respect to a CPU cluster and find that the in-switch accelerator achieves significant and scalable speedups.

As part of future work, we aim to augment MPI-FPGA to support non-blocking MPI collectives to provide communication-computation overlap
and address the process skew challenge. Also, we would like to further augment this approach by supporting persistent collectives and partitioned

communication.
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